
Science of Computer Programming 33 (1999) 101–131

Uncovering architectural mismatch
in component behavior

Daniele Compare a, Paola Inverardi a;∗, Alexander L. Wolf b
a Dipartimento di Matematica Pura ed Applicata, Universit�a dell’Aquila, I-67010 L’Aquila, Italy

bDepartment of Computer Science, University of Colorado, Boulder, CO 80309, USA

Communicated by M. Jackson; received 14 April 1997; received in revised form 5 January 1998;
accepted 9 March 1998

Abstract

When constructing software systems from existing components, the engineer is faced with the
problem of potential conicts in the interactions among the components. Of particular di�culty is
guaranteeing compatibility in the dynamic interaction behavior. Using an architectural description
of the system and its intended components, the engineer can reason about the interactions early
and at a high level of abstraction. In this paper we give a case study of the Compressing Proxy
system, which was �rst investigated by Garlan, Kindred, and Wing. We present architectural
speci�cations and analyses of two versions of the system. One version is a seemingly obvious
melding of the components. The other is a solution to deadlock problems uncovered by formal
analyses of the �rst version. We use the Chemical Abstract Machine as an example of an
architectural description formalism that can help uncover architectural mismatches in the behavior
of components. c© 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

An architectural description makes the analysis, design, and construction of a com-
plex system intellectually tractable by characterizing the system at a high level of
abstraction. Using an architectural description, the engineer can reason about the sat-
isfaction of system requirements in terms of the assignment of functionality to design
elements and the interaction of those design elements at their interfaces. This is partic-
ularly useful for one emerging method of design, namely that of assembling a software
system from existing components.
Components naturally embody assumptions about the structure and behavior of the

larger contexts in which they operate. When constructing software systems from exist-
ing components, the engineer is therefore faced with the problem of uncovering and
avoiding architectural mismatch. According to Garlan et al. [11],

∗ Corresponding author. E-mail: inverard@univaq.it.

0167-6423/99/$ – see front matter c© 1999 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6423(98)00006 -9

102 D. Compare et al. / Science of Computer Programming 33 (1999) 101–131

“Architectural mismatch stems from mismatched assumptions a reusable part
makes about the structure of the system it is to be part of. These assumptions
often conict with the assumptions of other parts and are almost always implicit,
making them extremely di�cult to analyze before building the system.”

An important class of mismatches can be understood to arise from conicts at two levels
of interaction. One is the compatibility of the data exchanged among the components,
and is usually captured quite well by the type of information present in the interfaces
and the static analyses based on the type information. The other, more di�cult com-
patibility, is the dynamic interaction and communication behavior of the components.
Mismatches often arise at this level because engineers lack the understanding about
individual component behaviors that contribute to the correct (or incorrect) global be-
havior of the system.
A number of researchers have been experimenting with a variety of techniques for

describing and analyzing systems at the architectural level of design [1, 2, 14, 18]. Each
of the techniques is based on a di�erent underlying formalism. For example, Abowd
et al. use Z [23] for specifying architectural styles, while the Wright architectural
description language [2] is based on CSP [13]. The technique developed by Inverardi
and Wolf [14] is based on the CHAM (CHemical Abstract Machine) formalism [5].
CHAM is an operational formalism that leads to a description of an architecture as
a set of components (the “molecules”) whose states and interactions are governed by
transformation rules (the “reactions”).
In this paper we demonstrate how designers can use formal architectural speci�ca-

tions and analyses to help uncover architectural mismatch in component behavior. To
illustrate the bene�ts of this approach, we employ the techniques that we developed for
the CHAM formalism. Our earlier work [14] exploited the algebraic and term-rewriting
avor of the CHAM formalism to introduce the basic algebraic analysis approach to
the architectural level of design. Here we extend that work by giving improved struc-
ture to the transformation rules and by showing a second kind of analysis based on
transition-system generation in the style of Milner [20].
We use as our example a case study of the Compressing Proxy system introduced by

Garlan et al. [12]. This example was later used by Inverardi et al. [16] to demonstrate an
algorithm for checking assumptions in component behaviors. The Compressing Proxy
is designed as a combination of two pre-existing component systems, each individually
designed and separately useful. Due to an architectural mismatch problem, it took the
designers of the Compressing Proxy two attempts to properly develop the system. In
their �rst attempt, the designers used a specially built adaptor component to account for
an obvious mismatch between the function-call-based stream interface of one compo-
nent and the standard UNIX pipe interface of the other component. However, this �rst
version of the system exhibited deadlock problems arising from a behavioral mismatch
among the components. After analysis revealed the source of the deadlock, the adaptor
was modi�ed and the second attempt at a solution worked.
As shown below, the Compressing Proxy case study clearly illustrates the point that,

when assembling existing components to form a system, there is a need for precise

D. Compare et al. / Science of Computer Programming 33 (1999) 101–131 103

speci�cations of the behavior of the components at the architectural level. Analysis of
the speci�cations can then provide early feedback about the feasibility of the assembly.
Moreover, the analysis can indicate where adjustments to the components and their
interconnections might be made.
Of course, in our study of the Compressing Proxy, we had a priori knowledge of

where the mismatch arose. Nevertheless, it should be clear from the discussion below
that the speci�cations one would create for the components, as well as the analyses
that one would apply to the speci�cations to discover the mismatch, reasonably could
be expected to follow those illustrated here.
In the next section we introduce the Compressing Proxy problem, giving an intuitive

description of the challenge it presents. In Section 3 we review related work in software
architecture speci�cation and analysis. Following that, we review the essentials of the
CHAM formalism that are required for this paper. We then present the CHAM speci�-
cations for the two versions of the Compressing Proxy architecture, demonstrating the
deadlock that arises in the �rst. The two di�erent styles of analysis supported by the
CHAM formalism and applied to this problem, algebraic analysis and transition-system
generation, are discussed and illustrated in Section 6. We conclude in Section 7 by
considering how the two kinds of analysis techniques might be employed in concert.

2. The Compressing Proxy problem

In this section we present the design of the Compressing Proxy system. Our descrip-
tion is derived from that given by Garlan et al. [12].
To improve the performance of UNIX-based World Wide Web browsers over slow

networks, one could create an HTTP (Hyper Text Transfer Protocol) server that com-
presses and uncompresses data that it sends across the network. This is the purpose of
the Compressing Proxy, which weds the gzip compression/decompression program to
the standard HTTP server available from CERN.
A CERN HTTP server consists of �lters strung together in series. The �lters com-

municate using a function-call-based stream interface. Functions are provided in the
interface to allow an upstream �lter to “push” data into a downstream �lter. Thus, a
�lter F is said to read data whenever the previous �lter in the series invokes the proper
interface function in F . The interface also provides a function to close the stream. Be-
cause the interface between �lters is function-call based, all the �lters must reside in
a single UNIX process.
The gzip program is also a �lter, but at the level of a UNIX process. Therefore,

it uses the standard UNIX input/output interface, and communication with gzip occurs
through UNIX pipes. An important di�erence between UNIX �lters, such as gzip, and
the CERN HTTP �lters is that the UNIX �lters explicitly choose when to read, whereas
the CERN HTTP �lters are forced to read when data are pushed at them.
To assemble the Compressing Proxy from the existing CERN HTTP server and gzip

without modi�cation, we must insert gzip into the HTTP �lter stream at the appropriate

104 D. Compare et al. / Science of Computer Programming 33 (1999) 101–131

Fig. 1. The Compressing Proxy.

point. But since gzip does not have the proper interface, we must create an adaptor,
as shown in Fig. 1. This adaptor acts as a pseudo CERN HTTP �lter, communicating
normally with the upstream and downstream �lters through a function-call interface,
and with gzip using pipes connected to a separate gzip process that it creates.
An adaptor constructed in this way clearly solves the �rst level of interface mismatch.

However, a deeper level of mismatch can occur without a proper understanding of
the behaviors of the components. Consider the following straightforward method of
structuring the adaptor. The adaptor simply passes data on to gzip whenever it receives
data from the upstream �lter. Once the stream is closed by the upstream �lter (i.e.,
there are no more data to be compressed), the adaptor reads the compressed data from
gzip and pushes the data toward the downstream �lter. At a component level, this
behavior makes sense. But at a global system level we can experience deadlock. In
particular, gzip uses a one-pass compression algorithm and may attempt to write a
portion of the compressed data (perhaps because an internal bu�er is full) before the
adaptor is ready, thus blocking. With gzip blocked, the adaptor also becomes blocked
when it attempts to pass on more of the data to gzip, leaving the system in deadlock.
Obviously, the way to avoid deadlock in this situation is to have the adaptor handle

the data incrementally and use non-blocking reads and writes. This would allow the
adaptor to read some data from gzip when its attempt to write data to gzip is blocked.
The Compressing Proxy is a simple example with a well understood solution. Never-

theless, one can see that it is representative of an all-too-common problem in software
development. Below we show how analyses performed on CHAM descriptions of the
component behaviors can reveal such problems.

D. Compare et al. / Science of Computer Programming 33 (1999) 101–131 105

3. Related work

In this section we review several formal speci�cation techniques appropriate to the
architectural level of design, and describe some analyses associated with the speci�ca-
tion techniques.
The speci�cation of an architecture involves a delineation of the components and

the ways in which those components are connected. Perry and Wolf [21] give a model
for architectural speci�cation that distinguishes three di�erent classes of components:
data elements, processing elements, and connecting elements. The processing elements
are those components that perform the transformations on the data elements, while
the data elements are those that contain the information that is used and transformed.
The connecting elements are the “glue” that holds the di�erent pieces of the architec-
ture together. For example, the elements involved in e�ecting communication among
components are considered connecting elements.
The Wright speci�cation language [2] provides a means to formalize connecting ele-

ments. The idea is that connecting elements should be treated as “�rst class”, such that
they have their own speci�cation-independent components. This should allow compo-
nents to be more easily connected and reconnected in a variety of ways, as long as
those connections satisfy the speci�cations. Moreover, it should be possible to demon-
strate the correctness of components and connectors somewhat more independently so
that the veri�cation task is reduced in complexity and cost.
Wright employs a subset of CSP [13] to de�ne communication protocols among

components. In particular, CSP is used for the speci�cation of component interface
behavior, and for the speci�cation of roles and glue in connectors.
Formal analyses of Wright speci�cations concentrate on two properties. The �rst

is the standard property of deadlock freedom, which has been extensively studied in
the context of CSP. The second, and more interesting, is the port-role compatibility
problem. The simple form of this check is to guarantee that ports and roles realize
identical protocols. But we could allow for more exible combinations of components
if we could guarantee the weaker condition that the “promised” behavior of a role
is “respected” by the corresponding port. This can be cast in CSP terms, where the
problem is interpreted as re�nement of protocols. Once cast this way, there are com-
mercial tools available for performing the analyses. An example is FDR [10], which
is an application of model-checking techniques.
A somewhat di�erent perspective on architectural speci�cation and analysis is pro-

vided by event languages. Here the key property is the identi�cation and ordering of
events, which are discrete markings of computational progress. An event is a very
exible, abstract notion that allows the architect to describe the system at an arbitrary
level of detail, depending on the particular de�nition of events of interest.
Rapide [17, 18] is an executable, event-based speci�cation language targeted for the

architectures of distributed systems. The idea behind Rapide is that simulation is a
key capability for checking the consistency of interfaces and connections, for under-
standing the behavior of the system as a whole, and for verifying that the system’s

106 D. Compare et al. / Science of Computer Programming 33 (1999) 101–131

communication adheres to the desired interaction structure of the architecture. A Rapide
speci�cation can be thought of as a very high-level prototype.
A Rapide architecture speci�cation consists of a description of a set of interfaces,

connections, and constraints. Interfaces specify the components of the system in terms
of the resources that they provide and require, and specify the behaviors of the com-
ponents in terms of the actions that they exhibit and to which they respond. Con-
nections de�ne the communications among the components in terms of the interfaces
of those components. Finally, constraints restrict the behaviors of the interfaces and
connections.
Behavior speci�cations for components and interfaces are given by event patterns

that describe the partially ordered set of events, called a poset, that can be generated
by the actions of the components and interfaces. An event can be considered an in-
stantiation of an action at some particular point in time. An execution of a Rapide
speci�cation (i.e., a simulation of the architecture) results in a poset that represents
some particular interaction among the components. The poset indicates the depen-
dencies and independencies among events exhibited by the system for that particular
execution.
Architecture analysis using Rapide amounts to checking for proper orderings of

events within the context of constraints on those orderings. It also involves checking
for causality among events. Particular event orderings are generated through simula-
tion and examined for these properties. A somewhat di�erent kind of analysis also
possible with Rapide is to guarantee that the communication structure of the architec-
ture is strictly preserved as speci�ed. This is particularly useful when comparing an
implementation of the system to its architectural speci�cation and leads to a form of
acceptance testing based on architecture-level concerns.
Le M�etayer [19] has developed an approach to software architecture speci�cation

in which software architectures are modeled as graphs and software architecture styles
are modeled as graph grammars. The approach is based on drawing a clear distinction
between the speci�cation of a single component’s behavior and the speci�cation of the
overall structure of the system. A graph represents an architecture by interpreting nodes
as components, whose behavior is separately speci�ed in a conventional speci�cation
language, and interpreting arcs as the communication links between components. Ar-
chitectures that exhibit the same graph structure are considered to be elements of the
same architectural style. Thus, an architectural style can be naturally expressed as a
(context-free) graph grammar.
The evolution of a system, in terms of its topological structure, is governed by a

“coordinator” component whose behavior is speci�ed as conditional graph rewriting
rules. The main contribution with respect to the analysis of architectures is that it is
possible to statically check if a given coordinator changes the structure of the graph
speci�cation according to the given style – i.e., according to the given graph grammar
specifying the style. Of course, the use of a dedicated component, the coordinator, to
manage the dynamic structure of a system imposes a speci�c view of how a software
architecture must be constructed, which limits the generality of the approach.

D. Compare et al. / Science of Computer Programming 33 (1999) 101–131 107

4. Background on the CHAM formalism

The CHAM formalism was developed by Berry and Boudol in the domain of theoret-
ical computer science for the principal purpose of de�ning a generalized computational
framework [5]. It is built upon the chemical metaphor �rst proposed by Banâtre and
Le M�etayer to illustrate their Gamma (�) formalism for parallel programming, in which
programs can be seen as multiset transformers [3, 4]. The CHAM formalism provides
a powerful set of primitives for computational modeling. Indeed, its generality, power,
and utility have been clearly demonstrated by its use in formally capturing the se-
mantics of older, more familiar computational models, such as CSP [13] and the CCS
process calculus [20]. Boudol [6] points out that the CHAM formalism has also been
demonstrated as a modeling tool for concurrent-language de�nition and implementation.
Inverardi and Wolf [14] developed a framework for architectural speci�cation and

analysis based on the CHAM formalism. Their goal is to apply the power of the CHAM,
not to its original purpose of capturing computational models and de�ning programming
languages, but rather to the design phase of speci�c software systems. Below, we briey
summarize the concepts in the CHAM formalism relevant to this paper. We also report
on the use of those concepts in the domain of software architecture.

4.1. The Chemical Abstract Machine

The CHAM formalism is operational in nature. It has a notion of state and a way
to specify the possible evolutions from one state to another. The set of all possible
evolutions that a CHAM can perform, starting from a given state, completely describe
its behavior.
A CHAM is speci�ed by de�ning molecules m;m′; : : : de�ned as terms of a syntactic

algebra that derive from a set of constants and a set of operations, and solutions S; S ′; : : :
of molecules. Molecules constitute the basic elements of a CHAM, while solutions are
multisets of molecules interpreted as de�ning the states of a CHAM. A CHAM spec-
i�cation contains transformation rules T; T ′; : : : that de�ne a transformation relation
S −→ S ′ dictating the way solutions can evolve (i.e., states can change) in the CHAM.
Following the chemical metaphor, the term reaction rule is used interchangeably with
the term transformation rule.
Transformation rules can be conditional, in that their application may depend on the

satisfaction of a condition by the current state. Conditions are expressed as premises
in the rule, with the meaning that the rule can be applied if and only if the current
state satis�es the condition expressed by the premises.
The transformation rules can be of two kinds: general laws that are valid for all

CHAMs and speci�c rules that depend on the particular CHAM being speci�ed. The
speci�c rules must be elementary rewriting rules that do not involve any premises. In
contrast, the general laws are permitted such premises. Informally, the general rules
de�ne the computational mechanisms on which any CHAM is based, while speci�c
rules de�ne the particular behavior of a given CHAM speci�cation.

108 D. Compare et al. / Science of Computer Programming 33 (1999) 101–131

Solutions can be built from other solutions by combining them through the multiset
union operator. For example, given solutions S = m1; : : : ; mn and S ′ = m′

1; : : : ; m
′
k , we

obtain S] S ′ = m1; : : : ; mn; m′
1; : : : ; m

′
k that is another solution.

CHAMs obey four general laws. Two of those laws are relevant here.
The Reaction Law. An instance of the right-hand side of a rule can replace the

corresponding instance of its left-hand side. Thus, given the rule

M1; M2; : : : ; Mk −→ M ′
1; M

′
2; : : : ; M

′
l

if m1; m2; : : : ; mk , and m′
1; m

′
2; : : : ; m

′
l are instances of the M1:::k and M

′
1:::l by a common

substitution, then we can apply the rule and obtain the following solution transformation:

m1; m2; : : : ; mk −→ m′
1; m

′
2; : : : ; m

′
l

We use an upper case M to represent a generic pattern, while a lower case m represents
a suitable instance of the pattern.
The Chemical Law. Reactions can be performed freely within any solution, as follows:

S −→ S ′

S] S ′′ −→ S ′] S ′′
In words, when a subsolution evolves, the supersolution in which it is contained is
also considered to have evolved.
At any given point, a CHAM can apply as many rules as possible to a solution,

provided that their premises do not conict – i.e., no molecule is involved in more
than one rule. In this way it is possible to model parallel behaviors by performing
parallel transformations. When more than one rule can apply to the same molecule
or set of molecules, we have nondeterminism, in which case the CHAM makes a
nondeterministic choice as to which transformation to perform. Thus, we may not be
able to completely control the sequence of transformations; we can only specify when
rules are enabled. Finally, if no rules can be applied to a solution, then that solution
is said to be inert.
As discussed in Section 3, several formalisms have been proposed to model software

architectures. The CHAM formalism represents a minimalist and exible approach, al-
lowing for speci�cations that immediately reect the dynamic behavior of the speci�ed
system. The algebraic structure of the molecules allows one to also model the static
structure of the system, thus obtaining a comprehensive framework in which both static
and dynamic features of the software architecture can be expressed. Of course, the min-
imalism of a CHAM can be a drawback when the system speci�cation becomes too
detailed.

4.2. Specifying software architectures

The CHAM speci�cation of a software architecture consists of three parts [14]:
1. a description of the syntax by which components of the architecture (i.e., the
molecules) can be represented;

D. Compare et al. / Science of Computer Programming 33 (1999) 101–131 109

2. a solution representing the initial state of the architecture; and
3. a set of reaction rules describing how the components interact to achieve the dynamic
behavior of the system.

The syntactic description of the components is given by an algebra of molecules
or, in other words, a syntax by which molecules can be built. Following Perry and
Wolf [21], we distinguish three classes of components: data elements, processing el-
ements, and connecting elements. This classi�cation is reected in the syntax, as
appropriate.
The initial solution is a subset of all possible molecules that can be constructed using

the syntax. It corresponds to the initial con�guration of the system. Transformation rules
applied to the initial solution de�ne how the system dynamically evolves from its initial
con�guration.
In our use of the CHAM, we model components as elements of a syntactic cate-

gory, thus completely abstracting away from their internal behavior. In other words, a
component is represented by a name; the only structure that we add refers to the state
of the component with respect to its interaction with other components in the system.
Thus a complex molecule can represent a speci�c state of a component in terms of
its interaction with the external context. This reects a precise choice in the level of
abstraction we have chosen to model software architectures.
With this necessarily brief introduction to the CHAM formalism and its use in the

domain of software architecture, we can now illustrate the utility of our approach to
uncovering architectural mismatch in dynamic behavior.

5. Speci�cations of the Compressing Proxy

As described in Section 2, the Compressing Proxy architecture was developed in
two versions. We refer to them as the Blocking and the Non-blocking Compressing
Proxy, respectively. In this section we give their CHAM speci�cations to serve as a
basis for the analyses discussed in Section 6. The speci�cations are purposefully kept
simple and focused to highlight the important aspects of our approach.
Note that in keeping the example simple, we are specifying the system at a rather

high level. Nevertheless, it is already possible at this level to shed light on potential
architectural problems of behavioral mismatch. If required, however, it is appropriate
within the CHAM model to incorporate additional detail into those descriptions.
In our formulation of the Compressing Proxy architecture we refer to the depiction

given in Fig. 1. The �lter to the left of the adaptor is referred to as the “upstream” �lter,
while the �lter to the right is referred to as the “downstream” �lter. Communication
along channels 1 and 2 represents the passing of data from the upstream �lter through
the adaptor to gzip for compressing. The reverse communication along channels 3
and 4 represents the passing of compressed data back through the adaptor and onto
the downstream �lter. Notice that the data themselves are not represented, only the
communication channels and the protocols governing them.

110 D. Compare et al. / Science of Computer Programming 33 (1999) 101–131

Below, we �rst present the speci�cation of the Blocking Compressing Proxy and
then show a series of applications of its transformation rules to illustrate the sys-
tem’s dynamic behavior. As a demonstration of the mismatch problem, this particular
behavior results in deadlock. We then present the speci�cation of the Non-blocking
Compressing Proxy in terms of its di�erences from the Blocking Compressing Proxy.
These di�erences precisely embody the enhancements to the adaptor module that elim-
inate the deadlock problem. The proof of this is supported by the analyses presented
in Section 6.

5.1. The Blocking Compressing Proxy

The �rst step in specifying the Blocking Compressing Proxy architecture is to de�ne
the syntax �b of its molecules M .

M ::= P | C | E | M �M
P ::= F | AD | GZ
C ::= i(N) | o(N)
N ::= 1 | 2 | 3 | 4
E ::= endi | endo
F ::= CFu | CFd

The syntax consists of the set P representing the three kinds of processing elements
and of an in�x operator “�” used to express the status of a processing element. The
connecting elements for the architecture are given by a second set C consisting of two
operations, i (for input) and o (for output), that act on the elements of a third set N .
This third set is used to de�ne the topology of the system in terms of the communi-
cation channels connecting the components, and correspond to the numbers given in
Fig. 1. A fourth set E introduces the control signals used in the communication be-
tween gzip and the adaptor. The set F contains the representation of the “upstream”
and the “downstream” CERN �lters between which is placed the adaptor for gzip.
Notice that at this level of abstraction we are not concerned with the actual data
transferred between the components, simply the protocol by which they communicate.
We take as the set of syntactic elements the initial algebra in the class of all the �b
algebras.
Let us provide some intuition behind this syntax. We use the two operations i and o

to represent primitive communications over the channels between components, where
i is for input and o is for output. The elements of E are used by AD and GZ as
markers to indicate that they are in a position to end their data transfer, if appropriate;
endi denotes “ending input”, while endo denotes “ending output”. Finally, the in�x
operator “�” is used to express the status of a processing element with respect to its
input/output behavior. In particular, the status is understood by “reading” the molecule
from left to right. Consider, for example, the AD molecule o(2) � endo � AD � i(1). This

D. Compare et al. / Science of Computer Programming 33 (1999) 101–131 111

is interpreted to mean that AD o�ers output on channel 2 and is then prepared to end
output. It is further interpreted that AD has previously accepted input on channel 1.
The left-most position (i.e., the left operand of the left-most “�” operator) in the
molecule indicates the next action that the molecule is prepared to take; if this position
is occupied by a communication operation, then the kind of communication represented
by that operation can take place.
The next step in specifying the Blocking Compressing Proxy architecture is to de�ne

an initial solution S0. This solution is a subset of all possible molecules that can be con-
structed under �b and corresponds to the initial con�guration of a system conforming
to the architecture.

S0 = CFu � o(1),
CFd � i(4),
i(2) � endi � o(3) � endo �GZ,
i(1) � o(2) � endo � AD

The solution establishes the basic connectivity of the components, which corresponds
to the channel numbers shown in Fig. 1. It establishes that the upstream �lter will o�er
data along channel 1 (to AD) and the downstream �lter will accept data along channel 4
(from AD), although both are initially in a quiescent state, since the left-most position
of each molecule is not a communication operation. GZ and AD are somewhat more
complicated. GZ is initially in the state of accepting data along channel 2 (from AD).
It can then end its input and enter a state of o�ering data along channel 3 (to AD),
after which it can end that output. AD is initially in the state of accepting data along
channel 1 (from an upstream �lter) and must wait until it has stopped accepting the
data before it can o�er data on channel 2 (to GZ). It can then end its output. The full
meaning of the initial state becomes apparent when combined with the transformation
rules.
There are eight transformation rules that de�ne the complete behavior of the Blocking

Compressing Proxy at this level of architectural modeling.

T1 ≡ i(x) � m1, o(x) � m2 −→ m1 � i(x), m2 � o(x)
T2 ≡ e � m � c −→ c � e � m
T3 ≡ endo � m1 � o(x), endi � m2 � i(x) −→ m1 � o(x) � endo, m2 � i(x) � endi
T4 ≡ endi � m1 �GZ � m2 −→ m1 �GZ � m2 � endi
T5 ≡ endo �GZ � m −→ GZ � m � endo
T6 ≡GZ � m −→ m �GZ
T7 ≡f � c −→ c � f
T8 ≡AD � i(1) � m −→ i(3) � endi � o(4) � AD
T9 ≡AD � i(3) � m −→ i(1) � o(2) � endo � AD

112 D. Compare et al. / Science of Computer Programming 33 (1999) 101–131

where m;m1; m2 ∈ M , x ∈ N , c ∈ C, e ∈ E, and f ∈ F . Rule T1 is a general inter-
element communication rule, rules T2 through T5 capture the communication protocol
between gzip and its adaptor, rule T6 enables the iteration of gzip, and rule T7 describes
the activation of the upstream and downstream �lters. Rules T8 and T9 are the critical
rules for the mismatch problem; these rules describe the behavior of the adaptor and
are replaced with two other rules in the corrected version of the architecture.
Let us provide more explanation for each rule.

• T1 generically describes pairwise input/output communication between processing
elements. In particular, communication occurs if there is a processing element m1
that accepts input from a channel o�ered as output by some other processing el-
ement m2 on the same channel. Recall that the ability of a processing element to
communicate is syntactically indicated by the appearance of a communication oper-
ation in the left-most position of the molecule. Completion of the communication –
i.e., the result of the transformation – is indicated by a rewriting of the molecule
such that the communication operation is moved to the right-most position of the
molecule.

• T2 allows either AD or GZ to iterate its communication behavior.
• T3 terminates communication through AD and GZ in the successful case – i.e., the
components “agree” to terminate the data transfer between them.

• T4 allows GZ to independently terminate its input. This situation can arise, e.g.,
when its internal bu�er is full.

• T5 allows GZ to independently terminate its output. This situation can arise, e.g.,
when the internal bu�er has emptied.

• T6 reactivates GZ to allow new compressions.
• T7 also reactivates components, in this case those representing upstream and down-
stream �lters.

• T8 changes the structure of AD with respect to the initial solution to indicate its
readiness to receive compressed data. As such, AD can no longer receive data on
channel 1 from an upstream �lter and pass them along to GZ on channel 2 for
compression.

• Finally, T9 permits AD to receive new data for compression, restoring the molecule
to its original status.

Notice that most of the rules apply to individual components, and thus are indepen-
dent of the global context. For example, the “decision” by gzip to end its input or
output through rule T4 or T5 is local to the component. Only rules T1 and T3 involve
coordination among multiple components.
To summarize the formulation, let us take the perspective of each component in the

system. A �lter is modeled as a component that iteratively o�ers data for output (if it
is an upstream �lter) or accepts data for input (if it is a downstream �lter). Rule T7
models this iterative behavior. The adaptor AD is modeled as a bi-modal element. In
its initial mode, AD iteratively accepts data from an upstream �lter and passes data on
to GZ. Rule T2 models this iterative behavior. Rule T8 models the change from AD’s
initial mode to one of iteratively accepting data for input from GZ and o�ering data for

D. Compare et al. / Science of Computer Programming 33 (1999) 101–131 113

output to a downstream �lter. Rule T9, on the other hand, models the reverse change in
mode. GZ begins its behavior by iteratively accepting data from the adaptor. Rule T2
models this iterative behavior. Rule T4 models the decision by GZ to end this iterative
input behavior and begin to iteratively o�er data for output to AD. The iterative output
behavior of GZ is modeled by rule T2, while the decision by GZ to end its iterative
output behavior is modeled by rule T5. GZ and AD can coordinate the ending of
their transfer of data. This is modeled by rule T3, which applies generically to both
the case of AD→GZ data transfer as well as the case of GZ→AD data transfer. The
overall iterative behavior of GZ is modeled by rule T6. Finally, the actual input/output
behavior of all components is modeled using rule T1.
We have thus de�ned an abstract machine that evolves dynamically from one admis-

sible state to another, starting from the initial solution S0 and using the transformation
rules T1 through T9 to model the possible behaviors of the system. Naturally, these
behaviors involve only a subset of all possible molecules that can be constructed under
�b.
One thing to observe about our formulation is that there is no way for gzip to

operate on an empty stream, although it is possible for the actual tool to do so. This
is an example of the fuzzy boundary between architectural abstraction and what might
be considered an implementation detail. To model the ability of gzip to operate on an
empty stream requires the addition of a simple rule to account for this case. We did
not include such a rule here, however, because it does not materially a�ect the analyses
we are demonstrating.
Another thing to observe about our formulation is that the data themselves are not

modeled. We simply indicate the behavior that leads to data transfer, without specifying
either the form or granularity of the data.
Finally, a possible source of confusion in this formulation arises from the generic

manner in which rules T1 through T3, as well as rule T7, are de�ned. For example,
rule T1 applies to any pair of communicants, while rules T2 and T3 apply to both
AD and GZ, but in di�erent situations and in di�erent roles. This is a stylistic issue
that is not in any way dictated by our approach. We chose in this example to develop
a compact set of transformation rules, perhaps at the cost of some degree of readabil-
ity. An alternative would have been to instantiate the generic rules for each of their
possible speci�c uses. While it would then have been clear as to which rule applied
to which component, the number of rules would have increased. We regard this abil-
ity to exibly tradeo� succinctness against speci�city as one of the strengths of our
approach.
We now trace through just a few applications of the transformation rules to illustrate

how our formulation captures the essence of the architecture. This particular trace
happens to be one that leads to the deadlock resulting from the architectural mismatch.
First, data to be compressed must be available, and therefore the solution must be

“heated” by rule T7 acting on the molecule CFu � o(1).

S0
T7−→ S1;

114 D. Compare et al. / Science of Computer Programming 33 (1999) 101–131

where

S1 = o(1) � CFu,
CFd � i(4),
i(1) � o(2) � endo � AD,
i(2) � endi � o(3) � endo �GZ

Now a reaction can occur within the subsolution consisting of molecules o(1) � CFu
and i(1) � o(2) � endo � AD. This reaction is governed by T1 and represents the initial
transfer of data from CFu to AD.

S1
T1−→ S2;

where

S2 = CFu � o(1),
CFd � i(4),
o(2) � endo � AD � i(1),
i(2) � endi � o(3) � endo �GZ

The data transfer has occurred through a single reaction, and CFu is now in a state in
which T7 is required to activate it once again for a further data transfer. Although T7
can be applied, for brevity we do not consider this possibility further in the discussion,
since our intention here is only to illustrate the behavior of the system.
At this point, reaction T1 can occur again, modeling the passing of data from AD to

GZ for compression. T1, in this case, acts upon the subsolution consisting of molecules
o(2) � endo � AD � i(1) and i(2) � endi � o(3) � endo �GZ.

S2
T1−→ S3;

where

S3 = CFu � o(1),
CFd � i(4),
endo � AD � i(1) � o(2),
endi � o(3) � endo �GZ � i(2)

From this state, any one of the three reactions T2, T3, or T4 can occur nondeterminis-
tically. (Recall that we are not further considering applications of T7, although it too
can be applied in this situation.)
A reaction involving T2 would model the availability of new data. In fact, this re-

action models the possible iteration of communication from AD to GZ – that is, the
cycle T2; T2; T1; : : : ; T2; T2, in which every cycle results in a new amount of data to be
compressed. It is evident that a possibly in�nite amount of e�ort could be spent un-
productively looping between the rules T2 and T1. This behavior amounts to modeling
that the internal bu�ers of the adaptor and gzip have an in�nite capacity. Although

D. Compare et al. / Science of Computer Programming 33 (1999) 101–131 115

this is clearly unrealistic, it has a minimal impact on the modeling of the architec-
ture. However, this can be easily solved by modifying the speci�cation such that the
T2; T2; T1; : : : T2; T2 cycle is suitably constrained to, for example, simulate some bounded
bu�er [7, 8]. In fact, it is important to introduce a constraint such as this only if it
is necessary in the description of the system, which for our purposes here it is not.
Therefore, we do not consider this situation further. Instead, we only consider situations
in which the bu�er is implicitly treated as �nite.
We postpone the application of T4 and now consider the application of T3, which

represents the situation in which AD terminates its output before GZ has terminated
its input.

endo � AD � i(1) � o(2); endi � o(3) � endo �GZ � i(2)
T3−→ AD � i(1) � o(2) � endo; o(3) � endo �GZ � i(2) � endi

Notice that the molecule AD � i(1) � o(2) � endo represents the fact that the adaptor
has completed the �rst part of its processing. GZ, on the other hand, is in the state of
o�ering output on channel 3. To this end, the molecule AD � i(1) � o(2) � endo has to
react by using T8. We now have a solution S4.

S3
T3 ;T8−→ S4;

where

S4 = CFu � o(1),
CFd � i(4),
i(3) � endi � o(4) � AD,
o(3) � endo �GZ � i(2) � endi

This reects the changed state of AD, which now is ready to receive compressed data
back from GZ, since AD has terminated its (blocking) writes.
At this point we can have a reaction between AD and GZ.

S4
T1−→ S5;

where

S5 = CFu � o(1),
CFd � i(4),
endi � o(4) � AD � i(3),
endo �GZ � i(2) � endi � o(3)

Again, T2, T3, or T4 can occur nondeterministically, and we consider the reaction
performed by T3.

endi � o(4) � AD � i(3); endo �GZ � i(2) � endi � o(3)
T3−→ o(4) � AD � i(3) � endi ;GZ � i(2) � endi � o(3) � endo

116 D. Compare et al. / Science of Computer Programming 33 (1999) 101–131

This reects the fact that GZ has terminated its output and becomes idle, while AD is
ready to output the compressed data to CFd. Molecule CFd can be activated through
T7, and then T1 can occur.

i(4) � CFd; o(4) � AD � i(3) � endi
T1−→ CFd � i(4);AD � i(3) � endi � o(4)

With this reaction, CFd terminates its wait and in fact accepts all the compressed data
from AD. It is then ready to take on new data.
By allowing T6 and T9 to react, we reach a state equal to the initial solution S0, from

which other reactions can start. In practice, this corresponds to the iterative behavior
of the Compressing Proxy.
Let us now return to the state of the system represented by solution S3 and consider

the application of T4 instead of T3.

S3
T4−→ S ′4;

where

S ′4 = CFu � o(1),
CFd � i(4),
endo � AD � i(1) � o(2),
o(3) � endo �GZ � i(2) � endi

Notice that this models the situation in which gzip must terminate its input because
its bu�er is full. It needs to write the compressed data, but the adaptor has not yet
terminated its output of non-compressed data. For this reason gzip blocks waiting for
the adaptor to read. However, the adaptor can only try to send more output to gzip. In
fact, now the only reaction that can occur for AD is within the subsolution consisting
of the molecule endo � AD � i(1) � o(2), which is governed by T2.

S ′4
T2−→ S ′5;

where

S ′5 = CFu � o(1),
CFd � i(4),
o(2) � endo � AD � i(1),
o(3) � endo �GZ � i(2) � endi

It is easy to see that no further useful transformation rules can be applied to this
solution. Thus, the system has deadlocked because there is no possible correct evolution
from S ′5.
A symmetrical deadlock occurs if we consider the application of T5 to solution S5.

Here it is reasonable to imagine that gzip’s internal bu�er has emptied. For brevity,
we do not show this situation.

D. Compare et al. / Science of Computer Programming 33 (1999) 101–131 117

5.2. The Non-blocking Compressing Proxy

Let us turn to the second version of the architecture and see what changes are
necessary in the CHAM model we developed for the �rst. The primary di�erence that
we must account for in the second version is that the adaptor can use non-blocking
writes when sending data to gzip. Therefore, any time one of the writes would have
blocked, the adaptor should now be able to read any available data from gzip using
non-blocking reads. In addition to avoiding deadlock, this approach introduces a certain
degree of incremental processing by allowing the Compressing Proxy to start sending
out compressed data before all the incoming data have arrived.
We give the speci�cation of the Non-blocking Compressing Proxy in terms of its dif-

ferences with the Blocking Compressing Proxy. First, we must introduce new elements
to represent the new behavior of the adaptor. In particular, we enrich the structure of
the molecules by introducing an in�x operator “‖” to syntactically represent a molecule
that can be broken down into parallel subcomponents, thus allowing multiple reactions
to occur simultaneously. In more familiar terms, “‖” can be interpreted as a parallel
operator.
This change requires a new syntax of molecules for the architecture. We can formu-

late this syntax by a simple modi�cation to �b. Let �n be the syntax that we obtain
by replacing the highest-level molecule syntax generator M by M ′, which is de�ned
as follows:

M ′::= P | C | E | M ′ �M ′ | M ′ ‖ M ′

Next, we need to alter the solution that represents the initial con�guration. S ′0 is obtained
from S0 by simply replacing its AD molecule with the following AD molecule:

i(1) � o(2) � endo � AD ‖ i(3) � endi � o(4) � AD
This new molecule in the initial solution represents the parallel communications that
AD can perform. In this way, AD will never block while performing input or output.
To complete the speci�cation, we need to replace rules T8 and T9 with rules appro-

priate for the Non-blocking Compressing Proxy.

T ′
8 ≡m1 ‖ m2 ‖ · · · ‖ mn −→ m1; m2; : : : ; mn

T ′
9 ≡AD � m −→ m � AD

where m;m1; : : : ; mn ∈ M . Note that rules T1 through T7 de�ned for the Blocking
Compressing Proxy also hold for the Non-blocking Compressing Proxy.
T ′
8 is a rule that breaks apart a complex molecule into its (parallel) components,

which can then participate in (parallel) reactions. T ′
9 reactivates the idle adaptor, en-

compassing rules T8 and T9 from the Blocking Compressing Proxy.
The introduction of the parallel operator in �n is for notational convenience and

readability. As evident from rule T ′
8, its semantics is simply that of reaching a solu-

tion in which the elements of the parallel molecule are placed into the solution by

118 D. Compare et al. / Science of Computer Programming 33 (1999) 101–131

themselves. The same e�ect could thus be achieved by directly placing the elements
into the initial solution, avoiding the need for rule T ′

8. On the other hand, use of the
parallel operator allows us to express the close relationship of the concurrent threads
of the component. The fact that the CHAM itself is an inherently parallel model leads
to the interpretation of that operator in more basic CHAM terms. The parallel operator
also allows for a more uniform treatment of the adaptor reactivation rule, which now
can be simply expressed by rule T ′

9.
There is an important thing to notice about this speci�cation, particularly in regard to

the interaction of the processing. We assume that an element of F always performs a
single input, followed by a single output, followed by another single input, and so on.
In essence, we are modeling the input/output behavior of these processing elements as
[IO]∗. The adaptor performs a single input or a single output during the communication
with an element of F , so that we can also model its input/output behavior as [IO]∗.
But it performs a sequence of outputs followed by a sequence of inputs when it
communicates with GZ, so that its behavior in this case is modeled by [O+I+]∗.
Finally, the input/output behavior of GZ is also modeled by [I+O+]∗, because it can
make a sequence of inputs followed by a sequence of outputs. (Recall the role of endi
and endo in the communication.)
Let us simply trace how the new architecture solves the deadlocks possible in the

previous version. Consider the following intermediate solution.

Si = CFu � o(1),
CFd � i(4),
endo � AD � i(1) � o(2),
i(3) � endi � o(4) � AD,
endi � o(3) � endo �GZ � i(2)

This solution models the situation in which output from AD to GZ has already begun.
If T4 is applied to Si, we have the following reaction:

Si
T4−→ Si+1;

where

Si+1 = CFu � o(1),
CFd � i(4),
endo � AD � i(1) � o(2),
i(3) � endi � o(4) � AD,
o(3) � endo �GZ � i(2) � endi

Notice that GZ, because it has terminated its input of non-compressed data, can im-
mediately begin its output of compressed data to AD, which in turn can terminate its
writing in order to read from GZ.

D. Compare et al. / Science of Computer Programming 33 (1999) 101–131 119

Si+1 admits two possible reactions and, since they do not conict, they can occur in
parallel. One reaction is T1, the communication of compressed data from GZ to AD.
The other is T2, which allows AD to wait for its output of non-compressed data.

Si+1
T1 ;T2−→ Si+2;

where

Si+2 = CFu � o(1),
CFd � i(4),
o(2) � endo � AD � i(1),
endi � o(4) � AD � i(3),
endo �GZ � i(2) � endi � o(3)

We can observe that AD holds the non-compressed data that it could not yet pass to
GZ, but in this version of the architecture will not block. From this state, rules T2, T3,
and T4 can once again be applied in a nondeterministic – and deadlock free – manner.
This reects the fact that AD uses non-blocking writes when sending data to GZ.

5.3. Discussion

Clearly, the key role in the system is played by the adaptor component. In partic-
ular, the role is that of a “matchmaker”, since it must interconnect a CERN HTTP
Filter with the gzip UNIX �lter, each having a di�erent communication modality. In
the �rst architecture, the adaptor initially has a structure that follows the communica-
tion style of function-call-based streams. After the application of T8, the molecule is
radically changed to allow communication through UNIX pipes. It then returns to its
initial structure by means of the application of T9. Therefore, we can see that the two
communication behaviors are mutually exclusive in the �rst architecture, leading to
the mismatch between gzip and the upstream and downstream �lters. Conversely, the
second architecture permits these communication behaviors to coexist through a con-
current behavior (i.e., multi-threading) of the adaptor. This choice avoids the potential
deadlocks exhibited by the �rst architecture.
The two speci�cations make use of the same set of processing elements and the same

communication channels. Therefore, the two architectures have the same topology.
They di�er, however, in the interaction behavior of the adaptor component, which
has a signi�cant e�ect on the global behavior of the system. This di�erence is clearly
reected in the augmentation of �b with a parallel operator, the alteration to the adaptor
molecule in the initial solution S0, and the replacement of the two adaptor-speci�c rules
in the set of transformation rules.
In the next section, we use formal techniques to analyze the two architectures for

the critical properties that reveal both the mismatch and its resolution.

120 D. Compare et al. / Science of Computer Programming 33 (1999) 101–131

6. Analysis of the architectures

A primary reason for why we are exploring the use of the CHAM formalism at the
architectural level is that it allows for two, quite di�erent analysis techniques. On the
one hand, we exploit the algebraic and equational nature of CHAM to allow us to prove
a variety of important properties about an architecture. This was the technique illustrated
in general in our earlier work [14]. On the other hand, we take advantage of the CHAM
formalism’s operational avor by generating transition systems from speci�cations and
then reasoning at the transition-system level. In fact, we have developed a tool to
automate the process of generating a transition system from the CHAM speci�cation
of a software architecture; the de�nitions underlying this process are presented here.
The exibility in analysis techniques provided by the CHAM formalism can be very
convenient for architectural engineers since, depending on the kind of property of
interest, they can choose the most appropriate technique to apply.
In this section we employ both the algebraic and transition-system techniques in

order to uncover the architecture-level mismatch in component behaviors of the Com-
pressing Proxy system. For convenience, Table 1 reproduces the initial solutions and
transformation rules for the two architectures presented in Section 5.
As usual when analyzing concurrent systems, we are interested in safety and liveness

properties. In this section, we restrict our attention to the analysis of safety proper-
ties, which are intended to state that nothing “bad” can ever happen. In the case of
the Compressing Proxy, we are interested in analyzing our speci�cations with respect

Table 1
Initial solutions and transformation rules for the Compressing Proxy architecture speci�cations

Blocking Compressing Proxy Non-blocking Compressing Proxy

Initial Solutions

S0 = CFu � o(1),
CFd � i(4),
i(2) � endi � o(3) � endo � GZ,
i(1) � o(2) � endo � AD

S′0 = CFu � o(1),
CFd � i(4),
i(2) � endi � o(3) � endo � GZ,
i(1) � o(2) � endo � AD

‖ i(3) � endi � o(4) � AD
Transformation Rules

T1 ≡ i(x) � m1, o(x) � m2 −→ m1 � i(x), m2 � o(x)
T2 ≡ e � m � c −→ c � e � m
T3 ≡ endo � m1 � o(x), endi � m2 � i(x) −→ m1 � o(x) � endo, m2 � i(x) � endi
T4 ≡ endi � m1 � GZ � m2 −→ m1 � GZ � m2 � endi
T5 ≡ endo � GZ � m −→ GZ � m � endo
T6 ≡GZ � m −→ m � GZ
T7 ≡f � c −→ c � f

T8 ≡AD � i(1) � m −→ i(3) � endi � o(4) � AD
T9 ≡AD � i(3) � m −→ i(1) � o(2) � endo � AD

T ′
8 ≡m1 ‖ m2 ‖ · · · ‖ mn −→ m1, m2; : : : ; mn
T ′
9 ≡AD � m −→ m � AD

D. Compare et al. / Science of Computer Programming 33 (1999) 101–131 121

to deadlock, since that is the erroneous behavior resulting from the use of the �rst
version of the adaptor component. Liveness properties state that something “good” will
eventually happen. In Appendix A we use the algebraic technique to show the absence
of livelocks – i.e., our speci�cations indicate that the Compressing Proxy cannot run
forever unproductively.
It is worth noticing that although the algebraic techniques used here are applied to

a speci�c system, the proof approach is common to a wide range of problems and can
be easily adapted to prove similar results on other systems. In particular, as shown in
this section, proving the presence of deadlock in iterative systems like the one we are
modeling amounts to proving the existence of terminating derivations. In our approach,
this reduces to a case analysis on the set of possible derivations. The algebraic structure
of the solutions, and the fact that we always only consider derivations starting from
the initial solution, greatly simpli�es the proof structure. The same reasoning can be
applied to the proof of liveness properties.

6.1. Algebraic analysis

The property we wish to prove about the Blocking Compressing Proxy is that it al-
lows two possible kinds of deadlock, one during the communication of non-compressed
data from AD to GZ and the other in the symmetric case.
We make a �rst observation, which we employ in the following proofs, about the

structure of solutions as controlled by the reaction rules.

Fact 1. The application of any rule does not change the number of molecules or kind
of processing elements in a solution but only transforms the state of the processing
elements mentioned in the left-hand side of the applied rule. The only exception is
rule T ′

8 of the Non-blocking Compressing Proxy, which breaks a complex parallel
molecule into its constituent parts.

The signi�cance of this fact is that, given the initial solution S0, every derived so-
lution in the Blocking Compressing Proxy CHAM will have exactly the same number
of molecules as the initial solution, namely four, one for each of the four processing
elements of the speci�cation. Given the initial solution S ′0 of the Non-blocking Com-
pressing Proxy CHAM and after a �nite number of steps in every derivation, all the
solutions will have exactly the same number of molecules, namely �ve, of which two
correspond to the parallel threads of the adaptor molecule AD and three to the other
three processing elements of the speci�cation.
Because the CHAM formalism is inherently concurrent and nondeterministic, we

need to restrict our analysis to fair policies in applying reaction rules.

De�nition 1. Let R be the set of reaction rules for a CHAM C. Then a derivation
D : S1; S2; : : : ; Sn; : : : is fair if and only if there is no reaction rule in R whose application
can be inde�nitely delayed.

122 D. Compare et al. / Science of Computer Programming 33 (1999) 101–131

This de�nition means that if a rule is enabled in�nitely often, because its application
pattern appears in�nitely many times in the derivation, then it is impossible in a fair
derivation to avoid applying the rule. Of course, any �nite derivation is fair. Fair
derivations only guarantee that if something has to be done it will eventually be done.
Below, we restrict consideration to fair derivations only. It is worth noting that this
restriction is reasonable, since it amounts to an assumption that any implementation of
the system will adopt a fair scheduling policy.
We next recall the following de�nition relevant to all CHAM speci�cations of soft-

ware architectures [14].

De�nition 2. A reaction derivation S0 −→ S1 −→ · · · −→ Sn is normalizing if Sn is
inert.

This de�nition means that a given derivation terminates, since a solution is inert
when there are no other reaction rules that can be applied to it. Thus, a normalizing
derivation is a derivation that terminates.
We can now prove the following property.

Proposition 1. Let Si be any solution derived from the initial solution by applying
the rules of the Blocking Compressing Proxy CHAM. Then Si contains either the
pair of molecules o(2) � endo � AD � i(1) and o(3) � endo �GZ � i(2) � endi or the pair
i(2) � endi � o(3) � endo �GZ and i(3) � endi � o(4) � AD if and only if Si is inert or
any derivation starting from Si reaches an inert solution in a �nite number of steps.

Proof. For the “if” part, the proof is by case analysis. By Fact 1, the number and
processing nature of the molecules that appear in any derived solution is �xed. If Si
is inert, this means that no reaction rule is applicable and, further, that appearing in Si
are the two molecules o(1) � CFu and i(4) � CFd. For GZ and AD, then it can only
be true that they are in a state in which they are going to perform either an input or
an output, otherwise rule T2 could be applied. This leads to the conclusion that they
can only be of the form o(2) � endo � AD � i(1) and o(3) � endo �GZ � i(2) � endi or
of the form i(2) � endi � o(3) � endo �GZ and i(3) � endi � o(4) � AD.
For the “only if” part, we must show that if there is the pair of molecules o(2) �

endo � AD � i(1) and o(3) � endo �GZ � i(2) � endi in Si, then there are only a �xed
number of reaction steps that can be performed. By Fact 1 this is trivial, since the
only possibility is that the �lters are in a state that allows the application of T7
and these are the only possible further reactions. The reasoning for the other pair is
analogous.

The proposition above permits us to characterize the solutions that lead to normaliz-
ing derivations. It shows that any normalizing derivation implies that the adaptor and
gzip will eventually reach a state in which one is willing to output on channel 2 while
the other is willing to output on channel 3. This exactly models the deadlock situation,

D. Compare et al. / Science of Computer Programming 33 (1999) 101–131 123

in which both processing elements are trying to output. The other pair of molecules
models the symmetric situation in which deadlock can occur – i.e., when both the
adaptor and gzip are trying to input, one on channel 3 and the other on channel 2.
The next proposition shows that in order to reach an inert solution, it is necessary to

apply rule T4 or rule T5. These rules model the situations in which gzip autonomously
decides to end its input or output, thus eventually leading to a deadlock.

Proposition 2. Let S0 be the initial solution of the Blocking Compressing Proxy
CHAM and let � : S0 −→ S1 −→ · · · −→ Sn be a derivation from S0. Then any deriva-
tion �′ from Sn is normalizing if and only if there exists in � a solution Si such that
Si

T4−→ Si+1 or Si
T5−→ Si+1.

Proof. Let us �rst consider whether any derivation �′ from Sn implies the existence

of Si
T4−→ Si+1 or Si

T5−→ Si+1 in �. By the hypothesis �′ is terminating. Since �′ is
normalizing this means that the last solution must contain either the pair of molecules
o(2) � endo � AD � i(1) and o(3) � endo �GZ � i(2) � endi or the pair of molecules i(2)
� endi � o(3) � endo �GZ and i(3) � endi � o(4) � AD by Proposition 1, because other-
wise a non-terminating derivation can be easily built. Looking at the rules, this is
obtained only through the application of T4 or T5. On the other hand, starting from the
initial solution, it is certainly possible to apply rule T4 or T5. In fact, from the initial
solution, a solution is reached deterministically that allows for the application of T4. If
this rule is not applied, then eventually rule T3 can be applied, thus leading to solutions
that allow the application of rules T8 or T6. This in turn allows, in a few reaction steps,
the production of a solution containing a redex for T5 or again T4. This situation can
be repeated an in�nite number of times if the derivation is non-terminating.
We must now consider the reverse condition. We only consider the application of rule

T4, since the reasoning for rule T5 is analogous. Let us assume that Si
T4−→ Si+1 exists

in � and let us prove that any derivation �′ from Sn is normalizing. By examining the

derivations from the initial solution, Si
T4−→ Si+1 means that either the pair of molecules

endo � AD � i(1) � o(2) and o(3) � endi �GZ � i(2) � endi is present in Si+1, or the pair
of molecules o(4) � AD � i(3) � endi and endo �GZ � i(2) � endi � o(3) appears in Si+1.
In either case, there exists a maximum number of reaction steps that can be further per-
formed on Sn before the pair o(2) � endo � AD � i(1) and o(3) � endo �GZ � i(2) � endi
is created and, by Proposition 1, we have a situation from which only inert solutions
are reachable.

In our framework, a normalizing derivation models a terminating computation. What
we want to do is understand whether this means a successful termination or an incorrect
behavior. For the system under consideration, any terminating derivation signals an
incorrect behavior if the data to be processed are still not exhausted. In fact, in the
presence of data, the system must work forever. From the above proposition, we know
that any normalizing derivation has to apply either rule T4 or rule T5. Then, if we look

124 D. Compare et al. / Science of Computer Programming 33 (1999) 101–131

at the solutions we get after their application, it is easy to see that the data are not
completely processed.
Let us now de�ne a state of deadlock for the Blocking Compressing Proxy.

De�nition 3. Let Si be a generic solution of the Blocking Compressing Proxy CHAM
and let Si+1 be a solution such that Si

T4−→ Si+1 or Si
T5−→ Si+1. Then Si+1 de�nes a

state of deadlock.

This de�nition allows us to ignore the remaining part of the derivations that start from
a solution obtained by the application of T4 or T5, since they (incorrectly) terminate,
as we have proven in the previous proposition.
We can now prove that we have only two kinds of derivations that terminate.

Proposition 3. The Blocking Compressing Proxy CHAM allows only two kinds of
normalizing derivations, S0 −→ · · · −→ Si −→ · · · −→ Sn or S0 −→ · · · −→ Sj −→
· · · −→ Sm, such that endi � o(3) � endo �GZ � i(2) ∈ Si and endo �GZ � i(2) � endi
� o(3) ∈ Sj.

Proof. Starting from the initial solution S0, we can easily see that T4 or T5 can be
applied only if either endi � o(3) � endo �GZ � i(2) or endo �GZ � i(2) � endi � o(3) is
in a given solution. In the �rst case, the application of T4 corresponds to the situation
in which GZ interrupts its input before AD has terminated its output. The second case
corresponds to the symmetric situation. Then, looking at the rules, we can see that
there are only two kinds of solutions in which T4 or T5 can be applied.

Si = : : :,

endi � o(3) � endo �GZ � i(2)
and Sj = : : :,

endo �GZ � i(2) � endi � o(3)
Moreover, these two molecules can obviously never appear in the same solution. This
is by Fact 1, since they are both related to gzip.

At this point we have the following corollary.

Corollary 3.1. In every normalizing derivation, T4 is applied to solutions that contain
the molecule endi � o(3) � endo �GZ � i(2) and T5 is applied to solutions that contain
the molecule endo �GZ � i(2) � endi � o(3).

We use this corollary in the proof of the following proposition.

Proposition 4. There are exactly two sets of deadlock states in the Blocking Com-
pressing Proxy CHAM.

Proof. The thesis follows immediately from De�nition 3 and Corollary 3.1.

What still remains to be proven is that the second architecture removes the potential
deadlocks that can occur in the �rst.

D. Compare et al. / Science of Computer Programming 33 (1999) 101–131 125

Proposition 5. Let S ′0 be the initial solution of the Non-blocking Compressing Proxy
CHAM and let � : S ′0 −→ S ′1 −→ S ′2 −→ · · · −→ S ′n be a derivation from S ′0. Then
there exist no normalizing derivations starting from S ′n.

Proof. We simply need to show that in the Non-blocking Compressing Proxy CHAM
it is impossible to perform a normalizing derivation. The presence of the complex
molecule i(1) � o(2) � endo � AD ‖ i(3) � endi � o(4) � AD together with the heating rule
T ′
9 guarantees that in a generic solution S

′
i (i ¿ 0) there are always two molecules

for the adaptor, i(1) � o(2) � endo � AD and i(3) � endi � o(4) � AD or the molecules
evolved from them.
Let us assume that the thesis is not true. Then it should be possible to reach a

solution that is inert. This means that no reaction can be performed on that solution.
This implies that, as far as the upstream and downstream �lters are concerned, their
molecules are respectively waiting to output and to input, so that rule T7 cannot be
applied. Further, GZ has to be in a state that does not allow the application of T2, T4,
T5, or T6. Then it can only be either waiting for input from AD or waiting to output
to AD. As far as the two molecules of AD are concerned, similar to the reasoning
for GZ, they can only be waiting for input from GZ and waiting to output to GZ. In
both cases we can have a reaction between GZ and one of the AD molecules, thus
contradicting the hypothesis that the solution is inert.

We can now state the following result.

Corollary 5.1. The Non-blocking Compressing Proxy CHAM does not allow dead-
lock.

Having formally proven the absence of deadlocks in the second architecture, we can
prove that it allows in�nite derivations if and only if data for compressing are in�nitely
available. This fact ensures that there exist no livelocks – that is, situations in which
the system makes no progress, although it is not blocked. Livelocks are generated by
in�nite derivations in which it is always possible to apply at least one reaction rule,
although no constructive progress is made. In our case, this would mean that along the
derivation, no data processing is achieved. We present these results in Appendix A.

6.2. Transition-system analysis

Let us now turn to the other kind of analysis made possible by a CHAM speci�-
cation of an architecture, transition-system analysis. First we show how it is possible
to generate a transition system from a CHAM description. Basically, we use the usual
approach of deriving the transition system from the operational semantics [9, 20, 24]
by considering that our reaction rules are indeed the operational semantic rules. Note,
however, that due to the concurrent operational nature of the CHAM, we must also
consider all the transitions in which sets of disjoint redexes can be applied. In terms

126 D. Compare et al. / Science of Computer Programming 33 (1999) 101–131

of the generated transition system, this does not imply any increase in the number of
states but only in the number of arcs to be considered.
The following de�nitions provide the generation mechanism.

De�nition 4 (Operational semantics induced by R). Let R be the set of reaction rules
of a CHAM C. Then R de�nes a relation D⊆Molecules×Molecules. The relation is
the least relation satisfying the rules.

De�nition 5 (Derivative). Given a set of reaction rules R, an R-derivation from a
solution S0 to a solution Sn is a sequence {Si; 06i6n}, n ¿ 0, such that for any
06i6n− 1, Si −→R Si+1. A solution Sj is called an R-derivative of Si if an R-
derivation exists from Si to Sj. The set of derivatives of S0 is called DR(S0).

De�nition 6 (Transition system). A transition system T is a triple (S; D; s0), where S
is a set of solutions, s0 ∈ S is the initial solution, and D⊆ S × S.

De�nition 7 (Transition system corresponding to a solution). Given a solution S and
a set of reaction rules R, R(S) is the transition system (DR(S) ∪ {S}; D; S), where D
is the relation de�ned by R.

In this way, given a CHAM and a solution, we can generate a transition system that
represents the complete set of possible derivations. If the number of derivable solutions
is �nite, then the transition system is also �nite.
A portion of the transition system for the Blocking Compressing Proxy is depicted

in Fig. 2. Each node represents a unique solution and each directed arc represents a
transition applied to a solution to form another solution. The arcs are labeled with
the transformation rules from Table 1. The graph was produced by a tool that we
developed to generate transition systems from CHAM architecture speci�cations [22].
In the �gure we see a solution with no outgoing arcs, namely S76. The full transition

system contains a second solution, S35, that also has no outgoing arcs. These two states
represent deadlocks in the system. It is clear from the full graph that all paths leading
from S0, the initial solution, to S35 or S76, the deadlock solutions, involve an arc labeled
T4 or labeled T5, respectively. This con�rms our earlier result that the application of
T4 or of T5 leads to deadlock.
The existence of exactly two deadlock states, S35 and S76, in the transition system is

in accord with Proposition 4, which identi�es two sets of deadlock states. It is useful
to recall that in the algebraic proposition we are referring to the solutions to which T4
or T5 can be applied, while in the transition system we are referring to the deadlock
solutions themselves. The sets of solutions of Proposition 4 can be found by tracing
back through the various paths that terminate at S35 or at S76. If we look at the solu-
tions corresponding to the two deadlock states we �nd, as expected, the two identi�ed
pairs of molecules of Proposition 1 that characterize the deadlock con�gurations of the
system.

D. Compare et al. / Science of Computer Programming 33 (1999) 101–131 127

Fig. 2. Excerpt from the Blocking Compressing Proxy Transition System.

7. Conclusion

In this paper we have presented and discussed the speci�cations of two architectures
for the Compressing Proxy case study. Our speci�cations are kept at a rather high
level of abstraction, with many details of the system behavior left unaddressed. For
example, we have purposely ignored the question of granularity of the data manipulated
by the components that constitute the Compressing Proxy. This is not a weakness of
the formalism, but rather an explicit degree of freedom in interpreting the architectural
descriptions (e.g., purposely leaving certain implementation choices up to developers).
If more constraints on the admissible behaviors are desired in the descriptions of the

128 D. Compare et al. / Science of Computer Programming 33 (1999) 101–131

architectures, then the CHAM model allows us to provide more details in the speci�ca-
tions. Our goal is to see if the CHAM descriptions can usefully reveal the architectural
mismatch inherent in the Compressing Proxy architecture. From the given speci�ca-
tions, this can be simply derived and formally proved.
It is interesting to note that the uses of the two kinds of analysis techniques, al-

gebraic and transition, are actually complementary. In fact, while the proof of certain
properties can be easier at the transition-system level, such as the absence/presence of
deadlock/livelock, it can be more complex to use this level of analysis to understand
what has to be done in order to prevent or correct these situations. The transition model
is, from this point of view, too abstract, since it can be di�cult to relate problems to
the structure of the solutions. On the other hand, the analysis at the algebraic level can
be tedious and complicated for certain properties, but it is highly informative, since it
maintains all the information about the structure of the system. Of course, when the
system under speci�cation has an in�nite number of states, then the use of algebraic
techniques is the only practical choice.
In general, we advocate a mixed analysis strategy. Our goal is to be able to rea-

son about a system at the level of software architecture in order to prove non-trivial
properties of the system. In case we can discover a problem at this level of spec-
i�cation, such as the deadlock in the Blocking Compressing Proxy architecture, we
would like to be assisted in the analysis that leads to a correction in the architec-
ture. An environment that allows the automatic derivation of a transition system from
a CHAM description plus an inference engine that allows one to simulate deriva-
tions at the CHAM level, can serve the purpose. In this way, the analysis strategy
can proceed in two steps. First a transition system is generated and analyzed in
order to identify the critical states and derivations. Then the inference engine can
be used to execute the identi�ed derivation and solutions. Thus, we can obtain a
more informative view of the critical behaviors of the system with which it is pos-
sible to reason and understand the ways in which mismatches in behavior can be
corrected.
The ability to generate a transition system allows the application of model-checking

techniques, once the properties to be proved are expressed in a suitable logic. This can
be very useful when analyzing alternative architectures of the same system that can
be characterized by means of invariant properties. In fact, we have already begun to
exploit this approach [15].

Appendix A. Liveness properties

In this appendix we prove that the Non-blocking Compressing Proxy CHAM is free
of livelocks.

Proposition 6. The Non-blocking Compressing Proxy CHAM allows in�nite deriva-
tion if and only if data for compressing are in�nitely available.

D. Compare et al. / Science of Computer Programming 33 (1999) 101–131 129

Proof. Input of new external data is modeled by the application of rule T7 on the
molecule CFu � o(1). We need to show that any derivation in the Non-blocking Com-
pressing Proxy CHAM, since there are no deadlocks and therefore all the derivations are
in�nite, contains an in�nite number of occurrences of rule T7 applied to the molecule
CFu �o(1). Let us assume that this is not true. Then there must exist an in�nite deriva-
tion that contains only a �nite number of applications of rule T7 on the molecule
CFu � o(1). This is clearly impossible since after a �nite number of reaction steps, the
fact that there is no longer an occurrence of the molecule o(1) � CFu will prevent a
reaction with the molecule i(1) � o(2) � endo � AD, which in turn will eventually react
with GZ, thus contradicting the hypothesis.

This last proposition can be easily shown to also hold for the �rst architecture.

Proposition 7. The Blocking Compressing Proxy CHAM allows in�nite derivations
if and only if data for compressing are in�nitely available.

Another interesting property that we want to prove is that all the di�erent sets of data
that are manipulated by the Non-blocking Compressing Proxy are eventually processed.
This fact becomes clearer if we keep in mind that AD can operate in parallel and that it
performs a sequence of outputs followed by a sequence of inputs when it communicates
with GZ. This amounts to showing that we cannot have derivations in which there is
a molecule representing a pending output of the adaptor, where that molecule is never
utilized in a transformation. Of course, we must also prove an analogous property for
GZ, since its input/output behavior is also modeled by [I+O+]∗.

Proposition 8. Let S ′0 be the initial solution of the Non-blocking Compressing Proxy
CHAM and let � : S ′0 −→ S ′1 −→ · · · −→ S ′n −→ · · · be an in�nite derivation from S ′0.
Then there exists no j ¿ 0 such that ∀k¿j
1. the molecule o(2) � endo � AD � i(1)⊂ S ′k ; and
2. the molecule o(3) � endo �GZ � i(2) � endi⊂ S ′k .

Proof. Let us consider the �rst point. We prove the claim by contradiction. Assume that
in � there exists j ¿ 0 such that ∀k¿j o(2) � endo � AD � i(1)⊂ S ′k . In other words,
we have a derivation S ′j −→ S ′j+1 −→ · · · from S ′j in which o(2) � endo � AD � i(1) is
always present. Therefore, no reaction involving this molecule occurs. Since only T1 can
react with it, this amounts to assuming that the molecule i(2) � endi � o(3) � endo �GZ
never occurs in �. By case analysis on the structure of �n, we are sure that there exists
a maximum number of reaction steps that can be performed before we have a situation
from which no further reaction is possible. This fact implies that � is a normalizing
derivation, thus contradicting the hypothesis.
The second point is analogous. For brevity, the proof is not shown.

130 D. Compare et al. / Science of Computer Programming 33 (1999) 101–131

To complete our formal analysis we want to show that the di�erent sets of data
manipulated by the Non-blocking Compressing Proxy CHAM do not mix – i.e., we
want to prove that the external data are actually processed. In fact, because of the
concurrent behavior of AD, we need to be sure that the data coming from an upstream
�lter are all sent from AD to GZ. This fact guarantees that the integrity of the data
is preserved.

Proposition 9. Let S ′0 −→ S ′1 −→ · · · −→ S ′n be a derivation of the Non-blocking
Compressing Proxy CHAM such that the molecule o(4) � AD � i(3) � endi⊂ S ′n. Then
there exist S ′r and S

′
t , where 0¡ r ¡ t ¡ n, such that the subsolution o(2) � endo � AD

� i(1),i(2) � endi � o(3) � endo �GZ ⊂ S ′r and the subsolution i(3) � endi � o(4) � AD,
o(3) � endo �GZ � i(2) � endi ⊂ S ′t .

Proof. Let us assume by contradiction that there does not exist S ′r and S
′
t with 0 ¡

r ¡ t ¡ n such that o(2) � endo � AD � i(1), i(2) � endi � o(3) � endo �GZ ⊂ S ′r and
i(3) � endi � o(4) � AD, o(3) � endo �GZ � i(2) � endi ⊂ S ′t . We know that the ability
of a processing element to communicate is syntactically indicated by the appearance
of a communication port in the left-most position of the molecule. Completion of the
communication is indicated by a rewriting of the molecule such that the communication
port is moved to the right-most position of the molecule. Therefore, keeping in mind
the structure of S ′0 and how T1 describes communication between processing elements,
it follows that o(4) � AD � i(3) � endi 6⊂ S ′n. This leads to a contradiction.

References

[1] G.D. Abowd, R. Allen, D. Garlan, Formalizing style to understand descriptions of software architecture,
ACM Trans. Software Eng. and Methodology 4 (4) (1995) 319–364.

[2] R. Allen, D. Garlan, A formal basis for architectural connection, ACM Trans. Software Eng. and
Methodology 6 (3) (1997) 213–249.

[3] J.-P. Banâtre, D. Le M�etayer, The gamma model and its discipline of programming, Science of Computer
Programming 15 (1) (1990) 55–77.

[4] J.-P. Banâtre, D. Le M�etayer, Programming by multiset transformation, Comm. ACM 36 (1) (1993)
98–111.

[5] G. Berry, G. Boudol, The chemical abstract machine, Theoret. Comput. Sci. 96 (1992) 217–248.
[6] G. Boudol, Some chemical abstract machines, in: A Decade of Concurrency, Lecture Notes in Computer

Science, Vol. 803, Springer, Berlin, 1994, pp. 92–123.
[7] D. Compare, Speci�ca ed Analisi del CERN Compressing Proxy con la CHAM, Technical Report Tesi

di Laurea, Dipartimento di Matematica Pura ed Applicata, L’Aquila, Italy, December 1995.
[8] D. Compare, P. Inverardi, Modelling interoperability by CHAM: A case study, in: Proc. First Internat.

Conf. on Coordination Models and Languages, Lecture Notes in Computer Science, Vol. 1061, Springer,
Berlin, April 1996, pp. 428–431.

[9] N. De Francesco, P. Inverardi, Proving �niteness of CCS processes by non-standard semantics, Acta
Inform. 31 (1) (1994) 55–80.

[10] Formal Systems, Ltd., Failures Divergence Re�nement: User Manual and Tutorial, Formal Systems,
Ltd., Oxford, England, October 1992.

[11] D. Garlan, R. Allen, J. Ockerbloom, Architectural mismatch: Why reuse is so hard, IEEE Software 12
(6) (1995) 17–26.

D. Compare et al. / Science of Computer Programming 33 (1999) 101–131 131

[12] D. Garlan, D. Kindred, J.M. Wing, Interoperability: Sample problems and solutions, Technical Report,
Carnegie Mellon University, Pittsburgh, PA, in preparation.

[13] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood Cli�s, NJ, 1985.
[14] P. Inverardi, A.L. Wolf, Formal speci�cation and analysis of software architectures using the chemical

abstract machine model, IEEE Trans. Software Eng. 21 (4) (1995) 373–386.
[15] F. Corradini, P. Inverardi, A.L. Wolf, On the choice of a software architecture: a guided tour in the

analysis of architectural design, Available from the authors, October 1998.
[16] P. Inverardi, A.L. Wolf, D. Yankelevich, Checking assumptions in component dynamics at the

architectural level, in: Proc. 2nd Internat. Conf. on Coordination Models and Languages, Lecture Notes
in Computer Science, Vol. 1282, Springer, Berlin, September 1997, pp. 46–63.

[17] D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, W. Mann, Speci�cation and analysis of
system architecture using Rapide, IEEE Trans. Software Eng. 21 (4) (1995) 336–355.

[18] D.C. Luckham, J. Vera, An event-based architecture de�nition language, IEEE Trans. Software Eng. 21
(9) (1995) 717–734.

[19] D. Le M�etayer, Software architecture styles as graph grammars, in: Proc. Fourth ACM SIGSOFT Symp.
on the Foundations of Software Engineering, ACM SIGSOFT, October 1996, pp. 15–23.

[20] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cli�s, NJ, 1989.
[21] D.E. Perry, A.L. Wolf, Foundations for the study of software architecture, SIGSOFT Software Eng.

Notes 17 (4) (1992) 40–52.
[22] A. Rosetti, Generazione di test cases da speci�che formali della architettura software, Technical Report

Tesi di Laurea, Dipartimento di Matematica Pura ed Applicata, L’Aquila, Italy, March 1997.
[23] J.M. Spivey, Understanding Z: A Speci�cation Language and its Formal Semantics, Cambridge

University Press, Cambridge, 1989.
[24] D. Taubner, Finite Representations of CCS and TCSP Programs by Automata and Petri Nets, Lecture

Notes in Computer Science, Vol. 369 Springer, Berlin, 1989.

