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Abstract

All systems built from distributed components involve the
use of one or more protocols for inter-component commu-
nication. Whether these protocols are based on a broadly
used “standard” or are specially designed for a particular
application, they are likely to evolve. The goal of the work
described here is to contribute techniques that can support
protocol evolution. We are concerned not with how or why
a protocol might evolve, or even whether that evolution is
in some sense correct. Rather, our concern is with making it
possible for applications to accommodate protocol changes
dynamically. Our approach is based on a method for iso-
lating the syntactic details of a protocol from the semantic
concepts manipulated within components. Protocol syntax
is formally specified in terms of tokens, message structures,
and message sequences. Event-based translation techniques
are used in a novel way to present to the application the se-
mantic concepts embodied by these syntactic elements. We
illustrate our approach by showing how it would support an
HTTP 1.1 client interacting with an HTTP 1.0 server.

1. Introduction

The overarching goal of this work is to enable dy-
namic communication protocols, which is to say, to al-
low a distributed application to continue functioning
even when the communication protocols used by its dis-
tributed components have changed. For our purposes, a pro-
tocol for distributed communication is considered to be
a form of application-level message passing. In our cur-
rent work we are not concerned with network-level protocol
issues, such as routing and forwarding.

Traditionally, an application uses a protocol by having
close ties to the syntactic details of the protocol. Here, syn-
tax refers to the structure of messages and the rules gov-
erning the coordination of messages passed among multi-
ple components. Thus, a rule stating that a “reply” message

must follow a “get” message is considered as much a part
of the protocol syntax as is the textual format of each “re-
ply” and “get” message.

The embedding of the protocol’s syntactic details into
the code of an application means that changes to the pro-
tocol might force alterations to the application in order to
accommodate those changes. Even small changes or addi-
tions introduced into a protocol—such as the redefinition
of a token, an appended message structure, a new timeout
specification, or a supplemental acknowledgement message
for coordination—can have drastic implications for an ap-
plication, possibly forcing the application to be redesigned,
modified, and rebuilt according to the new protocol specifi-
cation.

Instead, we would like the application to be concerned
with the semantic concepts encapsulated by the protocol,
rather than its syntactical details. A semantic concept (or
simply “concept”) represents an element of the data or be-
havioral logic of a component interaction. A common ex-
ample is the concept of “date”, which can have many syn-
tactic manifestations. Another example is the concept of
“request” in an HTTP protocol interaction; the fact that
different version of the protocol represent this concept in
different syntactic forms should be largely irrelevant to an
HTTP client or server component.

Typically, however, there is nothing available to decou-
ple semantic concepts from syntactic details on behalf of
an application, so the application either must itself extract
the concepts from the syntax or must rely solely on the syn-
tax as a representation of concepts. Either way, the behavior
of the application is tightly coupled with the syntactic de-
tails of the protocol. Therefore, if the protocol is altered—
whether or not the syntactic change reflects a true concept
change—the application cannot continue.

Clearly, this issue of syntactic and semantic separation
has been long recognized in various communities, and a
variety of technologies have been proposed to address the
problem. For example, the database community has ex-
plored the problem of multi-database integration, and has
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offered the technology of what are called mediators as a so-
lution [21]. Mediators serve to perform automatic transla-
tion of data and data requests, either to and from a com-
mon universal schema, or on a database-to-database pair-
wise basis. In the software architecture community, the lat-
est attempt at solving the problem comes in the form of the
connector [8], which is an architectural element whose pur-
pose is to encapsulate inter-component communication. The
idea is that replacing one connector by another to effect a
protocol change should be possible, even at run time.

The distinction between syntactic detail and semantic
concept is not always easy to discern. To some extent, it is
a matter of exercising the proper discipline in the design of
the application. Our goal is to provide tools and techniques
that encourage the designer to make this distinction explicit.
The incentive that we offer is the ability to develop compo-
nents that can transparently accommodate certain kinds of
protocol changes.

The approach we take is a novel use of event-based
translation. The idea behind event-based translation is to
generate “events” as syntactic structures are parsed. This
technique is demonstrated to some degree by the XML SAX
parser [15], which generates events as the syntax of an XML
document is parsed. Each event captures some concept rep-
resented by the XML syntax of the document, and presents
it to the application in the form of a method call belong-
ing to a handler object. Inspired by the XML SAX parser,
we apply this basic idea to achieve the separation of proto-
col syntax from protocol concepts, as suggested in Figure 1.

presentation
of protocol

syntax

presentation
of protocol
concepts

events
Event-Based

Translatormessages

Figure 1. Separating Syntax from Concepts.

An event or sequence of events can embody an abstrac-
tion of one or more syntactic elements, specifically the se-
mantic concept or concepts associated with those elements.
This means that concepts of the protocol are captured by the
events produced by the parser and given to a component,
isolating the component from the syntax of the protocol.
The event-based translation technique can be generalized
and formalized so that an event-based translator can be con-
structed on demand. If the protocol specification changes,

a new event-based translator can be constructed to replace
the old one, and the application can continue to receive the
events in which it is interested.

We stress that there are limits to the nature of changes
that can be accommodated by our approach; those that in-
volve deep semantic changes will obviously require
changes to the components themselves. Moreover, there
is some development-time and run-time cost to adopt-
ing the approach. As to the first point, our initial ex-
perience indicates that there is a sufficiently rich set of
changes that can be handled by our approach and, per-
haps more importantly, that these changes can be found
in the real-world evolution of popular protocols. For ex-
ample, HTTP 1.1 introduced a new message, the “sta-
tus 100” continue-to-wait message, a change to the
protocol that can, through our technique, be made transpar-
ent to an HTTP 1.0 client. As to the second point, we are
faced with a classic tradeoff of performance (both program-
mer and program) against flexibility. We have interposed
a level of indirection in the form of an event-based trans-
lator, which requires some amount of programmer effort
to develop and some amount of computer effort to ex-
ecute. At this stage in the research, we have only early
indications of the intellectual and computational over-
heads involved in this tradeoff.

In the next section we discuss related work. Following
that we present the details of our approach. We then illus-
trate the approach through an example, that of an HTTP 1.1
client attempting to communicate with an HTTP 1.0 server.

We have implemented a prototype of the event-based
translation system and applied it to the HTTP example. This
prototype represents a first vertical slice through the whole
problem and has served us well in guiding the refinement of
the approach over the past six months.

2. Related Work

The ideas presented here can be seen as a particular ap-
proach to developing a dynamic connector among com-
ponents, where the interface between a component and a
connector is modeled as events. In that sense it is related
to work in the area of software architecture and the treat-
ment of connectors as “first-class objects”. Garlan points
out that “allowing complex connectors provides a single
home where one can talk about the semantics”, also not-
ing that “[one] could attach a single description of the pro-
tocol of interaction to the complex connector” [8, page 113].
The same viewpoint is adopted here. We perceive the proto-
col to be the semantics of an arbitrary connector that is ca-
pable of being dynamically swapped with another connec-
tor. Figure 2 shows this viewpoint, where the black boxes at-
tached to each component indicate the coupling of the con-
nector with the component.
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Figure 2. Connector Coupled to Components.

The mechanics of realizing such a vision, however, are
not straightforward. Garlan notes that “even simple interac-
tions, such as message sending or procedure calls, become
complex in their own right in most distributed settings” [8,
page 113]. To make the separation between component and
connector possible, the connector must be able to present
some sort of coupling interface to its attendant components.

Proposals for such couplers already exist. Jones, Ro-
manovsky, and Welch [11] developed an approach based
on the notion of integrators. Integrators are used as the
coupling between connector and component, and are at-
tached to each component with “glue code”, thus providing
a known interface to clients. Unfortunately, this approach
requires a separate integrator for each interface/protocol
pair, similar to early program translation methods, which re-
quired translation networks that included a unique transla-
tion between each pair of programming languages. For pro-
gramming languages, this problem was simplified by the in-
troduction of abstract languages and algebras [2, 5]. How-
ever, for the method proposed by Jones, Romanovsky, and
Welch, which focuses on a fault tolerance mechanism with
multi-layered exception handling, each integrator (essen-
tially the translator) must be specifically designed with a
particular protocol and interface in mind; no unified inter-
mediary is proposed.

An important approach is taken in the architecture de-
scription language Wright [1]. Wright connectors use roles
to define the behaviors involved in an interaction, where the
connectors themselves describe the behavior of the connec-
tion. The roles are coupled with ports associated with the
components. The language used to describe the behavior of
the interactions is a variant of CSP [10], a powerful (largely
symbolic) protocol description language that is accompa-
nied by a wide variety of validation tools.

Although the Wright model is general enough to be used
in almost any situation, it still relies on the notion of a
protocol-specific coupling between components and con-
nectors, as embodied in roles, ports, and the “glue” that
binds them. If a component cannot match the specific im-
age of the protocol that is presented to it through the defini-
tions of the various roles and ports, the connector cannot be
coupled with the component even if the roles and ports con-
ceptually present the same information to which the compo-
nent is accustomed. Figure 3 depicts the potential for such
a mismatch.

Connector Component

Figure 3. Mismatched Coupling.

The approach described here uses a mechanism that
loosens the requirements for the coupling between a compo-
nent and a connector, in a sense providing a “universal plug”
for a connector to be coupled with a component. Conceiv-
ably, any connector can then be coupled to any component,
regardless of the semantics associated with the connector.
Therein lies the primary difference between most existing
techniques and the one described here. Current realizations
of the component/connector approach define mechanisms
that rely on a strong specification of the interface provided
by the connector and require that the component be strictly
matched with the interface, whereas our approach provides
a technique that generalizes the coupling. Of course, this
flexibility comes at a price, and that price is the ability to
predict a priori the compatibility of the connector and com-
ponent simply by examining the interface. We must appeal
to some outside mechanism to guarantee, or at least check,
on compatibility.

This seeming conflict in approaches can be resolved if
we treat a mechanism such as that found in Wright as a
design aid and treat our approach as an implementation
aid. There is no reason why a strict model of the compo-
nent/connector interface could not be used in conjunction
with a faithful, albeit looser implementation of that inter-
face.

The C2 architectural style and its supporting infrastruc-
ture take a similar approach to strictness and flexibility [19].
Strictness is achieved through an external mechanism that is
part of the C2 development environment. At run time, flexi-
bility is achieved through a common event bus to which ar-
bitrary components can connect, disconnect, and reconnect.
C2 differs from our approach in that it has adopted a uni-
versal protocol for all component interactions, which hap-
pens to be based on events. In contrast, we are trying to cap-
ture a variety of specific protocols, and use events at a dif-
ferent conceptual level, namely the boundary between the
protocol and the components.

Given that our focus is on communication protocols
for distributed systems, it is important to briefly explain
more broadly the relationship of our work to that of the
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many tools and techniques available to perform protocol
specification, such as the general-purpose specification lan-
guages CSP [10], LOTOS [20], and Esterel [4, 6], as well
as the architecture description languages Darwin [14, 17],
Rapide [12, 13], and Wright [1]. As we explain in the
next section, our approach relies heavily on the formal de-
scription of a protocol. Theoretically, we could use any of
the popular protocol specification languages. The choice
among them reduces to convenience, such as availability of
tools and simplicity of conception, more than any other fac-
tor. For example, Esterel is a full-fledged programming lan-
guage for describing signal processing in reactive systems.
As such, it appears to be too heavy weight for our purpose.
We simply need a means to specify the format of messages
and the coordination rules among messages. For the former,
traditional grammar specification languages suffice. For the
latter, some sort of state machine specification language is
suitable.

We turn now to event-based translation. For that we have
looked most closely at the XML SAX parser [15] in its
three versions. However, it is a parser for a document struc-
ture rather than a communication protocol, and it is spe-
cific to the XML syntax (rather than to the syntax of doc-
uments specified by a DTD or schema), which uses a re-
stricted grammar. To date the XML SAX parser has served
as a good model, but eventually we will have to create a
more general form of event-based parsing.

Another reason to look beyond the XML SAX parser is
that we need a tool that can also perform the complement
of parsing, namely composition. Composition provides the
channel from a component into the protocol, which explains
our use of double-headed arrows in Figure 1. It also explains
our use of the more general term “translation”, rather than
just “parsing”. XML serves as a model here as well. Vari-
ous tool sets, including the DOM parser, allow one to gener-
ate an XML document, but only after the elements supplied
to construct the abstract syntax tree of the document can be
validated against the relevant DTD or schema. These vali-
dation methodologies are the basis for a technique suitable
for our purpose here.

With both parsing and composing in mind, we must also
be able to automatically generate the translator. Compiler
compilers have existed for decades, and their theory is well
known. Again, however, this is primarily for what one might
consider a document (usually a program text) and not a pro-
tocol. Such systems must be adapted to support the full
range of features necessary for generating protocol transla-
tors. Fortunately, such systems do exist. The protocol com-
piler developed by Castelluccia, Dabbous, and O’Malley [7]
is an example of a compiler that produces automata from
an abstract protocol specification written in Esterel. This
work is promising, not only because it demonstrates the
feasibility of such a technique, but also because it indi-

cates that automatically generated translators can be effi-
cient as well. In our prototype we use JavaCC (available at
http://javacc.dev.java.net) to automatically generate transla-
tors particular to a specified protocol.

3. Technical Approach

The general approach we have developed to support dy-
namic protocol evolution consists of two main elements: a
three-part specification of protocol syntax, and an event-
based technology for translating from the specified syn-
tax into semantic concepts (and vice versa). The three-part
specification serves as a means to conveniently modular-
ize the different aspects of a protocol that might evolve,
while the event-based translation system, whose behavior
is driven by the syntax specification, presents semantic con-
cepts as abstract events. The relationship between syntac-
tic elements and semantic concepts is currently established
through a simple mapping from the elements to a set of con-
cept names, although one could easily imagine using instead
some arbitrarily sophisticated ontologic scheme.

3.1. Specification of Protocol Syntax

We treat a protocol generically as a form of application-
level message passing. Most well-known protocols for dis-
tributed communication have a precise definition for the
structure of a “message”, and at least an informal descrip-
tion of what constitutes “passing”. If we assume that mes-
sages can be viewed structurally as documents (a reasonable
assumption), then we can use document description tech-
niques to specify the structure of messages as tokens, as
well as to specify compositions of tokens, that is, the for-
mat of a message.

However, this is clearly not the complete definition of a
protocol. Message structure specifications say nothing with
regard to the rules of coordination among messages, and so
additional information is necessary. We refer to these rules
as an interaction specification. Note that we require several
specifications for each interaction of a protocol, one spec-
ification for each role a component may assume while us-
ing the protocol. Further, these specifications must include
information that affects the way in which messages are de-
livered, such as transport bindings, reconstruction of partial
messages, special timeouts, and the like. These last aspects
of a protocol are in a sense orthogonal to the main goal of
our work and are not currently addressed, but their influ-
ence on a protocol must be acknowledged.

Thus, we have a three-part syntax specification. Figure 4
depicts the “uses” relationship (solid arrows) among these
elements. Also shown is that the syntax elements refer to
concept names (dashed arrows).
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Figure 4. Protocol Specification.

Given this specification framework, a description lan-
guage must be chosen (or developed) to satisfy each of the
three parts. A suitable, although not necessarily distinct, de-
scription language should be assigned to each part, where
we take “suitable” to imply at least the following four cri-
teria: (1) sufficient expressiveness; (2) compact represen-
tation; (3) easy (visual) manipulation; and (4) isolation of
changes.

A balance must be kept among these criteria when as-
signing description languages to each of the three parts.
Clearly, some important conflicts exist among the criteria.
Additionally, conflicts may arise among the description lan-
guages chosen for each part of the specification framework,
due to the dependencies among the parts (noted in Figure 4).
For example, since the specification of message structures
depends on the specification of tokens, the presentation of
tokens must be compatible with their use in the specifica-
tion of message structures.

In our current work, we have adopted, not surprisingly,
basic grammar languages for tokens and message struc-
tures, since the expressive power required by token spec-
ifications is generally regular, while the expressive power
required by message structure specifications is generally
context free. Message structures do require some amount
of context-sensitive specification such as, for example, the
common situation that arises when one message structure
element is used to indicate how many of another message
structure element appears in the message (e.g., the value
of the “Content-Length” HTTP header indicates the length
of the included entity body). Thus, for message structures,
we use description languages inspired by those found in
JavaCC.

For the interaction specifications we currently use a sim-
ple language of state machines with guarded transitions.
Note, however, that the choice of language features to cap-
ture information describing the way in which messages are
delivered is problematic, since issues such as the recompo-
sition of messages from possibly out-of-order communica-
tions and transport bindings do not immediately lend them-
selves to a simple state-machine language. Thus, in the fu-

ture, we may add special language features for this aspect
of the specification.

3.2. Event-Based Translation

The primary elements of our approach consist of the
three-part syntax specification, described above, and an
event-based translation system that, in turn, provides a ne-
gotiator responsible for negotiating protocols and for gen-
erating/managing event-based translators to operate on spe-
cific versions of the evolving protocol. A particular dis-
tributed component interacts with the translation system
through protocol events, which are either derived from or
are composed into protocol messages. Figure 5 shows these
elements in relation, illustrating how the interposition tech-
nique allows a component to be isolated from the syntactic
details of the protocol.

Event
Handler

Negotiator

Generator

Translator

Protocol
Message

Protocol
Message

Protocol
Event

Parser

Composer

Protocol
Event

input to

outputs

outputs

input tooutputs

input to

creates

specifies

specifies

input to

Interaction
State

Event-Based Translation System

Distributed
Component

Message
Structures InteractionsTokens

Concept
Names

Protocol Specification

Figure 5. Event-Based Translation.

The negotiator element of the event-based translation
system typically collaborates with the corresponding nego-
tiator for another component when the two distributed com-
ponents first initiate communication. It is then the respon-
sibility of the negotiators to determine which protocol will
be used, given the preferences and capabilities of the rele-
vant applications. If the negotiator determines that a proto-
col will be used for which a translator does not exist, it will
direct the generator element to create one, obtaining the pro-
tocol specification from the other negotiator, if necessary.

The protocol specification is used as input to the genera-
tor element of the event-based translation system. The gen-
erator creates a translator that recognizes the specified pro-
tocol. The translator is responsible for deconstructing pro-
tocol messages via the parser, constructing protocol mes-
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sages via the composer, and maintaining state for each pro-
tocol interaction.

Protocol messages are input to the parser from some
source component engaged in the communication. The
parser deconstructs the message and outputs the corre-
sponding semantic concepts as a series of events. As the
events are generated, they are delivered to an event han-
dler in the distributed component. Once delivered, it is up
to the component to decide how to interpret the events.

For the return path, the component gives a set of con-
cepts to the composer, which uses those concepts to con-
struct a legal message (or legal messages) of the protocol.
That message is then sent to some target component, which
in general may be different from the source of the proto-
col message originally passed to the parser.

Notice that the application must cooperate with the trans-
lator, in the sense that it incorporates an event handler ca-
pable of processing the events generated by the parser, as
well as being able to give appropriately encapsulated proto-
col concepts to the composer.

3.3. Alternative Configurations

As described, it would appear that our technique requires
a component to cooperate directly with the event-based
translation system. In fact, that is just one way to make use
of our approach. We are also able to apply the technique
without requiring modification to pre-existing application
components. In such cases, the components will communi-
cate using the full protocol, and the role of the event-based
translation system is reversed.

An event-based translator can be thought of architec-
turally as a bi-directional pipe, with messages of the proto-
col coming in and going out one side, and protocol concepts
(as events) coming in and going out the other, as shown
here.

messages events

The solid line indicates message communication, and the
dotted line indicates event communication. Note that a
translator is specific to a single protocol.

Such a translator can then be connected to an application
component in two different ways, depending on whether
the component is “aware” of the event-based translation
system or not. Given any two distributed components that
are acting as the end points of a communication, there are
then four distinct configurations possible, effectively falling
into three categories: both communicating components are
aware, only one component is aware, or neither component
is aware. We depict the categories as follows.

messagesevents

events

events

events messages

messages

messages

The first case is the ideal situation, since the protocol being
used is not fixed by either distributed component. All mes-
sage parsing, message composition, and interaction-state
tracking is performed by the translators, so each compo-
nent can be dynamically connected to different translators,
and each message of the protocol is composed only once
and parsed only once. Note that the translators must both
be specific to the same protocol. The respective negotiators
(not shown) will determine the protocol to use and direct
the corresponding generators (also not shown) to dynami-
cally create the translators if necessary.

In the second case, the left-hand component is depen-
dent on the syntax of the protocol, but the right-hand com-
ponent is not, and can therefore be dynamically connected
to different translators. Again, each message of the proto-
col (communicated in either direction) is composed only
once and parsed only once. The translator must be specific
to the same protocol on which the left-hand component de-
pends; no negotiation takes place, and the left-hand compo-
nent is connected directly to the translator as if it was con-
nected to the right-hand component. (An analogous situa-
tion occurs when the left-hand component is aware and the
right-hand component is not, and thus we have not both-
ered to depict this case.)

The third case deals with the situation in which neither
component is aware of the event-based translation system.
In this case, the aware “component” to which each transla-
tor is connected is, in fact, another translator. The protocol
that each component uses is fixed; the advantage this situ-
ation has over direct communication between the compo-
nents is that the protocols used by each component can be
different, yet the components can still communicate. The
disadvantage is that, since potentially two different proto-
cols are being used, each communication requires composi-
tion and parsing in both the protocol used by the right-hand
component and the protocol used by the left-hand compo-
nent, effectively doubling the amount of translation work re-
quired. In practice, both translators would exist on one side
of the distributed application, so that event communication
is local. Again, no negotiation takes place.

In the next section we present an example that embodies
the first configuration.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04) 

0270-5257/04 $20.00 © 2004 IEEE 



4. Example

In this section we present an example application of our
approach to dynamic protocol evolution. The scenario, im-
plemented using a prototype of the event-based translation
system, involves an encounter between an HTTP 1.1 client
and an HTTP 1.0 server, the goal being to show how the
client and server can, via our prototype, communicate us-
ing their respective versions of the protocol. For details of
the HTTP 1.0 and HTTP 1.1 protocols used for this exam-
ple, see RFC 1945 [3] and RFC 2068 [9], respectively.

Normally, an HTTP server that understands only
HTTP 1.0 will have difficulty handling an HTTP 1.1 re-
quest. This is because servers are currently designed to
manage such a request in a way that is heavily tied to
the syntax of the protocol. Thus, despite the fact that
the two versions of HTTP are remarkably similar, even
small changes in syntax have a serious impact on com-
patibility. On the possibility that the syntax would be
misunderstood, HTTP 1.0 servers typically were pro-
grammed to deny all requests that did not specify exactly
an HTTP 1.0 version number, irrespective of the later clar-
ification of HTTP version numbers in RFC 2145 [16].
In theory, however, many (if not most) HTTP 1.1 re-
quests should be accommodated by an HTTP 1.0 server,
since the syntactic differences are minor, and are almost ex-
clusively additions to HTTP rather than modifications or
deprecations.

The syntactic differences between HTTP 1.0 and
HTTP 1.1 span the three parts of our syntax specifi-
cation, including interaction specifications. For exam-
ple, a difference in the tokens is the length of a target
URL, limited to 100 characters in HTTP 1.0 but unlim-
ited in HTTP 1.1. A difference in the message structure
is the introduction of the “Host” header in HTTP 1.1, re-
quired for all requests but not even defined in HTTP 1.0.
And, even though both versions of HTTP are thought
of as single-request/single-response protocols, a differ-
ence in the interactions is that HTTP 1.1 contains the
addition of “status 100” (i.e., continue) responses, an ar-
bitrary number of which can precede the actual response
to the request. All three of these differences are consid-
ered syntactic under our approach.

Of course, there are many other differences between
HTTP 1.0 and HTTP 1.1, some of which are truly semantic
(“concept”) changes requiring modifications to HTTP 1.0
servers. Our aim here is not to address HTTP evolution
specifically, but rather to illustrate our approach through a
well-known protocol and, thus, without having to describe
the details of some unknown protocol.

Our example assumes that the client and server are in
the first configuration described in Section 3.3. This means
that the client and server are both written to operate on pro-

tocol concept events rather than on raw HTTP messages.
The client communicates through an event-based translator
using HTTP 1.1 concepts, while the server communicates,
initially, through a translator using HTTP 1.0 concepts. In
our implementation of the example, the client and server
are simulated, in the sense that they each only communi-
cate with their corresponding translator via a set of events
limited to the minimum required for the most basic HTTP
messages, performing no real HTTP-like processing, such
as returning a page of HTML text in response to a GET re-
quest. The translators are generated from specifications of
HTTP 1.1 and HTTP 1.0. These specifications, which are
not shown here but are available elsewhere [18], use the de-
scription languages discussed in Section 3.1.

The essence of the scenario, depicted and numbered in
Figure 6, and elaborated more fully below, is as follows:
The client sends (1) events to its translator, which requests
(2) the address of the server’s HTTP 1.1 translator from
the client’s negotiator. The client’s negotiator requests (3)
this information in turn from the server’s negotiator. The
server’s negotiator, finding that no HTTP 1.1 translator ex-
ists, requests that one be generated, using the specification
given by the client’s negotiator. (The specification conceiv-
ably can be obtained from elsewhere, such as at a given
URI, and while an interesting aspect of the approach, it is
not central to the current discussion.) An HTTP 1.1 trans-
lator is generated (4) for the server, and its address is re-
turned (5,6) to the client’s translator via the client’s ne-
gotiator, which caches the address. The client’s translator
composes an HTTP 1.1 GET request using the information
given to it by the client, and the request is sent (7) to the
server’s HTTP 1.1 translator for parsing. While the mes-
sage is parsed, events are forwarded (8) to the server, in-
dicating the concepts encapsulated by the message in the
context of the interaction. Although not shown in the fig-
ure, an analogous process is used to send an HTTP 1.1 “sta-
tus 200” response message to the client. No negotiation is
required in this case, since the path is already established.

For this HTTP interaction (and, in fact, most HTTP in-
teractions), only three states are required: one state prior to
the request being communicated, one state after the request
is communicated and prior to the response being commu-
nicated, and one state after the response is communicated.
Since we have two roles (client and server), we must have
two specifications for the interaction. Figure 7 shows the
graphical representation of the interaction specification for
both the client role (top) and the server role (bottom), re-
spectively. Although in this case the two specifications are
quite similar, this will not be true in general, especially
where there are multi-way interactions among distributed
components.

We now provide a bit more detail about the actions taken
during the scenario execution. Interpreting the specification
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of HTTP 1.1, we find that the minimal GET request will re-
quire the following events from the client:

[01] target {
HOST = "research.cs.colorado.edu"
PORT = 80 }

[02] token METHOD_GET
[03] token URI = "/"
[04] done

The events are numbered according to the order in which
they are given to the translator, although only the position
of the last is important. Event 1 gives the host and port num-
ber of the server’s negotiator. Notice that, since we are using
the first of the configurations described in Section 3.3, the
well-known port number for HTTP, port 80, is assigned to
the server’s negotiator, while the translators are assigned dy-
namically determined port numbers. This allows the server
to service two versions of HTTP at the same well-known
port. In contrast, the other two configurations would require
two different port numbers, one for each version of HTTP.

Event 2 indicates to the translator that it will compose a
GET request; a parameterized value is not necessary, since it
is implicit. Event 3 indicates the target URI of the request,
and event 4 indicates that the client has no more informa-
tion for the translator.

The translator requests from the negotiator the address
(host and port) for a corresponding HTTP 1.1 translator on
the server. Since the negotiator does not have such infor-
mation, it contacts the server’s negotiator using the given
host and port. The server’s negotiator also does not have the
information, since no server-side HTTP 1.1 translator ex-
ists. The server’s generator is therefore instructed to cre-
ate one, using JavaCC. If the generator does not have the
specification for HTTP 1.1, then it can request the specifi-
cation from the client’s HTTP 1.1 translator, via the nego-
tiators. Regardless, the specification is used to generate a
new translator, and the address at which the translator is lis-
tening for incoming messages is communicated back to the
client’s HTTP 1.1 translator.

The client’s HTTP 1.1 translator then composes the fol-
lowing HTTP 1.1 GET request, using both information
given by the client and defaults determined from the pro-
tocol specification:

GET / HTTP/1.1
Host: shield.cs.colorado.edu

The message is sent to the server’s HTTP 1.1 trans-
lator. The client’s translator gives the client an event,
“interaction request_sent”, noting the state
change in the data structure used to represent the inter-
action state from the client’s perspective. As the server’s
HTTP 1.1 translator parses the protocol message, the fol-
lowing events are generated and given to the server:

[01] token METHOD_GET = "GET"
[02] token URI = "/"
[03] token VER_HTTP = "HTTP"
[04] token VER_MAJOR = "1"
[05] token VER_MINOR = "1"
[06] token VER = { VER_HTTP, VER_MAJOR,

VER_MINOR }
[07] structure GET_LINE
[08] token HEADER_HOST_NAME = "Host"
[09] token HEADER_HOST_VALUE

= "sidhe.cs.colorado.edu"
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[10] token HEADER_HOST = {
HEADER_HOST_NAME,
HEADER_HOST_VALUE }

[11] structure GET_HEADER
[12] structure GET_HEADER_LIST
[13] structure GET_REQUEST
[14] interaction request_received

The events are numbered according to the order in which
they are generated, and labeled by the part of the proto-
col from which they result. For example, event 1 is a to-
ken event that indicates the recognition of the GET method
keyword. Note that some token events contain references
to nested token events, to indicate the composite nature of
some tokens. Event 7 is a message structure event that in-
dicates the recognition of a line in a GET request. The six
prior events indicate the recognition of tokens that consti-
tute the line. Event 14 is an interaction event that indicates
a change in the interaction state from the server’s perspec-
tive.

The server will likely not understand events 8
through 10, since they are concepts outside the server’s con-
text of HTTP. (Recall that the server is specific to HTTP 1.0
and has not been modified to accommodate HTTP 1.1 con-
cepts.) Regardless, all events will be sent to the server’s
event handler, and the server may choose to ignore
them or process them as desired; in the case of our sim-
ple server, the unrecognized events are ignored, and thus
the concepts associated with the “Host” header will be fil-
tered out.

The server’s HTTP 1.1 translator is now finished parsing
the GET request, and the last event should have indicated
to the server that it has been provided a collection of con-
cepts that comprise a full HTTP message. This completes
the process of sending an HTTP request from the client to
the server. All construction and parsing was handled by the
translators, so that the client and server did not need to be
concerned with protocol syntax and were only required to
handle events that represented concepts of the protocol.

The next step is for an HTTP response to be sent from the
server to the client, which would follow an analogous pro-
cess. No negotiation is required for the return path, since the
connection between the translators is still open. Further, the
negotiation that took place before the request was sent is a
one-time cost, given that negotiators can cache the address
of local and remote translators. Note, too, that the creation
of the server’s HTTP 1.1 translator is also a one-time cost;
it need not be generated again for any other HTTP 1.1 mes-
sages the client, or even a different HTTP 1.1 client, might
send.

The configuration of translators and other components
in this example is just one possible way of employing our
approach. For example, one could imagine an implementa-
tion that coalesces the functionality of some of these ele-

ments, making the deployment of the implementation per-
haps a less daunting prospect. Exploring these options is
one thread of our future work.

5. Conclusion

Enabling dynamic protocol evolution has signifi-
cant benefits for distributed computing. Aside from the
obvious—an application need not be shut down and re-
constructed each time there is a protocol update—one
such benefit is that an application could potentially pro-
cess two different versions of the same protocol simul-
taneously. It could thus avoid a “chain update” problem,
which may not have a solution for a given system con-
figuration. Dynamic distributed applications (i.e., dis-
tributed applications whose components can be exchanged
or whose architecture can be altered at run time) may re-
alize additional benefits, since each component need not
have pre-written compatibility for every possible com-
bination of communication protocol. Finally, there is
also potential benefit beyond dynamic protocol evolu-
tion, such as dynamic protocol negotiation and discovery
(i.e., inter-component communication without prior knowl-
edge of protocols).

The success of the example presented in Section 4
clearly relies on the similarity of HTTP 1.0 and HTTP 1.1.
But this is to be expected. Only radical changes should have
radical effects, yet today even small changes can have rad-
ical effects. Our motivation is to better align the ef-
fort to make a protocol change with the significance of
that change. For example, consider a simple but useful up-
date that should be easily introduced between versions
of the HTTP protocol, where the specification of the re-
quest line is changed to make it consistent with the spec-
ification of the status line—that is, we want to move the
HTTP version indicator from the last position to the first.
Exactly the same events would be generated for this spec-
ification, merely in a different order. However, since
under our approach the server is unconcerned with the or-
der of these particular tokens, it would not be impacted by
this modification, and the request would go through nor-
mally. Today, such a simple change would likely con-
fuse virtually every current implementation of an HTTP
server.

On a higher level, completed component interactions, as
identified in the state machine maintained by a translator,
could themselves be considered “messages” of a larger pro-
tocol. The specification of this larger protocol might include
a timing restriction, such that the single continuous interac-
tion permits only so many of these messages over a pre-
defined duration. If the limits of the specification were ex-
ceeded, the translator could generate an error event indicat-
ing this. Coupled with other information in the messages
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(e.g., the target URI of an HTTP request, the status code
of responses, and elements of a “Date” header), this could
make denial-of-service attacks detectable earlier. Further,
the specification of this larger protocol could be dynami-
cally updated with new heuristics for such attacks.

Of course, more remains to be done to fully achieve our
goal of supporting dynamic protocol evolution. For one, we
would like to complete a formalization of event-based trans-
lation to permit the automated construction of the event-
based-translator generators from the information available
in the specifications. We need to introduce a means of corre-
lating protocol versions or otherwise similar protocols. We
would like to explore the range of possible methods for em-
ploying our techniques in a variety of protocol evolution
scenarios. In order to accomplish this, we must add func-
tionality to the existing prototype, including the general-
ized composition of protocol messages and the management
of context-sensitive message structures. Finally, the various
configurations discussed in Section 3.3 imply quite differ-
ent performance and productivity overheads and tradeoffs.
We need to understand how these play out for a wide range
of usage scenarios.
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