Foundations for Software Configuration
Management Policies using Graph
Transformations*

Francesco Parisi-Presicce! and Alexander L. Wolf?

! Dip. Scienze dell'Informazione, Universit4 degli Studi di Roma La Sapienza
Via Salaria 113, 00198 Roma, Italy,
parisi@dsi.uniromal.it
2 Department of Computer Science, University of Colorado at Boulder
Boulder, Colorado, USA,

alw@cs.colorado.edu

Abstract. Existing software configuration management systems em-
body a wide variety of policies for how artifacts can evolve. New policies
continue to be introduced. Without a clean separation of configuration
management policies from configuration management mechanisms, it is
difficult to understand the policies as well as difficult to reason about
how they relate. We introduce a formal foundation for specifying config-
uration management policies by viewing the policies in terms of graph
transformation systems. Not only are we able to precisely capture the se-
mantics of individual policies, we can, for the first time, describe formal
properties of the relationship between policies.

1 Introduction

Managing the evolution of interrelated software artifacts is a central activity
in software engineering. This activity is often referred to as wversion control or,
more generally, as configuration management (CM) [14]. Among the many rela-
tionships that exist among software artifacts, three are the principal concern of
CM.

— Rewvision: a relationship reflecting the history of modifications made to an
artifact over time. A revision of an artifact is considered to be a replacement
for a previous revision of that artifact.

* This work was performed while A.L. Wolf was a visitor at the Dip. di Scienze
dell'Informazione, supported in part by the Universita degli Studi di Roma La
Sapienza and by the Air Force Materiel Command, Rome Laboratory, and the De-
fense Advanced Research Projects Agency under Contract Numbers F30602-94-C-
0253 and F30602-98-2-0163. The work of F. Parisi-Presicce was partially supported
by the EC under TMR Network GETGRATS (GEneral Theory of GRAph Trans-
formation Systems) and Esprit Working Group APPLIGRAPH.

T. Maibaum (Ed.): FASE 2000, LNCS 1783, pp. 304-318, 2000.
@©Springer-Verlag Berlin Heidelberg 2000

Foundations for Software Configuration Management Policies 305

— Variant: a relationship reflecting the variation in the realizations of an arti-
fact to fit within different contexts. A variant of an artifact is considered to
be an alternative to other variants of that artifact, where an alternative is
chosen based on an environmental concern such as target operating system.

— Configuration: a set of artifacts considered to be complete and compatible
with respect to some model of a system. A configuration is made up of one
revision of one variant (i.e., a wversion) of each distinct artifact that is a
component of the system.

Tools supporting the CM activity are responsible for recording the relationships
among versions of artifacts in a repository, as well as for enforcing the policies
by which developers are permitted to manipulate artifacts to create versions
and their relationships. In effect, version relationships induce a graph, called the
version graph, and policies determine a set of legal version graphs.

Looking at the landscape of CM tools, we can see a large number and wide
variety of policies [3]. For example, SCCS [11] directly supports only revisions
and not variants. Access to artifacts is controlled through a mechanism called
check-out/check-in in which a developer must first lock an artifact before it
can be modified, and then must release that lock before the changes become
visible, and available, to other developers. New revisions are added successively
to form a linear chain of versions for each artifact in the repository (Figure 1a).
RCS [13] extends SCCS by supporting a version tree for each artifact, where
variants are indicated by branches in the tree and revisions are indicated by
successive versions forming a trunk or limb of the tree (Figure 1b). CVS [1] is
a variant of RCS that does not support locking. Instead, CVS allows developers
to concurrently make changes to private copies and then later merge them. In
effect, CVS turns the RCS version tree into a more general directed acyclic graph
(Figure 1c). DVS [2] is a variant of SCCS that follows the locking paradigm and
supports revisions, but adds a grouping mechanism based on arbitrary sets of
artifacts. The groups, called collections, are themselves artifacts and, therefore,
are subject to locking and exhibit a recorded revision history (Figure 1d).

SCCS, RCS, CVS, and DVS represent just a small sampling of the many
policies that have been invented. New ones appear regularly, some of which are
quite involved. An example is a policy that embodies a “deep” semantics for the
versioning of collections (e.g., the policy introduced by Lin and Reiss in their
programming environment POEM [8]). A deep semantics requires that whenever
a new version of an artifact is created, then new versions of any containing collec-
tions must also be created. Clearly, this is a recursive definition when collections
are themselves treated as artifacts that can be contained in other collections. A
simple illustration appears in Figure 2. In 2a is an empty collection. A second
version of the collection contains two artifacts, an empty collection and an atomic
artifact, as shown in 2b. When an artifact is added to the empty collection, this
results in the creation of a new version of that collection, which in turn results
in a new version of the top-level collection, as shown in 2c. Notice that the third
version of the top-level collection shares the same version of the atomic artifact
with the second version of the top-level collection.

306 Francesco Parisi-Presicce and Alexander L. Wolf

C O~ >~ >

(@)

(b) atomic artifact
revision

variant branch
variant merge

-
[] collection
 —
-
T

........... collection membership

(©)

Fig. 1. Example Version Graphs.

Typically, CM policies are embedded deeply within the implementations of
CM tools. As a way to make the tools more flexible, van der Hoek et al. [15]
have logically separated CM policies from CM mechanisms. Their approach is to
define a generic abstraction of a CM repository and to provide a programmatic
interface to that repository. Specific CM policies are then realized by program-
ming against this interface. While the approach has been successfully employed
in the implementation of a wide variety of CM policies, it suffers from the fact
that those policies are being captured at the low level of implementation code
written in a procedural programming language. Significant leverage could be
achieved if the policies could instead be defined declaratively and at a higher
level of abstraction. In particular, a declarative and higher-level specification
could lead to a better understanding of the policies, as well as a more appropri-
ate basis upon which to reason about various properties of the policies.

We have begun to develop an improved method for specifying CM policies.
The foundation for this method is the theory of graph transformation systems.
Graph transformation provides an ideal perspective from which to view the prob-
lem, since the evolution of artifacts in a CM repository can be seen as a deliberate
and regulated transformation of version graphs. We can use this perspective to
flexibly define a CM policy in terms of either or both the allowed and the disal-
lowed version graphs, such that the operations applied to an artifact repository
are suitably constrained to follow the policy. Perhaps more importantly, we can

Foundations for Software Configuration Management Policies 307

I S

]

(b)

(©)

Fig. 2. Example of “Deep” Collection Versioning.

begin to perform meaningful analyses of the relationships among the policies
themselves. For instance, if we wish to institute a new policy, is the existing
repository compatible with that policy? If we wish to combine the work of two
development teams, each of which uses a different CM tool incorporating a dif-
ferent CM policy, will they conflict? If we wish to integrate two policies to form
a third, what are the possible ways to do this and what are the properties of the
possible policies that arise? The ability to answer these and other such questions
has not previously been possible and represents a significant contribution to the
field of software configuration management.

This paper introduces our approach to specifying CM policies using graph
transformation systems. In the next section we briefly review the basics of graph
transformation systems. Section 3 details our use of graph transformation to
specify CM policies. Our ability to reason about the relationship between differ-
ent CM policies is illustrated in Section 4. We conclude in Section 5 with a look
at related and future work.

2 Background on Graph Transformation Systems

In this section we recall the basic definitions and properties of typed graphs
and typed graph transformation systems. A graph G = (N, E, src, tar) is given

308 Francesco Parisi-Presicce and Alexander L. Wolf

by a set N of nodes, a set E of edges and functions src,tar : E — N that
assign source and target nodes to edges. A graph morphism f = (fn,[fr) :
G — @' is given by functions fy : N — N’ and fg : E — E' such that
src' o fg = fy o src and tar’ o fp = fy o tar. With identities and composition
being defined componentwise, this defines the category Graph. To structure
graphs [4-6], let TG € Graph be a fixed graph, called typed graph. A TG-typed
graph (G,tg) is given by a graph G and a graph morphism tg : G — TG.
A (type-preserving) morphism of TG-typed graphs f : (G,tg) — (G',te) is a
graph morphism f : G — G' that satisfies tgr o f = t¢. With composition and
identities this yields the category Graphrg. Note that Graphrg is the comma
category Graph over TG, thus it is complete and cocomplete.

While the type graph TG can be used to classify the components of a graph,
labels are needed to distinguish elements of the same type. If C = (Cn,Cg) is
a pair of disjoint, possibly infinite, sets, then a C-labelled graph is a graph G as
above along with two labelling functions ¢y : N — Cn and cg : E — Cg. For
simplicity, the adjective “labelled” will be omitted in the rest of the paper.

Definition 1 (Retyping Functors). Any graph morphism f : TG — TG’
induces a backward retyping functor f< : Graphyg — Graphpg, defined by
(G tg)) = (G*,tg:) and f<(k': (G',tqg) = (H',tg)) = k* : (G*,tg+) —
(H*,tg+) by pullbacks and mediating morphisms as in the following diagram,

H* il
G* G’ l
~ .
TG TG’
f

and a forward retyping functor f> : Graphys; — Graphyq., given by f~((G,tg)) =
(G, fotg) and f~(k: (G,tg) — (H,tg)) = k by composition.

As shown by Grofle-Rhode et al. [5], backward and forward retyping functors
are left and right adjoints.

In general, the algebraic approaches to graph transformations (see Rozen-
berg [12] for a complete treatment) are based on the concept of gluing of graphs,
modeled by pushouts in suitable categories: in the Double Pushout (DPO) ap-
proach a derivation step is based on a two-pushout construction in the category
Graphrg of (labeled, typed) graphs and graph morphisms while, in the SPO
approach, it is defined by a single pushout in the category Graph¥. of (labeled)
graphs and partial morphisms. Our approach is based on double pushouts, al-
though the specific example investigated uses particular kinds of rules that do
not erase and thus can be thought of as rules in either approach.

A TG-typed graph rule is a span ((L,tr) L (K,tx) = (R,tr)) where (L,t1,),
(K,tKk), (R,tr) are typed over the same type graph TG and I,r are TG-typed

Foundations for Software Configuration Management Policies 309

graph morphisms. The left graph (L,¢1) is matched to the actual graph when
the rule is applied and the right graph (R,tg) is substituted to the occurrence
of (L,tr,). The span expresses which items of (L, ts,) are related to which items
of (R,tr), and the interface graph (K, tx) contains the items preserved by the
rule application.

TG-typed rules and TG-typed rule morphisms (as triples f = (fr, fx, fr)
of TG-typed graph morphisms compatible with the spans) define, with the
component-wise identities and composition, the category Rulerq as the comma
category Rule over TG. Since Rule is complete and cocomplete, so is Rulerg.

Definition 2 (Typed Graph Transformation System Specification). 4
typed graph transformation system specification (tgts-specification) G = (TG, P,
consists of a type graph TG, a set of rule names P and a mapping 7 : P —|
Rulerq |, associating with each rule name a TG-typed rule.

Definition 3 (Morphisms of Typed Graph Transformation Systems).
A morphism of tgts-specifications (tgts-morphism), f = (fra, fr) : G = G’
from G = (TG,P,m) to G' = (TG', P', ') is given by an injective type graph
morphism frq : TG — TG' and a mapping fp : P — P' between the sets of
rule names, such that f7,(m(p)) = 7' (fp(p)) for all p € P.

As shown by Grofie-Rhode et al. [5], tgts-specifications and morphisms form
a category, called TGTS closed under colimits.

Notation. If G and G’ have the same type, GNG' denotes the tgts G” where
the range of 7' is w(P) N «'(P") regardless of the set P" of names chosen (G"
is well defined up to isomorphism)

Given a tgts-specification G = (TG, P,), a direct derivation p/m : (G,tg) =
(H,tg) over G from a graph (G,tg) via a rule p and a matching morphism
m: (L,tr,) = (G,tg) is given by the following double pushout diagram

(L,t) =—— (K,tx) —— (R, tg)

L
(Gta) =1 (D) —"= (H, tn)

in Graphrg, where 7(p) = ((L,t) & (K,tx) = (R,tr)). (G,tg) is called
the input, and (H,tm) the output of p/m : (G,tg) = (H,tm). A derivation
pi/mi,...,pn/my ¢ (G tg) = (H,tg) over G from a graph (G,tg) via rules
P1,- .., pn and matching morphisms myq, ..., m, is a sequence of direct deriva-
tions over G, such that the output of the ith direct derivation is the input of the
(i + 1)st direct derivation. The set of all derivations over G is denoted Der(QG)
and, considering Der(G) as the behavior of G, the following property holds [5]:

Proposition 1 (Preservation of Behavior). Let f = (fra,fp) : G —
G' be a tgts-morphism. For each derivation d : (G,tg) = (H,tg) with d =

)

310 Francesco Parisi-Presicce and Alexander L. Wolf

(p1/ma;...;pn/my) in Der(G) there is a derivation f(d) : f75(G,tq) = f7q(H, tm)
in Der(GY), where £(d) = (fp(p)] F7a(m1): - fo(pn)] Fralmn)). Morcouer,
f76(f(d): fra(G ta) = frg(H,tn)) = (d: (G,tc) = (H,tm)).

In other words, any graph generated in G can be generated in G’ after
appropriate translation via the type morphism.

The formalism presented so far is not sufficient to model the rules in the
example of Figure 2 in the preceding section. What is needed is to add to the
rules some context conditions that prevent the application of a rule even in the
presence of a match m.

Definition 4 (Application Conditions).

— An application condition for a match m : L. — G is a total graph morphism
ci: L — L;.

— A positive application condition c; is satisfied by m if there exists a (total)
graph morphism n : L; — G such that noc; = m.

— A negative application condition ¢; is satisfied by m if there is no (total)
graph morphism n : L; — G such that noc; = m.

— A conditional rule is a rule p with a set of application conditions Cond and a
derivation p/m : (G,tq) = (H,ty) takes place only if the match m satisfies
every condition in Cond.

Notation. In the remainder of the paper, the pushout object of two mor-
phisms @ — b and a — ¢ in a cocomplete category is denoted by b+, ¢. Similarly,
in a complete category, the pullback object of the morphisms b — d and ¢ — d
is denoted by b x4 c.

3 Formalization of CM Policies

Informally, a policy for a software configuration manager describes (among other
things): how and when an artifact can be checked out for a possible modification;
how and who can check in an artifact after a possible modification; how to
introduce new versions.

Furthermore, a policy specifies which kinds of structures are forbidden and
should never be constructed (an example is a cycle of version dependencies)
when introducing new versions. Finally, a policy should keep track of the current
environment and be able to specify which developers can access which parts of
the systems, each with the allowed set of rules to modify the repository model.

We are not addressing here the problem of describing and integrating different
environments, which will be tackled in a subsequent paper. The objective is to
give a formal framework to describe wanted and unwanted structures.

Definition 5 (Policy). A policy A is a triple (T, Pos, Neg) where

— T = (C,TQG) is the type of the policy consisting of a set C of labels and a
type graph TG;

Foundations for Software Configuration Management Policies 311

— Pos is a (C,TG)-graph transformation system; and

— Neg is a set of (C,TG)-graphs and (C,TG)-graph morphisms.

The three components are denoted by T(A), Pos(A) and Neg(A), respectively
and GPos(A) denotes the set of graphs generated by Pos(A) (starting from the
empty graph,).

Interpretation. The first component describes the “type” of the policy, with
the type graph T'G indicating what kind of entities it deals with (for example,
artifacts can only be subject to revisions, or the “receiving” end of a membership
relation can only be a collection) and the labels in C' denoting, for example, the
numbering to be used for revisions or for variants. The second component Pos(A)
describes intentionally the graphs that the policy intends to generate by giving
the rules to do so. The third component describes the unwanted structures in an
extensional way. Any graph H € Neg(A) indicates that no graph containing H
(via a morphism) can be accepted. Any morphism N — E contained in Neg(A)
indicates that no graph containing IV can be accepted unless it contains also E.
Formally, a graph G is acceptable by H if there is no morphism H — G and
a graph G is acceptable by N — FE if any injective morphism N — G can be
extended to a morphism F — G such that N - E - G = N — G. In general,
a set of graphs G is acceptable by Neg(A) if any G € G is acceptable by every
H € Neg(A) and every N — E € Neg(A).

Ezxample 1. The definitions are illustrated with a formalization of the policy
REYV that allows the explicit revision of artifacts. Since the policy does not
delete any item, the rules have L = K and thus only K — R is shown. The
policy is over the type graph Tgr

]
Q>—0

where the rectangle represents a collection that contains the connected artifact,
the hexagon is a tag indicating that the connected artifact is checked out and the
loop on the ellipsis that the artifact can have a revision. Pos(REV') contains one
rule that allows a checked-out artifact to be checked-in and declared a revision
of the previously checked-out artifact, and one rule that allows the checking-out
of an artifact provided that it has not been checked-out already and does not
have a revision (for the rule to be applicable, the matching morphism cannot be
extendable to the part [negative condition] enclosed in the dashed rectangle).

] 1]

Oo—Co O—C>
1] 1]

C©>7©4>C%O

312 Francesco Parisi-Presicce and Alexander L. Wolf

Pos(REV) also contains the three rules needed to implement the “deep”
collection versioning (not included for lack of space), a rule to add a new artifact
to an existing collection and a rule with empty left-hand side to introduce one
node representing a new collection. (The user determines which of the two rules
is “current”.)

Neg(REV) contains only two graphs: one stating that no artifact can be a
revision of itself and the other that an artifact can have only one revision.

P
Q>

Definition 6. A policy A is coherent if GPos(A) satisfies Neg(A), i.e., if its
rules cannot generate a graph containing an unwanted graph.
A coherent policy A is closed if any graph not in GPos(A) is rejected by

Neg(A), i.e., if the positive and negative parts of A describe all the graphs over
T(A) = (C,TG).

Ezample 2. (cont.)

It is not difficult to check that the policy REV given above is a coherent
policy since the second rule controls (at check-out time) that an artifact is not
already revisioned and can be checked-out, while the only way to introduce a
revision is by the first rule and only for checked-out artifacts.

In order to compare policies, it is helpful to view any H € Neg(A) as the
identity morphism H — H (NOT to be interpreted as a morphism N — E in
Neg(A) ") . This allows us to treat Neg(A) as a tgts with rules (H«H—H)
and (N+N—FE) and thus to use tgts-morphisms. Policies can be compared by
comparing their two significant components Pos and Neg. Consider, for example,
a pessimistic policy PES prescribing that only the last version of an artifact can
be further versioned and an optimistic policy OPT that allows any version, and
not only the last one, to be versioned again. The pessimistic policy generates
only graphs that are acceptable by the optimistic policy, while the converse need
not be true, i.e., GPos(PES) C GPos(OPT). Furthermore, any graph rejected
by OPT is also rejected by PES, which deals with a particular version (the last
one) among those dealt with by OPT'. This situation can be formalized by the
notion of subsumption.

Definition 7 (Subsumption). A policy A subsumes a policy B of the same
type (C,TQG) if GPos(B) C GPos(A) and Neg(A) C Neg(B).

The idea can be generalized by a morphism between policies.

Definition 8 (Policy Morphism). A policy morphism f : A — B between
policies A and B is a triple (fr, fp, fn) where

— fr = (fo, fra) : (Ca,TG4) = (Cp,TGpg) is a pair consisting of a total
function and a total (untyped) graph morphism and

Foundations for Software Configuration Management Policies 313

— fp : Pos(A) — Pos(B) and fn : Neg(B) — Neg(A) are tgts-morphisms as
in Def.3 with respect to the type morphism fr.

Remark 1. A tgts-morphism fy indicates that policy A rejects at least all the
graphs that policy B rejects (up to retyping) and possibly more. A tgts-morphism
fp indicates that, up to the retyping induced by fr, policy B has all the rules
of policy A and thus can generate all the graphs generated by A (Propostion 1).
Hence if the types of A and B are the same and there is at least one policy
morphism A — B, then B subsumes A. The converse is in general not true
because fp relates the rules of the two policies: there may not be any tgts-
morphism fp : Pos(A) — Pos(B) and yet GPos(A) C GPos(B).

Policy morphisms can easily be composed component-wise: each component
is the composition of functions (f¢), of graph morphisms (frq) or of tgts-
morphisms (fp and fn), which is associative with the usual identities. Working
component-wise, we can prove the following result.

Theorem 1. The category POLICY of policies and policy morphisms is closed
under finite colimits

Intuitively, the pushout of two policy morphisms Ay — A; and Ay — As
constructs a new policy A; + 4, A2 by taking the pushout of the positive rules and
the pullback of the negative graphs and morphisms. The policy so constructed
need not be coherent even if the policies A; are coherent. We address this problem
at the end of the next section with Theorem 3.

4 Relationships Between Policies

In this section we investigate ways of combining policies to obtain other policies.
Unless otherwise specified, we consider policies of the same type T = (C,TQG).
This assumption is harmless and simplifies the treatment (any graph of type
To = (Co,TGp) can be considered of type T} = (C1,TG4) provided that there
exists a morphism fr : (Co,TGo) — (C1,TG1)) by allowing “set-theoretic”
manipulations of policies.

There are (at least) three different ways of combining the negative parts
Neg(A) and Neg(B) to obtain the negative part of their combination. The
resulting policy rejects a graph G if it contains

— a subgraph forbidden by either A or B;
— a subgraph forbidden by A and one forbidden by B; or
— a subgraph forbidden by both A and B.

More formally

Definition 9 (Negative Strategies). For sets of morphisms Neg(A) and
Neg(B), define

314 Francesco Parisi-Presicce and Alexander L. Wolf

— CA(Neg(A),Neg(B)) = Neg(A) U Neg(B)

— CD(Neg(A),Neg(B)) = {Na+Np - Eqs+FEp: Ns — E4 € Neg(A), Ng —
Ep € Neg(B)}U{H4 + Hp: Hy € Neg(A),Hp € Neg(B)}

— DA(Neg(A),Neg(B)) = Neg(A) N Neg(B)

Interpretation. A graph is rejected by CA(Neg(A), Neg(B)) if it is re-
jected by policy A or by policy B or by both: it is a CAutious strategy reject-
ing a graph even if one of the policies could accept it. A graph is rejected by
DA(Neg(A),Neg(B)) if it is rejected by both policies for the same reason: it is
a DAring strategy rejecting a graph only if there is no choice. A graph is rejected
by CD(Neg(A), Neg(B)) if it is rejected by both policies for possibly different
reasons.

Analogous to the negative part, there are (at least) three different ways of
combining the generative parts Pos(A) and Pos(B) to obtain the positive part
of the combination of the policies A and B.

Definition 10 (Positive Strategies). Given graph transformation systems
Pos(A) and Pos(B), define

— CA(Pos(A), Pos(B)) = Pos(A) N Pos(B)
— CD(Pos(A), Pos(B)) = {pa + pp : pa € Pos(A),pr € Pos(B)}
— DA(Pos(A), Pos(B)) = Pos(A) U Pos(B)

Interpretation. The graphs generated by C' A(Pos(A), Pos(B)) are (some
of) the graphs generated by both Pos(A) and Pos(B): a CAutious strategy. The
graphs generated by DA(Pos(A), Pos(B)) includes all the graphs in GPos(A)U
GPos(B) along with the graphs obtained by the “interaction” of the rules of the
two sets: a DAring strategy. The graphs generated by CD(Pos(A), Pos(B)) are
those obtained by taking the disjoint union of one graph generated by Pos(A)
and one by Pos(B).

Policies can be combined by selecting one strategy for the generative part
and one for the rejecting part.

Definition 11. Given policies A and B, the combination of A and B with
strategies X and Y is denoted by [X,Y](A, B) and is the policy C where
Pos(C) = X (Pos(A), Pos(B)) and

Neg(C) = ¥ (Neg(A), Neg(B))

for X, Y € {DA,CD,CA}

The first result on combining policies is a straightforward application of the
definitions.

Proposition 2. If A and B are policies such that there exists a policy morphism
from A to B, then

1. [DA, DAJ(A, B)

- B
2. [CA,CA](A,B) = A

Foundations for Software Configuration Management Policies 315

The main problem in combining policies is to predict the behavior of the
resulting policy. In particular, the two policies to be combined could “interfere”
with each other where one of the two generates a graph that is rejected by the
other policy. Which of the different ways of combining two coherent policies
generates again a coherent policy? The remaining part of this section is devoted
to giving partial answers to this question. One special case is already treated
in the previous proposition. The two extreme ways of combining policies use
DAring strategies for both components generating more graphs than the two
policies generate individually and rejecting only when both policies agree, and
CAutious strategies for both components generating a “small” set of graphs and
rejecting a graph when just one of the policies rejects it.

Proposition 3. 1. If A and B are coherent, then C = [C'A,CA](A4, B) is co-
herent.

2. There ezist coherent policies A and B such that D = [DA, DA](A, B) is not
coherent.

Proof. (Sketch) (1) Since GPos(C) C GPos(A) N GPos(B) and Neg(C)
Neg(A) U Neg(B), if G € Neg(C) is a subgraph of H € GPos(C), then it
is a graph generated by both A and B contradicting the coherence of A if
G € Neg(A) or the coherence of B if G € Neg(B).

(2) Consider in fact a type graph for both policies consisting of 2 isolated
nodes (call them a and b). Policy A (resp. B) has only one rule generating from
the empty graph one with a single node of type a (resp. b). Both policies reject
all the graphs that contain a node of type b and a node of type a. The two
policies are obviously coherent but Pos(D) contains a graph with one node of
type a and one node of type b and thus rejected by definition of Neg(D).

The next few results try to narrow the gap between these two extremes.

Proposition 4. If A and B are coherent, then [CA, X](A, B) is coherent for
any X € {CA,CD,DA}.

Proposition 5. (a) For any X € {CA,CD,DA}, if [X,CA|(A, B) is coherent,
then so are [X,CD](A, B) and [X, DA|(A, B)

(b) There exist coherent policies A, B, P, and @ such that [CD,DA](P,Q) and
[CD,CD](A, B) are not coherent.

The crucial case is when the largest number of graphs is generated while
allowing either policy to reject a graph.

Theorem 2. If [DA,CA|(A, B) is coherent, then [X,Y](A, B) is coherent for
any X,Y € {CA,CD,DA}.

Ezample 3. (cont.)
Consider the policy VAR over the same type graph Ty = Tg used for the
policy REV but where the loop on the artifact node indicates a variant of an

316 Francesco Parisi-Presicce and Alexander L. Wolf

artifact. Pos(VAR) contains one rule that allows a checked-out artifact to be
checked-in and declared a variant of the previously checked-out artifact, and one
rule that allows the checking-out of an artifact provided that it has not been
checked-out already. (Again the user selects the “current” rule.)

— —
> Co
— —
T o

(Again the user selects the “current” rule)

Pos(VAR) also contains rules to add a new collection and to add a new
artifact within an existing collection.

Neg(V AR) contains only two graphs: one stating that no artifact can be a
variant of itself, and the other one that no more than two variants can be merged
at a time.

S

Again it is easy to check that VAR is a coherent policy.
The two policies REV and VAR can be thought of the same type, namely
Tgr with two distinct loops, one denoting revision and one denoting variant.

Claim. The policy M = [DA,CA|(REV,V AR) is coherent.

In fact, the interaction of the rules of REV and VAR cannot generate the
forbidden graphs since, for example, REV is coherent and the rules in Pos(V AR)
cannot generate “variant” arcs. In other words, there are no forbidden graphs
over the “common” type consisting of the graph T without the loop.

The idea behind this example can be generalized. To determine whether the
most “dangerous” combination [DA, CA] of coherent policies is coherent, it is
sufficient to check only the forbidden graphs of either policy that are of the
common type.

Theorem 3. Let A and B be coherent policies over types T4 and Tg, respec-
tively, and fa : T — T4, fe: T — T type morphisms with f : T — Ty +7 T5B.
Denote by Ax and Bx the policies A and B, respectively, viewed over the type
Ta +1 Tg. The policy [DA,CA](Ax, Bx) is coherent if and only if the policy
(DA(Ax,Bx), NEG) is coherent, where

NEG = {n € Neg(Ax)U Neg(B%) : f>(f<(n)) =n}.

Foundations for Software Configuration Management Policies 317

Notice that [DA, C A](Ax, Bx) corresponds to the pushout object (in POL-
ICY) with respect to the empty set of shared policy rules (cf. Theorem 1).
We close this section with a simple result involving closed policies.

Definition 12. Policies A and B over the same type are equivalent if GPos(A) =
GPos(B) and Neg(A) = Neg(B).

Proposition 6. Policies A and B are equivalent if and only if A subsumes B
and B subsumes A.

Theorem 4. Given closed policies A and B, [DA,CA](A, B) is coherent if and
only if A and B are equivalent.

5 Conclusion

The use of graph transformation systems to model various aspects of software
engineering is well established. In the particular area of configuration manage-
ment, three efforts stand out as representative of related work.

— Heimbigner and Krane [7] use graph transformation systems to model the
software build process, which is an orthogonal activity to versioning within
the general area of configuration management. The build process describes
how tools (e.g., compilers and linkers) should be applied to artifacts (e.g.,
source files) to derive other artifacts (e.g., object and executable files).

— Westfechtel [16] has developed a graph transformation framework for describ-
ing the structure of documents and a particular policy for how document
structures should evolve.

— Mens [9] uses labelled typed graphs to represent reusable software compo-
nents and conditional graph rewriting for describing a particular policy by
which those components should evolve.

Our work contrasts with these and related efforts in that it is more generally
applied to multiple policies, and to understanding the relationships among those
policies.

The choices of DA, CA and CD to construct new policies are just “policies”’
themselves on policy building: under investigation are more general ways of
putting policies together. Also under study are the possible ways of converting
a non-coherent policy into a coherent one by modifying either Neg (easy) or Pos
(not as easy) or both. Such modifications could be modelled within the rule-base
framework itself [10].

Our future work is aimed at modeling the full spectrum of existing CM poli-
cies and finding further critical properties that relate them to each other. Going
further, we plan to design and build a tool to take as input policies specified as
graph transformation systems and produce as output policy enforcement code
in a procedural programming language. As a first target, we will generate poli-
cies implemented as calls to the library functions of the NUCM configuration
management repository [15].

318

Francesco Parisi-Presicce and Alexander L. Wolf

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

B. Berliner. CVS II: Parallelizing Software Development. In Proceedings of 1990
Winter USENIX Conference, pages 341-352. USENIX Association, January 1990.
A. Carzaniga. Distributed Versioning System Manual, Version 1.2. Department of
Computer Science, University of Colorado, Boulder, Colorado, June 1998.

R. Conradi and B. Westfechtel. Version Models for Software Configuration Man-
agement. ACM Computing Surveys, 30(2):232—-282, June 1998.

A. Corradini and R. Heckel. A Compositional Approach to Structuring and Re-
finement of Typed Graph Grammars. In Proc. SEGRAGRA’95 (Graph Rewriting
and Computation), volume 2 of ENTCS, pages 167-176. Elsevier, 1995.

M. Grofle-Rhode, F. Parisi Presicce, and M. Simeoni. Spatial and Temporal Refine-
ment of Typed Graph Transformation Systems. In Proc. MFCS’98 (Mathematical
Foundations of Computer Science), volume 1450 of Lecture Notes in Computer
Science, pages 553-561, 1998.

M. Grofle-Rhode, F. Parisi Presicce, and M. Simeoni. Refinements of Graph Trans-
formation Systems via Rule Expressions. In Proc. Sizth Int. Workshop on Theory
and Application of Graph Transformations (TAGT’98), Lecture Notes in Computer
Science, 1999. To appear.

D. Heimbigner and S. Krane. A Graph Transformation Model for Configuration
Management Environments. In SIGSOFT ’88: Proceedings of the Third Sympo-
sium on Software Development Environments, pages 216-225. ACM SIGSOFT,
November 1988.

Y.-J. Lin and S.P. Reiss. Configuration Management with Logical Structures. In
Proceedings of the 18th International Conference on Software Engineering, pages
298-307. Association for Computer Machinery, March 1996.

T. Mens. Conditional Graph Rewriting as an Underlying Formalism for Software
Evolution. In Proceedings of the International Symposium on Applications of Graph
Transformation with Industrial Relevance, Lecture Notes in Computer Science.
Springer-Verlag, 1999. To appear.

F. Parisi Presicce. Transformations of graph grammars. In Proc. 5th Int. Workshop
on Graph Grammars, volume 1073 of Lecture Notes in Computer Science, pages
426-442, 1996.

M.J. Rochkind. The Source Code Control System. IEEE Transactions on Software
Engineering, SE-1(4):364-370, December 1975.

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, volume 1. World Scientific, New Jersey, 1997.

W.F. Tichy. RCS, A System for Version Control. Software—Practice and Ezperi-
ence, 15(7):637-654, July 1985.

W.F. Tichy. Tools for Configuration Management. In Proceedings of the Interna-
tional Workshop on Software Versioning and Configuration Control, pages 1-20,
January 1988.

A. van der Hoek, A. Carzaniga, D.M. Heimbigner, and A.L. Wolf. A Reusable,
Distributed Repository for Configuration Management Policy Programming. Tech-
nical Report CU-CS-849-98, Department of Computer Science, University of Col-
orado, Boulder, Colorado, September 1998.

B. Westfechtel. A Graph-Based System for Managing Configurations of Engi-
neering Design Documents. International Journal of Software Engineering and
Knowledge Engineering, 6(4):549-583, December 1996.

