
Foundations for Software Con�gurationManagement Poli
ies using GraphTransformations?Fran
es
o Parisi-Presi

e1 and Alexander L. Wolf21 Dip. S
ienze dell'Informazione, Universit�a degli Studi di Roma La SapienzaVia Salaria 113, 00198 Roma, Italy,parisi�dsi.uniroma1.it2 Department of Computer S
ien
e, University of Colorado at BoulderBoulder, Colorado, USA,alw�
s.
olorado.eduAbstra
t. Existing software
on�guration management systems em-body a wide variety of poli
ies for how artifa
ts
an evolve. New poli
ies
ontinue to be introdu
ed. Without a
lean separation of
on�gurationmanagement poli
ies from
on�guration management me
hanisms, it isdiÆ
ult to understand the poli
ies as well as diÆ
ult to reason abouthow they relate. We introdu
e a formal foundation for spe
ifying
on�g-uration management poli
ies by viewing the poli
ies in terms of graphtransformation systems. Not only are we able to pre
isely
apture the se-manti
s of individual poli
ies, we
an, for the �rst time, des
ribe formalproperties of the relationship between poli
ies.1 Introdu
tionManaging the evolution of interrelated software artifa
ts is a
entral a
tivityin software engineering. This a
tivity is often referred to as version
ontrol or,more generally, as
on�guration management (CM) [14℄. Among the many rela-tionships that exist among software artifa
ts, three are the prin
ipal
on
ern ofCM.{ Revision: a relationship re
e
ting the history of modi�
ations made to anartifa
t over time. A revision of an artifa
t is
onsidered to be a repla
ementfor a previous revision of that artifa
t.? This work was performed while A.L. Wolf was a visitor at the Dip. di S
ienzedell'Informazione, supported in part by the Universit�a degli Studi di Roma LaSapienza and by the Air For
e Materiel Command, Rome Laboratory, and the De-fense Advan
ed Resear
h Proje
ts Agen
y under Contra
t Numbers F30602-94-C-0253 and F30602-98-2-0163. The work of F. Parisi-Presi

e was partially supportedby the EC under TMR Network GETGRATS (GEneral Theory of GRAph Trans-formation Systems) and Esprit Working Group APPLIGRAPH.T. Maibaum (Ed.): FASE 2000, LNCS 1783, pp. 304-318, 2000.

Springer-Verlag Berlin Heidelberg 2000

Foundations for Software Con�guration Management Poli
ies 305{ Variant: a relationship re
e
ting the variation in the realizations of an arti-fa
t to �t within di�erent
ontexts. A variant of an artifa
t is
onsidered tobe an alternative to other variants of that artifa
t, where an alternative is
hosen based on an environmental
on
ern su
h as target operating system.{ Con�guration: a set of artifa
ts
onsidered to be
omplete and
ompatiblewith respe
t to some model of a system. A
on�guration is made up of onerevision of one variant (i.e., a version) of ea
h distin
t artifa
t that is a
omponent of the system.Tools supporting the CM a
tivity are responsible for re
ording the relationshipsamong versions of artifa
ts in a repository, as well as for enfor
ing the poli
iesby whi
h developers are permitted to manipulate artifa
ts to
reate versionsand their relationships. In e�e
t, version relationships indu
e a graph,
alled theversion graph, and poli
ies determine a set of legal version graphs.Looking at the lands
ape of CM tools, we
an see a large number and widevariety of poli
ies [3℄. For example, SCCS [11℄ dire
tly supports only revisionsand not variants. A

ess to artifa
ts is
ontrolled through a me
hanism
alled
he
k-out/
he
k-in in whi
h a developer must �rst lo
k an artifa
t before it
an be modi�ed, and then must release that lo
k before the
hanges be
omevisible, and available, to other developers. New revisions are added su

essivelyto form a linear
hain of versions for ea
h artifa
t in the repository (Figure 1a).RCS [13℄ extends SCCS by supporting a version tree for ea
h artifa
t, wherevariants are indi
ated by bran
hes in the tree and revisions are indi
ated bysu

essive versions forming a trunk or limb of the tree (Figure 1b). CVS [1℄ isa variant of RCS that does not support lo
king. Instead, CVS allows developersto
on
urrently make
hanges to private
opies and then later merge them. Ine�e
t, CVS turns the RCS version tree into a more general dire
ted a
y
li
 graph(Figure 1
). DVS [2℄ is a variant of SCCS that follows the lo
king paradigm andsupports revisions, but adds a grouping me
hanism based on arbitrary sets ofartifa
ts. The groups,
alled
olle
tions, are themselves artifa
ts and, therefore,are subje
t to lo
king and exhibit a re
orded revision history (Figure 1d).SCCS, RCS, CVS, and DVS represent just a small sampling of the manypoli
ies that have been invented. New ones appear regularly, some of whi
h arequite involved. An example is a poli
y that embodies a \deep" semanti
s for theversioning of
olle
tions (e.g., the poli
y introdu
ed by Lin and Reiss in theirprogramming environment POEM [8℄). A deep semanti
s requires that whenevera new version of an artifa
t is
reated, then new versions of any
ontaining
olle
-tions must also be
reated. Clearly, this is a re
ursive de�nition when
olle
tionsare themselves treated as artifa
ts that
an be
ontained in other
olle
tions. Asimple illustration appears in Figure 2. In 2a is an empty
olle
tion. A se
ondversion of the
olle
tion
ontains two artifa
ts, an empty
olle
tion and an atomi
artifa
t, as shown in 2b. When an artifa
t is added to the empty
olle
tion, thisresults in the
reation of a new version of that
olle
tion, whi
h in turn resultsin a new version of the top-level
olle
tion, as shown in 2
. Noti
e that the thirdversion of the top-level
olle
tion shares the same version of the atomi
 artifa
twith the se
ond version of the top-level
olle
tion.

306 Fran
es
o Parisi-Presi

e and Alexander L. Wolf
(a)

(b)

(c)

(d)

atomic artifact

collection

revision

variant branch

collection membership

variant mergeFig. 1. Example Version Graphs.Typi
ally, CM poli
ies are embedded deeply within the implementations ofCM tools. As a way to make the tools more
exible, van der Hoek et al. [15℄have logi
ally separated CM poli
ies from CM me
hanisms. Their approa
h is tode�ne a generi
 abstra
tion of a CM repository and to provide a programmati
interfa
e to that repository. Spe
i�
 CM poli
ies are then realized by program-ming against this interfa
e. While the approa
h has been su

essfully employedin the implementation of a wide variety of CM poli
ies, it su�ers from the fa
tthat those poli
ies are being
aptured at the low level of implementation
odewritten in a pro
edural programming language. Signi�
ant leverage
ould bea
hieved if the poli
ies
ould instead be de�ned de
laratively and at a higherlevel of abstra
tion. In parti
ular, a de
larative and higher-level spe
i�
ation
ould lead to a better understanding of the poli
ies, as well as a more appropri-ate basis upon whi
h to reason about various properties of the poli
ies.We have begun to develop an improved method for spe
ifying CM poli
ies.The foundation for this method is the theory of graph transformation systems.Graph transformation provides an ideal perspe
tive from whi
h to view the prob-lem, sin
e the evolution of artifa
ts in a CM repository
an be seen as a deliberateand regulated transformation of version graphs. We
an use this perspe
tive to
exibly de�ne a CM poli
y in terms of either or both the allowed and the disal-lowed version graphs, su
h that the operations applied to an artifa
t repositoryare suitably
onstrained to follow the poli
y. Perhaps more importantly, we
an

Foundations for Software Con�guration Management Poli
ies 307
(a)

(b)

(c)Fig. 2. Example of \Deep" Colle
tion Versioning.begin to perform meaningful analyses of the relationships among the poli
iesthemselves. For instan
e, if we wish to institute a new poli
y, is the existingrepository
ompatible with that poli
y? If we wish to
ombine the work of twodevelopment teams, ea
h of whi
h uses a di�erent CM tool in
orporating a dif-ferent CM poli
y, will they
on
i
t? If we wish to integrate two poli
ies to forma third, what are the possible ways to do this and what are the properties of thepossible poli
ies that arise? The ability to answer these and other su
h questionshas not previously been possible and represents a signi�
ant
ontribution to the�eld of software
on�guration management.This paper introdu
es our approa
h to spe
ifying CM poli
ies using graphtransformation systems. In the next se
tion we brie
y review the basi
s of graphtransformation systems. Se
tion 3 details our use of graph transformation tospe
ify CM poli
ies. Our ability to reason about the relationship between di�er-ent CM poli
ies is illustrated in Se
tion 4. We
on
lude in Se
tion 5 with a lookat related and future work.2 Ba
kground on Graph Transformation SystemsIn this se
tion we re
all the basi
 de�nitions and properties of typed graphsand typed graph transformation systems. A graph G = (N;E; sr
; tar) is given

308 Fran
es
o Parisi-Presi

e and Alexander L. Wolfby a set N of nodes, a set E of edges and fun
tions sr
; tar : E ! N thatassign sour
e and target nodes to edges. A graph morphism f = (fN ; fE) :G ! G0 is given by fun
tions fN : N ! N 0 and fE : E ! E0 su
h thatsr
0 Æ fE = fN Æ sr
 and tar 0 Æ fE = fN Æ tar . With identities and
ompositionbeing de�ned
omponentwise, this de�nes the
ategory Graph. To stru
turegraphs [4{6℄, let TG 2 Graph be a �xed graph,
alled typed graph. A TG-typedgraph (G; tG) is given by a graph G and a graph morphism tG : G ! TG .A (type-preserving) morphism of TG-typed graphs f : (G; tG) ! (G0; tG0) is agraph morphism f : G ! G0 that satis�es tG0 Æ f = tG. With
omposition andidentities this yields the
ategoryGraphTG. Note that GraphTG is the
omma
ategory Graph over TG , thus it is
omplete and
o
omplete.While the type graph TG
an be used to
lassify the
omponents of a graph,labels are needed to distinguish elements of the same type. If C = (CN ; CE) isa pair of disjoint, possibly in�nite, sets, then a C-labelled graph is a graph G asabove along with two labelling fun
tions
N : N ! CN and
E : E ! CE . Forsimpli
ity, the adje
tive \labelled" will be omitted in the rest of the paper.De�nition 1 (Retyping Fun
tors). Any graph morphism f : TG ! TG 0indu
es a ba
kward retyping fun
tor f< : GraphTG0 ! GraphTG, de�ned byf<((G0; tG0)) = (G�; tG�) and f<(k0 : (G0; tG0) ! (H 0; tH0)) = k� : (G�; tG�) !(H�; tH�) by pullba
ks and mediating morphisms as in the following diagram,-- -H* H'
TG'TG G'G* ��+��+QQs QQs? ?fk* k'

and a forward retyping fun
tor f> : GraphTG ! GraphTG0 , given by f>((G; tG)) =(G; f Æ tG) and f>(k : (G; tG)! (H; tH)) = k by
omposition.As shown by Gro�e-Rhode et al. [5℄, ba
kward and forward retyping fun
torsare left and right adjoints.In general, the algebrai
 approa
hes to graph transformations (see Rozen-berg [12℄ for a
omplete treatment) are based on the
on
ept of gluing of graphs,modeled by pushouts in suitable
ategories: in the Double Pushout (DPO) ap-proa
h a derivation step is based on a two-pushout
onstru
tion in the
ategoryGraphTG of (labeled, typed) graphs and graph morphisms while, in the SPOapproa
h, it is de�ned by a single pushout in the
ategoryGraphPTG of (labeled)graphs and partial morphisms. Our approa
h is based on double pushouts, al-though the spe
i�
 example investigated uses parti
ular kinds of rules that donot erase and thus
an be thought of as rules in either approa
h.A TG-typed graph rule is a span ((L; tL) l (K; tK) r! (R; tR)) where (L; tL),(K; tK), (R; tR) are typed over the same type graph TG and l; r are TG-typed

Foundations for Software Con�guration Management Poli
ies 309graph morphisms. The left graph (L; tL) is mat
hed to the a
tual graph whenthe rule is applied and the right graph (R; tR) is substituted to the o

urren
eof (L; tL). The span expresses whi
h items of (L; tL) are related to whi
h itemsof (R; tR), and the interfa
e graph (K; tK)
ontains the items preserved by therule appli
ation.TG-typed rules and TG-typed rule morphisms (as triples f = (fL; fK ; fR)of TG-typed graph morphisms
ompatible with the spans) de�ne, with the
omponent-wise identities and
omposition, the
ategoryRuleTG as the
omma
ategory Rule over TG . Sin
e Rule is
omplete and
o
omplete, so is RuleTG.De�nition 2 (Typed Graph Transformation System Spe
i�
ation). Atyped graph transformation system spe
i�
ation (tgts-spe
i�
ation)G = (TG ; P; �)
onsists of a type graph TG, a set of rule names P and a mapping � : P !jRuleTG j, asso
iating with ea
h rule name a TG-typed rule.De�nition 3 (Morphisms of Typed Graph Transformation Systems).A morphism of tgts-spe
i�
ations (tgts-morphism), f = (fTG; fP) : G ! G0from G = (TG ; P; �) to G0 = (TG 0; P 0; �0) is given by an inje
tive type graphmorphism fTG : TG ! TG 0 and a mapping fP : P ! P 0 between the sets ofrule names, su
h that f>TG(�(p)) = �0(fP (p)) for all p 2 P .As shown by Gro�e-Rhode et al. [5℄, tgts-spe
i�
ations and morphisms forma
ategory,
alled TGTS
losed under
olimits.Notation. If G and G0 have the same type, G\G0 denotes the tgts G00 wherethe range of �00 is �(P) \ �0(P 0) regardless of the set P 00 of names
hosen (G00is well de�ned up to isomorphism)Given a tgts-spe
i�
ationG = (TG ; P; �), a dire
t derivation p=m : (G; tG))(H; tH) over G from a graph (G; tG) via a rule p and a mat
hing morphismm : (L; tL)! (G; tG) is given by the following double pushout diagram(L; tL)m
��

(K; tK)loo r //k
��

(R; tR)h
��(G; tG) (D; tD)l0oo r0 // (H; tH)in GraphTG, where �(p) = ((L; tL) l (K; tK) r! (R; tR)). (G; tG) is
alledthe input, and (H; tH) the output of p=m : (G; tG)) (H; tH). A derivationp1=m1; : : : ; pn=mn : (G; tG)) (H; tH) over G from a graph (G; tG) via rulesp1; : : : ; pn and mat
hing morphisms m1; : : : ;mn is a sequen
e of dire
t deriva-tions overG, su
h that the output of the ith dire
t derivation is the input of the(i+ 1)st dire
t derivation. The set of all derivations over G is denoted Der(G)and,
onsidering Der(G) as the behavior of G, the following property holds [5℄:Proposition 1 (Preservation of Behavior). Let f = (fTG; fP) : G !G0 be a tgts-morphism. For ea
h derivation d : (G; tG)) (H; tH) with d =

310 Fran
es
o Parisi-Presi

e and Alexander L. Wolf(p1=m1; : : : ; pn=mn) in Der(G) there is a derivation f(d) : f>TG(G; tG)) f>TG(H; tH)in Der(G0), where f(d) = (fP (p1)=f>TG(m1); : : : ; fP (pn)=f>TG(mn)). Moreover,f<TG(f(d) : f>TG(G; tG)) f>TG(H; tH)) = (d : (G; tG)) (H; tH)).In other words, any graph generated in G
an be generated in G0 afterappropriate translation via the type morphism.The formalism presented so far is not suÆ
ient to model the rules in theexample of Figure 2 in the pre
eding se
tion. What is needed is to add to therules some
ontext
onditions that prevent the appli
ation of a rule even in thepresen
e of a mat
h m.De�nition 4 (Appli
ation Conditions).{ An appli
ation
ondition for a mat
h m : L! G is a total graph morphism
i : L! Li.{ A positive appli
ation
ondition
i is satis�ed by m if there exists a (total)graph morphism n : Li ! G su
h that n Æ
i = m.{ A negative appli
ation
ondition
i is satis�ed by m if there is no (total)graph morphism n : Li ! G su
h that n Æ
i = m.{ A
onditional rule is a rule p with a set of appli
ation
onditions Cond and aderivation p=m : (G; tG)) (H; tH) takes pla
e only if the mat
h m satis�esevery
ondition in Cond.Notation. In the remainder of the paper, the pushout obje
t of two mor-phisms a! b and a!
 in a
o
omplete
ategory is denoted by b+a
. Similarly,in a
omplete
ategory, the pullba
k obje
t of the morphisms b ! d and
 ! dis denoted by b�d
.3 Formalization of CM Poli
iesInformally, a poli
y for a software
on�guration manager des
ribes (among otherthings): how and when an artifa
t
an be
he
ked out for a possible modi�
ation;how and who
an
he
k in an artifa
t after a possible modi�
ation; how tointrodu
e new versions.Furthermore, a poli
y spe
i�es whi
h kinds of stru
tures are forbidden andshould never be
onstru
ted (an example is a
y
le of version dependen
ies)when introdu
ing new versions. Finally, a poli
y should keep tra
k of the
urrentenvironment and be able to spe
ify whi
h developers
an a

ess whi
h parts ofthe systems, ea
h with the allowed set of rules to modify the repository model.We are not addressing here the problem of des
ribing and integrating di�erentenvironments, whi
h will be ta
kled in a subsequent paper. The obje
tive is togive a formal framework to des
ribe wanted and unwanted stru
tures.De�nition 5 (Poli
y). A poli
y A is a triple (T; Pos;Neg) where{ T = (C; TG) is the type of the poli
y
onsisting of a set C of labels and atype graph TG;

Foundations for Software Con�guration Management Poli
ies 311{ Pos is a (C; TG)-graph transformation system; and{ Neg is a set of (C; TG)-graphs and (C; TG)-graph morphisms.The three
omponents are denoted by T (A), Pos(A) and Neg(A), respe
tivelyand GPos(A) denotes the set of graphs generated by Pos(A) (starting from theempty graph).Interpretation. The �rst
omponent des
ribes the \type" of the poli
y, withthe type graph TG indi
ating what kind of entities it deals with (for example,artifa
ts
an only be subje
t to revisions, or the \re
eiving" end of a membershiprelation
an only be a
olle
tion) and the labels in C denoting, for example, thenumbering to be used for revisions or for variants. The se
ond
omponent Pos(A)des
ribes intentionally the graphs that the poli
y intends to generate by givingthe rules to do so. The third
omponent des
ribes the unwanted stru
tures in anextensional way. Any graph H 2 Neg(A) indi
ates that no graph
ontaining H(via a morphism)
an be a

epted. Any morphism N ! E
ontained in Neg(A)indi
ates that no graph
ontaining N
an be a

epted unless it
ontains also E.Formally, a graph G is a

eptable by H if there is no morphism H ! G anda graph G is a

eptable by N ! E if any inje
tive morphism N ! G
an beextended to a morphism E ! G su
h that N ! E ! G = N ! G. In general,a set of graphs G is a

eptable by Neg(A) if any G 2 G is a

eptable by everyH 2 Neg(A) and every N ! E 2 Neg(A).Example 1. The de�nitions are illustrated with a formalization of the poli
yREV that allows the expli
it revision of artifa
ts. Sin
e the poli
y does notdelete any item, the rules have L = K and thus only K ! R is shown. Thepoli
y is over the type graph TRwhere the re
tangle represents a
olle
tion that
ontains the
onne
ted artifa
t,the hexagon is a tag indi
ating that the
onne
ted artifa
t is
he
ked out and theloop on the ellipsis that the artifa
t
an have a revision. Pos(REV)
ontains onerule that allows a
he
ked-out artifa
t to be
he
ked-in and de
lared a revisionof the previously
he
ked-out artifa
t, and one rule that allows the
he
king-outof an artifa
t provided that it has not been
he
ked-out already and does nothave a revision (for the rule to be appli
able, the mat
hing morphism
annot beextendable to the part [negative
ondition℄ en
losed in the dashed re
tangle).

312 Fran
es
o Parisi-Presi

e and Alexander L. WolfPos(REV) also
ontains the three rules needed to implement the \deep"
olle
tion versioning (not in
luded for la
k of spa
e), a rule to add a new artifa
tto an existing
olle
tion and a rule with empty left-hand side to introdu
e onenode representing a new
olle
tion. (The user determines whi
h of the two rulesis \
urrent".)Neg(REV)
ontains only two graphs: one stating that no artifa
t
an be arevision of itself and the other that an artifa
t
an have only one revision.
De�nition 6. A poli
y A is
oherent if GPos(A) satis�es Neg(A), i.e., if itsrules
annot generate a graph
ontaining an unwanted graph.A
oherent poli
y A is
losed if any graph not in GPos(A) is reje
ted byNeg(A), i.e., if the positive and negative parts of A des
ribe all the graphs overT (A) = (C; TG).Example 2. (
ont.)It is not diÆ
ult to
he
k that the poli
y REV given above is a
oherentpoli
y sin
e the se
ond rule
ontrols (at
he
k-out time) that an artifa
t is notalready revisioned and
an be
he
ked-out, while the only way to introdu
e arevision is by the �rst rule and only for
he
ked-out artifa
ts.In order to
ompare poli
ies, it is helpful to view any H 2 Neg(A) as theidentity morphism H ! H (NOT to be interpreted as a morphism N ! E inNeg(A) !) . This allows us to treat Neg(A) as a tgts with rules (H H!H)and (N N!E) and thus to use tgts-morphisms. Poli
ies
an be
ompared by
omparing their two signi�
ant
omponents Pos andNeg. Consider, for example,a pessimisti
 poli
y PES pres
ribing that only the last version of an artifa
t
anbe further versioned and an optimisti
 poli
y OPT that allows any version, andnot only the last one, to be versioned again. The pessimisti
 poli
y generatesonly graphs that are a

eptable by the optimisti
 poli
y, while the
onverse neednot be true, i.e., GPos(PES) � GPos(OPT). Furthermore, any graph reje
tedby OPT is also reje
ted by PES, whi
h deals with a parti
ular version (the lastone) among those dealt with by OPT . This situation
an be formalized by thenotion of subsumption.De�nition 7 (Subsumption). A poli
y A subsumes a poli
y B of the sametype (C; TG) if GPos(B) � GPos(A) and Neg(A) � Neg(B).The idea
an be generalized by a morphism between poli
ies.De�nition 8 (Poli
y Morphism). A poli
y morphism f : A ! B betweenpoli
ies A and B is a triple (fT ; fP ; fN) where{ fT = (fC ; fTG) : (CA; TGA) ! (CB ; TGB) is a pair
onsisting of a totalfun
tion and a total (untyped) graph morphism and

Foundations for Software Con�guration Management Poli
ies 313{ fP : Pos(A) ! Pos(B) and fN : Neg(B)! Neg(A) are tgts-morphisms asin Def.3 with respe
t to the type morphism fT .Remark 1. A tgts-morphism fN indi
ates that poli
y A reje
ts at least all thegraphs that poli
yB reje
ts (up to retyping) and possibly more. A tgts-morphismfP indi
ates that, up to the retyping indu
ed by fT , poli
y B has all the rulesof poli
y A and thus
an generate all the graphs generated by A (Propostion 1).Hen
e if the types of A and B are the same and there is at least one poli
ymorphism A ! B, then B subsumes A. The
onverse is in general not truebe
ause fP relates the rules of the two poli
ies: there may not be any tgts-morphism fP : Pos(A)! Pos(B) and yet GPos(A) � GPos(B).Poli
y morphisms
an easily be
omposed
omponent-wise: ea
h
omponentis the
omposition of fun
tions (fC), of graph morphisms (fTG) or of tgts-morphisms (fP and fN), whi
h is asso
iative with the usual identities. Working
omponent-wise, we
an prove the following result.Theorem 1. The
ategory POLICY of poli
ies and poli
y morphisms is
losedunder �nite
olimitsIntuitively, the pushout of two poli
y morphisms A0 ! A1 and A0 ! A2
onstru
ts a new poli
y A1+A0A2 by taking the pushout of the positive rules andthe pullba
k of the negative graphs and morphisms. The poli
y so
onstru
tedneed not be
oherent even if the poli
iesAi are
oherent. We address this problemat the end of the next se
tion with Theorem 3.4 Relationships Between Poli
iesIn this se
tion we investigate ways of
ombining poli
ies to obtain other poli
ies.Unless otherwise spe
i�ed, we
onsider poli
ies of the same type T = (C; TG).This assumption is harmless and simpli�es the treatment (any graph of typeT0 = (C0; TG0)
an be
onsidered of type T1 = (C1; TG1) provided that thereexists a morphism fT : (C0; TG0) ! (C1; TG1)) by allowing \set-theoreti
"manipulations of poli
ies.There are (at least) three di�erent ways of
ombining the negative partsNeg(A) and Neg(B) to obtain the negative part of their
ombination. Theresulting poli
y reje
ts a graph G if it
ontains{ a subgraph forbidden by either A or B;{ a subgraph forbidden by A and one forbidden by B; or{ a subgraph forbidden by both A and B.More formallyDe�nition 9 (Negative Strategies). For sets of morphisms Neg(A) andNeg(B), de�ne

314 Fran
es
o Parisi-Presi

e and Alexander L. Wolf{ CA(Neg(A); Neg(B)) = Neg(A) [Neg(B){ CD(Neg(A); Neg(B)) = fNA+NB ! EA+EB : NA ! EA 2 Neg(A); NB !EB 2 Neg(B)g [fHA +HB : HA 2 Neg(A); HB 2 Neg(B)g{ DA(Neg(A); Neg(B)) = Neg(A) \Neg(B)Interpretation. A graph is reje
ted by CA(Neg(A); Neg(B)) if it is re-je
ted by poli
y A or by poli
y B or by both: it is a CAutious strategy reje
t-ing a graph even if one of the poli
ies
ould a

ept it. A graph is reje
ted byDA(Neg(A); Neg(B)) if it is reje
ted by both poli
ies for the same reason: it isa DAring strategy reje
ting a graph only if there is no
hoi
e. A graph is reje
tedby CD(Neg(A); Neg(B)) if it is reje
ted by both poli
ies for possibly di�erentreasons.Analogous to the negative part, there are (at least) three di�erent ways of
ombining the generative parts Pos(A) and Pos(B) to obtain the positive partof the
ombination of the poli
ies A and B.De�nition 10 (Positive Strategies). Given graph transformation systemsPos(A) and Pos(B), de�ne{ CA(Pos(A); P os(B)) = Pos(A) \ Pos(B){ CD(Pos(A); P os(B)) = fpA + pB : pA 2 Pos(A); pB 2 Pos(B)g{ DA(Pos(A); P os(B)) = Pos(A) [Pos(B)Interpretation. The graphs generated by CA(Pos(A); P os(B)) are (someof) the graphs generated by both Pos(A) and Pos(B): a CAutious strategy. Thegraphs generated by DA(Pos(A); P os(B)) in
ludes all the graphs in GPos(A)[GPos(B) along with the graphs obtained by the \intera
tion" of the rules of thetwo sets: a DAring strategy. The graphs generated by CD(Pos(A); P os(B)) arethose obtained by taking the disjoint union of one graph generated by Pos(A)and one by Pos(B).Poli
ies
an be
ombined by sele
ting one strategy for the generative partand one for the reje
ting part.De�nition 11. Given poli
ies A and B, the
ombination of A and B withstrategies X and Y is denoted by [X;Y ℄(A;B) and is the poli
y C wherePos(C) = X(Pos(A); P os(B)) andNeg(C) = Y (Neg(A); Neg(B))for X;Y 2 fDA;CD;CAgThe �rst result on
ombining poli
ies is a straightforward appli
ation of thede�nitions.Proposition 2. If A and B are poli
ies su
h that there exists a poli
y morphismfrom A to B, then1. [DA;DA℄(A;B) = B2. [CA;CA℄(A;B) = A

Foundations for Software Con�guration Management Poli
ies 315The main problem in
ombining poli
ies is to predi
t the behavior of theresulting poli
y. In parti
ular, the two poli
ies to be
ombined
ould \interfere"with ea
h other where one of the two generates a graph that is reje
ted by theother poli
y. Whi
h of the di�erent ways of
ombining two
oherent poli
iesgenerates again a
oherent poli
y? The remaining part of this se
tion is devotedto giving partial answers to this question. One spe
ial
ase is already treatedin the previous proposition. The two extreme ways of
ombining poli
ies useDAring strategies for both
omponents generating more graphs than the twopoli
ies generate individually and reje
ting only when both poli
ies agree, andCAutious strategies for both
omponents generating a \small" set of graphs andreje
ting a graph when just one of the poli
ies reje
ts it.Proposition 3. 1. If A and B are
oherent, then C = [CA;CA℄(A;B) is
o-herent.2. There exist
oherent poli
ies A and B su
h that D = [DA;DA℄(A;B) is not
oherent.Proof. (Sket
h) (1) Sin
e GPos(C) � GPos(A) \ GPos(B) and Neg(C) =Neg(A) [Neg(B), if G 2 Neg(C) is a subgraph of H 2 GPos(C), then itis a graph generated by both A and B
ontradi
ting the
oheren
e of A ifG 2 Neg(A) or the
oheren
e of B if G 2 Neg(B).(2) Consider in fa
t a type graph for both poli
ies
onsisting of 2 isolatednodes (
all them a and b). Poli
y A (resp. B) has only one rule generating fromthe empty graph one with a single node of type a (resp. b). Both poli
ies reje
tall the graphs that
ontain a node of type b and a node of type a. The twopoli
ies are obviously
oherent but Pos(D)
ontains a graph with one node oftype a and one node of type b and thus reje
ted by de�nition of Neg(D).The next few results try to narrow the gap between these two extremes.Proposition 4. If A and B are
oherent, then [CA;X ℄(A;B) is
oherent forany X 2 fCA;CD;DAg.Proposition 5. (a) For any X 2 fCA;CD;DAg, if [X;CA℄(A;B) is
oherent,then so are [X;CD℄(A;B) and [X;DA℄(A;B)(b) There exist
oherent poli
ies A, B, P , and Q su
h that [CD;DA℄(P;Q) and[CD;CD℄(A;B) are not
oherent.The
ru
ial
ase is when the largest number of graphs is generated whileallowing either poli
y to reje
t a graph.Theorem 2. If [DA;CA℄(A;B) is
oherent, then [X;Y ℄(A;B) is
oherent forany X;Y 2 fCA;CD;DAg.Example 3. (
ont.)Consider the poli
y VAR over the same type graph TV = TR used for thepoli
y REV but where the loop on the artifa
t node indi
ates a variant of an

316 Fran
es
o Parisi-Presi

e and Alexander L. Wolfartifa
t. Pos(V AR)
ontains one rule that allows a
he
ked-out artifa
t to be
he
ked-in and de
lared a variant of the previously
he
ked-out artifa
t, and onerule that allows the
he
king-out of an artifa
t provided that it has not been
he
ked-out already. (Again the user sele
ts the \
urrent" rule.)
(Again the user sele
ts the \
urrent" rule)Pos(V AR) also
ontains rules to add a new
olle
tion and to add a newartifa
t within an existing
olle
tion.Neg(V AR)
ontains only two graphs: one stating that no artifa
t
an be avariant of itself, and the other one that no more than two variants
an be mergedat a time.
Again it is easy to
he
k that VAR is a
oherent poli
y.The two poli
ies REV and VAR
an be thought of the same type, namelyTR with two distin
t loops, one denoting revision and one denoting variant.Claim. The poli
y M = [DA;CA℄(REV; V AR) is
oherent.In fa
t, the intera
tion of the rules of REV and VAR
annot generate theforbidden graphs sin
e, for example,REV is
oherent and the rules in Pos(V AR)
annot generate \variant" ar
s. In other words, there are no forbidden graphsover the \
ommon" type
onsisting of the graph TR without the loop.The idea behind this example
an be generalized. To determine whether themost \dangerous"
ombination [DA;CA℄ of
oherent poli
ies is
oherent, it issuÆ
ient to
he
k only the forbidden graphs of either poli
y that are of the
ommon type.Theorem 3. Let A and B be
oherent poli
ies over types TA and TB, respe
-tively, and fA : T ! TA, fB : T ! TB type morphisms with f : T ! TA +T TB.Denote by A� and B� the poli
ies A and B, respe
tively, viewed over the typeTA +T TB. The poli
y [DA;CA℄(A�; B�) is
oherent if and only if the poli
y(DA(A�; B�); NEG) is
oherent, whereNEG = fn 2 Neg(A�) [Neg(B�) : f>(f<(n)) = ng.

Foundations for Software Con�guration Management Poli
ies 317Noti
e that [DA;CA℄(A�; B�)
orresponds to the pushout obje
t (in POL-ICY) with respe
t to the empty set of shared poli
y rules (
f. Theorem 1).We
lose this se
tion with a simple result involving
losed poli
ies.De�nition 12. Poli
ies A and B over the same type are equivalent if GPos(A) =GPos(B) and Neg(A) = Neg(B).Proposition 6. Poli
ies A and B are equivalent if and only if A subsumes Band B subsumes A.Theorem 4. Given
losed poli
ies A and B, [DA;CA℄(A;B) is
oherent if andonly if A and B are equivalent.5 Con
lusionThe use of graph transformation systems to model various aspe
ts of softwareengineering is well established. In the parti
ular area of
on�guration manage-ment, three e�orts stand out as representative of related work.{ Heimbigner and Krane [7℄ use graph transformation systems to model thesoftware build pro
ess, whi
h is an orthogonal a
tivity to versioning withinthe general area of
on�guration management. The build pro
ess des
ribeshow tools (e.g.,
ompilers and linkers) should be applied to artifa
ts (e.g.,sour
e �les) to derive other artifa
ts (e.g., obje
t and exe
utable �les).{ Westfe
htel [16℄ has developed a graph transformation framework for des
rib-ing the stru
ture of do
uments and a parti
ular poli
y for how do
umentstru
tures should evolve.{ Mens [9℄ uses labelled typed graphs to represent reusable software
ompo-nents and
onditional graph rewriting for des
ribing a parti
ular poli
y bywhi
h those
omponents should evolve.Our work
ontrasts with these and related e�orts in that it is more generallyapplied to multiple poli
ies, and to understanding the relationships among thosepoli
ies.The
hoi
es of DA, CA and CD to
onstru
t new poli
ies are just \poli
ies"'themselves on poli
y building: under investigation are more general ways ofputting poli
ies together. Also under study are the possible ways of
onvertinga non-
oherent poli
y into a
oherent one by modifying either Neg (easy) or Pos(not as easy) or both. Su
h modi�
ations
ould be modelled within the rule-baseframework itself [10℄.Our future work is aimed at modeling the full spe
trum of existing CM poli-
ies and �nding further
riti
al properties that relate them to ea
h other. Goingfurther, we plan to design and build a tool to take as input poli
ies spe
i�ed asgraph transformation systems and produ
e as output poli
y enfor
ement
odein a pro
edural programming language. As a �rst target, we will generate poli-
ies implemented as
alls to the library fun
tions of the NUCM
on�gurationmanagement repository [15℄.

318 Fran
es
o Parisi-Presi

e and Alexander L. WolfReferen
es1. B. Berliner. CVS II: Parallelizing Software Development. In Pro
eedings of 1990Winter USENIX Conferen
e, pages 341{352. USENIX Asso
iation, January 1990.2. A. Carzaniga. Distributed Versioning System Manual, Version 1.2. Department ofComputer S
ien
e, University of Colorado, Boulder, Colorado, June 1998.3. R. Conradi and B. Westfe
htel. Version Models for Software Con�guration Man-agement. ACM Computing Surveys, 30(2):232{282, June 1998.4. A. Corradini and R. He
kel. A Compositional Approa
h to Stru
turing and Re-�nement of Typed Graph Grammars. In Pro
. SEGRAGRA'95 (Graph Rewritingand Computation), volume 2 of ENTCS, pages 167{176. Elsevier, 1995.5. M. Gro�e-Rhode, F. Parisi Presi

e, and M. Simeoni. Spatial and Temporal Re�ne-ment of Typed Graph Transformation Systems. In Pro
. MFCS'98 (Mathemati
alFoundations of Computer S
ien
e), volume 1450 of Le
ture Notes in ComputerS
ien
e, pages 553{561, 1998.6. M. Gro�e-Rhode, F. Parisi Presi

e, and M. Simeoni. Re�nements of Graph Trans-formation Systems via Rule Expressions. In Pro
. Sixth Int. Workshop on Theoryand Appli
ation of Graph Transformations (TAGT'98), Le
ture Notes in ComputerS
ien
e, 1999. To appear.7. D. Heimbigner and S. Krane. A Graph Transformation Model for Con�gurationManagement Environments. In SIGSOFT '88: Pro
eedings of the Third Sympo-sium on Software Development Environments, pages 216{225. ACM SIGSOFT,November 1988.8. Y.-J. Lin and S.P. Reiss. Con�guration Management with Logi
al Stru
tures. InPro
eedings of the 18th International Conferen
e on Software Engineering, pages298{307. Asso
iation for Computer Ma
hinery, Mar
h 1996.9. T. Mens. Conditional Graph Rewriting as an Underlying Formalism for SoftwareEvolution. In Pro
eedings of the International Symposium on Appli
ations of GraphTransformation with Industrial Relevan
e, Le
ture Notes in Computer S
ien
e.Springer-Verlag, 1999. To appear.10. F. Parisi Presi

e. Transformations of graph grammars. In Pro
. 5th Int. Workshopon Graph Grammars, volume 1073 of Le
ture Notes in Computer S
ien
e, pages426{442, 1996.11. M.J. Ro
hkind. The Sour
e Code Control System. IEEE Transa
tions on SoftwareEngineering, SE{1(4):364{370, De
ember 1975.12. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by GraphTransformation, volume 1. World S
ienti�
, New Jersey, 1997.13. W.F. Ti
hy. RCS, A System for Version Control. Software|Pra
ti
e and Experi-en
e, 15(7):637{654, July 1985.14. W.F. Ti
hy. Tools for Con�guration Management. In Pro
eedings of the Interna-tional Workshop on Software Versioning and Con�guration Control, pages 1{20,January 1988.15. A. van der Hoek, A. Carzaniga, D.M. Heimbigner, and A.L. Wolf. A Reusable,Distributed Repository for Con�guration Management Poli
y Programming. Te
h-ni
al Report CU{CS{849{98, Department of Computer S
ien
e, University of Col-orado, Boulder, Colorado, September 1998.16. B. Westfe
htel. A Graph-Based System for Managing Con�gurations of Engi-neering Design Do
uments. International Journal of Software Engineering andKnowledge Engineering, 6(4):549{583, De
ember 1996.

