From the Proc. of the Second Inter. Software Architecture Workshop, San Francisco, California, USA, October 1996

Software Testing at the Architectural Level

Debra J. Richardson
Information and Computer Science

University of California
Irvine, CA 92697-3425
djr@ics.uci.edu

Abstract

This paper argues that with the advent of explicitly spec-
ified software architectures, testing can be done effectively
at the architectural level. A software architecture specifi-
cation provides a solid foundation for developing a plan for
testing at this level. We propose several architecture-based
test criteria based on the Chemical Abstract Machine model
of software architecture. An architectural (integration) test
plan, developed by applying selected of these criteria, can be
used to assess the architecture itself or to test the implemen-
tation’s conformance with the architecture. This facilitates
detecting defects earlier in the software lifecycle, enables
leveraging software testing costs across multiple systems de-
veloped from the same architecture, and also leverages the
effort put into developing a software architecture.

1 Introduction

A number of researchers have been experimenting with ar-
chitecture definition languages and architecture description
models [1, 2, 7], which formally specify software architec-
ture. A software architecture specification makes the anal-
ysis, design and construction of a complex system intellec-
tually tractable by characterizing the system at a high level
of abstraction. Such a specification enables the engineer
to reason about how system requirements are satisfied in
terms of the assignment of functionality to design compo-
nents and the interaction of those components via their in-
terfaces. This reasoning may uncover architectural defects,
where the interaction or communication between compo-
nents is incorrect. Incompatibility of the data exchanged
between components, for instance, is detectable via static
analysis of the component signatures. On the other hand,
revealing defects in the dynamic interaction and communi-
cation behavior between components may require dynamic
analysis—e.g., testing.

Effective testing requires exercising the aspects to be rea-
soned about. The typical manner for accomplishing this is
to use test criteria that define data to cover the aspects to

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association of
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

SIGSOFT 96 Workshop, San Francisco, CA USA

© 1996 ACM 0-89791-867-3/96/10...$3.50

68

Alexander L. Wolf
Department of Computer Science
University of Colorado

Boulder, CO 80309-0430

alw@cs.colorado.edu

be tested. Based on formal notations for specifying soft-
ware architectures, architecture-based test criteria can be
defined, which would enable automatically defining data to
cover a system’s architectural aspects and also deriving ar-
chitectural test plans. Thus, the anticipated, widespread
use of formal architecture specification will greatly facilitate
testing dynamic component interaction and afford detecting
architectural defects early in the development process.

Perry and Wolf developed a framework for architectural
description [12]in which a software architecture specification
consists of elements (processing, data and connecting ele-
ments) and form (relationships among the elements). Based
upon this framework, Inverardi and Wolf developed a model
for operationally describing software architectures [8] based
on viewing a software system as chemicals whose reactions
are governed by rules. This metaphor was formulated as
the Chemical Abstract Machine (CHAM) [3]. In this paper,
we argue that the CHAM model for software architecture
provides a solid foundation for defining architecture-based
test criteria and developing test plans for assessing dynamic
behavior at the architectural level.

2 Review of the CHAM Formalism

The Chemical Abstract Machine is a term rewriting for-
malism that leads to a description of an architecture as a
set of static components (the “molecules”) whose states and
interactions are governed by transformation rules (the “re-
actions”). Here, we review the CHAM model, limiting our-
selves to those concepts directly required for this position
paper. The interested reader is referred to [8] for more de-
tail on the use of CHAM to model software architectures and
to [3] for an even more complete description of the model.

A Chemical Abstract Machine is specified by defining
molecules m1, ma, ... and solutions S1, Sz, ... of molecules.
Molecules constitute the basic elements of a CHAM, while
solutions are multisets of molecules interpreted as defining
the states of the CHAM. A CHAM specification also con-
tains transformation rules Th,T5%, ... each defining a trans-
formation relation 51 —— S dictating the way solutions
can evolve (i.e., states can change) in the CHAM.

Molecules are defined as terms of a syntactic algebra that
derive from a set of constants and a set of operations defined
for a specific CHAM. For architecture specification, these
sets would include a set D representing the data elements,
a set P representing the processing elements, and a set C
representing the connecting elements. See [6, 8] for examples
of CHAM molecule syntaxes.

The transformation rules can be of two kinds: general
laws that are valid for all CHAMs and specific rules defined
for the particular CHAM being specified. Compare, Inver-
ardi, and Wolf [6, 8] define several CHAM-specific rules.
The Reaction Law is one general law. Other general laws
are provided in [8].

The Reaction Law. An instance of the right-hand side
of a rule can replace the corresponding instance of its
left-hand side. Thus, given the rule

My, My, . My — M, M, ... M

if mi,ma,...,mg, and mi, mb,..., m, are instances of

the My and Mlll by a common substitution, then

we can apply the rule and obtain the following solution

transformation.
My, Ma, ..., Mg — M1, My, ..., m,

At any given point, a CHAM can apply as many rules
as possible to a solution, provided that their premises do
not conflict—that is, no molecule is involved in more than
one rule. Thus, it is possible to model parallel behaviors by
performing parallel transformations. The CHAM makes a
nondeterministic choice as to which transformation to per-
form when more than one rule can be applied to the same
molecule or set of molecules.

3 Architecture-based Testing with CHAM

Testing is typically done in several stages. Unit and module
testing analyzes the local behavior of individual components.
Integration testing analyzes how individual component be-
haviors, and the interactions among components, contribute
to the global system behavior. System testing analyzes the
global behavior of the system without regard to its decom-
position. Other testing stages, such as acceptance and stress
testing, are specialized forms of these basic testing stages.

Unit and module test plans are derived either via struc-
tural techniques from the source code or via functional tech-
niques from a specification or knowledge of the component’s
intended behavior.! System test plans are typically derived
via functional techniques from some statement or knowledge
of requirements and user needs. Integration test plans are
typically derived from implemented component interfaces
and some hierarchical representation (e.g., a call graph) of
the static invocations present in the integrated system or
subsystem, thus using a combination of functional and struc-
tural techniques, respectively.

Most approaches to integration testing are based on the
implementation, which delays use of the integration test
plan until system integration. Integration test plans could
be derived from a system design, yet most design represen-
tations are not formal enough to do this in an automated
fashion. With the advent of formal architecture specifica-
tion, however, architecture-based test criteria can be de-
fined in much the same way as have been implementation-
based and specification-based test criteria. This would sup-
port algorithmically defining test data to cover the architec-
ture and automatically developing architectural test plans—
integration test plans at the architectural level.

1F‘unctional, or black box, techniques are based on only a descrip-
tion of functionality, while structural, or white box, techniques use
the internal structure to guide testing.

69

By their very nature, implementation-based test crite-
ria are primarily structural. Structural test criteria use the
internal structure of software to define test data with the
intention of exercising, or covering, certain aspects of the
system. Several unit-level, structural test criteria have been
defined based on control flow, such as statement and branch
coverage. In addition, numerous criteria have been defined
based on relationships between control structures, such as
data flow criteria (e.g., all-def and all-use coverage). Clarke
et al. [5] compare several families of data flow criteria; each
family forms a hierarchy reflecting the relative comprehen-
sive coverage of the criteria. Podgurski and Clarke [13] con-
sider more general dependence relationships between com-
ponents. This idea of developing a family of structural cri-
teria based on relative coverage has also been extended to
define test criteria for concurrency [16]. Another structural
approach is fault-based test criteria, which prescribe test
data geared to detecting particular kinds of faults, the goal
being to cover the likely fault types and demonstrate the
absence of those faults [10, 14]. Relationships between fault-
based criteria have been analyzed as well [15].

More recently, structural criteria have been developed
based on specifications (see, for example, [4]). These ap-
proaches blend functional and structural techniques in that
the specification of a component’s “function” is used to de-
fine the test data, yet the criteria define test data in terms
of the syntax and semantics, or “structure”, of the speci-
fication. One might think of a specification as consisting
of assertions that define the software’s expected behavior.
Approaches to specification-based testing, therefore, have
defined control and data flow criteria as well as fault-based
criteria with regard to a specification’s assertions.

It is these specification-based approaches that leads us to
architecture-based test criteria. Just as an individual unit’s
implementation and specification consist of data, statements
or assertions, and control, an architecture is similarly com-
posed of data elements, processing elements, and connect-
ing elements [12]. These elements, as well as the complex
of relationships among the elements, should be exercised to
adequately test the architecture.

The CHAM for a software architecture defines molecules
(elements), solutions (combinations of elements), and trans-
formations between solutions, all of which should be ex-
ercised during testing at the architectural level. We can,
therefore, define architecture-based test criteria that require
covering these structures. Basically, applying any one of our
CHAM-based criterion proceeds as follows: (1) it determines
the set of structures to be covered by the test plan; (2) it
specifies a set of “paths” through the architecture that cover
these structures, where each “path” is the set of solutions
generated; and (3) it defines test data in terms of the ar-
chitecture’s interaction with the outside world that would
cause this set of solutions to be generated.

We suggest the following family of architecture-based
test criteria based on the CHAM model:

o all-data-elements: requires that all data defined in the
architecture are communicated—for each data element
d, at least one solution contains a molecule involving

d;?

o all-processing-elements: requires that all processing el-
ements are executed—for each processing element p, at
least one solution contains a molecule involving p;

2Only one path in the test plan need contain such a solution.

o all-connecting-elements: requires that all communica-
tion channels and connections on them are exercised—
for each connecting element ¢, at least one solution
contains a molecule involving ¢;

o all-transformations: requires that all transformations
are tested at least once—for each transformation rule
T :51 — Sz, at least one path contains the reaction

51 — 52;

o all-transformation-system: requires that all distinct
“paths”, or non-repeating sequence of transforma-
tions from the initial solution to a stable solution, be
tested—the test plan contains every non-repeating se-
quence of reactions; and

o all-data-dependences: requires that every sequence of
interactions where a data element is output on a com-
munication channel and is used either directly or indi-
rectly as input to another communication channel be
covered—for each such data dependence (d,d") at least
one “path” contains a sequence of reactions covering

(d,d").

We have begun to formally define these criteria based on
the CHAM model, but the definitions are beyond the scope
of this position paper. These are control and data flow cri-
teria based on a CHAM architecture; as we continue this
work, we may define others. We intend also to investigate
how typical architectural defects might be reflected in the
CHAM model and define fault-based test criteria accord-
ingly. Moreover, the CHAM model also supports constructs
(the membrane and airlock) to define modularity in complex
architectures [8], for which we may also define test criteria.

These criteria vary in their comprehensive coverage of
the architecture. Further analysis and experimentation is re-
quired to determine the relative comprehensiveness of these
criteria. For a particular architecture and project, a test-
ing strategy would select among the criteria by weighing
not only the relative effectiveness of criteria, but also such
factors as the resources available, time to delivery, and sys-
tem criticality. Once the appropriate criteria have been cho-
sen, applying the criteria to the CHAM architecture model
defines the test cases of an architectural test plan.? This
architecture-based, integration test plan can be used in sev-
eral ways.

Most obviously, the test plan can be used to assess the ar-
chitecture. Simulation capabilities have been developed for
software architectures. A CHAM architecture simulation®
would run the test cases over the architecture,” resulting
in the set of solutions generated together with the causal
history and timing. Causality between solutions results
from the execution of transformation rules. These causal
dependencies demonstrate the architectural behavior and
may thereby reveal dynamic problems not easily revealed
by static analyses. With this testing effort, different test
criteria will target different architectural qualities; for in-
stance, testing might assess the architecture’s performance,
load, or communication or identify missing functionality.

3The test criteria define test case inputs, or what is to be covered,
but a test plan must also define expected behavior for the test cases
as well as the environment in which testing is to occur.

4 Without a simulator, a stubbed architecture could be imple-
mented and tested prior to a full implementation effort.

5Actually, if the “path” to be covered in each test case is saved
(see step 2 above), this may be used for simulation rather than the
test data definition.

70

Another application of the architecture-based test plan
is to evaluate the implementation for conformance to the
architecture description. In this case, it is important to not
only identify the aspects of the architecture that should be
covered, but also to specify the expected behavior of the
implementation. This requires that a test oracle be devel-
oped, which is a mechanism for checking execution results
and comparing them to expected results [11]. For a CHAM-
defined architecture, such an oracle would be a trace of the
expected solutions and their transformations. Furthermore,
using such an oracle requires a mapping between elements
in the architecture model and those in the implemented sys-
tem, since, for instance, they may use different names or be
at different levels of abstraction.

Another testing activity that should be done while defin-
ing and analyzing the architecture is an assessment of, and
improvement to, testability. Certain architectures are more
difficult to test than others; thus, it may be better to re-
architect before moving on in development. Moreover, testa-
bility can be enhanced if architecture test drivers are built
into (or at least built concurrent with) the architecture to
facilitate testing down the road.

4 Conclusion

In this paper, we argue that it is important to leverage
current work in software architecture definition by develop-
ing test strategies based on architecture specifications. We
have proposed several test criteria based on the Chemical
Abstract Machine model. A testing strategy would spec-
ify which criteria to use to develop an architectural level
integration test plan. The resulting plan can be used for
testing the implementation for conformance to the archi-
tecture, with test oracles also derived from the CHAM. It
may also be applied to evaluate the architecture itself, via
either simulation or execution, to detect architectural prob-
lems revealed only by dynamic behavior. In another paper,
Compare et al. [6] have also advocated a hybrid analysis
strategy, combining algebraic and transition analysis, capa-
ble of detecting some architectural mismatch in dynamic
behavior.

Related work in architecture-based conformance testing
has been done in conjunction with the RAPIDE architecture
definition language [9]. Our work has also been influenced
by and is related to previous research in specification-based
testing, Petri net testing, and protocol testing. We are for-
mally defining the test criteria proposed here (as well as
others) based on the CHAM model. We also plan to investi-
gate testing based on other architecture description models
and architecture definition languages and believe that our
approach is generally applicable.

Testing at the architectural level has several benefits.
For one, it enables focusing on architectural defects rather
than relying on other testing strategies to detect these de-
fects. Additionally, it facilitates detecting architectural de-
fects earlier in the software lifecycle than after implemen-
tation and during system integration, as is typically done.
Furthermore, since an architecture is often reused to develop
multiple systems, the cost of any architecture level testing
effort is amortized across the multiple systems. This lever-
ages testing costs, which are extremely high relative to the
rest of development.

References

(1]

(2]

(3]

[4]

[10]

[11]

[12]

[13]

[14]

G.D. Abowd, R. Allen, and D. Garlan. Formalizing
Style to Understand Descriptions of Software Architec-
ture. ACM Transactions on Software Engineering and
Methodology, 4(4):319-364, October 1995.

R. Allen and D. Garlan. Formalizing Architectural Con-
nection. In Proceedings of the 16th International Con-
ference on Software Engineering, pages 71-80. IEEE
Computer Society, May 1994.

G. Berry and G. Boudol. The Chemical Abstract Ma-
chine. Theoretical Computer Science, 96:217-248, 1992.

J. Chang, D.J. Richardson, and S. Sankar. Structural
Specification-based Testing with ADL. In Proceedings
of the 1996 International Symposium on Software Test-
ing and Analysis (ISSTA '96), pages 62-70. ACM SIG-
SOFT, January 1996.

L.A. Clarke, A. Podgurski, D.J. Richardson, and S.J.
Zeil. A Formal Evaluation of Data Flow Path Selection
Criteria. IFEFE Transactions on Software Fngineering,
15(11):1318-1332, November 1989.

D. Compare, P. Inverardi, and A.L. Wolf. Uncovering
Architectural Mismatch in Dynamic Behavior. Avail-
able from the authors, October 1996.

D. Garlan and M. Shaw. An Introduction to Software
Architecture. In V. Ambriola and G. Tortora, editors,
Advances in Software Engineering and Knowledge En-
gineering, volume 1. World Scientific, New Jersey, 1993.

P. Inverardi and A.L. Wolf. Formal Specification and
Analysis of Software Architectures using the Chemical
Abstract Machine Model. TEFE Transactions on Soft-
ware Engineering, 21(4):373-386, April 1995.

D.C. Luckham and J. Vera. An Event-based Architec-
ture Definition Language. IFEF Transactions on Soft-
ware Engineering, 21(9):717-734, September 1995.

L.J. Morell. A Theory of Fault-based Testing. /EFE
Transactions on Software Engineering, 16(8):844-857,
August 1990.

0. O’Malley, D.J. Richardson, and L.K. Dillon. Effi-
cient Specification-based Oracles for Critical Systems.
In Proceedings of the California Software Symposium.
Irvine Research Unit in Software, April 1996.

D.E. Perry and A.L. Wolf. Foundations for the Study of
Software Architecture. SIGSOFT Software Fngineering
Notes, 17(4):40-52, October 1992.

A. Podgurski and L.A. Clarke. A Formal Model of Pro-
gram Dependencies and its Implications for Software
Testing, Debugging, and Maintenance. IFEFE Transac-
tions on Software Engineering, 16(9):965-979, Septem-
ber 1990.

D.J. Richardson and M.C. Thompson. The RELAY
Model of Error Detection and its Application. In Pro-
ceedings of the Second Workshop on Software Test-
ing, Analysis, and Verification (TAV2), pages 223-230.
ACM SIGSOFT, July 1988.

71

[15] D.J. Richardson and M.C. Thompson. An Analysis of

Test Data Selection Criteria Using the RELAY Model
of Fault Detection. IFEFE Transactions on Software En-
gineering, 19(6):533-553, June 1993.

[16] R.N. Taylor, C.D. Kelly, and D.L. Levine. Structural

Testing of Concurrent Programs. IFEF Transactions
on Software Engineering, 18(3):206-215, March 1992.

