
A Case for Test-Code Generation
in Model-Driven Systems

Matthew J. Rutherford and Alexander L. Wolf

Department of Computer Science
University of Colorado

Boulder, Colorado, 80309-430 USA
{rutherfo,alw}@cs.colorado.edu

Abstract. A primary goal of generative programming and model-driven
development is to raise the level of abstraction at which designers and
developers interact with the software systems they are building. Dur-
ing initial development, the benefits of abstraction are clear. However,
during testing and maintenance, increased distance from the implemen-
tation can be a disadvantage. We view test cases and test harnesses
as an essential bridge between the high-level specifications and the im-
plementation. As such, the generation of test cases for fully generated
components and test harnesses for partially generated components is
of fundamental importance to model-driven systems. In this paper we
present our experience with test-case and test-harness generation for a
family of model-driven, component-based distributed systems. We de-
scribe our development tool, MODEST, and motivate our decision to
invest the extra effort needed to generate test code. We present our ap-
proach to test-case and test-harness generation and describe the benefits
to developers and maintainers of generated systems. Furthermore, we
quantify the relative cost of generating test code versus application code
and find that the artifact templates for producing test code are simpler
than those used for application code. Given the described benefits to
developers and maintainers and the relatively low cost of test-code de-
velopment, we argue that test-code generation should be a fundamental
feature of model-driven development efforts.

1 Introduction

A primary goal of generative programming and model-driven development is to
raise the level of abstraction at which designers and developers interact with
the software systems they are building. During initial development, automatic
generation of software artifacts from high-level specifications offers many advan-
tages to system developers, including increased productivity, enhanced source-
code consistency, high-level reuse, and improved performance of the generated
system [2]. However, increased distance from system implementation can be a
disadvantage during testing and maintenance phases. Testing must be performed
to certify initial systems and to help cope with future changes, both planned and

F. Pfenning and Y. Smaragdakis (Eds.): GPCE 2003, LNCS 2830, pp. 377–396, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

378 Matthew J. Rutherford and Alexander L. Wolf

unexpected; this does not change because the bulk of a system is automatically
generated.

With model-driven systems, one might assume that framework and gener-
ated software have been debugged and certified elsewhere, and that testing the
instantiated code is redundant and wasteful. While it is most likely true that
framework and generated software have been tested, the question remains: in
what context? In practice, any previous testing can be seen as irrelevant; the
only context that truly matters is that of the particular system being created.

Testing artifacts serve as an essential bridge between the high-level specifica-
tions and the specific instantiation of a model-driven system. In the event of an
error or failure, their existence provides a road map through the potentially vast
amount of unfamiliar, generated code. Testing artifacts are particularly impor-
tant in data-driven distributed systems, where software is deployed in potentially
heterogeneous environments with complicated interactions across multiple tiers.
In these systems, there are many layers surrounding the generated software that
can be independently altered to conflict with the set of assumptions that were
made at generation time. Although assumptions may be listed in the documen-
tation of the abstract models or generators, the test cases (provided they give
good coverage) are an executable form of these assumptions.

With an appropriate level of detail in the interface specifications of domain-
specific components, it is possible to automatically generate some or all of their
test cases. In fact, test cases can be specified and generated in parallel to the
specification and generation of components. Of course, many model-driven sys-
tems are not completely generated. Instead, the “cookie-cutter” code is gener-
ated, and some crucial domain-specific components are hand written. Thus, these
domain-specific components can only be fully tested by hand-coded test cases.
Nonetheless, generation technology still has a role to play: In the same way that
domain-specific components are constrained by the generated code surrounding
them, test cases for these components are also constrained by generated code.
The scaffolding that is generated to surround the domain-specific test cases is
the test harness. Test harnesses are intended to handle as much test setup and
cleanup as possible, allowing the developer to concentrate on the logic to perform
the actual tests.

In this paper we describe our experience with a generative approach to test-
case and test-harness development. Collectively, we refer to test cases and har-
nesses as test code, and show how we generate the test code in parallel with the
system it is meant to test.

Our experience is based on the use of a model-driven generative programming
tool called MODEST (Model-Driven Enterprise System Transformer), developed
by the first author while at Chronos Software, Inc.1 All systems generated by
MODEST have the same basic architecture and design. The systems differ in
their domain-specific data and logic, and some features can be enabled and
disabled, leading to generated variations on a basic theme. MODEST does not
implement OMG’s Model Driven Architecture (MDA) standard [12]. However,

1 http://www.chronosinc.com/

A Case for Test-Code Generation in Model-Driven Systems 379

there are enough similarities that many of the lessons learned could be readily
applied to MDA-compliant tools.

In describing MODEST, we carefully distinguish among three roles: the de-
veloper, the customer, and the (end) user. A developer uses MODEST in the
creation of a system tailored to the needs of a customer ; the outcome of this
activity is the structured system specification that serves as one of the inputs to
MODEST. The developer repeatedly adjusts the code templates that serve as
the other inputs to MODEST. Lastly, the developer implements domain-specific
operations and the test cases for them. Once development is complete, the de-
veloper delivers both the application code and the test code to the customer.
During maintenance, the customer has the ability to execute test code and ad-
just application and test code as needed. However, it is important to note that
the customer does not have access to the generative capabilities of MODEST.
Finally, the customer makes the system available to a user who interacts with
the system at run time to achieve some business purpose.

MODEST represents a structured description of the system to be gener-
ated as an XML document. This document captures the domain-specific data
model, the interfaces of domain-specific logic components, dependencies on third-
party libraries, and characteristics of the deployed system. Artifact generation
in MODEST is accomplished by a series of XSL transforms. Initially, the system
specification is used to generate a customized build script for the entire sys-
tem. This build script includes targets to generate all of the other artifacts that
comprise the generated system. MODEST generates Java source code, database
management scripts, and Enterprise JavaBean (EJB) deployment descriptors.

Systems developed using MODEST are intended to be delivered to customers
who need to maintain and extend their system without access to MODEST’s
generative capabilities. This requirement has several far-reaching consequences,
one of which, in fact, is the need to provide test code. To make this practical,
the decision was made to try to generate as much of the test code as possible.

While the initial decision to provide test code was not made for technical rea-
sons, the presence of the test code turned out to greatly enhance the development
process of the underlying framework and the generation templates. In particular,
by requiring template developers to think also about test-code generation, they
became more familiar with the code being generated. Furthermore, when un-
derlying infrastructure software (e.g., the database, application server, and the
like) was changed, the test code enabled developers to quickly certify existing
systems. On the other hand, there is a cost associated with the generation of test
code. In this paper we attempt to quantify the complexity of code-generation
templates, and compare the complexity of templates for test-code generation
with templates for application-code generation. Given the benefits to developers
and maintainers and the relatively low cost of test-code development, we ar-
gue that test-code generation should be a fundamental feature of model-driven
development efforts.

In the next section we describe the important aspects of MODEST and the
salient characteristics of the family of systems it generates. Section 3 explains

380 Matthew J. Rutherford and Alexander L. Wolf

the strategy used by MODEST to generate test code. Section 4 presents an
evaluation of our experience with MODEST, and also compares the complexity
of test-code templates with application-code templates. Section 5 outlines related
research, and Section 6 provides some concluding remarks.

2 An Overview of MODEST

MODEST is a model-driven code generation tool developed to streamline the
programming activities of a small software consulting company. By generating
“cookie-cutter” code from a structured representation of a customer’s require-
ments, MODEST allows developers to concentrate on understanding the cus-
tomer’s needs, developing domain-specific logic, and adding to the corporate
knowledge base. At the end of a development cycle, the customer receives deliv-
ery of a complete, self-contained system that satisfies their initial requirements.
Obviously, this is an idealized version of the process, but the notion that the end
product is self contained, ready for use or extension by the customer, is key.

Figure 1 depicts the three major conceptual elements of the tool: the domain
specification, artifact templates, and the generative engine. Of these, the domain
specification is the only customer-driven entity. From an engineering perspective,
all systems generated by MODEST have the same architecture and design, which
are embodied in the artifact templates. The variability of each system comes
entirely from the different domain models that can be represented by the domain
specification.

Fig. 1. Conceptual Elements of MODEST

The domain specification uses an XML document to represent a conceptual
model of a customer’s domain of interest, including the data model and the
interfaces of any domain-specific business objects that are needed. The domain
specification does not include engineering details, which are captured entirely by
the artifact templates and the generator control script. The generator control
script is itself created automatically.

The artifact templates are written in XSL, and are used by the generator
to create different kinds of artifacts, including build scripts, Java source code,

A Case for Test-Code Generation in Model-Driven Systems 381

Enterprise JavaBean deployment descriptors, and database creation and man-
agement scripts. During the generation of a given system, a particular template
will be used separately for each instantiation of the artifact that it describes, as
dictated by the system build script.

The generator is simply the Xalan XSLT engine wrapped inside an ANT task.
It is controlled by ANT build scripts, the first of which contains the targets to
generate the system-specific build script that, in turn, is used to control the
generation of all other artifacts.

2.1 Domain Specification

Figure 2 contains a high-level view of the important sections of the MODEST
domain specification. The figure is organized hierarchically to help convey the
nesting of the XML elements. The domain specification is the only place within
the MODEST environment that a customer’s requirements are explicitly main-
tained.

Fig. 2. Organization of the Domain Specification

The data model for the domain of interest is captured by specifying static
objects, managed objects, their attributes, and the relationships among them.
Static objects are those entities that are not intended to be changed by users
of the system. Typically, static objects are used to model ancillary objects that
exist to support the core domain entities. The attribute values for all instances
of static objects must be detailed in the domain specification. The static object
data are used to populate reference tables within the database, and flyweight
pattern [5] classes are generated for use in the software.

Figure 3 shows a sample specification for the automobile domain. In this case,
Make has been modeled as a static object with one attribute. Two instances of
Make are available: SUBARU and FORD. The customer, after receiving the system
generated from this domain specification, can add further instances.

382 Matthew J. Rutherford and Alexander L. Wolf

<domain-specification>
<static-object name="Make">

<attribute name="name" type="String" unique="true" required="true">
<validator type="string-length" min="1" max="64"/>

</attribute>
<instance name="SUBARU" key="10">

<attribute-value name="name">Subaru</attribute-value>
</instance>
<instance name="FORD" key="10">

<attribute-value name="name">Ford</attribute-value>
</instance></static-object>

<managed-object name="Car" type-key="20">
<attribute type="String" name="id" unique="true" required="true">

<validator type="string-length" min="1" max="128"/>
<validator type="alphanumeric-string"/></attribute>

<attribute name="make" static-object="Make" required="true"/>
</managed-object>
<managed-object name="Driver" type-key="30">

<attribute type="String" name="name" required="true">
<validator type="string-length" min="1" max="128"/>
<validator type="alphabetic-string"/></attribute>

<attribute type="Integer" name="age" required="true">
<validator type="range" min="16" max="110"/>

</attribute></managed-object>
<relationship src="Car" dest="Driver" type="1-n"/>
<business-object name="IdGenerator">

<business-method name="nextId" return="String"/>
</business-object></domain-specification>

Fig. 3. Sample Domain Specification

A validator in a domain specification is used to describe the range of values
that are valid for a particular attribute. The validator details are used at run
time to guard attribute values, and they are also used in the generation of data
for unit and integration tests. In Figure 3, for example, a validator is given for the
name attribute of the Model static object. For efficiency reasons, attribute values
of static objects are not validated at run time, so development-time testing of
instance attribute values is important. Furthermore, instances of static objects
represent a software feature that has a high likelihood of being changed by
customers after delivery, so the generated test cases are crucial to maintaining
high-quality software.

Managed objects are those entities that can be created, updated, and deleted
by the user during the operation of the system. Aside from the basic data types,
managed objects can also have attributes of any declared static object types.
Managed objects require more support code than static objects; since they rep-
resent persistent changeable data, they need to be stored and retrieved from
a database, and they typically have relationships with other managed objects
or static objects. Additionally, because attributes of a managed object are dy-
namic, the managed object must use validators to ensure that its internal state
is always consistent.

The system modeled by the specification shown in Figure 3 contains the
managed objects Car and Driver. For managed objects, the attribute valida-
tor properties are used to instantiate representative test data for the system.
Values that would pass validation are used to test the functional operation of

A Case for Test-Code Generation in Model-Driven Systems 383

the system, and invalid values are used to test error handling. Because managed
objects represent the core persistent data processed by the system, test cases
that exercise this aspect of the system are vitally important to the customer.

Relationship elements model a “has” relationship among managed objects.
The three supported relationship cardinalities are one-to-one, one-to-many, and
many-to-many. Figure 3 includes a one-to-many relationship between Car and
Driver.

2.2 Generator

Code generation in MODEST is a straightforward instance of using XSL to
transform XML documents into other XML documents and plain text files. The
XML/XSL combination was used because the Chronos developers already had
familiarity with the Xalan XSLT engine, and because decent tool support for
creating XML documents already exists. Following the terminology of Czarnecki
and Eisenecker [2], the MODEST artifact generator is a transformational gen-
erator that performs oblique transformations.

The structures that are used in the domain specification are significantly
different from those that are embodied in the generated artifacts. In most cases
the template that creates a particular artifact pulls data from many different
parts of the specification. Figure 4 shows an augmented data-flow diagram for
the MODEST code generator. The XSL transformer is controlled by two different
build scripts, the bootstrap control script and the generated control script. The
bootstrap script contains only the targets and dependencies needed to invoke
the XSLT engine for the creation of the system build script. Once the system
build script has been generated, it contains the dependencies and targets needed
to generate all the other artifacts in the proper order.

Fig. 4. Data Flow in MODEST

Several artifacts needed for the final system are generated using a multi-
stage process. Figure 4 shows this as a distinction between terminal artifacts
and intermediate artifacts.

384 Matthew J. Rutherford and Alexander L. Wolf

2.3 Artifact Templates

All of the design and implementation decisions that go into the creation of
the end product are codified in the artifact templates, which are XSL style
sheets. There is a different artifact template for each type of artifact that is
generated. For example, there is an artifact template that generates a Java class
to encapsulate a managed object, and this template is parameterized by the
intended name of the managed object. For a given system, a particular artifact
template might be used multiple times, once for each instance of the artifact
called for in the domain specification. The domain specification shown in Figure 3
contains two managed objects. Thus, the generated build script contains two
transformations that use the managed-object template, one for Car and one for
Driver.

2.4 System Family

From an engineering perspective, all systems generated by MODEST have the
same design. Figure 5 provides a high-level view of the MODEST family of
systems. Architecturally, the scope of MODEST is restricted to the application
logic and data storage tiers of a standard three-tier architecture. The scope is
further restricted in that MODEST systems are designed to operate within the
Enterprise JavaBean (EJB) distributed object framework. This represents the
target environment for code generation.

Fig. 5. MODEST System Family

The simplest classes generated by MODEST are those that encapsulate the
attributes of managed and static objects. These simple classes are labeled “Do-
main Objects” in Figure 5.

The top three layers shown in Figure 5 all consist of EJB components. Both
Java code and deployment descriptors are generated for these.

The components in the persistence layer are implemented as entity EJBs
that contain the logic for storing and loading managed-object values to and
from the database. There is a different entity EJB for each managed object in
the domain specification. The persistence layer is not visible to external clients;

A Case for Test-Code Generation in Model-Driven Systems 385

its functionality is only available to the management and domain-specific layers
above it in the system architecture.

Next is the management layer whose objects are implemented as session
EJBs. The objects perform relationship management, and authorization and
authentication for clients. These components are used by client code to create,
update, and delete managed objects as needed by the user. A separate EJB is
generated for each managed object in the domain specification.

At the highest level in Figure 5 are the components that provide domain-
specific logic. The interfaces for these components are described explicitly in
the domain specification, and their implementation is performed manually by
developers. However, deployment descriptors, remote interfaces, and framework
code can all be generated directly from the domain specification. Framework
code that allows these objects to interact properly with the security model is
encapsulated in generated base classes through which all method calls are passed.

For example, consider the business object IdGenerator shown in Figure 3.
This object has a single method with signature String nextId(). The remote
interface for this object is as follows.

interface IdGenerator extends EJBObject
{

String nextId(SecurityToken st) throws AuthorizationException,
ServerException,
RemoteException;

}

The signature of the nextId method has been augmented with a standard param-
eter and standard exceptions. The generated base class contains the augmented
method that is actually called by clients. This method wraps a call to the ab-
stract method nextIdImpl() in code that checks the client’s authorization and
deals with logging and error handling in a standard way. The developer is re-
sponsible for providing a derived class that implements nextIdImpl() with the
correct semantics.

By wrapping the methods of domain-specific logic objects in this way, MOD-
EST ensures that security, logging, and error checking are handled in a consistent
manner, allowing the developer to concentrate on the complexity of the business
logic, not on the complexity of the MODEST framework. However, this scaf-
folding also makes it harder for the developer to test their hand-written logic
directly, since they would have to understand quite a bit about the MODEST
framework to be able to create an integration test case for it by hand. For this
reason, it is critical that equivalent scaffolding be generated for the testing of
the domain-specific logic.

Beneath all of the application logic sits the database. MODEST generates
a schema creation script that can be used to create all of the tables and views
needed to efficiently handle the data requirements of the managed and static
objects that are outlined in the domain specification. Additionally, this creation
script creates other database objects that are needed to enforce MODEST’s
security model and to validate data as much as possible.

386 Matthew J. Rutherford and Alexander L. Wolf

3 Test-Code Generation

Test code is generated by the MODEST system in parallel with the main appli-
cation code. Test code is generated for two major reasons.
1. To validate and certify development-time activities.

Even given the generative capabilities of MODEST, development of dis-
tributed component-based systems is a complicated undertaking. Subtle,
unexpected interactions among components, that are not present in sim-
ple domains, crop up in complicated domains. Additionally, implementation
of a customer’s domain logic is often complicated, and the existence of test
harnesses and test cases reduces the chances that unexpected side effects will
result from the hand-written portions of the system.

2. To provide a framework for supporting long-term maintenance activities.
As described in Section 2, the systems generated by MODEST are delivered
to customers under the assumption that maintenance and extension are going
to be performed by customers without the benefit of MODEST’s generative
capabilities. The generation of test harnesses and test cases is an important
piece of this business model, and it gives potential customers confidence that
the software they receive is operational, and that it can be maintained and
extended in a rational manner so that it remains operational.

In MODEST, test-code generation consists of four major aspects: generation
of code to instantiate representative static and managed objects; generation of
test cases for validating static-object implementations; generation of test cases
for validating managed-object implementations; and generation of test harnesses
for facilitating the testing of domain-specific logic.

3.1 Representative Object Instances

All test cases need access to representative data to exercise the functionality
of the system. In MODEST, the lowest-level domain-specific classes are those
that simply wrap the attributes of static objects and managed objects. In Sec-
tion 2.4 these are referred to as “domain objects”. Representative instances of
these objects are needed throughout the generated test code for use as method
parameters and the like. To accomplish this, a class that provides methods for
instantiating representative domain objects is generated and used by other test
cases.

For the domain specification shown in Figure 3, the base test-case class would
have the following methods.
– newMake(): randomly chooses one of the Make instances.
– newDriver(): randomly populates attribute name based on its validators.
– newCar(): randomly populates attribute id using newMake() to pick a Make.

As mentioned above, the validators for managed objects are used as guidelines
for choosing valid attribute values. The algorithms to select these values proba-
bilistically generate null values, boundary condition values, and mid-range values
to attempt to get adequate test coverage.

A Case for Test-Code Generation in Model-Driven Systems 387

3.2 Test Cases for Static Objects

As mentioned in Section 2.1, static objects represent immutable data that play
a supporting role to managed objects. They are implemented as reference tables
in the database, and as flyweight pattern classes in software. Each static object
type is supported by a factory that provides lookup methods and access to col-
lections of flyweight classes. Both unit tests and integration tests are generated
to validate their implementations. The static object Make contained in the do-
main specification shown in Figure 3 and its supporting factory, MakeFactory,
is used as an example below.

Unit Tests. The implementations of static objects are validated with unit tests.
All valid instances of static objects are enumerated in the domain specification,
and these data are used to exhaustively test the software. Unit tests ensure the
following properties.

1. All instances are present. This means that Make.SUBARU and Make.FORD are
available and found in the MakeFactory.all() collection.

2. equals() and compareTo() work properly for each instance. The test cases
would compare Make.SUBARU and Make.FORD to themselves and then to each
other, and verify that the results were correct based on the data in the
specification.

3. Attribute values match what is listed in the domain specification. The test
cases would verify that Make.SUBARU.getName() == "Subaru".

4. Lookup methods on factory classes work properly for each attribute of each
instance. The test cases would verify that MakeFactory.findByName("Subaru"
) == Make.SUBARU.

Integration Tests. Integration tests are needed to ensure that the generated
implementation matches the data that are contained in the reference tables in
the database. For efficiency purposes, there are no run-time checks of data con-
sistency, so development-time checking is especially important. This is accom-
plished by selecting all the data from the database reference table, and ensuring
that its contents match that of the MakeFactory.all() collection.

3.3 Test Cases for Managed Objects

Managed objects represent the core domain entities that comprise a particular
domain. The managed-object instances are stored in the database, and their
values can be changed, and instances can be deleted. Because they are the central
entities in the system, and because they can be modified and deleted, they are
guarded by a security model ensuring that a user is properly authenticated and
authorized before a particular action is performed. There is code to deal with
managed objects in three of the layers shown in Figure 5: domain, persistence,
and management. Both unit tests and integration tests are needed to test the
implementation effectively.

388 Matthew J. Rutherford and Alexander L. Wolf

Unit Tests. Unit tests are generated to validate the domain-object implemen-
tation. These tests ensure that the validation code is working properly for each
class by verifying that invalid attribute values cannot be used in constructors or
mutator methods, and that randomly generated valid data can be used. There are
also tests to ensure that standard methods such as equals() and compareTo()
are implemented properly.

For the Car managed object shown in Figure 3, these tests would ensure that
Car could not be instantiated without a valid value for the id attribute, and that
it could not subsequently be changed to something invalid. The unit tests would
also ensure that properly instantiated Car objects could be compared properly.

Integration Tests. Integration tests are generated to test the implementation
of the persistence and management layers. The persistence layer implementation
for each managed object is tested to ensure the following.

1. Managed-object data are replicated perfectly in the database after a store
operation.

2. Managed-object data are replicated perfectly in the software after a load
operation.

3. Two separately loaded copies of the same data compare properly.
4. Data are replicated perfectly in the database after an update operation.
5. Data are removed from the database after a remove operation.

Because of the design decision that managed objects cannot have invalid internal
state, it is not necessary to test invalid data values at this level.

Integration tests are generated at the management level to ensure that re-
lationships among managed objects are properly maintained. This involves en-
suring that any required relationships are satisfied in the proper order and that
invalid relationships are not permitted. For the Car object from Figure 3, this
would mean ensuring that a valid Driver object existed before a Car was cre-
ated, and that Driver objects could not be deleted if that would result in an
unsatisfied Car relationship.

3.4 Domain Logic Test Harnesses

As described in Section 2, domain-specific logic is captured in the specification
through business objects. The interfaces to these business objects are captured
in the specification, but the semantics are not. Although the implementations
of the actual business methods cannot be automatically generated, much of the
scaffolding and supporting code can. For application logic, this means that the
developer only has to concentrate on the complexity of the business rules and
not the complexity of the MODEST framework. A similar approach is taken for
the generation of test harnesses.

The goal of the generated test harness is to allow the developer to operate at
the same level of detail at which the business method is implemented. This im-
plies that the scaffolding code should handle any setup that is needed to interact

A Case for Test-Code Generation in Model-Driven Systems 389

with the business method, and wrap the domain-specific testing logic properly
to handle exceptions that are generated by the framework. For the IdGenerator
business object shown in Figure 3, an abstract test case, IdGeneratorTestCase,
would be generated that had the following methods.

– setUp(): performs authentication and authorization setup that is needed to
have permission to call the business method.

– nextId(): proxy method used by the hand-written test code. Within this
method, the actual call to the business method is performed with the appro-
priate security ticket and error handling.

– tearDown(): performs any clean up related to setUp().

Developers are then responsible for extending this class and implementing the
actual tests, using nextId() as a proxy for the remote EJB object.

4 Discussion and Evaluation

This section describes the benefits of test-code generation and quantifies its
costs. Initially, we summarize some observations made during the development
of the first few prototype systems. Next, we present an example in which gen-
erated test code is used to identify and debug a subtle integration problem.
Finally, we analyze the relative complexity of creating test-code templates ver-
sus application-code templates.

4.1 Utility of Generated Test Code

This section contains some observations and analysis of the utility of test-code
generation during development and maintenance activities.

Test Cases for Static Objects. The code generated to handle static objects
is relatively simple. Since its initial development, few bugs have been found in
the implementation. This is due partly to the simplicity of the code, and partly
to the exhaustive nature of the generated test cases. For these reasons, static
object test cases do not add a lot of value at development time.

Conversely, the real utility of the static-object test cases is to help ensure con-
sistency during system maintenance. This is due to two factors: (1) a common
way for customers to extend their system is to manually add new static-object
instances for items that were overlooked initially and (2) proper implementa-
tion of the static objects requires that changes are made to two disconnected
locations, the software classes and the database. The existence of exhaustive
integration tests ensures that the two implementations are always consistent.

Test Cases for Managed Objects. The generated implementations of man-
aged objects are fairly complicated and must be consistent across three different
layers of the resulting system. These factors ensure that the generated test cases

390 Matthew J. Rutherford and Alexander L. Wolf

are used often during system development to track down subtle bugs and in-
consistencies in the generated implementations and specifications. The situation
presented in Section 4.2 provides a concrete example of this.

A common maintenance activity performed by the customer is to augment
existing managed objects with additional attributes. This simple extension of
the system involves a significant number of changes, not only to the software,
but also to the EJB configuration scripts, and the database table definitions.
In order to test their changes, the customer augments the generated test code
to account for the new attributes. The existing test cases provide a framework
within which the customer can add new tests, adding significant value during
maintenance. The presence of test cases also provides a well defined way for the
customer to certify the system on new platforms.

Domain Logic Test Harnesses. The presence of test-harness scaffolding saves
time during development. Developers are able to ignore the details of how the
framework alters the signature of the business methods and how the security
model must be initialized for testing, thereby reducing the barrier to manual
test-code creation.

Also, business rules are pieces of a system that often change after initial devel-
opment. The presence of existing domain-logic test cases (written by the initial
developers) encourages their maintenance in parallel with changes to business
rules, increasing the chance that the entire system will be tested as it evolves.

4.2 Development-Time Benefits of Generated Test Cases

Above, we describe the benefits that generated test code provides during devel-
opment activities and during maintenance activities. In that context, mainte-
nance activities are defined as being those that occur after a generated system
is delivered to the customer and, in fact, performed by the customer, not the
developer. The bulk of our experience with systems generated by MODEST is
with development activities performed during the creation of a few prototype
systems.

As the design of the family of systems matures and the artifact template code
stabilizes, the subtlety of bugs being found increases. Additionally, as MODEST
supports more advanced features, occasionally these features interact in subtle
ways when operating in domains with higher complexity.

One such advanced feature is support for cascading deletes in the man-
agement EJB layer (see Figure 5). This feature allows a managed-object in-
stance and all other instances reachable from it across explicit relationships to
be deleted with a single method call. For example, in the domain specified in
Figure 3, a Car instance and all of the Driver instances associated with it can
be deleted by a single cascading delete operation. During an atomic delete op-
eration, logic in the management layer ensures that an object cannot be deleted
if it will leave a parent object with an unsatisfied relationship. However, during
cascading deletes this check is disabled, since it is known that the parent object

A Case for Test-Code Generation in Model-Driven Systems 391

will be deleted immediately after the child object is deleted. One of the proto-
type systems has a fairly complex domain model, and initially the integration
tests that exercise cascading deletes failed. By making incremental changes to
the domain specification, regenerating the system, and rerunning the integration
tests, developers traced the problem back to the section of the management EJB
artifact template that disabled the relationship checks during cascading deletes.

Without the generated test code being a standard part of the system, this
bug might not have been found during development. Furthermore, the ability
to rapidly regenerate test cases from modified domain specifications provides an
invaluable tool to aid in debugging.

4.3 The Cost of Generating Test Code

Above, we present the benefits of test-code generation. However, to developers
of generative tools there are costs associated with the generation of test code.
The principal cost is the additional effort required of developers to create and
maintain the artifact templates that generate test code. In order to evaluate this
effort, we have used some simple metrics to measure the size and complexity of
artifact templates. The values of these metrics are presented in tables 1 and 2.
By examining these metrics we can get a feel for the relative level of effort in
artifact template creation and maintenance for the test code compared to the
effort needed to create and maintain the templates for application code.

Table 1. Average Relative Complexity of MODEST Test-Code Templates

Type Sub-Templates XSL Elements Parent Queries
Test Code (10) 4 92 1
Application Code (27) 9 184 1
Unit Tests (6) 3 52 2
Integration Tests (3) 6 177 0
Test Harnesses (1) 5 77 0

The three measures of artifact template size and complexity presented in
tables 1 and 2 are: (1) the number of sub-templates; (2) the number of XSL
elements; and (3) the number of XPath parent queries.

XSL style sheets process XML documents by matching sub-templates against
the structure and data contained in the XML document2. Sub-templates can
also be named and called as functions. The number of sub-templates gives some
indication of both the size and complexity of an artifact template, since they

2 In this paper we refer to the entire XSL style sheet as the template; this corre-
sponds to the top-level xsl:stylesheet element. Sub-templates correspond to the
xsl:template elements that are children of xsl:stylesheet.

392 Matthew J. Rutherford and Alexander L. Wolf

Table 2. Total Relative Complexity of MODEST Test-Code Templates

Type Sub-Templates XSL Elements Parent Queries
Test Code (10) 42 927 17
Application Code (27) 247 4968 41
Unit Tests (6) 18 317 16
Integration Tests (3) 19 533 1
Test Harnesses (1) 5 77 0

represent the basic data-processing unit of an XSL style sheet. The numbers for
these are shown in the second column of tables 1 and 2.

XSL style sheets are themselves XML documents containing special XSL
elements intermingled with elements from the output XML document. XSL pro-
cessors handle the special elements, which contain both control instructions and
data-expansion instructions, and pass through the output elements without in-
terpretation. The second metric, XSL element count, gives an indication of the
amount of parameterization of the output document, and hence the complexity
of the template. The numbers for XSL element counts are shown in the third
column of tables 1 and 2.

The third metric, XPath parent queries, is another way to measure the com-
plexity of the XSL template. XPath is a language for querying paths in an XML
document. XPath expressions are used extensively in XSL documents for match-
ing templates against parts of the input document, and for selecting parts of the
input document to which templates should be applied. Since input documents to
an XSL transform are always XML documents, they are inherently hierarchical.
In the simplest case the output document has the same hierarchical decomposi-
tion as the input document, which means that the transformation can proceed in
a top-down fashion. As the output document structure diverges from the input
document structure, XPath queries that move up the hierarchy are needed. We
refer to these as XPath parent queries. They begin with the XPath parent axis
shortcut “..”. We use a count of these XPath parent queries to represent the level
of structural difference between the input and output documents. Keep in mind
that when generating Java source code, MODEST employs a two-stage trans-
formation process in an effort to reduce the complexity of artifact templates,
principally by removing the need for extensive XPath parent queries.

The first two rows in tables 1 and 2 show the values of our metrics for test
code and application code, respectively. These data are intended to provide a feel
for the relative complexity of test-code templates compared to application-code
templates. The remaining three rows of the tables break down the values for the
three different kinds of test code. The number in parenthesis in the first column
of both tables is the number of style sheets that were analyzed to come up with
the numbers in each row.

Table 1 presents the average metric values. These data represent the relative
level of complexity of a single artifact template of each of the representative
template types. These data show that, on average, the size and complexity of

A Case for Test-Code Generation in Model-Driven Systems 393

test-code templates is less than that of application-code templates. It also shows
that out of the three test-code template types, the integration test-case templates
require the largest number of XSL elements to generate their desired output.

Table 2 shows the total metric values. This is intended to represent the
total effort required to generate templates of the various types. The high-level
result shown by these data is that test-code templates are seemingly smaller
and simpler than application-code templates. Assuming that our metrics are a
reasonable measure of a template’s complexity and size, this implies that test-
code generation is a fraction of the overall effort required to generate all of a
system’s code.

5 Related Work

The work described in this paper lies at the confluence of some well-established
areas of software engineering research and practice. In this section we briefly
review related work in the areas of OMG’s Model Driven Architecture, model-
based testing, and enterprise Java code generation.

5.1 Model Driven Architecture

At a conceptual level, the design of MODEST shares a number of similarities
with the OMG’s Model Driven Architecture (MDA) [12]. The basic idea of the
MDA is that enterprises can insulate themselves from the volatile nature of the
commercial middleware market by focusing their energies on creating Platform
Independent Models (PIMs) of their business functions and relying on standard
mappings and/or platform experts to map their PIMs into Platform Specific
Models (PSMs). The models discussed in the MDA specification are UML mod-
els. In the MODEST system, the domain specification is platform independent,
but much more restricted than a generic UML model.

Much of the MDA approach is centered around transformations and map-
pings between UML models at different levels of abstraction, and between PIMs
and PSMs. The following mappings have been enumerated.

– PIM to PIM: enhancing, filtering, or specializing models without introducing
any platform-dependent details.

– PIM to PSM: projecting a sufficiently refined PIM onto a model of the
execution environment.

– PSM to PSM: refining a platform-dependent model.
– PIM to PSM: abstracting existing implementation details into a platform-

independent model.

MODEST employs the first three mapping types, which can all be viewed as
refinement mappings. The generalization mapping, PIM to PSM, is not utilized
in MODEST, since there is a very clear distinction between which artifacts are
generated and which must be produced manually. In MODEST, manually gen-
erated artifacts often have to conform to interfaces that are generated. However,

394 Matthew J. Rutherford and Alexander L. Wolf

there is no mechanism for changes to the structure of manual artifacts to be
propagated back up to the higher-level models.

Gervais [6] outlines a methodology that is based on both MDA and the
Open Distributed Processing Reference Model (RM-ODP) [1]. Gervais proposes
a process for modeling the domain-specific features of a system in a “Behavioral
Model” and the high-level technological features of the system in an “Engi-
neering Model”. These would be merged into a platform-specific “Operational
Model”, which could then be used as the basis for generating implementation
artifacts. While MODEST’s domain specification fills the same role as Gervais’
behavioral model, its artifact templates are too low level to even be considered
an operational model. Future plans for MODEST include higher-level models
for engineering features similar to what Gervais proposes.

5.2 Model-Based Testing

Due to the time-consuming nature of test-case and test-data creation, there have
been many studies aimed at generating them automatically. Many approaches
focus on the use of high-level formal specifications as the input to their test-
generation schemes.

A framework for conducting performance tests of EJB applications is intro-
duced by Liu et al. [10]. Their primary objective is to be able to compare the
performance trade offs that are present in different J2EE-compliant servers in
the absence of significant application-level logic. Interestingly, the testing they
perform is somewhat model driven, since their test-case selection is driven by a
common model of the trade offs that are expected to exist within the common
feature sets present in J2EE servers.

Grundy, Cai, and Liu [7] discuss the SoftArch/MTE system. This system
enables the automatic generation of prototype distributed systems based on
high-level architectural objectives. Their emphasis is on performance testing,
not on application functionality testing. Many of the generative techniques used
in MODEST are similar, in particular the use of XML/XSL to generate code,
database schemata, deployment descriptors, and build files.

Dalal et al. [3,4] present a model-based approach to application functionality
testing. In their studies, formal specifications of functional interfaces to vari-
ous telecommunications systems were made available by a software development
team. A combinatorial approach was used to generate a set of covering test-data
pairs, which was used to find several failures that were not discovered by the
existing testing infrastructure.

Mats [11] and Gu and Cheng [8] present two approaches to the derivation
of test cases for communications protocols specified using SDL, while Gupta,
Cunning, and Rozenbilt [9] discuss an approach to generating test cases for
embedded systems. These approaches differ from ours in that they derive test
cases for a particular system from formal specifications, as opposed to creating
templates that can generate test code for any system instance.

A Case for Test-Code Generation in Model-Driven Systems 395

5.3 Enterprise Java Code Generation

Generation of code for Enterprise Java systems is a fairly common activity. A
popular approach is to generate the Home and Remote EJB interfaces, deploy-
ment descriptors, and stubs for an EJB implementation, all from a simple de-
scription of a database table3. The majority of these simple code generators are
compositional generators, in which the descriptor contains the modular decom-
position that the generator needs to amplify. The approach used by MODEST
is to allow for domain-specific modeling at a higher level than the software com-
ponents. The modular decomposition is embedded in the generated build script
and the XSL style sheets that comprise the bulk of the MODEST system.

6 Conclusion

In this paper we presented our experience in generating test code in parallel
with application code, using a model-driven generator of component-based, dis-
tributed systems targeted at the EJB framework. Our experience and evaluation
suggests that the level of effort required for the test code is only a small fraction
of the overall effort, and brings with it significant benefits. We believe that test-
code generation should become a common feature of all model-driven generative
systems.

While MODEST is a useful tool that achieves the business goals laid out for it,
it only raises the level of abstraction a few small steps above the implementation.
A future goal for our work is to use higher-level models for both domain and
engineering features. Additional work is aimed at utilizing MODEST’s generated
test code to experiment with design and implementation trade offs, similar to
the approach outlined by Grundy, Cai, and Liu [7] for testbed generation, except
that our target would be to evaluate full-featured systems.

Acknowledgments

The authors would like to thank Dan Weiler, President of Chronos Software,
Inc., and co-developer of MODEST.

This work was supported in part by the Defense Advanced Research Projects
Agency under agreement number F30602-00-2-0608. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes not-
withstanding any copyright annotation thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency or the U.S. Government.

3 EJEN, http://ejen.sourceforge.net
Jenerator, http://www.visioncodified.com

396 Matthew J. Rutherford and Alexander L. Wolf

References

1. ISO IS 10746-x. ODP reference model part x. Technical report, International
Standards Organization, 1995.

2. K. Czarnecki and U.W. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

3. S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, and C. M. Lott. Model-based
testing of a highly programmable system. In Proc. 9th International Symposium
on Software Reliability Engineering (ISSRE ’98), 1998.

4. S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C. M. Lott, G.C. Patton, and
B.M. Horowitz. Model-based testing in practice. In Proceedings of the 1999 Inter-
national Conference on Software Engineering (ICSE ’99), 1999.

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, 1995.

6. M.P. Gervais. Towards an MDA-oriented methodology. In Proceedings of the 26th
Annual International Computer Software and Applications Conference (COMP-
SAC 2002), 2002.

7. J. Grundy, Y. Cai, and A. Liu. Generation of distributed system test-beds from
high-level software architecture descriptions. In Proceedings 16th Annual Interna-
tional Conference on Automated Software Engineering (ASE 2001), 2001.

8. Z.Y. Gu and K.E. Cheng. The derivation of test cases from sdl specifications. In
Proceedings of the 30th Annual Southeast Regional Conference. ACM Press, 1992.

9. P. Gupta, S.J. Cunning, and J.W. Rozenbilt. Synthesis of high-level requirements
models for automatic test generation. In Eighth Annual IEEE International Con-
ference and Workshop on the Engineering of Computer Based Systems (ECBS ’01),
2001.

10. Y. Liu, I. Gorton, A. Liu, N. Jiang, and S. Chen. Designing a test suite for
empirically-based middleware performance prediction. In 40th International Con-
ference on Technology of Object-Oriented Languages and Systems (TOOLS Pacific
2002), Sydney, Australia, 2002.

11. L. Mats. Selection criteria for automated TTCN test case generation from SDL.
In Second IEEE Workshop on Industrial Strength Formal Specification Techniques,
1998.

12. J. Miller and J. Mukerji. Model driven architecture (MDA). OMG Document
ormsc/2001-07-01, July 2001.

	1 Introduction
	2 An Overview of MODEST
	2.1 Domain Specification
	2.2 Generator
	2.3 Artifact Templates
	2.4 System Family

	3 Test-Code Generation
	3.1 Representative Object Instances
	3.2 Test Cases for Static Objects
	3.3 Test Cases for Managed Objects
	3.4 Domain Logic Test Harnesses

	4 Discussion and Evaluation
	4.1 Utility of Generated Test Code
	4.2 Development-Time Benefits of Generated Test Cases
	4.3 The Cost of Generating Test Code

	5 Related Work
	5.1 Model Driven Architecture
	5.2 Model-Based Testing
	5.3 Enterprise Java Code Generation

	6 Conclusion
	References

