
Discovering Service Dependencies
in Mobile Ad Hoc Networks

Petr Novotny and Alexander L. Wolf
Imperial College London

London, United Kingdom

{p.novotny09,a.wolf}@imperial.ac.uk

Bong Jun Ko
IBM T.J. Watson Research Center

Hawthorne, New York, USA

bongjun ko@us.ibm.com

Abstract—The combination of service-oriented applications,
with their run-time service binding, and mobile ad hoc networks,
with their transient communication topologies, brings a new level
of complex dynamism to the structure and behavior of software
systems. This complexity challenges our ability to understand the
dependence relationships among system components when per-
forming analyses such as fault localization and impact analysis.
Current methods of dynamic dependence discovery, developed for
use in fixed networks, assume that dependencies change slowly.
Moreover, they require relatively long monitoring periods as
well as substantial memory and communication resources, which
are impractical in the mobile ad hoc network environment. We
describe a new method, designed specifically for this environment,
that allows the engineer to trade accuracy against cost, yielding
dynamic snapshots of dependence relationships. We evaluate our
method in terms of the accuracy of the discovered dependencies.

I. INTRODUCTION

Understanding the dependencies among the components of

a distributed system is critical to making good operational

and maintenance decisions. For example, fault localization

and change impact analysis are tasks enabled by accurate and

timely data on component dependencies. The importance of

dependence information increases with the complexity of the

system, both in terms of the number of interacting components

required to carry out a given computation and the nature of

the environment in which the system operates.

In service-based systems, such as those based on the Web

Services Architecture, computations are structured as a set of

services that respond to requests, where a request typically

originates at a user-facing client. The computation fulfilling

each request results in a cascade of further requests across

some subset of the services. Obtaining dependence information

in such a system is made difficult by the inherent loose cou-

pling of services, as many dependencies are unknown at design

time, and only established at run time through a dynamic

service binding mechanism (so-called “service discovery”).

The consequence is that the dependencies among run-time

instances of services cannot be specified before execution, but

instead must be discovered during or after execution.

Existing dependence discovery methods focus on statically

structured systems operated in fixed networks [1], [2], [3], [4],

[5], [7], [8], [10], [13], [14]. A critical assumption made by

these methods is that the dependence data, although changing,

is relatively stable over time. The significance of the stability

assumption is that the methods can make use of statistical tech-

niques based on data collected over long execution periods.

Furthermore, by operating in the context of a fixed-network

environment, the methods can assume no practical limits

on the storage, computational, and communication resources

needed to support those statistical techniques.

The context for our work is instead service-based systems

deployed on mobile ad hoc networks (MANETs). Mobility and

ad hoc networking bring increased dynamicity to service de-

pendencies, beyond those caused by the basic service-binding

regime. Moreover, the MANET environment is characterized

by limitations on the resources available for dependence

discovery. Existing methods based on the stability assumption

cannot adequately cope with such high levels of dynamicity

nor stringent resource constraints.

We have formulated a relatively simple method for use in

the MANET environment. Our intuition is that dependence

discovery should capture snapshots of dependence data rele-

vant to each service request of concern, rather than determine

statistical averages for long-term, system-wide dependencies

as a whole. Furthermore, the method must be lightweight in its

resource usage, which to our thinking means that dependence

data should be collected locally, aggregated locally, and drawn

to some central location only when and if needed.

Our approach is based on the use of monitors deployed onto

the mobile hosts. The monitors collect dependence data by

observing the message traffic between services and extracting

relevant information. The data collected by the monitors

provide only a local view of the dependence information.

When a more global picture of the dependence relationships

among the services is required (e.g., to carry out some par-

ticular analysis), the monitors are contacted by a discovery

element charged with integrating the data. Importantly, only

the monitors relevant to a particular analysis question typically

need to be contacted, and therefore communication can be

reduced. Moreover, the monitors can aggregate the data they

collect, and can impose limits on the amount of data they store.

We introduce our dependence discovery method and eval-

uate its sensitivity to a distinguishing aspect of the MANET

environment, namely time-dependent behavior. The evaluation

is carried out through a series of simulation-based experiments

under various scenarios that represent a range of service

connectivities and critical parameter settings.

527978-3-901882-50-0 c©2013 IFIP

II. BACKGROUND AND RELATED WORK

Existing dependence discovery methods can be generally

classified as to whether they operate at the network level or

at the (application) service level. Network-level discovery [1],

[2], [3], [4], [8], [10] focuses on coarse-grained dependencies

between network hosts, which are usually described in terms

of IP addresses and port numbers. They can be augmented

with additional information, such as port mappings [7] or a

classification of client applications [13]. On the other hand,

service-level discovery [5], [6] focuses on the detection of fine-

grained relationships between services. Services are hosted in

application containers, such as JavaEE and .NET, and typically

associated with application identifiers, such as URLs.
Our method, although informed by the network level, oper-

ates at the service level in the sense that we wish to discover

service dependencies that can be used for fault localization

and impact analysis in service-based software systems. It is

important to point out that we do not assume the availability

of prior information, such as a port mapping, application

categories, or even a specification of the services, nor do we

require changes in existing software components to support

discovery as found in other methods [4], [6].
Many of the service-level discovery methods apply statis-

tical techniques to traffic traces. These techniques correlate

network packets or service-level messages and identify co-

occurrences of messages across different services. While the

particular statistical techniques may differ (e.g., correlation

based on a time window [1], [2], [3], delay distribution [7],

time difference of messages [5], or timing and frequency of

packet flows [8]), all of the methods share the same limitation:

they require a long period of time to collect statistically

stable data and, therefore, are inappropriate in highly dynamic

environments such as MANETs.
Alternatives to statistical approaches do exist. For exam-

ple, in Macroscope [13] a subset of packets and network

connections is sampled and analyzed to identify relationships

between network flow data and applications. Lu et al. [10]

collect system log data and correlate the events in the logs

using data-mining techniques. Magpie [4] instead correlates

the events based on input from (human) network operators.

These methods, however, require the transfer of large amounts

of trace data from the collection points to a central analysis el-

ement, which is prohibitive in resource-constrained MANETs.

In contrast, our method transfers dependence information se-

lectively and on demand, contacting only the monitors that are

potentially relevant to the events of interest (e.g., the possible

receivers of a failed service request). In addition, the monitors

actively summarize and aggregate dependence information

before that information is transferred (e.g., they may transfer

only the number of messages exchanged between two services,

rather than sending the content of those messages).

III. DEPENDENCE DISCOVERY AND REPRESENTATION

In this section we present our dependence discovery method.

We begin by enumerating several assumptions we make in the

design. We then describe the two types of dependencies in

which we are interested, how we discover the dependencies,

represent the dependencies, and construct the representation.

A. Design Assumptions

In order to employ our method, three basic prerequisites

must be met. First, to obtain complete dependence information,

the monitors should be deployed on the mobile hosts that are

either the source or the target of service messages; interme-

diate hosts in the network used only to store and forward

network-level messages are not involved in data collection.

Second, the monitors need access to synchronized clocks to

allow consistent time-stamping of the collected dependence

data. Clock synchronization in MANETs is a well-researched

topic, with techniques available to achieve precision of tens

or even single microseconds [15]. The shortest period we

use for time-stamping data is 6 milliseconds, well within this

precision. Third, the monitors must be able to observe service

messages and obtain information from those messages, such

as client and service identifiers. On the other hand, there

is no need for the monitors to have access to the payload

of messages. This kind of general information is typically

available and visible, since it is used by the underlying service

infrastructure to manage service interactions.

B. Service Dependencies

In service-based systems, a dependence is a relation between

services defined by the message flow induced by a client

request. (As an edge case, a dependence is also the relation

between a client and a service. Without loss of generality,

we mainly focus here on relations among services.) When a

dependence relation exists between two services Si and Sj ,

one service is considered the source and the other the target.
In general, sources issue requests on targets, thus defining a

directionality to the dependence.

We are concerned with two types of dependencies over

a given set of services: inter-dependencies and intra-
dependencies. An inter-dependence is the basic dependence

relation that exists between the requester of a service and

the receiver of that request. Figure 1 illustrates a set of

inter-dependencies in a hypothetical system, where the arrows

indicate the directionality of the dependencies, from sources

to targets. For instance, service S3 is directly dependent upon

services S9, S11 and S20, and indirectly dependent upon

services S10, S12, S15, S21, S22, S23, and S25. Each inter-

dependence in which a particular service is engaged can be

classified as either incoming or outgoing. Service S9 has

incoming inter-dependencies with S2 and S3 and outgoing

inter-dependencies with S10 and S12.

Figure 1 highlights the services involved in a particular

conversation originating at client C3. In service-based systems,

a conversation is the set of messages exchanged during the pro-

cessing of a client request. Service S3 uses services S9 and S20

to satisfy C3’s request, while the other dependent services in

the figure, such as S11, are used in other conversations.

An intra-dependence is a more complex relation between

services that relates an incoming inter-dependence to an out-

528 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference

Fig. 1: Inter-dependencies of a hypothetical system. The
services include front-end client services and back-end
processing services. A single conversation originating at
client C3 is highlighted.

Fig. 2: Intra-dependencies (dashed lines) of service S9.

going inter-dependence. Intra-dependencies thus reflect greater

insight into the nature of service dependencies than do the

basic inter-dependencies. This is illustrated in Figure 2, which

shows the dependencies among S2, S3, S9, S10, and S12

resulting from the four given inter-dependencies (solid arrows)

and the three given intra-dependencies (dashed arrows). It is

instructive to compare the information gained from Figure 2

to that available in Figure 1. We can see that S2 is (indirectly)

dependent upon S10 and S12, while S3 is only (indirectly)

dependent upon S12. This is not evident from Figure 1.

C. Discovering and Storing Dependencies

Dependencies arise from the flow of messages among ser-

vices. To discover dependencies, we must therefore track these

flows. Because we aim to be minimally intrusive, we restrict

ourselves to observing the message traffic (i.e., messages that

contain service requests and responses) as it occurs. Our

method makes use of monitors to observe messages and record

information about the flows. A convenient place to deploy a

monitor is within a service’s container. The monitor is then

easily aware of the associated service’s identity, as well as

being provided a context in which to execute.
The main advantage of using monitors is that they allow

dependencies to be discovered instantaneously and precisely,

with minimal delays between dependence occurrence, de-

tection, and the availability of the dependence information.

Moreover, we can do so without having to modify the services

themselves. Monitors can also minimize data storage and com-

munication requirements, since they can actively aggregate and

summarize the information. Thus, our approach can be thought

of as a process for collecting evidence of dependencies, which

is in sharp contrast to methods that require storage and transfer

of large amounts of data for later statistical analysis.

Inter-Dependence Discovery. Pairs of source and target

services that induce inter-dependencies can be identified from

the flow of messages exchanged between the services. In

a service-based system, services are uniquely identified by

application-specific identifiers, such as the URIs of the Web

Services framework. Although the specific type of information

provided within messages differs with the service platform and

standard used, request messages always contain identifiers for

the requested services.

Since a monitor is aware of the identity of the service

with which it shares a container, it can record outgoing inter-

dependencies simply by extracting the identifiers of target

services from any outgoing request messages originating at the

service. The target service identifier is an essential field present

in all request messages, such as plain HTTP or SOAP requests.

The inter-dependencies are therefore easily and immediately

discoverable in all existing service invocation protocols such

as SOAP and REST, and even from plain HTTP requests.

Intra-Dependence Discovery. Intra-dependence discovery

requires knowledge of both outgoing as well as incom-

ing inter-dependencies. However, discovering incoming inter-

dependencies is a bit involved, as it requires request messages

to contain the unique identifier of the requesting service. This

is satisfied by most service standards (e.g., the WS-Addressing

standard provides the fields wsa:To and wsa:From). With

source and target identifiers present in messages, monitors can

detect all incoming and outgoing inter-dependencies.

To expose the correspondence between the incoming and

outgoing inter-dependencies of a service, we rely on the pres-

ence of conversation identifiers within messages. Of course,

conversation identifiers must be implemented at the application

level by service developers. Fortunately, this is a relatively rou-

tine task, as there are several existing standards for doing so,

including WS-Addressing, WS-SecureConversation, and WS-

Coordination. Discovering an intra-dependence then reduces

to having a monitor relate incoming and outgoing messages

using the conversation identifiers appearing in both.

Storing Dependencies at Hosts. Monitors store the history of

the dependencies they have seen for some bounded period of

time, divided into time slots. The dependence data are stored

with a sliding expiration window such that only a limited

history is captured, using a data structure representing time

slots. Entries for each time slot maintain Boolean data about

whether or not a given dependence occurred within that time

slot. Each dependence is associated with a set of those time

slots, such that when the monitor detects the occurrence of

a dependence, it signifies this by setting a 1-bit flag in the

corresponding time slot. It also records identifying information

about the source and target of the dependence. Of course,

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference 529

the size of the time slot affects the precision of the data

maintained. For example, a slot size of 0.1 seconds will

provide up to 10 times more data compared to a slot size

of 1 second, but will require 10 times more space to store

those data. Beyond the slot size, the size of the whole history

can be controlled through the pruning of expired time slots.

The length that each time slot represents can be configured

according to a desired level of resolution. When combined

with the time period and the size of each dependence entry,

the data storage required at each monitor is determined. We

estimate the required bytes of storage space S per monitor as:

S =
Th

Ts
× (Ninter +Nintra)

8
+(BinterNinter+BintraNintra)

where Th is the length in seconds of the time period, Ts is

the length in seconds of a time slot, Ninter and Nintra are

the average number of inter-dependencies (both incoming and

outgoing) and intra-dependencies recorded by an monitor dur-

ing the time period, and Binter and Bintra are the maximum

sizes of the identifiers of inter- and intra-dependencies.

The aggregation of observed service interactions into de-

pendencies can cause the monitors to “forget” some of the

details necessary to reconstruct accurate dependence informa-

tion. This is the case when internal behaviors of a service

that are not visible to the monitor can generate seemingly

identical interactions in aggregate. As an example, consider

the incoming inter-dependence of S2 on S9, and the outgoing

inter-dependencies on S10 and S12, shown in Figure 2. The

incoming inter-dependence could in fact be the result of aggre-

gating two separate conversations between S2 and S9, where

the first resulted in a message to S10 and the second resulted

in a message to S12. The aggregated dependence information

held by the monitor will not, in our current approach, record

the true dependencies regarding these individual conversations.

D. Dependence Graph

A dependence graph (DG) is a directed acyclic graph

constructed from nodes representing services and edges rep-

resenting direct inter-dependencies. The direction of an edge

represents the direction of the inter-dependence, from source

to target. Each node can be annotated with intra-dependence

information, conceptually adding directed edges between the

incoming and outgoing inter-dependencies of the service.

The DG maintains information concerning a specific time
window, reflecting only the dependence information collected

by (or perhaps available from) monitors during that period.

The time window is a property of the interaction between

the application and network behaviors, and the information

accessible to monitors. The size of the time window has many

effects on the results of analysis. For example, a small time

window serves to reduce the size of the DG, but some critical

service interactions might be missed. A large time window

provides a more complete record of dependencies, but might

include stale or irrelevant interactions (e.g., those belonging

to conversations other than the conversation of interest).

Fig. 3: Architecture of dependence discovery.

Conceptually, a DG could be used to represent the full set

of dependencies of an entire application system. In practice,

many analysis techniques only require a subgraph of the full

dependence graph related to a specific node or subset of nodes.

For example, a failure impact analysis might examine only the

nodes that can reach (i.e., are dependent upon) a given node,

and a fault localization analysis might examine only the nodes

that are reachable from a given node.

E. Dependence Graph Construction

The distributed monitors used in our method provide in-

formation to a centralized dependence discovery element, as

illustrated in Figure 3. The intent of this architecture is to

minimize resource utilization, while still providing timely data.

The monitors perform continuous dependence discovery and

maintain aggregated dependence data.

The discovery element is a logical entity that can be

deployed on any host of the network, or even in multiple

instances on some or all the hosts. At the same time, the

discovery element can be accessed locally or remotely by a

network manager. Most importantly, the discovery element can

be used as a component of an automated network analysis task,

such as fault localization. Consider, for example, a monitor

that detects a symptom of a system failure in the form of

an exception or a response timeout. In order to identify the

likely root cause of the observed failure, the fault localization

component would contact (one of) the discovery element(s) in

order to obtain the DG associated with the client that initiated

the failed conversation. This DG would serve as an input to

the fault analysis carried out by the network manager.

The discovery element will construct a DG on demand,

querying the relevant monitors to harvest their local depen-

dence data for the time window of interest. The harvesting

algorithm is designed to incrementally construct the DG—

typically a subgraph of the full dependence graph—by visiting

only the monitors considered relevant based on the data seen

to that point. In this way, the amount of data transmitted over

the network can be significantly reduced compared to existing

methods. Of course, the most common case of DG construc-

tion is for a particular client, revealing the services upon which

that client depends directly or indirectly. Conceptually, then,

the data are harvested by a breadth-first walk of the monitors,

where the walk is rooted at the monitor associated with the

client of interest. For certain analyses, we may additionally

530 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference

limit the dependence discovery to a specific conversation,

something particularly useful in fault localization.

IV. EVALUATION

In our method, dependence graphs are constructed on de-

mand by a discovery element. The graphs are rooted at a given

client, beginning at a given time instant, and for some time

window. The data provided to the discovery element include

both relevant and irrelevant information, since any given

monitor will provide data about all interactions traversing its

associated service during the time window. These interactions

involve not just those of the given conversation of interest, but

also those of others.

Under such circumstances it would be difficult for a depen-

dence discovery method to provide a perfect result. Moreover,

the method by design loses information (e.g., monitors retain

only aggregate data, not individual messages) and is sensitive

to the dynamics of the operational environment. Thus, the

evaluation questions of interest center mainly on the accuracy

of the resulting dependence graph. In particular, we examine

the impact of time window size on the accuracy of the

dependence graph. We also compare our method to other

methods. Additional results are reported elsewhere [11].

A. Methodology

The evaluation is carried out on a simulation framework for

service-based systems hosted on MANETs. The framework

consists of a simulation engine built on top of the discrete-

event network simulator NS-3 extended with higher-level

abstractions for simulating service entities and their interac-

tions [11]. Our experiments focus on a particular hypothetical

conversation C. A good result for our method would be that

it can discover as many dependencies of C as possible, while

not including the dependencies of other conversations. We use

two metrics to characterize the quality of our results, namely

the ratio of true positives (TP) and the ratio of false positives

(FP), defined as follows:

TP ratio =
|D(C)

⋂
GT (C)|

|GT (C)| FP ratio =
|D(C)−GT (C)|

|D(C)|

where D(C) are the discovered dependencies, GT (C) are

the ground-truth dependencies, true positives are in their

intersection, and false positives are in the set difference.

The network-level behaviors in the simulation are based on

the log distance model with path-loss exponent 3 for wireless

signal propagation, reproducing a network operated in urban

areas [9]. The network consists of 50 mobile hosts deployed

in a 75x75 meter area, and uses the Optimized Link State

Routing Protocol (OLSR) for routing. In the experiments, we

set the node mobility speed to 10 m/s. Other mobility speeds

result in similar outcomes, as we report elsewhere [11].

The service-level parameters used in our simulations are

derived from standard values found in Web Services im-

plementations. We generate a system of 50 clients and 30

services, with the services arranged into five “front end” (client

facing) and 25 “back end” services (see Figure 1). Each service

exposes two methods to be used by other services and clients.

We use “low”, “medium”, and “high” connectivity scenar-

ios. The average number of services involved in a conversation

is 2.03, 3.21, and 7.9 in each connectivity configuration,

respectively. The impact of having more services involved in

a conversation (due to a higher connectivity) is that the time

to complete the conversation increases.

We collect our results from 30 minutes of simulated ex-

ecution time after excluding 30 seconds of warm up. Each

combination of parameters in our experiments results in thou-

sands of conversations occurring during the simulated 30-

minute execution. For instance, the low, medium, and high

connectivities result in 7165, 8139, and 8440 conversations,

respectively. The results given below are averages over the data

collected from these conversations, where each conversation is

then a statistical sample subject to the random variables.

B. Impact of Time Window Size and Service Connectivity

We first look at the impact of time window size and connec-

tivity degree on the accuracy of the results. We hypothesize

that as the time window size grows, so too should the TP

ratio, since more dependencies will be captured. However,

increasing the time window size should also increase the FP

ratio, since there is a greater chance that messages belonging

to other conversations are included in the dependence graph.

For a given time window size, we expect the TP ratio to

be negatively correlated with the connectivity degree, since a

higher connectivity increases the conversation length, which

in turn increases the chances that some dependencies are

missed. Similarly, we expect the FP ratio to be higher in

densely connected service configurations, since dependencies

in other conversations are more likely to overlap those of the

conversation of interest.

We calculate the TP and FP ratios for both inter- and intra-

dependence discovery separately. Figure 4 depicts the results,

where each data point is the ratio averaged over all conver-

sations. The variances of the ratios are small, and therefore

omitted from the figures. For example, the largest 95-percentile

confidence intervals for TP and FP ratios in the medium

connectivity scenario are 0.006 and 0.0053, respectively.

As shown in Figure 4a, increasing the time window size

increases the TP ratio, both for inter- and intra-dependencies.

However, increasing the time window size also increases the

FP ratio, as shown in Figure 4b. The same figures also

confirm our hypotheses about the impact of the connectivity

degree: the TP ratio decreases and the FP ratio increases as

the service topology becomes denser. Notice, too, that intra-

dependence discovery has a significantly lower FP ratio than

inter-dependence discovery. This is due to the fact that it can

precisely correlate incoming and outgoing inter-dependencies,

something to which inter-dependence discovery is blind (recall

Figure 2). To directly display the trade-off between the TP

and FP ratios under various time window sizes, we plot them

against each other in Figure 4c, where each point represents

the given time window size.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference 531

(a) (b) (c)
Fig. 4: Accuracy of inter- and intra-dependence discovery methods for different time window sizes given as (a) TP
ratios, (b) FP ratios, and (c) a trade off between TP and FP ratios.

C. Comparison with Existing Methods

We now compare the accuracy of our dependence discovery

method to that of existing methods. We make this comparison

by implementing two alternative methods to represent the two

major classes of existing approaches: those that perform dis-

covery at the network level and those at the service level. The

service-level alternative discovers a global system dependence

graph by observing all the service messages exchanged over

the whole execution period and, from this, builds dependence

graphs for the individual client conversations. The network-

level alternative works similarly, but only observes the flow

of messages by inspecting the information contained in the

headers of packets exchanged over the relevant IP addresses

and ports. It then builds dependence graphs using external

information provided to it about the deployment of clients and

services on hosts.

We use the medium connectivity scenario in our compari-

son, where the average number of ground-truth dependencies

is 3.21. We use a 60s time window size, which is large enough

to capture all such dependencies (see Figure 4). The com-

parison then reduces to one based on the false dependencies

appearing in the discovered dependence graphs.

The results are reported in Figure 5, where a vertical line

is used to separate the results for our method on the left from

the results for the alternative methods on the right. We give

the FP ratio, as well as a count of the false dependencies

appearing in the dependence graph. Both are computed as

the average over the total number of conversations (8139)

occurring in the 30-minute execution period. As we discuss

in Section II, the existing service- and network-level methods

are designed for use in fixed networks and for relatively

stable service configurations. Therefore, since both of these

alternative methods build dependence graphs from long-term

observations, they do not adequately filter out stale depen-

dencies caused by the dynamics of the scenarios, resulting in

higher FP ratios than our discovery method. Moreover, the

network-level method includes even more false positives than

the service-level methods because it builds dependence graphs

from coarser-grained information. Furthermore, although the

FP ratio for our inter-dependence discovery is similar to

that of the alternative methods, the actual number of false

dependencies is significantly lower.

Fig. 5: Comparison of methods in medium connectivity
scenario. Results for existing methods are to right of
dashed line.

V. CONCLUSION

We have presented a run-time method to discover the

dependencies among services operated in the highly dynamic

and resource-constrained environment of MANETs. Unlike

existing approaches, the method does not require stable de-

pendence relationships, nor large amounts of evidence data

collected over long periods. Through a set of simulation-

based experiments, we have evaluated the accuracy of the

method in terms of operational factors characteristic of both

service-based systems and MANETs. The method exhibits

good behavior when subjected to the stress of a changing

underlying network topology. Although not reported here, its

data storage and data transfer requirements scale well with the

number and connectivity of the services involved [11].

Dependence information is not particularly useful in and

of itself, but instead serves as a building block for important

analysis capabilities. We are currently developing such anal-

yses, including those for probabilistic fault localization [12]

and cross-layer performance anomaly diagnosis.

Acknowledgement. This research was sponsored by the U.S. Army
Research Laboratory and the U.K. Ministry of Defence and was
accomplished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of the
author(s) and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. Army Research
Laboratory, the U.S. Government, the U.K. Ministry of Defence or
the U.K. Government. The U.S. and U.K. Governments are autho-
rized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

532 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference

REFERENCES

[1] P. Bahl, P. Barham, R. Black, R. Ch, M. Goldszmidt, R. Isaacs, S. K,
L. Li, J. Maccormick, D. A. Maltz, R. Mortier, M. Wawrzoniak, and
M. Zhang. Discovering dependencies for network management. In
Proceedings of the Fifth Workshop on Hot Topics in Networks, Nov.
2006.

[2] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang. Towards highly reliable enterprise network services via infer-
ence of multi-level dependencies. In Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, pages 13–24. ACM, August 2007.

[3] P. Barham, R. Black, M. Goldszmidt, R. Isaacs, J. MacCormick,
R. Mortier, and A. Simma. Constellation: Atomated discovery of service
and host dependencies in networked systems. Technical Report MSR-
TR-2008-67, Microsoft Research, 2008.

[4] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for
request extraction and workload modelling. In Proceedings of the 6th
USENIX Symposium on Operating Systems Design and Implementation.
USENIX Association, 2004.

[5] S. Basu, F. Casati, and F. Daniel. Toward web service dependency dis-
covery for SOA management. In Proceedings of the IEEE International
Conference on Services Computing, pages 422–429. IEEE Computer
Society, 2008.

[6] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, and
E. Brewer. Path-based faliure and evolution management. In Proceedings
of the Symposium on Networked Systems Design and Implementation.
USENIX Association, 2004.

[7] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl. Automating network
application dependency discovery: Experiences, limitations, and new
solutions. In Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation, pages 117–130. USENIX Associ-
ation, 2008.

[8] D. Dechouniotis, X. Dimitropoulos, A. Kind, and S. Denazis. De-
pendency detection using a fuzzy engine. In Proceedings of the 18th
IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management, number 4785 in Lecture Notes in Computer Science,
pages 110–121. Springer-Verlag, 2007.

[9] I. K. Eltahir. The impact of different radio propagation models for
mobile ad hoc networks (MANET) in urban area environment. In
Proceedings of the 2nd International Conference on Wireless Broadband
and Ultra Wideband Communications. IEEE, Aug. 2007.

[10] J.-G. Lou, Q. Fu, Y. Wang, and J. Li. Mining dependency in distributed
systems through unstructured logs analysis. SIGOPS Operating Systems
Review, 44:91–96, March 2010.

[11] P. Novotny, B. J. Ko, and A. L. Wolf. Discovering service dependencies
in mobile ad hoc networks. Technical Report DTR-2012-2, Department
of Computing, Imperial College London, Feb. 2012.

[12] P. Novotny, A. L. Wolf, and B.-J. Ko. Fault localization in MANET-
hosted service-based systems. In Proceedings of the 31st International
Symposium on Reliable Distributed Systems, 2012. To appear.

[13] L. Popa, B.-G. Chun, I. Stoica, J. Chandrashekar, and N. Taft. Macro-
scope: End-point approach to networked application dependency discov-
ery. In Proceedings of the 5th International Conference on Emerging
Networking Experiments and Technologies, pages 229–240. ACM, 2009.

[14] S. Wang and M. A. M. Capretz. A dependency impact analysis model
for web services evolution. In Proceedings of the IEEE International
Conference on Web Services, pages 359–365. IEEE Computer Society,
2009.

[15] D. Zhou and T.-H. Lai. An accurate and scalable clock synchronization
protocol for IEEE 802.11-based multihop ad hoc networks. IEEE
Transactions on Parallel and Distributed Systems, 18(12):1797–1808,
Dec. 2007.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference 533

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

