
A Framework for Analyzing Configurations
of Deployable Software Systems

Dennis Heimbigner Richard S. Hall Alexander L. Wolf

Department of Computer Science
University of Colorado

Boulder, CO 80309-0430 USA
{dennis,rickhall,alw}@cs.colorado.edu

Abstract

Configuring and deploying a large software system is
complicated when the system is composed of components
and when there are numerous possible configurations for
the system. In such a scenario, it is difficult for end-users
to specify and install an appropriate configuration for their
specific environment. Defining all valid configurations of
a software system is challenging, and can be addressed
through a concise specification that can generate all of the
possible configurations. The Deployable Software Descrip-
tion (DSD), part of the University of Colorado Software
Dock project, is one such specification format. But using
the DSD runs the risk that the set of generated configura-
tions includes some that are invalid with respect to con-
straints defined independently of the DSD. This paper de-
scribes a framework to support the analysis of DSD spec-
ifications to help developers detect potentially invalid con-
figurations. This analysis assumes that the system compo-
nents are annotated with properties, and an analysis tool is
provided that takes a specific configuration and analyzes it
for conflicts with respect to some set of constraints. Using
the DSD, we can enumerate and analyze configurations to
verify their validity. The results can be used to modify the
DSD to avoid future generation of invalid configurations.

1. Introduction

Software deployment is the complex process [6] that
covers all of the activities performed after a software sys-
tem has been developed. These activities include configur-
ing, releasing, installing, updating, reconfiguring, and re-
moving a software system. For modern software systems,
particularly those built from independently developed com-
ponents and subsystems, the deployment process is compli-
cated by the dimensions along which a system can be con-
figured. That is, the “system” may in fact represent a family

of software systems, where a family is defined as the set of
all revisions and variants of a software system. Determin-
ing the particular configuration to deploy requires the coor-
dination and combination of information about the software
system and about the configuration of thefield site, the site
into which the software is to be deployed.

Describing all of the valid configurations of a software
system family is challenging, and it may be effectively im-
possible to manually enumerate all of the possible com-
binations that might be deployed when that enumeration
is very large. One approach to managing this explosion
of configurations is to define a concise specification that
can be evaluated with varying parameters to generate all of
the possible configurations. The Deployable Software De-
scription [7] (DSD) is such a specification developed for
the University of Colorado Software Dock project [6, 4].

Using this kind of specification runs the risk that the
set of configurations that can be generated may include in-
valid ones. For example, combinations of specific versions
of components may be incompatible, or certain functional
capabilities may not be available on all operating system
platforms. The DSD format provides some built in con-
straint mechanisms (described in Section 2) to avoid gen-
erating invalid configurations. Unfortunately, some con-
straints may be too complex to represent in the DSD spec-
ification language. Further, there are any number of con-
straints that are defined externally to the DSD, but which
someone may wish to apply to the software family to ver-
ify that those extra constraints are not violated.

Component interfaces provide a simple example. Sup-
pose that all artifacts associated with a system are anno-
tated with the set of interfaces that eachprovidesand with
the set of interfaces that eachrequires. A simple exter-
nal constraint would enforce all required interfaces to be
provided by some artifact. Any configuration for which
this constraint is false would be considered invalid. While
the DSD could represent this constraint, that representation
would be extremely cumbersome, and would not be practi-
cal to maintain in the face of an evolving system.

Disk space footprint is another example that is used later
in this paper to illustrate the analysis process. Each artifact
in a particular configuration can be assigned a number rep-
resenting the disk space it uses. Given this information, it
is easy to compute the total disk space used by each con-
figuration and verify it against a constraint specifying the
allowed maximum.

The goal of this paper is to define an extensible frame-
work for analyzing configurations to determine their valid-
ity with respect to externally defined constraints. We re-
port on the procedures to be used in this framework. The
framework itself is under construction and we expect to re-
port separately on its performance and utility. This paper
is organized as follows. Section 2 describes the format and
content of a DSD specification. Sections 3, 4, 5, and 6, de-
scribe our analysis approach. Section 7 discusses possible
improvements to the framework. Section 8 discusses re-
lated work. Appendix A describes the DSD example used
to illustrate the analysis approach.

2. The Deployable Software Description

The Software Dock project supports automated deploy-
ment of complex versioned systems. It provides software
producers with arelease dockthat acts as a repository of
software system releases. Thefield dockcomponent of the
Software Dock supports the field site by providing an inter-
face to the field configuration: its resources and deployed
software systems. The Software Dock employs agents that
travel from release docks to field docks in order to per-
form specific software deployment tasks. The agents per-
form their tasks by interpreting configuration descriptions
for both software systems and target field sites. A wide-
area event system [1] connects release docks to field docks
and enables asynchronous, bi-directional connectivity.

Key to the operation of the Software Dock is the Deploy-
able Software Description (DSD) format. The DSD serves
two purposes within the Software Dock. First, it provides
a standard schema for concisely specifying any one of the
set of possible configurations of a software system. Sec-
ond, the DSD is interpreted by the Software Dock agents to
automatically perform various deployment processes such
as installation and removal. It is the former purpose that is
of most interest in our analysis framework.

The DSD is an application of the Extensible Markup
Language (XML) [11]. DSD defines an XML vocabulary
specifically designed to describe complex families of soft-
ware systems. It models a software system configuration in
terms of properties, resources, and constraints. This model
is based on our previous analysis of the requirements for
such a specification format [5].

Appendix A shows an example of a DSD for a simple
application. The example should not be considered particu-

larly realistic; it was constructed to illustrate as much of the
algorithm as possible. The complete DSD format is com-
plex and cannot be completely described here; a detailed
description of it is available elsewhere [7, 4]. The com-
plete format contains more information than needed for the
purposes of this paper, and so inessential elements of the
specification have been elided to save space and simplify
the presentation. The essential elements are grouped into
four sets of items: property definitions, composition rules,
constraints, and artifact collections. Each of these sets is
described in the following sections.

2.1. Property Definitions

Properties are simple, typed name-value pairs. Ap-
pendix Section A.1 of our example illustrates several such
properties. Properties are actually divided into two classes:
external and internal. External properties refer to proper-
ties that describe the field site. TheOSproperty defined in
Appendix Section A.1, lines 2-6 is an example of an exter-
nal property. Other examples (not shown) might beCPU
or PostscriptPrinter.

In contrast, internal properties describe features of the
system itself. TheOnlineHelpproperty (A.1, lines 35-40)
is one such property. Other properties (not shown) might be
Versionor DebugLevel. Since our analysis presumes to tar-
get all possible system configurations independent of any
specific field site, the external-internal distinction is irrele-
vant, and so all properties will be grouped together for the
procedures described here.

A property definitionspecifies a number of attributes for
the property, including the name, type, and default value.
The name is any string, and the default value is any legal
value of the appropriate type. The property type may be a
String (e.g.,OS(Operating System) andImplementation),
an Integer (e.g.,MaxPlayers), or a Boolean (e.g.,OnLine-
Help, WinHelp, andHTMLHelp).

For properties from infinite types (Integer and String),
the property definition may optionally specify the expected
set of values for the property. TheImplementationproperty
illustrates this by defining its expected set of values, namely
“Java” and “Native” (A.1, line 13). The property definition
also defines certain other values referred to as the “enabled”
value and the “disabled” value. The use of these special
values will be described in the next section.

2.2. Composition Rules

Composition rules define relationships between proper-
ties. For example, if theOSproperty has the value “So-
laris”, then all other properties that are inconsistent with
that operating system must somehow be disabled.

The composition rules, along with the constraints dis-
cussed in the next section, are the primary means for con-
trolling the set of configurations encoded into the DSD. The
intent of composition rule sets is to use the minimal set of
properties to support the generation of all the configura-
tions of a software family while avoiding the generation of
any invalid configurations.

Composition rules have three essential parts: a predi-
cate, a relationship operator, and a set oftargetproperties.
Appendix Section A.2 shows three example composition
rules. Consider the third rule (A.2, lines 26-33), which is
essentially equivalent to this expression.

OS != “Win95” && OS != “WinNT” EXCLUDES{WinHelp}

The underlined expression is, of course, the predicate. The
relationship operator isEXCLUDES, and the set of target
properties is{WinHelp}. This rule may be read as saying:
“if the operating system is not Win95 and not WinNT, then
theWinHelpproperty must bedisabled.”

Four relationship operators are used in the DSD specifi-
cation.

• EXCLUDES – If the Boolean expression evaluates
to True, then the set of excluded properties must be
assigned the appropriate disabling value. This oper-
ator is illustrated by the first, third, and fourth com-
position rules (A.2, lines 4-11 and lines 26-43).

• INCLUDES – If the Boolean expression evaluates
to True, then the set of included properties must be
assigned the appropriate enabling value. Unlike the
EXCLUDESoperator, theINCLUDESoperator does
not require the target properties to be assigned the
exact enabling value specified in the property defi-
nition. As with the C programming language, any
value that is not the disable value is considered to be
an enabling value.

• ONEOF – If the Boolean expression evaluates to
True, thenexactly oneof the listed properties must
be enabled and the others must be disabled. This op-
erator is illustrated by the second composition rule
(A.2, lines 14-23). That rule requires either Win-
Help or HTMLHelp to be enabled if OnlineHelp is
enabled.

• ANYOF – If the Boolean expression evaluates to
True, then zero or more of the of the listed proper-
ties may be enabled.

The first three operators require properties to be “en-
abled” or “disabled”. For Boolean valued properties, these
states naturally map to the values True and False, respec-
tively. But for Strings and Integers, there is no such natural
mapping. Thus, properties with these types must specify

the mapping of enabled and disabled to two different val-
ues in the type. TheMaxPlayersproperty, for example,
specifies that the enabled value is “2” (A.1, lines 27-29)
and the disabled value is “1” (lines 30-32).

2.3. Constraints

The DSD makes provisions for the fact that not all prop-
erty value assignments lead to valid configurations by al-
lowing for the specification of constraint expressions de-
fined in terms of property values. If the constraint evalu-
ates to False, then the chosen property values are assumed
to lead to an invalid configuration.

The DSD constraints are actually divided into two
classes:assertionsanddependencies. Assertions describe
constraints that must be true else the configuration is in-
valid. Appendix Section A.3, lines 2-8 illustrates a simple
assertion constraint that constrains the field site to use one
of three operating systems.

(OS ==“Win95”) || (OS ==“WinNT”) || (OS ==“Solaris”)

Specification of any other operating system causes the as-
sertion to fail, and the configuration of properties to be con-
sidered invalid.

Dependencies represent the other class of constraints.
They differ from assertions in that a failed dependency may
be resolvable. Thus a dependency has an associated action
that is invoked to attempt to make the dependency true.
Section A.3, lines 17-27 illustrates a simple dependency
constraint. In the Software Dock, resolution is currently
only provided for dependencies that refer to the installation
of required subsystems. Since the analysis currently is lim-
ited to single systems, dependency constraints can safely
be ignored.

2.4. Artifacts

The artifacts portion of the DSD describes the actual
physical artifacts that comprise the software system. The
artifacts are described by grouping them into sets (called
“collections”) of related artifacts. Each artifact collection
is controlled by aguard: an expression over properties that
determines the inclusion of the artifact collection into a spe-
cific configuration. To simplify the guard expressions, ar-
tifact collections can be nested in other artifact collections
that have additional guards.

Appendix Section A.4 shows the artifacts for our exam-
ple system. The lines 1 and 90 delimit the outermost collec-
tion of artifacts. Within that collection, are two nested col-
lections and two conditionally included artifacts. The first
collection (lines 2-31) has the guard expressionImplemen-
tation == “Native” (line 3) that controls which files are
included for the non-Java implementation. In this case, the

file solitaire.exeis unconditionally included. The second
artifact in that collection (lines 18-30) itself has a nested
guardMaxPlayers> 1 that specifies if the multi-player
games file (multiplayer.exe) should be included.

The second collection (lines 32-63) has the guard ex-
pressionImplementation == “Java” that indicates which
files are included for the Java implementation. It is com-
pletely parallel with the first collection; it always includes
solitaire.classand, if MaxPlayers> 1, includesmulti-
player.class.

The third and fourth items in the outermost collection
are single artifacts. The first of these two artifacts (lines 64-
76) includes a Windows format help file (cardgames.hlp) if
theWinHelpproperty is enabled. The second of these two
artifacts (lines 77-89) includes an HTML format help file
(cardgames.html) if the HTMLHelp property is enabled.
Note that because of the configuration rule (A.2, lines 14-
23), only one of these help files will be included, although
it is possible for neither to be included.

3. An Analysis Framework

The ultimate goal is to provide a framework to support
the analysis of a complete family of configurations with
respect to a variety of external constraints. The approach is
to iterate over a set of configurations and verify that some
set of such constraints is true for each configuration.

Achieving this goal requires the attainment of several
capabilities.

1. It must be possible to enumerate the set of all the
legal configurations of a software system. This set
essentially comprises the family for that system.

2. It must be possible to define the external constraints
to be validated over a set of configurations.

3. It must be possible to analyze a given configuration
to see if our constraints are true for that configura-
tion. Note that this analysis must be independent of
the particular configuration.

Subsequent sections will demonstrate how to achieve these
capabilities.

4. Generating Deployable Configurations

The first capability is generating the set of configura-
tions that make up the family for a given software system.
Our approach is to use the DSD specification of that system
to generate those configurations.

Before discussing how to do this, it is necessary to more
carefully define the term “configuration”. This term will
refer to the set of artifacts selected by an assignment of

values to all the properties specified in the DSD such that
the values satisfy the types of the properties and such that
all assertion constraints specified in the DSD are satisfied.
Occasionally, we will blur the distinction between the prop-
erty value assignment and the corresponding set of selected
artifacts.

Briefly, the configurations are generated as follows.

1. Associate a finite set of values – thecandidate set–
with each property (both external and internal) de-
fined in the DSD.

2. Iterate over all possible assignments of candidate sets
to properties. Each such assignment will be referred
to as acandidate assignment.

3. For each candidate assignment, validate the assign-
ment against the composition rules in the DSD.

4. For each candidate assignment, validate the assign-
ment against the assertion constraints in the DSD.

5. For each candidate assignment, evaluate the guards
for the artifact collections in the DSD and accumu-
late the set of selected artifacts as designated by the
guards which evaluate to True. This cumulative set
is thecandidate configuration.

6. Apply the appropriate analyzer to each resulting can-
didate configuration.

Sections 4.1 and 4.2 detail the processes for generating
candidate sets and candidate assignments. Sections 4.3 and
4.4 describe the validation of the candidate assignments
against the DSD. Section 4.5 shows how to convert the can-
didate assignment to a candidate configuration. The details
of the analysis procedure are deferred to Section 5.

4.1. Finding Candidate Sets

The initial activity is to determine the set of candidate
values associated with a given property. The goal is to ex-
ercise all of the expressions associated with composition
rules, assertions, and artifact collections specified in the
DSD. In other words, we need to determine the exact set
of property value assignments such that each expression in
the DSD evaluates at least once to True and at least once
to False. Since the expression language used is reasonably
expressive, it is not easy to calculate theexactset of prop-
erty values necessary to properly and minimally exercise
the expressions. In practice the expressions are written in a
highly stylized form that allows for the calculation of a su-
perset of the required set of property values. When we use
this superset, we may waste some computational resources
in trying to construct a configuration using a set of property
values that is in fact invalid with respect to the DSD.

The initial candidate set for each property is constructed
from information in the property definition itself. That def-
inition provides three sources of values for the property.
First, there is the default value specified for the property.
Second, the “enabled” and “disabled” values provide ad-
ditional values. Third, there may be an implied or ex-
plicit expected value set for the property. Properties of type
Boolean always have the implied value set consisting of
{True, False}. Infinite types (Integer and String) may op-
tionally have an explicitly stated value set. TheImplemen-
tationproperty shows an example of this (A.1, line 13).

Additional items for the candidate set are determined by
examining the use of properties in expressions in the DSD.
All types participate in equality and inequality comparisons
of the following forms.

<property> =<value> or<property> != <value>

For these comparisons, the<value> is added to the set of
candidate values for the<property>. For example, ana-
lyzing expressions involving theOSproperty (A.2, lines 6
and 28 and A.3, lines 4-5) indicates that the candidate set
must include the values “Win98”, “WinNT”, and “Solaris.”
Note that technically, the != operator should require the in-
clusion of a value different from the comparison value, but
this is not in fact necessary since all properties are guaran-
teed a second value as a result of specifying both enabled
and disabled values.

In addition to the equality operators, numerically typed
properties may be involved in inequality expressions of the
following form.

<property><inequality><value>

For various inequality operators, Table 1 shows how to cal-
culate elements to add to the candidate set.MaxPlayersis

Inequality Candidates
< < value > −1
> < value > +1
<= < value >,< value > −1
>= < value >,< value > +1

Table 1. Candidate Values for Inequalities

the only numerically typed property in the example. Ap-
plying the rule above for the “>” operator to A.4, line 19,
causes the value “2” (= 1 + 1) to be included in the candi-
date set for this property.

Table 2 shows the candidate sets constructed by ap-
plying the rules described above to the example in Ap-
pendix A.

4.2. Generating Candidate Assignments

Once a candidate value set is associated with each prop-
erty, the complete set of all possiblecandidate assign-

Property Candidate Set
OS {Win98, WinNT, Solaris}
Implementation {Java, Native}
MaxPlayers {1, 2}
OnlineHelp {True, False}
WinHelp {True, False}
HTMLHelp {True, False}

Table 2. Example DSD Candidate Value Sets

mentscan be generated by choosing all possible combi-
nations of values from the candidate sets of the proper-
ties. Again, referring to Table 2, we can see that there are
3× 2× 2× 2× 2× 2 = 96 candidate assignments, which
is greater than26. This reflects the fact that the number
of assignments is exponential in the number of properties
defined in the DSD. This follows because every property
has at least two values in its candidate value set, namely
the enable and disable values. Problems in dealing with an
exponential set will be addressed in Section 7.

The set of candidate assignments has another problem
besides its potential size. Because it is generated as a naive
cross-product, not all of the assignments will be consistent
with the expressions in the DSD. Thus, any assignment that
assigns the value “Solaris” to theOSproperty and assigns
the value True to theWinHelpproperty will be inconsistent
with the rule in A.2, lines 26-33. Table 3 shows the can-
didate assignments given the candidate sets from Table 2.
The table only lists consistent assignments, so the size of
the table is less than the 96 possible assignments. Note also
that the value “WinXX” in that table is intended to stand for
either “Win98” or “WinNT”.

4.3. Composition Rule Processing

The set of composition rules is processed by iterating
over each one in turn and evaluating it against the candi-
date assignment. As the composition rules are processed,
it may be determined that the current assignment is invalid.
This means that some composition rule requires a property
to have some value different than is specified in the assign-
ment. Recall this example from Section 2.2.

OS != “Win95” && OS != “WinNT” EXCLUDES {WinHelp}

If the excluded property (WinHelp) is not assigned the cor-
rect disabling value (False), then the assignment is invalid.
If an invalid assignment is detected, then the current candi-
date assignment is abandoned and a new one is selected.

For each of the four relationship operators used in com-
position rules, we can define their evaluation with respect
to the current candidate assignment. In each case, the asso-
ciated expression is evaluated using the candidate values. If

Order:{OS, Implementation,
Players, OnlineHelp,

Index WinHelp, HTMLHelp}
1 WinXX, Java, 1, T, F, T
2 WinXX, Java, 1, F, F, T
3 WinXX, Java, 1, F, F, F
4 WinXX, Java, 2, T, F, T
5 WinXX, Java, 2, F, F, T
6 WinXX, Java, 2, F, F, F
7 WinXX, Native, 1, T, T, F
8 WinXX, Native, 1, T, F, T
9 WinXX, Native, 1, F, T, F

10 WinXX, Native, 1, F, F, T
11 WinXX, Native, 1, F, F, F
12 WinXX, Native, 2, T, T, F
13 WinXX, Native, 2, T, F, T
14 WinXX, Native, 2, F, T, F
15 WinXX, Native, 2, F, F, T
16 WinXX, Native, 2, F, F, F
17 Solaris, Java, 1, T, F, T
18 Solaris, Java, 1, F, F, T
19 Solaris, Java, 1, F, F, F
20 Solaris, Java, 2, T, F, T
21 Solaris, Java, 2, F, F, T
22 Solaris, Java, 2, F, F, F

Table 3. Example Candidate Assignments

the expression evaluates to False, then we ignore that com-
position rule. If the expression evaluates to True, we apply
the following further tests.

• EXCLUDES – The values assigned to the target
set of properties are examined. If any one of them
does not have the appropriate disabling value then
the composition rule fails.

• INCLUDES – The values assigned to the target set
of properties are examined. If any one of them does
not have an appropriate enabling value then the com-
position rule fails. Recall that any value that is not
the disable value may be considered enabled.

• ONEOF – The values assigned to the target set of
properties are examined. If more than one of them
has an appropriate enabling value or if none of them
has an enabling value then the composition rule fails.

• ANYOF – This operator is always valid since it
places no effective constraints on the values of the
target properties.

If any composition rule fails the above tests, then the cur-
rent candidate assignment is abandoned and a new assign-
ment is selected.

4.4. Validating Constraints

After a candidate assignment of property values has
passed the composition rules, it must be validated against
the DSD constraints. As discussed in Section 2.3, de-
pendency constraints are ignored for validation purposes.
This is because dependencies always refer to the presence
of other deployable systems and currently, our analysis is
restricted to single systems. Future work on this frame-
work may include analysis of dependent subsystems. In
that case, dependency constraints must be considered.

Assertion constraints cannot be ignored, however, be-
cause they directly control the validity of various configu-
rations. Having passed the composition rules, our configu-
ration construction procedure has an initially valid assign-
ment of property values. The next step is to iterate over all
the assertion constraints specified in the DSD and evalu-
ate them against the candidate assignment. If the assertion
evaluates to False, then the assignment is invalid and must
be abandoned in favor of the next candidate assignment.

4.5. Artifact Selection

The last step in configuration construction is to iterate
over the guarded collections of artifacts in the artifact sec-
tion of the DSD to collect the set of artifacts that comprise
the valid configuration associated with the current candi-
date assignment. Note that it is possible for two different
assignments to produce the same collection of artifacts.

For each artifact collection (and each artifact) specified
in the DSD, any associated guard is evaluated using the cur-
rent candidate assignment of property values. If the guard
evaluates to False, then the collection and any nested col-
lections are discarded. If the guard evaluates to True, then
the artifacts specified in the collection are added to the set
of artifacts comprising the candidate configuration under
construction. If a collection contains nested collections,
then the procedure recurses to iterate over those inner col-
lections. The resulting set of artifacts is the output from the
configuration construction procedure. It is passed to the
analysis procedure to determine if it is a valid configura-
tion with respect to the external constraints associated with
the analysis package. Table 4 shows the candidate configu-
rations generated by the candidate assignments in Table 3.

5. Analyzing Deployable Configurations

Given a candidate configuration of artifacts, it must be
analyzed to see if it satisfies some set of constraints that
are external to the DSD. Since the set of possible external
constraints is large and expanding over time, the analysis
framework must support an evolving set of analyses. The

Artifact Generating
Set Assignments FootPrint

{solitaire.class} {3, 19} 5
{solitaire.class, {1, 2, 17, 18} 5
cardgames.html} +30 = 35
{solitaire.class, {6, 22} 5
multiplayer.class} +10 = 15
{solitaire.class, {4, 5, 20, 21} 5
multiplayer.class, +10
cardgames.html} +30 = 45
{solitaire.exe} {11} 20
{solitaire.exe, {7, 9} 20
cardgames.hlp} +10 = 30
{solitaire.exe, {8, 10} 20
cardgames.html} +30 = 50
{solitaire.exe, {16} 20
multiplayer.exe} +40 = 60
{solitaire.exe, {12, 14} 20
multiplayer.exe, +40
cardgames.hlp} +10 = 70
{solitaire.exe, {13, 15} 20
multiplayer.exe, +40
cardgames.html} +30 = 90

Table 4. Example Candidate Configurations

approach taken here is to annotate all of artifacts used in a
system with sufficient information so that analysis can de-
termine if any subset of those artifacts satisfies some spec-
ified external constraint. This annotation is independent of
the artifact grouping defined in the DSD for the system. An
analysis procedure is also provided that can verify adher-
ence to some set of external constraints when given those
annotations.

We will refer to the combination of the annotations, the
external constraints, and the associated analysis tool as an
analysis package. It turns out that the DSD can support
the addition of any number of annotations to artifact defini-
tions. This allows the set of analysis packages to grow over
time just by adding new annotations.

Section 1 discussed interface mismatches and disk space
footprint as examples of constraints that can be tested by
an analysis package. The artifact descriptions in Appendix
Section A.4 have been annotated with footprint informa-
tion (see A.4, line 15, for example) indicating the amount
of disk space used by that artifact. Given a constraint of
the formfootprint <= 80, a simple analyzer for a set of
artifacts can total up the footprints of each of the artifacts
in each configuration and verify that the total footprint is
less than the maximum specified by the constraint. If this
verification fails, then that particular set of artifacts is con-
sidered invalid. The last column of Table 4 shows the total

footprint for each candidate configuration. The last entry
fails the constraint.

We can now describe the overall operation of our anal-
ysis framework. We start with the DSD and use the proce-
dure described in the last section to generate, one by one,
the candidate property value assignments and the corre-
sponding configurations as artifact sets. For each configu-
ration, we iterate over all applicable analysis packages. For
each analysis that fails, our framework records the candi-
date property assignment, the configuration, and any output
from the analysis and reports the fact that this configuration
is invalid with respect to the analysis.

6. Feedback from Analysis to DSD

When an analysis package reports that a given configu-
ration is invalid, it is useful to feed that result back into the
DSD to prevent the future generation of the invalid con-
figuration. Note that this feedback differs from completely
encoding the associated external constraint into the DSD;
this latter encoding may not be feasible. Rather, the idea is
to encode direct knowledge of invalid configurations into
the DSD. If the number of bad configurations is large, then
this approach may not be attractive.

The simplest way to prohibit a specific configuration is
to add an additional constraint that is of the following form,
where each of thepropertyi andvaluei comes from the
candidate assignment and theoperatori is either an equal-
ity (=, ! =) or inequality (<,>,<=,>=).

not (
property1 operator1 value1

andproperty2 operator2 value2

. . .
andpropertyn operatorn valuen

)

Two complications attend the use of such assertions.
The first concerns inequalities. Some values in the candi-
date assignment are really values of the form<value>−1
or <value>+1, and were added to satisfy inequalities in
expressions in the DSD. To be strictly correct, the assertion
expression should retain the actual inequality operator that
generated those values. To do this, we need to shadow each
value in a candidate assignment with the corresponding ac-
tual equality or inequality that generated that value. It is
those actual inequalities that are used in the new assertion.
Table 2 shows an example of such a shadow. The value “2”
for theMaxPlayersproperty can occur in two ways. It can
occur directly via the “enabled” attribute in the property de-
scription (A.1, lines 27-29). It can also occur by applying
Table 1 to the predicate at A.4, line 19.

Since the last configuration in Table 4 failed the foot-
print test, the following assertion could be added to the

DSD to prevent its generation.

not (
(OS == “Win98” & Implementation == “Native”

& MaxPlayers> 1 & OnlineHelp
& not WinHelp & HTMLHelp)
| (OS == “Win98” & Implementation == “Native”

& MaxPlayers> 1 & not OnlineHelp
& not WinHelp & HTMLHelp)
| (OS == “WinNT” & Implementation == “Native”

& MaxPlayers> 1 & OnlineHelp
& not WinHelp & HTMLHelp)
| OS == “WinNT” & Implementation == “Native”

& MaxPlayers> 1 & not OnlineHelp
& not WinHelp & HTMLHelp)

)

The other complication with a feedback assertion con-
cerns its size. It will be proportional in length to the to-
tal number of properties referenced in the whole DSD, and
this may produce a rather unwieldy assertion. In practice
it is likely that only a subset of the properties are essential
to the expression, but determining that subset is difficult
and would require substantial help from the analysis tools.
Alternatively, the assertion may be reducible to an equiva-
lent composition rule. The expression above, for example,
can be reduced to the following equivalent expression using
knowledge about the DSD.

Implementation != “Native”|MaxPlayers == 1| not HTMLHelp

Again, this is difficult to do automatically. These kinds of
assertion reductions remain a subject for future research.

7. Optimizations

The configuration construction procedure described in
Section 4 is essentially generate and test. That is, it gener-
ates all the possible candidate assignments and tests them
against the DSD and then the analysis packages. As de-
scribed in Section 4.2, the number of candidate assign-
ments is exponential in the number of properties defined in
the DSD. In practice this behavior may be tolerable when
the number of properties is not large. For example, if the
number of properties is no more than 20, then there would
be some one million possible assignments, and that seems
tractable if the analysis is only performed occasionally and
non-interactively. But 30 properties would result in more
than a billion assignments, and that seems intractable.

So any optimization capable of reducing the number of
candidate assignments is welcome. One such optimization
concerns the reduction of the number of candidate assign-
ments to be considered. This can be accomplished in two

ways: (1) by reducing the number of candidate values as-
sociated with properties and (2) by more quickly recogniz-
ing infeasible assignments. A simple optimization of the
first kind concerns the selection of values for inequalities
as described in Table 1, where we were given a numeric
inequality of the following form.

<property><inequality><value>

In response to these inequalities, we added<value>−1 or
<value>+1 as candidate values for the specified property.
But clearly these values do not need to be included if there
are values in the candidate set that already make the in-
equality true.

The second kind of optimization is more difficult to ar-
range. Table 3 shows such a reduction, but it was con-
structed by hand using knowledge about the predicates in
the DSD. It is possible that we can exploit highly struc-
tured predicates (those in some normal form, for example)
to detect large classes of infeasible assignments.

Avoiding unnecessary analysis is another form of opti-
mization that would reduce the overall running time. Ta-
ble 4 shows that the same artifact set can be generated by
multiple candidate assignments. If we calculate and store a
unique hash signature for each artifact set, then re-analysis
of duplicated sets can be detected and avoided.

8. Related Work

Traditional configuration management (CM) systems
provide an alternate platform on which to build an analysis
framework similar to the one described in this paper. The
Adele [3] CM system in particular embodies some kinds of
automatic analysis for interfaces that is one kind of analy-
sis package. Adele introduces the notions of interfaces and
realizations of those interfaces. A specific interface may
have many revisions, where each revision may have multi-
ple realizations and these realizations may also have many
revisions. Adele uses constraints over these attributes to
express the composition of valid configurations. Adele, as
with similar CM systems such as PCL [9], targets source
code configurations as opposed to deployment configura-
tions. It also does not provide for general and extensible
analysis packages.

The Deployable Software Description format has a
number of competitors that might appear capable of serv-
ing to generate our configurations for analysis. Again, both
Adele and PCL have relatively sophisticated modeling lan-
guages that can serve that purpose. A number of other, less
sophisticated description languages have been defined. The
Open Software Description (OSD) [10] provides a vocab-
ulary for describing software components, their versions,
underlying structure, and relationships among components.
The Desktop Management Task Force (DMTF) has defined

the Management Information Format (MIF) [2], which is a
common, hierarchical data model used in describing all as-
pects of computing systems, including software systems.
Tivoli Corporation created the Application Management
Specification (AMS) [8], which is an effort related to, and a
superset of, the Software MIF. None of these last three de-
scription formats, OSD, MIF, or AMS, can serve to replace
DSD as the basis of our framework. With the exception of
OSD, none can describe multiple revisions, and none can
describe variants for a software system in detail. As a con-
sequence, none can describe consistent configurations for
a complete software family and this is the core capability
required for the analysis framework described in this paper.

9. Conclusion

We have presented a general framework for the analy-
sis of highly configurable systems. This framework, using
the Deployable Software Description format taken the Uni-
versity of Colorado Software Dock project, generates all
the configurations for a system and then applies specified
analysis packages to each of those configurations to detect
problems with those configurations. The results of these
analyses can be fed back to the DSD to avoid the future
generation of those configurations. This framework is cur-
rently under construction and will eventually be integrated
with the Software Dock to provide new capabilities for the
developers of highly configurable and deployable systems.

Acknowledgements

This material is based upon work sponsored by the Air
Force Materiel Command, Rome Laboratory, and the De-
fense Advanced Research Projects Agency under Contract
Numbers F30602-94-C-0253 and F30602-98-2-0163. The
content does not necessarily reflect the position or the pol-
icy of the Government and no official endorsement should
be inferred.

References

[1] A. Carzaniga, E. Di Nitto, D. S. Rosenblum, and A. L.
Wolf. Issues in supporting event-based architectural styles.
In 3rd International Software Architecture Workshop, Or-
lando, FL. USA, Nov. 1998.

[2] Desktop Management Task Force.Software Standard
Groups Definition, Version 2.0s, 24 June 1998.

[3] J. Estublier and R. Casallas. The adele configuration man-
ager. InConfiguration Management, pages 99–134. Wiley,
1994.

[4] R. S. Hall. Agent-based Software Configuration and De-
ployment. PhD thesis, University of Colorado, Boulder,
Colorado, June 1999.

[5] R. S. Hall, D. Heimbigner, and A. L. Wolf. Requirements
for software deployment languages and schema. InProc.
of the 8th Intl. Symposium on System Configuration Man-
agement (SCM-8), Brussels, Belgium, July 1998. Springer-
Verlag Lecture Notes in Computer Science, number 1439.

[6] R. S. Hall, D. Heimbigner, and A. L. Wolf. A cooperative
approach to support software deployment using the soft-
ware dock. InProc. of the 1999 Intl. Conf. on Software En-
gineering, pages 174–183. IEEE Computing Society, May
1999.

[7] R. S. Hall, D. Heimbigner, and A. L. Wolf. Specifying the
deployable software description format in XML. Technical
Report CU-SERL-207-99, University of Colorado Software
Engineering Research Laboratory, Mar. 1999.

[8] Tivoli Systems. Application Management Specification,
Version 2.0, 1997. (http://www.tivoli.com/ oproducts/html/
body amsspec.html).

[9] E. Tryggeseth, B. Gulla, and R. Conradi. Modeling systems
with variability using the proteus configuration language. In
Proc. of the 1995 Int’l Symposium on System Configuration
Management, pages 216–240. Springer, 1995.

[10] A. van Hoff, H. Partovi, and T. Thai.The Open Software
Description Format (OSD). Microsoft Corp. and Marimba,
Inc., 1997. (http://www.w3.org/TR/ NOTE-OSD.html).

[11] World Wide Web Consortium. Extensible Markup Lan-
guage (XML) 1.0, 1998. (http://www.w3.org/ TR/1998/
REC-xml-1998-0210).

A. Example DSD Specification

A.1. Properties

1 <ExternalProperties>
2 <Property>
3 <PropertyName>OS</PropertyName>
4 <PropertyType>STRING</PropertyType>
5 . . .
6 </Property>
7 </ExternalProperties>
8
9 <InternalProperties>

10 <Property>
11 <PropertyName>Implementation</PropertyName>
12 <PropertyType>STRING</PropertyType>
13 <PropertyValues>Native, Java</PropertyValues>
14 <PropertyDefaultValue>Java</PropertyDefaultValue>
15 <PropertyDefaultEnabled>
16 Native
17 </PropertyDefaultEnabled>
18 <PropertyDefaultDisabled>
19 Java
20 </PropertyDefaultDisabled>
21 . . .
22 </Property>
23 <Property>
24 <PropertyName>MaxPlayers</PropertyName>
25 <PropertyType>INTEGER</PropertyType>
26 <PropertyDefaultValue>1</PropertyDefaultValue>
27 <PropertyDefaultEnabled>
28 2
29 </PropertyDefaultEnabled>
30 <PropertyDefaultDisabled>
31 1
32 </PropertyDefaultDisabled>
33 . . .
34 </Property>
35 <Property>
36 <PropertyName>OnlineHelp</PropertyName>
37 <PropertyType>BOOLEAN</PropertyType>
38 <PropertyDefaultValue>true</PropertyDefaultValue>
39 . . .
40 </Property>
41 <Property>
42 <PropertyName>WinHelp</PropertyName>
43 <PropertyType>BOOLEAN</PropertyType>
44 <PropertyDefaultValue>false</PropertyDefaultValue>
45 . . .
46 </Property>
47 <Property>
48 <PropertyName>HTMLHelp</PropertyName>
49 <PropertyType>BOOLEAN</PropertyType>
50 <PropertyDefaultValue>true</PropertyDefaultValue>
51 . . .
52 </Property>
53 </InternalProperties>

A.2. Composition Rules

1 <Composition>
2 <!–Force “Implementation” to be Java if
3 the operating system is not Win98/NT>
4 <CompositionRule>
5 <RuleCondition>
6 ((OS != ”Win95”) && (OS != ”WinNT”))
7 </RuleCondition>
8 <RuleRelation>EXCLUDES</RuleRelation>
9 <RuleProperties>Implementation</RuleProperties>

10 . . .
11 </CompositionRule>
12 <!–If “OnlineHelp” selected, then force selection of
13 either “WinHelp” or “HTMLHelp”, but not both>
14 <CompositionRule>
15 <RuleCondition>
16 $OnlineHelp$ == true)
17 </RuleCondition>
18 <RuleRelation>ONEOF</RuleRelation>
19 <RuleProperties>
20 WinHelp, HTMLHelp
21 </RuleProperties>
22 . . .
23 </CompositionRule>
24 <!–Force “WinHelp” property to be false if
25 “OS” is not Win98/NT>
26 <CompositionRule>
27 <RuleCondition>
28 (OS != ”Win95”) && (OS != ”WinNT”)
29 </RuleCondition>
30 <RuleRelation>EXCLUDES</RuleRelation>
31 <RuleProperties>WinHelp</RuleProperties>
32 . . .
33 </CompositionRule>
34 <!–Force “WinHelp” property to be false if
35 “Implementation” is Java>
36 <CompositionRule>
37 <RuleCondition>
38 $Implementation$ == ”Java”
39 </RuleCondition>
40 <RuleRelation>EXCLUDES</RuleRelation>
41 <RuleProperties>WinHelp</RuleProperties>
42 . . .
43 </CompositionRule>
44 </Composition>

A.3. Constraints

1 <Assertions>
2 <Assertion>
3 <AssertionCondition>
4 (OS==”Win95”)|| (OS==”WinNT”)
5 || (OS==”Solaris”)
6 </AssertionCondition>
7 . . .
8 </Assertion>

9 <Assertion>
10 <AssertionCondition>
11 $MaxPlayers$>= 1
12 </AssertionCondition>
13 . . .
14 </Assertion>
15 </Assertions>
16 <Dependencies>
17 <Dependency>
18 <Guard>($Implementation$ == ”Java”)</Guard>
19 <DependencyCondition>
20 (!installed(”Cards”))
21 </DependencyCondition>
22 <DependencyFamily>Cards</DependencyFamily>
23 <DependencyInterface>
24 Install
25 </DependencyInterface>
26 . . .
27 </Dependency>
28 </Dependencies>

A.4. Artifacts

1 <Artifacts>
2 <Artifacts>
3 <Guard>($Implementation$ == ”Native”)</Guard>
4 <Artifact>
5 <ArtifactSourceName>
6 solitaire.exe
7 </ArtifactSourceName>
8 <ArtifactSource>
9 /cardgames/win/bin

10 </ArtifactSource>
11 <ArtifactDestinationName>
12 solitaire.exe
13 </ArtifactDestinationName>
14 <ArtifactDestination>bin</ArtifactDestination>
15 <FootPrint>20</FootPrint>
16 . . .
17 </Artifact>
18 <Artifact>
19 <Guard>($MaxPlayers$> 1)</Guard>
20 <ArtifactSourceName>
21 multiplayer.exe
22 </ArtifactSourceName>
23 <ArtifactSource>/cardgames/win/bin</ArtifactSource>
24 <ArtifactDestinationName>
25 multiplayer.exe
26 </ArtifactDestinationName>
27 <ArtifactDestination>bin</ArtifactDestination>
28 <FootPrint>40</FootPrint>
29 . . .
30 </Artifact>
31 </Artifacts>
32 <Artifacts>
33 <Guard>($Implementation$ == ”Java”)</Guard>
34 <Artifact>

35 <ArtifactSourceName>
36 solitaire.class
37 </ArtifactSourceName>
38 <ArtifactSource>
39 /cardgames/java/classes
40 </ArtifactSource>
41 <ArtifactDestinationName>
42 solitaire.class
43 </ArtifactDestinationName>
44 <ArtifactDestination>classes</ArtifactDestination>
45 <FootPrint>5</FootPrint>
46 . . .
47 </Artifact>
48 <Artifact>
49 <Guard>($MaxPlayers$> 1)</Guard>
50 <ArtifactSourceName>
51 multiplayer.class
52 </ArtifactSourceName>
53 <ArtifactSource>
54 /cardgames/java/classes
55 </ArtifactSource>
56 <ArtifactDestinationName>
57 multiplayer.class
58 </ArtifactDestinationName>
59 <ArtifactDestination>bin</ArtifactDestination>
60 <FootPrint>10</FootPrint>
61 . . .
62 </Artifact>
63 </Artifacts>
64 <Artifact>
65 <Guard>($WinHelp$ == true)</Guard>
66 <ArtifactSourceName>
67 cardgames.hlp
68 </ArtifactSourceName>
69 <ArtifactSource>/cardgames/doc</ArtifactSource>
70 <ArtifactDestinationName>
71 cardgames.hlp
72 </ArtifactDestinationName>
73 <ArtifactDestination>doc</ArtifactDestination>
74 <FootPrint>10</FootPrint>
75 . . .
76 </Artifact>
77 <Artifact>
78 <Guard>($HTMLHelp$ == true)</Guard>
79 <ArtifactSourceName>
80 cardgames.html
81 </ArtifactSourceName>
82 <ArtifactSource>/cardgames/doc</ArtifactSource>
83 <ArtifactDestinationName>
84 cardgames.html
85 </ArtifactDestinationName>
86 <ArtifactDestination>doc</ArtifactDestination>
87 <FootPrint>30</FootPrint>
88 . . .
89 </Artifact>
90 </Artifacts>

