
Event-Based Detection of Concurrency 

Jonathan E. Cook 

Department of Computer Science 
New Mexico State University 
Las Cruces, NM 88003 USA 

jcook@cs.nmsu.edu 

Abstract 

Understanding the behavior of a system is cm&al in being 
able to modify, maintain, and improve the system. A par- 
ticularly diflcult aspect of some system behaviors is con- 
currency. Wkile there are many techniques to specify in- 
tended concurrent behavior, there are few, if any, techniques 
to capture and model actual concurrent behavior. This paper 
presents a technique to discover patterns of concurrent be- 
havior from traces of system events. The technique is based 
on a probabilistic analysis of the event traces. Using met- 
rics for the number, frequency, and regularity of event oc- 
currences, a determination is made of the likely concurrent 
behavior being manifested by the system. The technique is 
useful in a wide variety of software engineering taslcs, in- 
cluding architecture discovery, reengineering, user interac- 
tion, modeling, and software process improvement. 

1 Introduction 

Understanding a complex system’s behavior is a task that 
is often required in software engineering. Typically, a spec- 
ification of intended behavior does not exist or, if it does 
e-xi&, is woefully out of date. The source code of the sys- 
tem, while relatively accurate, can be too cumbersome and 
low level to deal with directly, especially for a large system. 
Fortunately, many systems have the ability to log their exe- 
cution and thereby generate a trace of events that captures 
the actual behavior of the system. If one could analyze the 
trace to discover a model of the behavior, then that model 
could reliably be used to evaluate, maintain, and modify the 
system. 

In previous work [4, 51, we developed methods for using 
event traces to automatically discover a sequential model 
of behavior. For that purpose, an event trace is viewed as 

This work was supported in part by the National Science Founda- 
tion under grants CCR-93-02739 and CCR-9804067, and by the Air 
Force Materiel Command, Rome Laboratory, and the Advanced Re- 
search Projects Agency under Contract Number F30602-94-G0253. 
The content of the information does not necessarily reflect the po- 
sition or the policy of the Government and no official endorsement 
should be inferred. 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advan- 
tage and that copies bear this notice and the full citation on the first page. 
To copy otherwise, to republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. 
SIGSOFT ‘98 11198 Florida, USA 
0 1998 ACM l-58113-108.9/98/0010...55.00 

35 

Alexander L. Wolf 

Department of Computer Science 
University of Colorado 

Boulder, CO 80309 USA 

ahv@cs.colorado.edu 

a sentence in some unknown language, and the discovery 
methods produce a grammar, in the form of a finite state 
machine, as a model of the language. Using the domain of 
finite state machines allows us to capture the basic structure 
of sequential processes: sequence, selection, and iteration. 

Many systems, however, exhibit concurrent behavior, 
where more than one thread of control is producing the 
events that comprise a single event trace. In such cases, 
the sequential finite-state-machine model cannot capture the 
true behavior of a system. Thus, we need new methods to 
discover concurrent behavior. Uncovering a system’s concur- 
rent behavior is useful in such tasks as architecture discov- 
ery, reengineering, user interaction modeling, and softwae 
process improvement. 

In thii paper, we develop and demonstrate a technique 
that can detect concurrent behavior in an event trace and 
infer a model that describes that concurrent behavior. The 
technique uses statistical and probabilistic analyses to de- 
termine when concurrent behavior is occurring, and what 
dependence relationships may exist among events. With 
this approach, we rely on an assumption of randomness in 
the event orderings resulting from the concurrent behavior. 
Our goal is not to infer the precise concurrent behavior of 
a system, but rather to identify gross patterns of behavior 
that can be useful in understanding the system. Indeed, our 
technique may be most valuable when revealing that the ac- 
tual behavior does not match a preconceived notion of how 
the system should perform. 

One might think that the goal of discovery for a concur- 
rent process should be to identify the individual threads and 
their individual behaviors. In a concurrent process, however, 
the important issue is locating exactly those points where 
the threads interact. A system might be constructed, for 
example, having two threads, but those threads may exe- 
cute in lock step and actually not exhibit any concurrency 
at all. Thus, while an engineer might fairly quickly see f?om 
a specification the intended concurrency in a system, identi- 
fying the points of thread interaction and how much actual 
concurrent behavior is exhibited is not as straightforward. 

The next section provides definitions and background 
discussion to place the technique in context. Section 3 intro- 
duces the technique and its component metrics. Section 4 
details example uses of the technique and discusses the suc- 
cess of the methods on these examples. Finally, Section 5 
concludes with some observations and some related work. 

- - _ _~ .-.-. _ ____ 



2 Background 

In this section we detail our view of events, concurrency, 
and dependencies among events that constrain concurrency. 
We also discuss several assumptions that underlie our work. 
Throughout, we use the term process to mean the whole 
system, and t,he term thread to mean a sequential esecution 
control path within the process, perhaps running concur- 
rently with other threads. Note that our use of the term 
process is somewhat non-traditional. 

2.1 Events 

Following our previous work [4,5,15], we use an event-based 
model of process actions, where events are used to character- 
ize t.he dynamic behavior of a process in terms of identifiable, 
instantaneous actions, such as sending a message, beginning 
a transaction, or invoking a development tool. The use of 
events to characterize behavior is already widely accepted 
in diverse areas of software engineering, such as program 
visualization [12], concurrent-system analysis [2], and dis- 
tributed debugging 13, 61. 

The “instant” of an event is relative to the time gran- 
ularity that is needed or desired. Thus, certain activities 
that are of short duration relative to the time granular- 
it,y are represented as a single event. An activity spanning 
some significant period of time is represented by the inter- 
val between two or more events. For esample, a method 
invocation might have a “begin-method” and “end-method” 
event pair. Similarly, a module compilation submitted to a 
batch queue could be represented by the three events “enter- 
queue”, ‘begin-compilation”, and “end-compilation”. Ac- 
tivit,ies may be composed of subactivities, with the only re- 
striction being that sequential composition must be strictly 
hierarchical. 

For purposes of maintaining information about an action, 
events are typed and can have attributes; one attribute is 
the time t.he event occurred. Generally, the other event at- 
tributes would be items such as the agents, resources, and 
data associated with an event, the tangible results of the 
action (e.g., return value of a method), and any other infor- 
mation that gives character to the specific occurrence of that 
type of event. In the work described here, we do not make 
use of attributes other than logical time, i.e., the ordering 
of events. 

The overlapping and hierarchical activities of a process, 
then, are represented by a sequence of event,s, which we re- 
fer to as an euent stream. For simplicity, we assume that 
a single event stream represents one execution of one pro- 
cess, although depending on the data collection method, this 
assumption may be relaxed. 

2.2 A View of Concurrency 

A concurrent process has simultaneously executing threads 
of control, each producing events that end up in the resulting 
event stream. Thus, the event stream represents interleaved 
event sequences from all of the concurrent threads. These 
threads, since they are presumably cooperating to achieve a 
goal, are not totally independent. In addition to being cre- 
ated and destroyed, they will synchronize at certain points, 
and this will be reflected in the sequences of events pro- 
duced. 

In this paper, esample models of concurrent processes are 
given in the familiar Petri net formalism [13]. The separate 
“threads” of esecution in the Petri net models are visible 
from the connectedness of the places and transitions. Events 

Figure 1: An Esample Petri Net. 

are produced at transition firings; the sequence of events 
produced by the process is esactly the sequence of transition 
firings. Figure 1 shows a small concurrent process in the 
Petri net formalism. 

2.3 Event Dependencies 

Discovering a model of a system from event data basically 
involves determining the logical dependencies among events. 
Direct dependence is deiined as the occurrence of one event 
type directly depending (with some probability) on another 
event type. We define three types of direct dependence. 
Sequential dependence captures the sequencing of events, 
where one event directly follows another. Conditional de- 
pendence captures selection, or a choice of one event from I 
a set of events potentially following a given event. Con- 
went dependence captures concurrency in terms of “fork” 
and ‘Soin”; in a fork, all of a set of events follow a given 
event, and in a join, a specific event follows a given set of 
events. A synchronization point, where two or more threads 
meet to coordinate, can be thought of as a join and a fork 
combined into the same instant. 

While we use the terms fork and join, we do not mean to 
imply a particular concurrency construct. Regardless of the 
model of concurrency, the event stream will contain points 
where parallel threads synchronize-assuming the events in 
fact represent cooperating threads. Upon entering the syn- 
chronization point, the threads become locked together, and 
are thus joined. Upon exit, they again freely esecute in par- 
allel, and are thus forked. If the synchronization point in- 
volves several sequential events, then the fork and join points 
bound those sequential events. 

It is these direct dependencies that must be inferred in 
order to discover a model. For esample, the iteration con- 
struct in the sequential case is built up of direct and condi- 
tional dependencies connected together in a cycle. Indirect 
dependencies arise from a transitive closure over direct de- 
pendencies, and so do not need to be discovered as separate 
dependencies. 

If a time-spanning activity is represented by two or more 
instantaneous events, such as a begin-event/end-event pair, 
we know that those events represent activity boundaries. 
What this gives us is a dependency between the two events 
that is predefined and, therefore, does not require discovery. 
Nevertheless, the relationship between the events is not nec- 
essarily that of a direct dependence. An activity might be 
composed of several subactivities in sequence, each of which 
must complete before the activity is completed. At the event 

36 



level, the end event of the activity is directly dependent on 
the end event of the last subactivity, since that ordering is 
always maintained. It is not directly dependent on the be- 
gin event of the whole activity, but rather it is indirectly 
dependent. In addition, an activity might fork several other 
threads, or simply have a synchronization point within it. In 
such cases, t.he end event will still not be directly dependent 
on the begin event. What this points out is that the dy- 
namic relat,ionships among events can be more complicated 
than any static relationships among events that might rea- 
sonably be established. 

With this in mind, we do not make use of or assume the 
presence of information denoting to which thread an event 
belongs. Such information may in fact be readily available, 
since many collection mechanisms tag each event with the 
thread to which it belongs. In deciding direct dependence, 
as esplained above, thii knowledge is not alxvays useful, and 
may even be misleading at times. Thus, the technique de- 
veloped in this paper ignores thread-identifying information, 
but we do recognize that incorporating this information, 
when available, will be an important future direction of re- 
search. 

2.4 Tabulation of Event Sequence Characteristics 

Given an event stream, some numerical representation of 
its characteristic sequencing behavior is needed upon which 
analysis can be performed. One of our successful sequential 
techniques, MARKOV, is based on a notion of frequency ta- 
bles [4]. These tables record the frequencies at which each 
event and event sequence occur in the event stream. Along 
with frequencies, we also record the number of occurrences 
of each event type. Counts of event sequences are derivable 
from the frequencies and individual event type counts, and 
thus can be recorded or derived, depending on the need. In 
this work, we begin with a similar representation, but make 
use of a different analysis technique. 

As a working example, consider the process shown in 
Figure 1. This process simply produces an event C, followed 
concurrently by events A and B, and then repeats. A sample 
event stream from this process is 

CABCBACABCABCBAC 

If we look at the frequency of an event type following another 
event type in t.his event stream, we have the table 

where an entry is the frequency of the column event fol- 
lowing the row event.’ For example, if a B occurs in the 
event stream, 40% of the time the nest event is an A, 60% 
of the time it is a C, and 0% of the time it is another B. 
These frequencies, then, can be interpreted as the condi- 
tional probability that the second event will occur after the 
first event. This event stream is shown by its frequency ta- 
ble to be highly structured, since the values differ greatly in 
each table entry, and there are many 0.0 entries. Note that 
the probabilities given for the C event do not add up to 1.0 

‘We assume counting and tabulation errors to be less than 1 in 
1000, and throughout the paper we use two to three significant digits 
for numbers, selected for visual clarity. In actuality, we have not seen 
counting errors. 

because the last C is follo-ived by an ‘Lend-of-stream” event, 
which is not shown in the table. 

The non-zero frequencies directly represent probabilis- 
tic dependence relations-that is, the second event type de- 
pends on the first occurring, with some probability. Entries 
of 0.0 in the frequency table are interpreted as immediately 
signifying independence, though one can imagine scenarios 
where this might not be true. For instance, an event type 
might, for some reason, depend on the event preceding it 
by two rather than on the immediate predecessor, but the 
locality of the frequency table would mask such an effect. 
We can also account for noise in the data by setting some 
threshold below which low-valued entries in the frequency 
table are treated as 0.0. 

If we assume that this event stream is esactly correct 
(i.e., contains no noise) and derives from a sequential pro- 
cess, then every non-zero entry in the table would signify 
a correct event sequence, and thus a transition sequence in 
a state machine. But when the process that produces the 
event stream is concurrent, some of the table entries indicate 
spurious or false dependencies. In the example, the AB and 
BA entries are not significant, since we can see from the pro- 
cess in Figure 1 that A and B axe produced independently. 
A large part of the concurrency discovery problem involves 
deciding which entries in the frequency table are significant 
and which are not. 

2.5 Assumptions 

The work described in this paper represents an initial inves- 
tigation of the problem that makes use of several simplifying 
assumptions. 

The first assumption is that each event type is produced 
at a single point in the process. In terms of a Petri net, this 
means that no two transitions are labeled with the same 
event. In Figure 2, for esample, the three transitions are 
labeled uniquely as A, B, and C. 

With this assumption, instead of espending effort on pro- 
ducing a model in a powerful formalism such es Petri nets, 
we can simply produce a Moore-type state machine, where 
each event type is produced in a single state and where out- 
put events are associated with states, not transitions. On 
this machine we can interpret the behavior as having multi- 
ple threads of esecution, and can then mark those states that 
signify forks, joins, or other synchronization points for the 
concurrent threads. Transitions in this machine are unla- 
beled, and represent direct dependence relations of sequen- 
tial, conditional, or concurrent types. For sequential and 
conditional transitions, only a single transition is taken out 
of a state. For concurrent transitions, a set of transitions 
are taken simultaneously from a state, or a set of transitions 
are taken when entering a state. It should be evident that 
we are defining a simplified form of statechart [9]. 

A traditional fork vfould be a marked state that has a 
single input transition and multiple output transitions, a 
traditional join would be a marked state that has multiple 
input transitions and one output transition, and a synchro- 
nization point Tvould have multiple input and output transi- 
tions. For example, the process represented by the Petri net 
in Figure 1 would have a discovered model as that shown in 
Figure 2. Marking the C node with a box signifies that its 
input transitions join the threads into one (for the instant 
that it executes), and that its output transitions execute 
concurrently. Thus, it represents a synchronization point. 

Although this representation may not be powerful 
enough to prescribe the process, it is useful for describing 

37 



C 

& A B 

Figure 2: An Equivalent Model to Figure 1 using a 
Fork/Join Node. 

the process. The advantage of this visually simple repre- 
sentat,ion is that it cleanly separates the behavior in terms 
of event sequencing, and clearly depicts where concurrency 
es&s. This is very important when offering to the engl- 
neer a model that in fact may be wrong or incomplete in 
places-which any automated method might do. We intend 
to give an engineer a descriptive model so that they can un- 
derstand more deeply the actual behavior. The advantage of 
&is simple representation becomes clear in the presentation 
of esamples, in SecGon 4. 

A second assumption is that the observed sequences of 
events will display randomness because of the fact that they 
are happening concurrently. This is the essential outcome 
of true, independent concurrency. Some concurrent systems, 
however, may not display much randomness, at least at the 
level of collectible events. Our technique is not targeted 
towards those kinds of systems. 

A thiid assumption is that we have repeated presenta- 
tions of system behavior, either in the form of a multiply 
esecuted loop or of multiple traces. Because we are looking 
at event sequence frequency, we need multiple occurrences 
of those events and event sequences to reliably interpret the 
frequency. For example, if both sequences AB and AC oc- 
cur once, but the presence of AC in the stream is due to 
noise, the sequences will have the same frequency, but not 
the same validity. Thus, we need enough data to make the 
analysis meaningful. 

How much data does our technique require? The statisti- 
cal rule of thumb for using probabilities is that the number 
of observations of an occurrence should be at least five if 
t.he probability is to be used in some inference [7]. That is, 
AB in the example above should occur at least five times 
if we are going to use its frequency in our analysis. If one 
assumed t.hat only half of all possible two-event sequences 
occurred in a space of N event types, and that those all oc- 
curred equally, then giV2 events should be collected before 
analysis is done. Of course, some event sequences will occur 
many times more than others, so thii minimal lower bound 
is not realistic. It does, however, show that even the lower 
bound grows with the square of the number of event types. 

Finally, underlying our approach is the assumption that 
related events will appear next to each other with a high 
enough frequency that inference can be made on this rela- 
tion. It could certainly happen that a system might produce 
events that are directly dependent but that never appear 
contiguous in the event stream. This would occur, for in- 
stance, if a slow thread were mixed in with fast threads. 
Our current technique does not handle thii situation, but 
this issue points up an area of future work. 

3s 

Figure 3: A Simple Concurrent Process Modeled as a Petri 
Net. 

3 A Concurrency Discovery Technique 

With the groundwork laid, we now introduce a technique 
for discovering concurrent behavior. This section proceeds 
in a bottom-up fashion. That is, we first present four spe- 
cific metrics that contribute key information to the task of 
discovering concurrency, and then present the framework in 
which these metrics are combined to discover complete mod- 
els of the concurrent behavior shown in event streams. The 
metrics include: entropy, a measure of the amount of in- 
formation a specific event type contains; ewent type counts, 
which are important in distinguishmg sequential and con- 
current behavior; periodic& a measure of the regularity of 
occurrence of each event type; and a caus&ty metric that 
distinguishes sequential dependence i?om concurrent inde- 
pendence. 

As a working example, we use the process shown in Fig- 
ure 3. This process simply produces an event C, followed by 
concurrent events A, B, and F (after A), then a D. The pro- 
cess then repeats until, at the end, an event E is produced. 
A sample event stream from this process is the following. 

CAFBDCBAFDCAFBDCAFBDCAFBDCAFBDCBAFDCBAFDE 

For analysis purposes, we use a longer event stream from 
an execution of this process, in particular one that is 
1666 events long, generated from a stochastic simulation of 
the model. 



3.1 Entropy 

A key calculation that can be derived from the frequency 
tables is that of entropy, which gives a measure of the ran- 
domness of, or conversely the amount of information con- 
tained in, each event type and its occurrences. In essence, 
the entropy calculation tells us how the frequencies are dis- 
tributed. If an event B always follows an event A, then the 
frequency for rlB=l.O, and for all other events E, AE=O.O. 
This means the behavior after A is perfectly deterministic, 
and the entropy is 0.0. As more event types occur after an 
A and the frequencies become more distributed, entropy in- 
creases until, if all event types are equally likely, the entropy 
is 1.0. An entropy of 0.0 means that we have complete in- 
formation; when an A is seen, we know that the next event 
must be a B. On the other hand, an entropy of 1.0 means 
that we have no information; seeing an A gives no insight 
into the next event type. 

Ent,ropy is delined by the following formula 

E(T) = - gP(Ei,T)EogNP(E.,T) 
i=l 

with P(E,IT) being the probability of event E; occurring 
given that event T just occurred (i.e., the entry in the fre- 
quency table at row T, column Ei) and there being N pos- 
sible event types. 

One would think that concurrency could not be discov- 
ered, because it is represented by apparent randomness, or 
noise, in the event stream. But it is precisely this random- 
ness that we can look for. We can measure the entropy for 
each event type. 

If we assume a fork-style concurrent behavior, there are 
specific values of entropy that might signal a fork point. 
Take as an example the two-way fork shown in Figure 3. 
Assuming a balanced production order of the events begin- 
ning each branch of the fork (A and B), the frequency values 
for each will be about 0.5, and for the other four events will 
be 0.0. Thus, the row in the frequency table will be 

lAlBlClDlElF 
c I 0.5 I 0.5 I 0.0 I 0.0 I 0.0 I 0.0 

since C is produced just before the fork, and A and B are 
produced first on each branch of the fork. The entropy, then, 
for C is 0.39. Thii value represents the asymptotic bound 
on a two-way fork for a process producing six event types. If 
a fork in this process is balanced, then with enough data the 
entropy for the fork should approach 0.39, and will never be 
greater than that in the absence of noise. 

For a T-way fork given N token types, this entropy limit 
is given by the following simple formula. 

Note that thii same formula and metric can apply to joins 
as well, by simply viewing the event stream backwards. The 
reverse frequencies can easily be computed from the forward 
frequencies using Bayes’ rule [7], so that extra tables are not 
needed. 

Unfortunately, this metric alone is insuflicient, because 
the reasoning above applies to sequential branching behavior 
as well. A two-way branch that is balanced in its production 
of events will have the same frequency values as a two-way 
fork. The following metric, however, can help distinguish 
between the two cases. 

3.2 Event Type Counts 

Given an event type that has several event types following 
it with various frequencies, a decision has to be made as to 
whether the behavior at this point is a sequential selection 
or a concurrent fork. An indication of which of these might 
be happening is a count of the events for the event types 
involved. 

If selection is occurring at some point in the process,2 
then the counts of the event types following the selection 
point should sum to the count of the event at the selection 
point itself. For example, if A is followed by either a B 
or a C through a selection behavior, then the event counts 
might be, say, 8 As, 5 Bs, and 3 Cs. If, on the other hand, 
concurrency is occurring at that point, then the counts of 
the event types following the fork point should each be equal 
to the count of the event type at the fork point, and their 
sum should be a multiple of the count of the event at the fork 
point. Furthermore, each event type after the fork should 
have the same count; one event should not have a low count 
and the other high, even though they sum to a multiple 
of the event type at the fork point. Thus, in the example 
above, there would be 8 As, 8 Bs, and 8 Cs. 

These relationships do not have to always hold, since 
the event types involved might be producible through other 
paths in the model. Thus, their numbers will not always con- 
form neatly to this scenario. However, the counts can indi- 
cate if the selection or fork is more likely to hold, since there 
would be a large difference in the expected event counts. 

3.3 Periodicity 

With the periodicity metric we consider the repetitive be- 
havior of a process and its event stream. Our probabilistic 
analysis, as mentioned above, depends on repeated presen- 
tations of the behavior of a system. In this repetition, an 
event type will have some period of occurring. Because of the 
other threads around it, this period may be very irregular 
or very regular. By looking at which event types have reg- 
ular periods, we can identify the points in the process that 
are potential synchronization points, because these will be 
the most regular. Periodicity is a measurement, then, of the 
regularity of the period of occurrence for each event type. 

Consider the example in Figure 3. The events A, B, and 
F produced inside each of the threads will be a bit jumbled; 
their periods will not be regular. But the event C marking 
the fork and D marking the join will always have a period of 
5, because all of the events in the threads will always occur. 

If the threads have selection branches that produce dif- 
fering numbers of events, or internal loops, then the syn- 
chronization points will not have an exactly regular period. 
But even so, their period should be the most regular-that 
is, the other events internal to the concurrent processes will 
also suffer from these differences, on top of the irregularity 
they already exhibit. 

So, to calculate the periodicity of event types, we do the 
following. 

1. Mark the positions in the event stream that an event 
type occurs. 

2. Calculate the differences between successive positions. 

3. Calculate the mean and standard deviation of those 
differences. 

2Recall that me are assuming that each event type is produced at 
a single point in the process. 

39 



The standard deviations capture the regularity of the peri- 
ods of the event types, and thus are the periodicity messure- 
me&s. The means capture how long (in events produced) 
is the process within that period, and can be used as sup- 
plemental measurements. Those event types with the lowest 
standard deviations should be the event types that mark the 
synchronization points in the process. 

3.4 Deciding Causality 

The previous metrics were directed at discovering the syn- 
chronization points in a concurrent process. But with multi- 
ple threads, any two events produced concurrently may have 
spurious frequencies because by chance they happen to be 
produced near each other. Thus, given two events A and 
B, how can me decide when they are sequentially causally 
related and rvhen they are not? Remember that in the non- 
concurrent case, two events might be sequentially depen- 
dent or conditionally dependent. This section deals with 
both identically, as sequential dependence is a special case 
of condit,ional dependence, where there is only one choice. 
In this discussion, we are assuming A and B have already 
been eliminated as events signaling forks, joins, or synchro- 
nization points. 

If we do not see the sequences AB or BA (i.e., the prob- 
abilit,ies are 0, or perhaps within some threshold of 0), then 
Te can say that they are not directly dependent. But if we 
do have significant frequencies of these sequences occurring, 
then a decision needs to be made if they are related or not. 

If we only see one of m and BA occurring, then we can 
decide that there is a causal order &om the first event to the 
second. However, if we see both sequences, then there are 
two possibilities: that the two events iterate in a simple two- 
event loop, or that they are independent and not causally 
related to each other, but are occurring in either order by 
chance. Recall that we are assuming only one event site per 
event type in the model, so these are the only two possi- 
bilities. There is a distinguishing relation in the frequen- 
cies that separate these last two cases. If the frequencies 
AB + BA 2 1.5, then these two events are causally related 
in a two-event loop. If AB + BA < 1.5, then they are inde- 
pendent. 

The reasoning behind this is as follows. If A and B are 
part of a two-event loop, then the minimal sequences to see 
for recognizing the loop is XABAY or XABABY, where X 
and 1’ are other events, and assuming that the loop might 
esit from eit.her end (seeing just AB is not enough to deter- 
mine t,hat a loop is present). For the first, the frequencies 
are AB = 0.5 and BA = 1.0, and for the second, AB = 1.0 
and BA = 0.5. For any longer length sequences, the sum 
of these two frequencies will only increase, asymptotically 
approaching 2.0 as the endpoints play less and less of a role. 
Introducing the concurrent production of other events from 
other threads during the AB loop would act to reduce the 
sum AB + BA, but it would also reduce the probabilities if 
t.here is no AB loop, so that a user-definable threshold pa- 
rameter near 1.5 could serve to help deal with this situation. 

If A and B are independent, then other event types will 
have non-zero frequencies corn A and B, and even AA and 
BB may have non-zero frequencies, so that the likelihood of 
AB + BA 2 1.5 occurring will be small. It is possible that 
A and B are independent, but that by chance the sequences 
occur such that the frequencies are at least 1.5, but if this 
is the case, then more data should eventually show them to 
be independent. 

At a minimum, assume a model such as that in Figure 1, 

40 

where C is followed by concurrent (independent) A and B. 
In this model it is abvays true that AB + BA = 1, since 
they each occur once between every C. Thus, they cannot 
be mistaken for being dependent. 

If we assume two concurrent loops, one of As and one of 
Bs, this is the only mechanism that could accidently pro- 
duce a mistaken dependence result. For this to occur, the 
timing of the two loops would have to be in a high degree of 
synchronization, and perhaps discovering a causal relation 
between them may actually reflect some implementation fac- 
tor that is important to understand. 

3.5 Putting the Metrics Together 

The separate metrics above are combined into a single tech- 
nique for discovering concurrency. The framework we use 
for discovering the true dependencies is one of explaining 
why occurrences of event types appear in the event stream. 
The goal is to find dependencies that explain as much of the 
event stream as possible, even all of it if we know that there 
is no noise present in the event stream. 

Specifically, we keep track of two numbers: the number 
of occurrences that have already been es+,ined by some 
inferred dependency, and the number of occurrences that 
have been used to esplain some dependency. By keeping 
track of the number already esplained, we know when to 
stop trying to explain some event type occurrence, and by 
keeping track of the number used to esrlain others, we know 
when to stop using an event type to explain others. In a 
stream with no noise, we are done when we have used all 
occurrences to explain all occurrences. 

The key in this approach is the order in which depen- 
dencies are inferred and explanations are created. Natu- 
rally, one should begin by inferring the dependencies that 
are most likely to be correct. In a probabilistic framework, 
this means that we first look at those event types that have 
the most and best information in their values. Entropy is 
a direct measure of the “information” in a particular event 
type’s sequences. But just looking at entropy and using it 
directly to rank the event types ignores the entropy limits 
for ideal branching factors, as discussed in Section 3.1. For 
example, an event A followed equally by events C and B 
would have a higher entropy than if C occurred 314 of the 
time and B only l/4. But the first actually gives us bet- 
ter information because it exactly shows a balanced branch 
(or fork) of two, whereas in the second we cannot be sure 
if the branch is two but slightly unbalanced, or if the B 
occurrences are just spurious due, for esample, to another 
thread. 

Thus, we find the branch entropy limit that is closest 
to the actual entropy of a given event type, and use the 
difference between these two for ranking. This difference 
alone, however, is still not sufficient to rank the event types 
for processing. An entropy value might be very close to some 
branching factor entropy limit, but in actuality it is derived 
from more sequences than the branching factor allows. For 
example, three event types might follow event A in such a 
way that the entropy measured is very close to the limit for 
a branching factor of two. 

To distinguish these cases, we also calculate the total 
frequency of the N highest probability sequences, where 
N is the branching factor indicated by the chosen entropy 
limit. Subtracting this from 1.0 gives us the amount of event 
sequence frequency not accounted for by the branches al- 
lowed with the entropy limit. The final ranking, then, is 
given in increasing order of the weighted sum of the entropy 



Scan event stream and tabulate counts of I and d-event 
sequences. 

Compute frequencies of I and e-event sequences from 
count tables. 

Compute forward and reverse entropies for each event type. 
FEL t The list of event types and their forward entropies. 
REL t The list of event types and their reverse entropies. 
SEL c FEL and REL combined and sorted according to 

ranking cn-ten-a (each event type occurs twice 
in SEL). 

foreach E in SEL 
if E shows signs of a fork or join, mark it as such. 

(this uses the entropy, count, and pen’odicity 
metrics) 

Build list of inferred dependencies to or from E 
[depending on the direction of this ranking). 

foreach DE in E’s inferred dependencies 
record the dependency &DE (forward) or 

DE+E (reverse) 
if ranking is forward 

update count of explained occurrences of DE 
update count of used occurrences of E 

else ranking is reverse 
update count of used occurrences of DE 
update count of ezplained oceumences of E 

endif 
end 

end 
Output dependencies in graph form. 

Figure 4: The Discovery Algorithm. 

difference and the unaccounted-for frequency. The sum is 
nTeighted because the entropy differences will be small com- 
pared to the frequency differences. Our experience to date 
has led us to use a coefficient of 3 on the entropy value, 
but more experimentation is needed to determine whether 
this should be a user-definable parameter, or if some other 
relationship would perform better over a variety of data. 

For an example of this ranking, if AB = 0.38 and AC = 
0.62 occur in a stream of 10 event types, the entropy differ- 
ence from the ideal two-branch limit would be 0.013, and the 
unaccounted-for frequency would be 1 - (0.38 + 0.62) = 0. 
If in t.he same stream the sequences BD = 0.75, BE = 0.17, 
and BF = 0.08 occur, then the entropy for B is still closest 
to the two-branch entropy, with a difference of 0.011. Thus, 
B is even closer to the two-branch liiit than the event type 
A. But. its unaccounted-for frequency with a branch of two 
is 1 - (0.75 + 0.17) = 0.08, so B would be ranked lower than 
A in terms of the quality of the information it gives. 

The ranking is done simultaneously for both the forward 
entropies and frequencies [the direct sequence occurrences 
in the st,ream) and for the reverse entropies and f?equen- 
ties (the reverse sequences in the event stream). These re- 
verse measurements are calculated from the forward mea- 
surements using Bayes’ rule. This ranking, then, intermixes 
processing both the forwsrd and reverse indications of de- 
pendence; in thii manner we can use the best indications of 
dependence in either direction before we process the weaker 
indications of dependence. 

The whole algorithm is shown in Figure 4 in outline 
form. Each phrase describing some processing uses the de- 
tail of the met,rics described above. The algorithm has been 
prototyped in a discovery tool that reads in files of events 
and produces a textual graph representation of the discov- 

41 

Table 1: Forward Frequencies from a Simulation of Figure I 

!i 

(and the processing order ranks for both the forward and 
reverse cases). 

Figure 5: The Discovered Model of the Process in Figure 3. 

ered model, which is visualized using the dot graph layout 
too1 [ll]. 

This prototype was given as input the 1666-event stream 
produced from a stochastic simulation of the model in Fig- 
ure 3. Table 1 shows the forward frequencies of the a-event 
sequences, along with the forward and reverse rankings for 
each event, nrhich indicates the processing order of each 
event’s information. Note, for example, that B and F are 
both processed relatively late; thii is because they are the 
two events that display the most nondeterminism in their 
orderings. The resulting discovered model is shown in Fig- 
ure 5. The event type C is found by the entropy metric to 
be a fork and by the periodicity metric to be a synchroniza- 
tion point. The other event types are successfully separated 
into their correct dependence relations based on the causal- 
ity metric, and the event type D is found to be a join based 
on event count and to be a synchronization point by peri- 
odicity. 

The next section demonstrates the application of our 
technique and prototype tool on larger examples. 

4 Examples 

In thii section we give two, somewhat more complex exam- 
ples of how our technique can discover a concurrency model 
for a process. 

Figure 6 shows a Petri net model of a process with three 
threads, one having a sub-loop of two events, one having 
a selection point, and one being strictly sequenced. The 
concurrency is separated a bit within the process. Transition 
T4 is a synchronization point-all three threads join at T4, 
and then two threads are created. One of those threads, 
at transition T5, splits into two more threads, and then 
all three continue until they reach T4 again. The process 
ends when, after T4, the two threads terminate at T9 rather 
than continuing on. Although small, this process is non- 
trivial, since it also contains all the sequential constructs 
(sequence, selection, iteration) that need to be recognized- 
and distinguished-by our discovery technique. 

Figure 7 shows the discovered model, with the analysis 
run on a 7018-event stream. As shown, all three threads 



Figure 6: A More Complex Concurrent Process. 

The Petri net model is shown in Figure 8. Thii model has 
a single place representing each fork, available if it is marked 
with a token. A philosopher has a TakeForks transition that 
will fire and consume the tokens on that philosopher’s adja- 
cent fork places. A philosopher has an Eat transition that 
fires sometime later, followed by a DropForks transition that 
again marks the places of the forks. A set of control tran- 
sitions and places regulate the philosophers. To begin, the 
control transition Ctrll puts forks down by marking all fork 
places, allowing the philosophers to begin eating. When the 
control decides that eating should cease (based on the firing 
of control transition Ctrld), the control begins a sequence 
of transitions that pick up the forks one at a time. When 
all forks are picked up, the beginning control transition can 
fire again, putting all forks down for another round of eat- 
ing, or an exit transition can fire, finishing the session. The 
Petri net is simulated using a stochastic net simulator, and 
no guarantee of fairness is given. 

Figure 9 shows a discovered model from an event stream 
generated from the Petri net implementation of the din- 
ing philosophers. The event stream used for the analysis 
contains 60,434 events. This diagram shows the successful 
recognition of the fork that starts all five philosophers. In 
detail, the non-zero ffequencies for the event Ctrll are shown 
below. 

1 Take1 1 Take2 1 Take3 1 Take4 1 Take5 I Ctr13 
Ctrll I 0.18 I 0.18 I 0.24 1 0.22 1 0.17 1 0.004 

T4 
f-count 

f-entropy 

Figure 7: The Discovered Model of the Process in Figure 6. 

were discovered, and the separate points where they begin. 
Note that T5 is recognized as a fork only because of the to- 
ken counts; entropy did not see it, presumably because there 
was too much randomness due to the other threads. The join 
place is still altogether, at T4. Even with the sub-loop in one 
thread, the periodicity signals that T4 is a synchronization 
point. This illustrates the robustness of the various metrics. 

We now turn to a classic concurrent system, that of the 
dining philosophers. This system contains a rich level of 
interdependence among the concurrent threads representing 
the philosophers. We examine both a Petri net model and a 
C program based on pthreds as example implementations 
of the system. 

With 24 event types in the stream, the 5-way-fork entropy 
limit is 0.51, the actual entropy of Ctrll is 0.52, and the 
accounted-for frequency for a 5-way fork is 0.99. So this 
event type strongly indicates a fork. 

Recognizing the end of the philosopher threads is more 
diflicult because they end one at a time, as the control tran- 
sitions are able to pick up the forks one by one. Thus, some 
events are recognized as joins, but it is in general not clear. 

Note that two of philosopher 2’s events are inferred as 
synchronization points by the periodicity metric. This led 
us to look more closely at the event stream and see that 
philosopher 2 had vastly more take-eat-drop cycles than the 
other philosophers. We realized that this is because philoso- 
pher 2 is the last philosopher that is still able to eat as the 
forks are picked up, one by one, to finish a dining session. 
Apparently philosopher 2 wins out over the control transi- 
tion many more times than it fails. So this result, although 
seemingly spurious, actually leads us to understand some 
unintended behavior in the system-which, after all, is the 
point of having a discovery technique. Notice also that the 
Drop event type of each philosopher has, in general, depen- 
dencies to its and its neighbors’ Take events. This is correct 
behavior for the dining philosophers. There are really no 
“independent” threads in this example, because the inde- 
pendent action of each philosopher-eating-is modeled as 
a single event. 

We turn now to the C implementation of the dining 
philosophers. This program was taken from a set of ex- 
ample programs using pthreads, so we did not know its in- 
ternal behavior beforehand. It uses the more conventional 
solution of having a philosopher pick up the fork to its right, 
try to pick up the fork to the left and, if unavailable, drop 
the right fork, wait, and try again. Once both forks are 
obtained, the philosopher eats and then drops both forks. 
The events each philosopher generate are: Pn-Start, Pn-sit, 
Pn-gotforkn’, Pn-dropforkn’, Pn-gotforkn, Pn-eating, Pn- 
retforksn-n’, Pn-finished, and Pn-finishedMEAL, where n 
is the philosopher’s identifying number (O-4) and n’ is that 

42 



Q F! c 

Figure 8: The Dining Philosophers Problem. 

Figure 9: The Discovered Model for the Petri Net Dining Philosophers. 

number plus 1, modulus the number of philosophers. The tration of dependencies on two event types, one of philosc+ 
controlling thread generates the events Begin-5-Diners and 
End-5-Diners. 

pher 4’s and one of philosopher 2’s. Inspecting the code led 

The first attempts at discovery produced graphs that 
us to realize that the amount of time spent eating was hard- 

had no indicated synchronization points, and were in gen- 
coded, and resulted (partially) in some strict orderings. We 
then modified the code to introduce more randomness, and 

eral very complex. The early graphs did show a high concen- generated new event traces. 

43 



Figure 10: The Discovered Model for the Programmed Dining Philosophers. 

Figure 10 shows a discovered model from the program, 
using a stream containing 17,962 events. One immediate 
observation from this graph is that the program runs in a 
very sequential manner, at least seen through these events. 
Also, the technique discovers a fork point and a join point, at 
P3-Start and End-5dlners, respectively. Because the threads 
for each philosopher are started in order, from 0 to 4, it 
is expected that concurrent behavior will not be detected 
until most are started, thus, noting P3-Start as a fork is not 
unreasonable. 

The means end standard deviations of Begin-5dlners and 
End-Bdmers were (146, 5.44) and (146, 5.40), both indicat- 
ing synchronization points. The values for three of the din- 
ers’ Pn-sit events were similar, thus also being marked as 
svnchronization points. This is not surprising, since the Pn- 
sit events occur just after and always after the Begm5diners 
event. 

The detected forks and joins noted above both only in- 
dicate three threads forming and joining. This is not sur- 
prising, since the control of the threads does not let them 
act completely independently. There is no doubt that the 

threads run in parallel, but the order in which they begin 
to eat and finish is much more serialized than in the Petri 
net version. In looking at the program, we determined that 
the reason for this is that the program attempts to pro- 
vide fairness to the philosophers in the form of a queue that 
philosophers enter when they are forced to drop one fork 
and wait to try again. It is thii queue that ends up largely 
serializing the order in which the philosophers eat. 

This is the type of information that is precisely needed 
when trying to understand the behavior of a concurrent pro- 
gram, and the discovery technique presented clearly here 
helped identify those points in the implementations. 

5 Conclusion 

In this paper we developed and demonstrated a probabilis- 
tic technique for discovering concurrent models of system 
behavior. Providing such a technique to engineers who 
are maintaining an unfamiliar system will enhance their ef- 
fectiveness in understanding it and in making the correct 
changes for sound improvement of the system. 



While our work in discovering concurrency Corn event 
traces appears to be novel, there certainly has been related 
work in understanding distributed, concurrent systems. 

l Agrawal et al. [l] investigate producing activity de- 
pendency graphs from event-based workflow logs. The 
logs already identify the partial ordering of concur- 
rent, time-spanning activities, and they are concerned 
with producing correct and minimal graphs. There is 
no notion of identi@ing synchronization points within 
the activities. 

l Holtzblatt et al. [lo] explore methods of design recov- 
ery for distributed systems, where they look at recov- 
ering the design architecture of the task flow from the 
source code. They do not look at dynamic behavior, 
and indeed point to this as a limitation in their ap- 
proach. 

l Venkatesan and Dathan [14] use an event-based hame- 
work for testing and debugging distributed programs. 
They provide distributed algorithms for evaluating 
global predicates that specify the correct behavior that 
the system should be exhibiting. 

l Diaz et al. [s] use an event-based framework for on-line 
validation of distributed systems. Their mechanism 
employs an active observer that can listen to events 
(or messages) and compare the actual behavior to a 
formal specification of the correct behavior. 

These works show the utility of using event-based models of 
behavior for system analysis. 

Several further directions need to be explored in this 
work. The assumption of a single place for events is re- 
strictive. Estending the technique to allow for a model that 
produces an event type at multiple points would be a sig- 
niiicant improvement. Our previous sequential discovery 
method, MIARKOV, did just that, but the concurrent case 
is more complex because of the computations of entropy 
and periodic behavior. These computations would need to 
be separated for the set of production points of each event 
type. 

Incorporating domain or existing knowledge about the 
system would enhance the validity of the metrics. An engi- 
neer might, for esample, know a priori that a certain event 
type will signal a synchronization point for the threads in 
the process, or they might know how many total threads 
are in the process. As mentioned previously, some collection 
met,hods may even be able to associate events with specific 
threads, though this in itself does not remove the difficult 
points of detecting actual concurrency. Domain knowledge 
may allow some of this information to be gleaned as well. In 
a software process, for example, knowledge of the number 
of persons involved in t,he process might lead to statements 
about the number of threads inherent in the process. In- 
vestigating the thresholding behavior of the technique, and 
providing better threshold parameters and guidance in us- 
ing them, is an important direction to ma&e the technique 
widely usable. 

The technique presented here is essentially a greedy algo- 
rithm that never retracts decisions about which dependen- 
cies to instantiate. Extending this to allow multiple possible 
dependencies to be explored might significantly enhance the 
quality of the results achieved. The problems with such 
techniques is that they usually increase the running times 
of the algorithms prohibitively. 

45 

Finally, the limitation mentioned previously about slower 
threads never producing events near each other and thus not 
being recognized would be worth studying and pursuing. 
Other domains have looked at Zagged frequencies, where one 
calculates the frequency not of the nest immediate event, 
but of the event following by a lag of N. We will inves- 
tigate the suitability of such a method to the problem of 
concurrency discovery and modeling. 

References 

PI 

PI 

[31 

[41 

151 

PI 

[71 

PI 

PI 

PJI 

PI 

WI 

1131 

1141 

P51 

R. Agrawal, D. Gunopulos, and F. Leymann. Mining Pro- 
cess Models from Workflow Logs. Technical Report (draft 
technical report), IBM, September 1997. 

G.S. Avrunin, U.A. Buy, J.C. Corbett, L.K. Dillon, and J.C. 
Wileden. Automated Analysis of Concurrent Systems with 
the Constrained Expression Toolset. IEEE T4xnsactions on 
Software Engineering, 17(11):1204-1222, November 1991. 

P. Bates. Debugging Heterogenous Systems Using Event- 
Based Models of Behavior. In Proczedings of a Workshop 
on Parallel and Distributed Debugging, pages 11-22. ACM 
Press, 1989. 

J.E. Cook and A.L. Wolf. Automating Process Discovery 
through Event-Data Analysis. In Proceedings of the 17th In- 
ternational Conference on Software Engineering, pages 73- 
82. Association for Computer Machinery, April 1995. 

J.E. Cook and A.L. Wolf. Discovering Models of Softlvare 
Processes from Event-Based Data. ACM ‘Bansactions on 
Software Engineering and Methodology, 7(3), July 1998. To 
appear. 

J. Cuny, G. Forman, A. Hough, J. Kundu, C. Lin, L. Sny- 
der, and D. Stemple. The Adriane Debugger: Scalable Ap- 
plication of Event-Based Abstraction. In Proceedings of the 
ACM/ONR Workshop on Parallel and Distributed Debug- 
ging, pages 85-95. ACM Press, 1993. 

J.L. Devore. Probability and Statistics for Engineering and 
the Sciences. Brooks/Cole, Pacific Grove, California, 3rd 
edition, 1991. 

M. Diaz, G. Juanole, and J. Courtiat. Observer-A Con- 
ceot for Formal On-Line Validation of Distributed Svstems. 
IiEE rransactions on Software Engineering, 20(1>):900- 
913, 1994. 

D. Harel. Statecharts: A Visual Formalism for Complex Sys- 
tems. Science of Conaputer Programming, 8:231-274, 1987. 

L.J. Holtzblatt, R.L. Piazza, H.B. Reubenstein, S.N. 
Roberts, and D.R. Harris. Design Recovery for Distributed 
Systems. IEEE Transactions on Software Engineering, 
23(7):461-472, 1997. 

E. Koutsofios and S.C. North. Draxving Graphs vJith Dot. 
AT&T Bell Laboratories, October 1993. 

R.J. LeBlanc and A.D. Robbins. Event-Driven Monitoring of 
Distributed Programs. In Proceedings of the Fifth Zntema- 
tional Conference on Distributed Computing Systems, pages 
515522. IEEE Computer Society, May lSS5. 

J.L. Peterson. Petri Nets. ACM Computing Surveys, 
9(3):223-252, September 1977. 

S. Venkatesan and B. Dathan. Testing and Debugging Dis- 
tributed Programs Using Global Predicates. IEEE nansac- 
tions on Software Engineering, 21(2):163-177, 1995. 

A.L. Wolf and D.S. Rosenblum. A Study in Softxvare Pro- 
cess Data Capture and Analysis. In Proceedings of the Sec- 
ond International Conference on the Software Process, pages 
115-124. IEEE Computer Society, February 1993. 


