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Foundations for Software Con�guration Management Poliies 305{ Variant: a relationship reeting the variation in the realizations of an arti-fat to �t within di�erent ontexts. A variant of an artifat is onsidered tobe an alternative to other variants of that artifat, where an alternative ishosen based on an environmental onern suh as target operating system.{ Con�guration: a set of artifats onsidered to be omplete and ompatiblewith respet to some model of a system. A on�guration is made up of onerevision of one variant (i.e., a version) of eah distint artifat that is aomponent of the system.Tools supporting the CM ativity are responsible for reording the relationshipsamong versions of artifats in a repository, as well as for enforing the poliiesby whih developers are permitted to manipulate artifats to reate versionsand their relationships. In e�et, version relationships indue a graph, alled theversion graph, and poliies determine a set of legal version graphs.Looking at the landsape of CM tools, we an see a large number and widevariety of poliies [3℄. For example, SCCS [11℄ diretly supports only revisionsand not variants. Aess to artifats is ontrolled through a mehanism alledhek-out/hek-in in whih a developer must �rst lok an artifat before itan be modi�ed, and then must release that lok before the hanges beomevisible, and available, to other developers. New revisions are added suessivelyto form a linear hain of versions for eah artifat in the repository (Figure 1a).RCS [13℄ extends SCCS by supporting a version tree for eah artifat, wherevariants are indiated by branhes in the tree and revisions are indiated bysuessive versions forming a trunk or limb of the tree (Figure 1b). CVS [1℄ isa variant of RCS that does not support loking. Instead, CVS allows developersto onurrently make hanges to private opies and then later merge them. Ine�et, CVS turns the RCS version tree into a more general direted ayli graph(Figure 1). DVS [2℄ is a variant of SCCS that follows the loking paradigm andsupports revisions, but adds a grouping mehanism based on arbitrary sets ofartifats. The groups, alled olletions, are themselves artifats and, therefore,are subjet to loking and exhibit a reorded revision history (Figure 1d).SCCS, RCS, CVS, and DVS represent just a small sampling of the manypoliies that have been invented. New ones appear regularly, some of whih arequite involved. An example is a poliy that embodies a \deep" semantis for theversioning of olletions (e.g., the poliy introdued by Lin and Reiss in theirprogramming environment POEM [8℄). A deep semantis requires that whenevera new version of an artifat is reated, then new versions of any ontaining olle-tions must also be reated. Clearly, this is a reursive de�nition when olletionsare themselves treated as artifats that an be ontained in other olletions. Asimple illustration appears in Figure 2. In 2a is an empty olletion. A seondversion of the olletion ontains two artifats, an empty olletion and an atomiartifat, as shown in 2b. When an artifat is added to the empty olletion, thisresults in the reation of a new version of that olletion, whih in turn resultsin a new version of the top-level olletion, as shown in 2. Notie that the thirdversion of the top-level olletion shares the same version of the atomi artifatwith the seond version of the top-level olletion.
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variant mergeFig. 1. Example Version Graphs.Typially, CM poliies are embedded deeply within the implementations ofCM tools. As a way to make the tools more exible, van der Hoek et al. [15℄have logially separated CM poliies from CM mehanisms. Their approah is tode�ne a generi abstration of a CM repository and to provide a programmatiinterfae to that repository. Spei� CM poliies are then realized by program-ming against this interfae. While the approah has been suessfully employedin the implementation of a wide variety of CM poliies, it su�ers from the fatthat those poliies are being aptured at the low level of implementation odewritten in a proedural programming language. Signi�ant leverage ould beahieved if the poliies ould instead be de�ned delaratively and at a higherlevel of abstration. In partiular, a delarative and higher-level spei�ationould lead to a better understanding of the poliies, as well as a more appropri-ate basis upon whih to reason about various properties of the poliies.We have begun to develop an improved method for speifying CM poliies.The foundation for this method is the theory of graph transformation systems.Graph transformation provides an ideal perspetive from whih to view the prob-lem, sine the evolution of artifats in a CM repository an be seen as a deliberateand regulated transformation of version graphs. We an use this perspetive toexibly de�ne a CM poliy in terms of either or both the allowed and the disal-lowed version graphs, suh that the operations applied to an artifat repositoryare suitably onstrained to follow the poliy. Perhaps more importantly, we an
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(c)Fig. 2. Example of \Deep" Colletion Versioning.begin to perform meaningful analyses of the relationships among the poliiesthemselves. For instane, if we wish to institute a new poliy, is the existingrepository ompatible with that poliy? If we wish to ombine the work of twodevelopment teams, eah of whih uses a di�erent CM tool inorporating a dif-ferent CM poliy, will they onit? If we wish to integrate two poliies to forma third, what are the possible ways to do this and what are the properties of thepossible poliies that arise? The ability to answer these and other suh questionshas not previously been possible and represents a signi�ant ontribution to the�eld of software on�guration management.This paper introdues our approah to speifying CM poliies using graphtransformation systems. In the next setion we briey review the basis of graphtransformation systems. Setion 3 details our use of graph transformation tospeify CM poliies. Our ability to reason about the relationship between di�er-ent CM poliies is illustrated in Setion 4. We onlude in Setion 5 with a lookat related and future work.2 Bakground on Graph Transformation SystemsIn this setion we reall the basi de�nitions and properties of typed graphsand typed graph transformation systems. A graph G = (N;E; sr; tar) is given



308 Franeso Parisi-Presie and Alexander L. Wolfby a set N of nodes, a set E of edges and funtions sr; tar : E ! N thatassign soure and target nodes to edges. A graph morphism f = (fN ; fE) :G ! G0 is given by funtions fN : N ! N 0 and fE : E ! E0 suh thatsr0 Æ fE = fN Æ sr and tar 0 Æ fE = fN Æ tar . With identities and ompositionbeing de�ned omponentwise, this de�nes the ategory Graph. To struturegraphs [4{6℄, let TG 2 Graph be a �xed graph, alled typed graph. A TG-typedgraph (G; tG) is given by a graph G and a graph morphism tG : G ! TG .A (type-preserving) morphism of TG-typed graphs f : (G; tG) ! (G0; tG0) is agraph morphism f : G ! G0 that satis�es tG0 Æ f = tG. With omposition andidentities this yields the ategoryGraphTG. Note that GraphTG is the ommaategory Graph over TG , thus it is omplete and oomplete.While the type graph TG an be used to lassify the omponents of a graph,labels are needed to distinguish elements of the same type. If C = (CN ; CE) isa pair of disjoint, possibly in�nite, sets, then a C-labelled graph is a graph G asabove along with two labelling funtions N : N ! CN and E : E ! CE . Forsimpliity, the adjetive \labelled" will be omitted in the rest of the paper.De�nition 1 (Retyping Funtors). Any graph morphism f : TG ! TG 0indues a bakward retyping funtor f< : GraphTG0 ! GraphTG, de�ned byf<((G0; tG0)) = (G�; tG�) and f<(k0 : (G0; tG0) ! (H 0; tH0)) = k� : (G�; tG�) !(H�; tH�) by pullbaks and mediating morphisms as in the following diagram,-- -H* H'
TG'TG G'G* ��+��+QQs QQs? ?fk* k'

and a forward retyping funtor f> : GraphTG ! GraphTG0 , given by f>((G; tG)) =(G; f Æ tG) and f>(k : (G; tG)! (H; tH)) = k by omposition.As shown by Gro�e-Rhode et al. [5℄, bakward and forward retyping funtorsare left and right adjoints.In general, the algebrai approahes to graph transformations (see Rozen-berg [12℄ for a omplete treatment) are based on the onept of gluing of graphs,modeled by pushouts in suitable ategories: in the Double Pushout (DPO) ap-proah a derivation step is based on a two-pushout onstrution in the ategoryGraphTG of (labeled, typed) graphs and graph morphisms while, in the SPOapproah, it is de�ned by a single pushout in the ategoryGraphPTG of (labeled)graphs and partial morphisms. Our approah is based on double pushouts, al-though the spei� example investigated uses partiular kinds of rules that donot erase and thus an be thought of as rules in either approah.A TG-typed graph rule is a span ((L; tL) l (K; tK) r! (R; tR)) where (L; tL),(K; tK), (R; tR) are typed over the same type graph TG and l; r are TG-typed



Foundations for Software Con�guration Management Poliies 309graph morphisms. The left graph (L; tL) is mathed to the atual graph whenthe rule is applied and the right graph (R; tR) is substituted to the ourreneof (L; tL). The span expresses whih items of (L; tL) are related to whih itemsof (R; tR), and the interfae graph (K; tK) ontains the items preserved by therule appliation.TG-typed rules and TG-typed rule morphisms (as triples f = (fL; fK ; fR)of TG-typed graph morphisms ompatible with the spans) de�ne, with theomponent-wise identities and omposition, the ategoryRuleTG as the ommaategory Rule over TG . Sine Rule is omplete and oomplete, so is RuleTG.De�nition 2 (Typed Graph Transformation System Spei�ation). Atyped graph transformation system spei�ation (tgts-spei�ation)G = (TG ; P; �)onsists of a type graph TG, a set of rule names P and a mapping � : P !jRuleTG j, assoiating with eah rule name a TG-typed rule.De�nition 3 (Morphisms of Typed Graph Transformation Systems).A morphism of tgts-spei�ations (tgts-morphism), f = (fTG; fP ) : G ! G0from G = (TG ; P; �) to G0 = (TG 0; P 0; �0) is given by an injetive type graphmorphism fTG : TG ! TG 0 and a mapping fP : P ! P 0 between the sets ofrule names, suh that f>TG(�(p)) = �0(fP (p)) for all p 2 P .As shown by Gro�e-Rhode et al. [5℄, tgts-spei�ations and morphisms forma ategory, alled TGTS losed under olimits.Notation. If G and G0 have the same type, G\G0 denotes the tgts G00 wherethe range of �00 is �(P ) \ �0(P 0) regardless of the set P 00 of names hosen ( G00is well de�ned up to isomorphism)Given a tgts-spei�ationG = (TG ; P; �), a diret derivation p=m : (G; tG))(H; tH) over G from a graph (G; tG) via a rule p and a mathing morphismm : (L; tL)! (G; tG) is given by the following double pushout diagram(L; tL)m
��

(K; tK)loo r //k
��

(R; tR)h
��(G; tG) (D; tD)l0oo r0 // (H; tH )in GraphTG, where �(p) = ((L; tL) l (K; tK) r! (R; tR)). (G; tG) is alledthe input, and (H; tH) the output of p=m : (G; tG) ) (H; tH ). A derivationp1=m1; : : : ; pn=mn : (G; tG) ) (H; tH ) over G from a graph (G; tG) via rulesp1; : : : ; pn and mathing morphisms m1; : : : ;mn is a sequene of diret deriva-tions overG, suh that the output of the ith diret derivation is the input of the(i+ 1)st diret derivation. The set of all derivations over G is denoted Der(G)and, onsidering Der(G) as the behavior of G, the following property holds [5℄:Proposition 1 (Preservation of Behavior). Let f = (fTG; fP ) : G !G0 be a tgts-morphism. For eah derivation d : (G; tG) ) (H; tH) with d =



310 Franeso Parisi-Presie and Alexander L. Wolf(p1=m1; : : : ; pn=mn) in Der(G) there is a derivation f(d) : f>TG(G; tG)) f>TG(H; tH )in Der(G0), where f(d) = (fP (p1)=f>TG(m1); : : : ; fP (pn)=f>TG(mn)). Moreover,f<TG(f(d) : f>TG(G; tG)) f>TG(H; tH )) = (d : (G; tG)) (H; tH )).In other words, any graph generated in G an be generated in G0 afterappropriate translation via the type morphism.The formalism presented so far is not suÆient to model the rules in theexample of Figure 2 in the preeding setion. What is needed is to add to therules some ontext onditions that prevent the appliation of a rule even in thepresene of a math m.De�nition 4 (Appliation Conditions).{ An appliation ondition for a math m : L! G is a total graph morphismi : L! Li.{ A positive appliation ondition i is satis�ed by m if there exists a (total)graph morphism n : Li ! G suh that n Æ i = m.{ A negative appliation ondition i is satis�ed by m if there is no (total)graph morphism n : Li ! G suh that n Æ i = m.{ A onditional rule is a rule p with a set of appliation onditions Cond and aderivation p=m : (G; tG)) (H; tH ) takes plae only if the math m satis�esevery ondition in Cond.Notation. In the remainder of the paper, the pushout objet of two mor-phisms a! b and a!  in a oomplete ategory is denoted by b+a . Similarly,in a omplete ategory, the pullbak objet of the morphisms b ! d and  ! dis denoted by b�d .3 Formalization of CM PoliiesInformally, a poliy for a software on�guration manager desribes (among otherthings): how and when an artifat an be heked out for a possible modi�ation;how and who an hek in an artifat after a possible modi�ation; how tointrodue new versions.Furthermore, a poliy spei�es whih kinds of strutures are forbidden andshould never be onstruted (an example is a yle of version dependenies)when introduing new versions. Finally, a poliy should keep trak of the urrentenvironment and be able to speify whih developers an aess whih parts ofthe systems, eah with the allowed set of rules to modify the repository model.We are not addressing here the problem of desribing and integrating di�erentenvironments, whih will be takled in a subsequent paper. The objetive is togive a formal framework to desribe wanted and unwanted strutures.De�nition 5 (Poliy). A poliy A is a triple (T; Pos;Neg) where{ T = (C; TG) is the type of the poliy onsisting of a set C of labels and atype graph TG;



Foundations for Software Con�guration Management Poliies 311{ Pos is a (C; TG)-graph transformation system; and{ Neg is a set of (C; TG)-graphs and (C; TG)-graph morphisms.The three omponents are denoted by T (A), Pos(A) and Neg(A), respetivelyand GPos(A) denotes the set of graphs generated by Pos(A) (starting from theempty graph).Interpretation. The �rst omponent desribes the \type" of the poliy, withthe type graph TG indiating what kind of entities it deals with (for example,artifats an only be subjet to revisions, or the \reeiving" end of a membershiprelation an only be a olletion) and the labels in C denoting, for example, thenumbering to be used for revisions or for variants. The seond omponent Pos(A)desribes intentionally the graphs that the poliy intends to generate by givingthe rules to do so. The third omponent desribes the unwanted strutures in anextensional way. Any graph H 2 Neg(A) indiates that no graph ontaining H(via a morphism) an be aepted. Any morphism N ! E ontained in Neg(A)indiates that no graph ontaining N an be aepted unless it ontains also E.Formally, a graph G is aeptable by H if there is no morphism H ! G anda graph G is aeptable by N ! E if any injetive morphism N ! G an beextended to a morphism E ! G suh that N ! E ! G = N ! G. In general,a set of graphs G is aeptable by Neg(A) if any G 2 G is aeptable by everyH 2 Neg(A) and every N ! E 2 Neg(A).Example 1. The de�nitions are illustrated with a formalization of the poliyREV that allows the expliit revision of artifats. Sine the poliy does notdelete any item, the rules have L = K and thus only K ! R is shown. Thepoliy is over the type graph TRwhere the retangle represents a olletion that ontains the onneted artifat,the hexagon is a tag indiating that the onneted artifat is heked out and theloop on the ellipsis that the artifat an have a revision. Pos(REV ) ontains onerule that allows a heked-out artifat to be heked-in and delared a revisionof the previously heked-out artifat, and one rule that allows the heking-outof an artifat provided that it has not been heked-out already and does nothave a revision (for the rule to be appliable, the mathing morphism annot beextendable to the part [negative ondition℄ enlosed in the dashed retangle).



312 Franeso Parisi-Presie and Alexander L. WolfPos(REV ) also ontains the three rules needed to implement the \deep"olletion versioning (not inluded for lak of spae), a rule to add a new artifatto an existing olletion and a rule with empty left-hand side to introdue onenode representing a new olletion. (The user determines whih of the two rulesis \urrent".)Neg(REV ) ontains only two graphs: one stating that no artifat an be arevision of itself and the other that an artifat an have only one revision.
De�nition 6. A poliy A is oherent if GPos(A) satis�es Neg(A), i.e., if itsrules annot generate a graph ontaining an unwanted graph.A oherent poliy A is losed if any graph not in GPos(A) is rejeted byNeg(A), i.e., if the positive and negative parts of A desribe all the graphs overT (A) = (C; TG).Example 2. (ont.)It is not diÆult to hek that the poliy REV given above is a oherentpoliy sine the seond rule ontrols (at hek-out time) that an artifat is notalready revisioned and an be heked-out, while the only way to introdue arevision is by the �rst rule and only for heked-out artifats.In order to ompare poliies, it is helpful to view any H 2 Neg(A) as theidentity morphism H ! H (NOT to be interpreted as a morphism N ! E inNeg(A) !) . This allows us to treat Neg(A) as a tgts with rules (H H!H)and (N N!E) and thus to use tgts-morphisms. Poliies an be ompared byomparing their two signi�ant omponents Pos andNeg. Consider, for example,a pessimisti poliy PES presribing that only the last version of an artifat anbe further versioned and an optimisti poliy OPT that allows any version, andnot only the last one, to be versioned again. The pessimisti poliy generatesonly graphs that are aeptable by the optimisti poliy, while the onverse neednot be true, i.e., GPos(PES) � GPos(OPT ). Furthermore, any graph rejetedby OPT is also rejeted by PES, whih deals with a partiular version (the lastone) among those dealt with by OPT . This situation an be formalized by thenotion of subsumption.De�nition 7 (Subsumption). A poliy A subsumes a poliy B of the sametype (C; TG) if GPos(B) � GPos(A) and Neg(A) � Neg(B).The idea an be generalized by a morphism between poliies.De�nition 8 (Poliy Morphism). A poliy morphism f : A ! B betweenpoliies A and B is a triple (fT ; fP ; fN) where{ fT = (fC ; fTG) : (CA; TGA) ! (CB ; TGB) is a pair onsisting of a totalfuntion and a total (untyped) graph morphism and



Foundations for Software Con�guration Management Poliies 313{ fP : Pos(A) ! Pos(B) and fN : Neg(B)! Neg(A) are tgts-morphisms asin Def.3 with respet to the type morphism fT .Remark 1. A tgts-morphism fN indiates that poliy A rejets at least all thegraphs that poliyB rejets (up to retyping) and possibly more. A tgts-morphismfP indiates that, up to the retyping indued by fT , poliy B has all the rulesof poliy A and thus an generate all the graphs generated by A (Propostion 1).Hene if the types of A and B are the same and there is at least one poliymorphism A ! B, then B subsumes A. The onverse is in general not truebeause fP relates the rules of the two poliies: there may not be any tgts-morphism fP : Pos(A)! Pos(B) and yet GPos(A) � GPos(B).Poliy morphisms an easily be omposed omponent-wise: eah omponentis the omposition of funtions (fC), of graph morphisms (fTG) or of tgts-morphisms (fP and fN ), whih is assoiative with the usual identities. Workingomponent-wise, we an prove the following result.Theorem 1. The ategory POLICY of poliies and poliy morphisms is losedunder �nite olimitsIntuitively, the pushout of two poliy morphisms A0 ! A1 and A0 ! A2onstruts a new poliy A1+A0A2 by taking the pushout of the positive rules andthe pullbak of the negative graphs and morphisms. The poliy so onstrutedneed not be oherent even if the poliiesAi are oherent. We address this problemat the end of the next setion with Theorem 3.4 Relationships Between PoliiesIn this setion we investigate ways of ombining poliies to obtain other poliies.Unless otherwise spei�ed, we onsider poliies of the same type T = (C; TG).This assumption is harmless and simpli�es the treatment (any graph of typeT0 = (C0; TG0) an be onsidered of type T1 = (C1; TG1) provided that thereexists a morphism fT : (C0; TG0) ! (C1; TG1)) by allowing \set-theoreti"manipulations of poliies.There are (at least) three di�erent ways of ombining the negative partsNeg(A) and Neg(B) to obtain the negative part of their ombination. Theresulting poliy rejets a graph G if it ontains{ a subgraph forbidden by either A or B;{ a subgraph forbidden by A and one forbidden by B; or{ a subgraph forbidden by both A and B.More formallyDe�nition 9 (Negative Strategies). For sets of morphisms Neg(A) andNeg(B), de�ne



314 Franeso Parisi-Presie and Alexander L. Wolf{ CA(Neg(A); Neg(B)) = Neg(A) [Neg(B){ CD(Neg(A); Neg(B)) = fNA+NB ! EA+EB : NA ! EA 2 Neg(A); NB !EB 2 Neg(B)g [ fHA +HB : HA 2 Neg(A); HB 2 Neg(B)g{ DA(Neg(A); Neg(B)) = Neg(A) \Neg(B)Interpretation. A graph is rejeted by CA(Neg(A); Neg(B)) if it is re-jeted by poliy A or by poliy B or by both: it is a CAutious strategy rejet-ing a graph even if one of the poliies ould aept it. A graph is rejeted byDA(Neg(A); Neg(B)) if it is rejeted by both poliies for the same reason: it isa DAring strategy rejeting a graph only if there is no hoie. A graph is rejetedby CD(Neg(A); Neg(B)) if it is rejeted by both poliies for possibly di�erentreasons.Analogous to the negative part, there are (at least) three di�erent ways ofombining the generative parts Pos(A) and Pos(B) to obtain the positive partof the ombination of the poliies A and B.De�nition 10 (Positive Strategies). Given graph transformation systemsPos(A) and Pos(B), de�ne{ CA(Pos(A); P os(B)) = Pos(A) \ Pos(B){ CD(Pos(A); P os(B)) = fpA + pB : pA 2 Pos(A); pB 2 Pos(B)g{ DA(Pos(A); P os(B)) = Pos(A) [ Pos(B)Interpretation. The graphs generated by CA(Pos(A); P os(B)) are (someof) the graphs generated by both Pos(A) and Pos(B): a CAutious strategy. Thegraphs generated by DA(Pos(A); P os(B)) inludes all the graphs in GPos(A)[GPos(B) along with the graphs obtained by the \interation" of the rules of thetwo sets: a DAring strategy. The graphs generated by CD(Pos(A); P os(B)) arethose obtained by taking the disjoint union of one graph generated by Pos(A)and one by Pos(B).Poliies an be ombined by seleting one strategy for the generative partand one for the rejeting part.De�nition 11. Given poliies A and B, the ombination of A and B withstrategies X and Y is denoted by [X;Y ℄(A;B) and is the poliy C wherePos(C) = X(Pos(A); P os(B)) andNeg(C) = Y (Neg(A); Neg(B))for X;Y 2 fDA;CD;CAgThe �rst result on ombining poliies is a straightforward appliation of thede�nitions.Proposition 2. If A and B are poliies suh that there exists a poliy morphismfrom A to B, then1. [DA;DA℄(A;B) = B2. [CA;CA℄(A;B) = A



Foundations for Software Con�guration Management Poliies 315The main problem in ombining poliies is to predit the behavior of theresulting poliy. In partiular, the two poliies to be ombined ould \interfere"with eah other where one of the two generates a graph that is rejeted by theother poliy. Whih of the di�erent ways of ombining two oherent poliiesgenerates again a oherent poliy? The remaining part of this setion is devotedto giving partial answers to this question. One speial ase is already treatedin the previous proposition. The two extreme ways of ombining poliies useDAring strategies for both omponents generating more graphs than the twopoliies generate individually and rejeting only when both poliies agree, andCAutious strategies for both omponents generating a \small" set of graphs andrejeting a graph when just one of the poliies rejets it.Proposition 3. 1. If A and B are oherent, then C = [CA;CA℄(A;B) is o-herent.2. There exist oherent poliies A and B suh that D = [DA;DA℄(A;B) is notoherent.Proof. (Sketh) (1) Sine GPos(C) � GPos(A) \ GPos(B) and Neg(C) =Neg(A) [ Neg(B), if G 2 Neg(C) is a subgraph of H 2 GPos(C), then itis a graph generated by both A and B ontraditing the oherene of A ifG 2 Neg(A) or the oherene of B if G 2 Neg(B).(2) Consider in fat a type graph for both poliies onsisting of 2 isolatednodes (all them a and b). Poliy A (resp. B) has only one rule generating fromthe empty graph one with a single node of type a (resp. b). Both poliies rejetall the graphs that ontain a node of type b and a node of type a. The twopoliies are obviously oherent but Pos(D) ontains a graph with one node oftype a and one node of type b and thus rejeted by de�nition of Neg(D).The next few results try to narrow the gap between these two extremes.Proposition 4. If A and B are oherent, then [CA;X ℄(A;B) is oherent forany X 2 fCA;CD;DAg.Proposition 5. (a) For any X 2 fCA;CD;DAg, if [X;CA℄(A;B) is oherent,then so are [X;CD℄(A;B) and [X;DA℄(A;B)(b) There exist oherent poliies A, B, P , and Q suh that [CD;DA℄(P;Q) and[CD;CD℄(A;B) are not oherent.The ruial ase is when the largest number of graphs is generated whileallowing either poliy to rejet a graph.Theorem 2. If [DA;CA℄(A;B) is oherent, then [X;Y ℄(A;B) is oherent forany X;Y 2 fCA;CD;DAg.Example 3. (ont.)Consider the poliy VAR over the same type graph TV = TR used for thepoliy REV but where the loop on the artifat node indiates a variant of an



316 Franeso Parisi-Presie and Alexander L. Wolfartifat. Pos(V AR) ontains one rule that allows a heked-out artifat to beheked-in and delared a variant of the previously heked-out artifat, and onerule that allows the heking-out of an artifat provided that it has not beenheked-out already. (Again the user selets the \urrent" rule.)
(Again the user selets the \urrent" rule)Pos(V AR) also ontains rules to add a new olletion and to add a newartifat within an existing olletion.Neg(V AR) ontains only two graphs: one stating that no artifat an be avariant of itself, and the other one that no more than two variants an be mergedat a time.
Again it is easy to hek that VAR is a oherent poliy.The two poliies REV and VAR an be thought of the same type, namelyTR with two distint loops, one denoting revision and one denoting variant.Claim. The poliy M = [DA;CA℄(REV; V AR) is oherent.In fat, the interation of the rules of REV and VAR annot generate theforbidden graphs sine, for example,REV is oherent and the rules in Pos(V AR)annot generate \variant" ars. In other words, there are no forbidden graphsover the \ommon" type onsisting of the graph TR without the loop.The idea behind this example an be generalized. To determine whether themost \dangerous" ombination [DA;CA℄ of oherent poliies is oherent, it issuÆient to hek only the forbidden graphs of either poliy that are of theommon type.Theorem 3. Let A and B be oherent poliies over types TA and TB, respe-tively, and fA : T ! TA, fB : T ! TB type morphisms with f : T ! TA +T TB.Denote by A� and B� the poliies A and B, respetively, viewed over the typeTA +T TB. The poliy [DA;CA℄(A�; B�) is oherent if and only if the poliy(DA(A�; B�); NEG) is oherent, whereNEG = fn 2 Neg(A�) [Neg(B�) : f>(f<(n)) = ng.



Foundations for Software Con�guration Management Poliies 317Notie that [DA;CA℄(A�; B�) orresponds to the pushout objet (in POL-ICY) with respet to the empty set of shared poliy rules (f. Theorem 1).We lose this setion with a simple result involving losed poliies.De�nition 12. Poliies A and B over the same type are equivalent if GPos(A) =GPos(B) and Neg(A) = Neg(B).Proposition 6. Poliies A and B are equivalent if and only if A subsumes Band B subsumes A.Theorem 4. Given losed poliies A and B, [DA;CA℄(A;B) is oherent if andonly if A and B are equivalent.5 ConlusionThe use of graph transformation systems to model various aspets of softwareengineering is well established. In the partiular area of on�guration manage-ment, three e�orts stand out as representative of related work.{ Heimbigner and Krane [7℄ use graph transformation systems to model thesoftware build proess, whih is an orthogonal ativity to versioning withinthe general area of on�guration management. The build proess desribeshow tools (e.g., ompilers and linkers) should be applied to artifats (e.g.,soure �les) to derive other artifats (e.g., objet and exeutable �les).{ Westfehtel [16℄ has developed a graph transformation framework for desrib-ing the struture of douments and a partiular poliy for how doumentstrutures should evolve.{ Mens [9℄ uses labelled typed graphs to represent reusable software ompo-nents and onditional graph rewriting for desribing a partiular poliy bywhih those omponents should evolve.Our work ontrasts with these and related e�orts in that it is more generallyapplied to multiple poliies, and to understanding the relationships among thosepoliies.The hoies of DA, CA and CD to onstrut new poliies are just \poliies"'themselves on poliy building: under investigation are more general ways ofputting poliies together. Also under study are the possible ways of onvertinga non-oherent poliy into a oherent one by modifying either Neg (easy) or Pos(not as easy) or both. Suh modi�ations ould be modelled within the rule-baseframework itself [10℄.Our future work is aimed at modeling the full spetrum of existing CM poli-ies and �nding further ritial properties that relate them to eah other. Goingfurther, we plan to design and build a tool to take as input poliies spei�ed asgraph transformation systems and produe as output poliy enforement odein a proedural programming language. As a �rst target, we will generate poli-ies implemented as alls to the library funtions of the NUCM on�gurationmanagement repository [15℄.
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