
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2003; 33:77–98 (DOI: 10.1002/spe.496)

Software release management
for component-based software

André van der Hoek1,∗,† and Alexander L. Wolf 2

1Institute for Software Research, Department of Information and Computer Science,
University of California at Irvine, Irvine, CA 92612–3425, U.S.A.
2Software Engineering Research Laboratory, Department of Computer Science,
University of Colorado at Boulder, Boulder, CO 80309, U.S.A.

SUMMARY

Software release management is the process through which software is made available to and obtained
by its users. Until now, this process has been relatively straightforward. However, the emergence
of component-based software is complicating software release management. Increasingly, software is
constructed via the assembly of pre-existing, independently produced, and independently released
components. Both developers and users of such software are affected by these complications. Developers
need to accurately document the complex and changing dependencies among the components constituting
the software. Users must be involved in locating, retrieving, and assembling components in order to
appropriately bring the software into their particular environment. In this paper, we introduce the problem
of release management for component-based software and discuss SRM, a prototype software release
management tool we have developed that supports both developers and users in the software release
management process. Copyright 2002 John Wiley & Sons, Ltd.

KEY WORDS: software release management; components; component-based software; distributed development;
software deployment

1. INTRODUCTION

In the world of component-based software development, software systems are created by integrating
independently developed, pre-existing components‡. Many different components may be offered in
a common marketplace by many different organizations. These organizations, located all around the
globe, continuously improve the components and independently release new versions of them as they
make these improvements [1–3].

∗Correspondence to: André van der Hoek, Institute for Software Research, Department of Information and Computer Science,
University of California at Irvine, Irvine, CA 92612–3425, U.S.A.
†E-mail: andre@ics.uci.edu
‡In this paper, we adopt the common view of a component as a relatively large-grained, mostly self-contained, and independently
identified part of one or more software systems that is deployed as a single, coherent unit [1].

Contract/grant sponsor: Defense Advanced Research Projects Agency (DARPA)
Contract/grant sponsor: Air Force Research Laboratory; contract/grant numbers: F30602-00-2-0599; F30602-00-2-0608

Published online 27 November 2002
Copyright 2002 John Wiley & Sons, Ltd.

Received 24 August 2001
Revised 16 August 2002

Accepted 1 October 2002

78 A. VAN DER HOEK AND A. L. WOLF

Much research and development effort is currently being expended on creating technologies to
support component-based software development. Among them are component platforms (e.g. .NET
[4], EJB [5], Koala [6]), techniques for the predictable assembly of components [2], and enhancements
to existing programming languages to incorporate modeling constructs for specifying components (e.g.
ArchJava [7], Acoel [8]).

Far less attention has been paid to the question of what happens after development: how should
developers release component-based software and how can users subsequently obtain such software—
especially if the software under consideration consists of many components that are released by many
organizations at many different geographical locations? Typically, the burden rests either with the user
of the software, who has to scour the Internet to locate and retrieve the necessary set of components, or
with the developer of the software, who has to create an archive containing all necessary components.
In either case, a manual process is followed that is often labor intensive, error prone, and not very
flexible.

We term this problem software release management, which is the process through which software
is made available to, and obtained by, its users [9]. At the heart of software release management is the
notion of dependence, by which we refer to a component’s need for a set of other components in order
for that component to properly function. In other words, if a user were to only obtain the component
itself, or the component and only a subset of its dependent components, the resulting software would
be incomplete and not operate. Understanding a component’s dependencies is complicated by the fact
that components may be developed by different organizations, that those organizations autonomously
control the release of new versions of their components, that each version of a component may have
different dependencies, and that dependent components may themselves be complex component-based
systems. Therefore, documenting dependencies accurately, and then using the documentation to both
drive and constrain software release management, is critical for supporting developers and users of
component-based software.

We have defined a flexible release management process and built a specialized tool to support that
process in the context of distributed, component-based software development. The tool, called Software
Release Manager (SRM), is based on two key notions. First, while components can be released from
physically separate sites, the actual location of each component is transparent to those using the SRM.
Second, dependencies among components are explicitly recorded so that they can be understood and
exploited by the tool and its users. In particular, the tool helps developers automatically document and
track transitive dependencies, and helps users in retrieving not just components, but also all of the
dependent components.

An important assumption we are making is that, while SRM is responsible for storing and reasoning
over dependencies, it itself is not responsible for generating or otherwise deriving the dependencies.
Instead, when a developer releases a component, they (or some tool used by them) are expected to
specify the dependencies of that component. SRM is therefore independent of any specific component
platform such as .NET or EJB. This limits the functionality of SRM, in that it cannot exploit specialized
features of the component platform (for example, to determine the consistency of a component-
based system or to automatically calculate the dependencies). However, it significantly broadens its
applicability.

SRM is focused specifically on the activities that take place between the time when components are
developed and when they are installed. SRM intentionally does not support traditional configuration
management of source code, nor does it support the installation, configuration, activation, or run-time

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

SOFTWARE RELEASE MANAGEMENT 79

reconfiguration of a component-based application. Instead, SRM forms a bridge from the organizations
where components are authored and released, to the organizations where the components are assembled
into an application. Although some existing release tools incorporate aspects of this functionality (as
discussed in Sections 2 and 6), we argue why they fall short and how a tool such as SRM fills an
important niche in software release management of component-based software.

The remainder of this paper is organized as follows. First, we further motivate the need for software
release management by illustrating how, in a distributed development setting, a lack of appropriate
support for software release management leads to difficulties. We then present a set of requirements
for a software release management tool. Based on those requirements, we describe the functionality of
SRM, our software release management tool. This is followed by a description of some implementation
details and a discussion of our experience in using SRM. We conclude with a discussion of related work
and a look at some directions for future enhancements to SRM.

2. MOTIVATION

At first glance it may seem that adequate support for software release management can be found
in configuration management tools [10–12], Web sites for software distribution [13–15], software
deployment tools [16–18], or even some of the newer component platforms [4]. However, it is pertinent
to observe that these solutions expose serious deficiencies and that no single effort has tackled the issues
specifically or methodically. As a result, parts of the problem are addressed in different places, but an
overall, cohesive, and comprehensive approach to software release management for component-based
software is lacking. Consider the following examples.

• The GNU Free Software Directory [19] is a centralized index to most of the software
developed under the GNU public license. Available software is described using a variety of
textual metadata, including the components upon which a particular piece of software depends.
Unfortunately, those dependencies are only listed by name, and locating and retrieving them is
left to the user.

• Tucows [15] and ComponentSource [20] each provide an index to thousands of software
components that are published and managed in a centralized manner on their respective Web
sites. Compared to the GNU Free Software Directory, they provide the advantage of grouping
components according to target platform. Unfortunately, however, they once again fall short in
describing dependencies. Textual metadata lists dependencies by name and users are responsible
for locating and retrieving the dependencies.

• The Red Hat package manager (RPM) [21,22] is one of the most advanced deployment systems
available to date. A declarative file that contains the instructions for RPM to automatically
install, configure, and uninstall the software accompanies each component managed by
RPM. A particularly useful part of these instructions is the specification of dependencies.
Each RPM package may contain a set of URLs pointing to other RPM packages on the Web.
If necessary, RPM automatically downloads these packages and installs and configures the
relevant components contained in those packages. Although powerful, this scheme leads to
problems when a RPM package is removed or relocated from its original location. Other RPM
packages dependent upon the component that was removed or relocated will no longer install
properly.

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

80 A. VAN DER HOEK AND A. L. WOLF

Surprisingly, the situation in these three examples is better than in many others. Often one can find
software for which different components need to be retrieved from different, geographically distributed
ftp or Web sites. Moreover, some of these components may only be available in their latest versions,
even if other components depend on older versions. The specification of dependencies is another issue,
since such information may be spread out over source files, ‘readme’ documentation files, Web pages,
and various other places. Typically, one still comes across situations in which the documentation of
dependencies is incomplete, incorrect, or simply not present (see van der Hoek et al. [9] for a detailed
description of one such example).

The kinds of problems we describe above are not unique to the GNU Free Software Directory,
Tucows, ComponentSource, or RPM examples. Rather, they are fundamental and common to many
instances of component-based software development. As examples, contracting often involves many
contractors who independently develop many components constituting one or more software products
that are put together by an integrator; large companies often consist of many independently functioning
departments, each supported by their own set of software development tools, but all contributing to an
overall product; and companies sometimes form virtual enterprises to create a joint product, assembled
from sets of components developed by each company. In all these cases, the relative independence of
the participating groups, combined with the need to produce a joint result, creates a situation similar
to the ones presented above. Components have to be released among groups, systems have to be
released to external organizations, many versions of many different components are produced, and,
most importantly, dependencies among components become increasingly complex.

From this discussion, it should be clear that software release management is an important part
of the overall software process. Simply making available and retrieving interdependent components
individually neither facilitates independent software development nor encourages widespread use of
large component-based software. What is needed is a software release management process that
documents the released components, records and exploits the dependencies among the components,
and supports the location and retrieval of groups of compatible components in the context of distributed,
decentralized, and autonomous component development.

3. REQUIREMENTS FOR SOFTWARE RELEASE MANAGEMENT

This section discusses a set of core requirements for software release management in the context of
component-based software development. These requirements are derived mainly from our observations
of a ten-year project in which four geographically distributed organizations collaborated in developing
over fifty interrelated components. Over time, each of the components was released in multiple different
versions. Each of these versions, in turn, could have different dependencies. Manual management of the
resulting intricate web of dependencies turned out to be a difficult exercise and led to many problems
in users obtaining a working software system [9].

The requirements address both developers and potential users of component-based software.
For developers, a software release management process and support tool should provide a simple way to
make component-based software available to potential users. This entails the following requirements.

• Dependencies should be explicit and easily recorded. It is critical for a developer to be able
to easily and accurately document dependencies as part of the release process, even if those

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

SOFTWARE RELEASE MANAGEMENT 81

dependencies cross organizational boundaries. Moreover, once recorded, those dependencies
should be directly usable by the release management tool to automate parts of the process.

• Releases should be kept consistent. Specifically, actions by one organization should not render
components by another organization useless. In particular, it should generally not be possible
to remove components that are dependents of other components. Similarly, a newly released
version of a component should not automatically replace an older version, since the two versions
may in fact be incompatible.

• The scope of a release should be controllable. A developer should be able to control which users
are able to download a component. As a minimum, licensing and access control mechanisms
must be provided.

• The release process should involve minimal effort on the part of the developer. For example,
when a new version of a component is to be released, the developer should only have to specify
what has changed, rather than treating the new version as a completely separate entity.

• A history of retrievals should be kept. This allows developers to track how often their components
have been downloaded, as well as to feed this information into a separate contact database or
e-mail list to be used for announcements of new releases, patches, related products, and the like.

For potential users (i.e. those organizations and individuals that obtain applicable components
for some specific purpose such as experimentation, evaluation, or actual use), a software release
management tool should provide an easy way to locate and retrieve such components. This leads to
the following requirements.

• Descriptive information should be available. Based on this information, a user should be able to
locate sets of components that may be of interest. Furthermore, a user should be able to determine
whether a particular (version of a) component may be of use and, thus, should be downloaded
for further examination.

• Location transparency should be provided. If desired, a user should be unaware of where
components are physically stored.

• A component and its dependencies should be retrievable as a single archive. To avoid potential
inconsistencies and mistakes when a user retrieves a component and its dependencies one-by-
one from multiple different locations, a software release management system should allow a user
to download a component and its dependencies in a single step and as a single archive.

• Software deployment tools should be able to use the software release management tool as the
source for components to be installed and configured. In particular, the release management tool
should, upon request, provide a deployment tool with metadata, dependencies, and the actual
archives containing the components to be installed and configured.

A software release management process and support tool that satisfies these requirements will
alleviate the problems evident in our motivating examples. They will make it easier for developers
to release component-based software, and for users to efficiently and reliably obtain them.

4. A SOFTWARE RELEASE MANAGER

SRM is a software release management tool that we have designed, implemented, and used since 1996.
The basics of SRM are similar to the traditional ‘label and archive’ paradigm used in the past. A SRM

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

82 A. VAN DER HOEK AND A. L. WOLF

Figure 1. SRM architecture.

assumes that a configuration management system (e.g. ClearCase [10], Continuus [23], PVCS [12],
or CVS [11]) is used to label, extract, and place a set of files into a release archive such as a tar,
zip, or jar file. The exact content of an archive may be a set of source files, a binary file, an applet,
or any other mechanism for capturing a component. The archive is subsequently published and made
available to users, who in turn are responsible for locating and retrieving the archives in which they are
interested. To make this process feasible for component-based software, SRM provides two important
distinguishing features.

• It structures the information used in the release management process. SRM uses this structure in
automating much of the process to support developers and users.

• It provides location transparency. In particular, dependencies can span multiple, physically
distributed organizational boundaries. Both developers and users are capable of accessing the
information regarding components in a way transparent to the location of the information.

Guided by the requirements discussed in Section 3, we arrived at a number of high-level design
considerations that helped shape the overall architecture of SRM. First, we leverage existing HTTP
protocols for communication within SRM. This allows users to retrieve components simply by using a
standard Web browser. Second, we achieve location transparency by storing all artifacts in a physically
distributed, but logically centralized database. This database integrally supports versioning of the
artifacts. Finally, to reduce the effort of creating the Web pages through which components are released,
as well as to provide some assurance that the information in those pages remains accurate with respect
to the database, the Web pages are automatically generated. In addition to making the release of
components easier for developers, this provides us with an opportunity to create a uniform interface
through which all components can be retrieved.

Figure 1 illustrates the resulting architecture of SRM, which consists of four parts: a logically
centralized, but physically distributed, release database; an interface through which developers place
components into the release database; an interface through which users retrieve components from the

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

SOFTWARE RELEASE MANAGEMENT 83

release database; and a Web server with cgi scripts through which users of the remote retrieve interface
access the release database and download components. With the exception of the Web server and cgi
scripts, which are straightforward, we discuss each part of the architecture in detail below.

4.1. The release database

The release database is a repository that SRM uses to store the metadata pertaining to the components,
as well as the release archives themselves. The database is implemented using NUCM, a distributed
repository for versioned artifacts [24]. SRM uses NUCM in such a way that the release database is
logically centralized, but physically distributed. It is logically centralized in that it appears to users
of SRM as if they are manipulating a single database in which multiple artifacts from multiple
distributed sites are visible at the same time. It is physically distributed in that the artifacts are
actually stored in separate repositories spread across different sites. Each site corresponds to a separate
organization contributing components to the release database. In particular, when an organization
releases a component, a copy of the component is usually stored in a repository that is physically
present at that organization. Links are then put in the other physical repositories to allow each of the
participating organizations access to the newly released component. Full details of this implementation,
as optimized for flexibility and distributed operation, are beyond the scope of this paper, but can be
found elsewhere [24].

Figure 2 illustrates the structure of the release database using a hypothetical arrangement of release
information. As we can see, SRM stores four types of artifacts in a release database:

• release archives containing the actual components;
• metadata describing each component;
• a list of dependencies for each component; and
• Web pages for each component.

The release archives for the components and the corresponding Web pages, which represent the bulk
of the data in the repository, are stored at the site where the components were released. In this way, each
site provides the storage space for its own components. In the current version of SRM, the metadata
and list of dependencies for each of the components are contained in a single file that is stored at just
one of the sites. This happens to be site C in Figure 2. A more distributed schema has been explored
for potential adoption in SRM [25].

4.2. The release interface

Through the release interface of SRM, developers release new components to the release database
and withdraw (i.e. remove) obsolete components. Component releases are typically provided bottom
up with respect to their dependencies, which is to say that before a component can be released, all
other components upon which it depends must have been released. The inverse is true for withdrawing
a release. To address the rare case of components with circular dependencies, as well as to support
correcting erroneous dependencies and managing evolving dependencies, developers can modify a
release through the release interface. Next, we discuss each of the release, modify, and withdraw parts
of the release interface in more detail.

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

84 A. VAN DER HOEK AND A. L. WOLF

Figure 2. SRM release database.

Releasing a component

To release a component, a developer must provide four pieces of information: the metadata describing
the component; the dependencies of the component on other components; the source location of the
component; and the scope of the component release.

The minimal metadata that must be provided consists of a component name, a component version,
and the name and e-mail address of a contact person. Additional metadata may be provided for
descriptive purposes, such as, among others, the name of the developing organization, a Web site, a
detailed description of the functionality of the component, and the platform(s) on which the component
is known to properly install and execute. Although not required, developers are certainly encouraged
to fill out all metadata, since it is the basis upon which potential users browsing the release database
assess the suitability of a particular component for their purposes.

Metadata in SRM is descriptive. SRM does not perform any analyses or enforce any particular
standards. This is a conscious design choice, since different organizations may be using different
processes. Consider, for example, the version identifier field, which distinguishes different, co-existing

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

SOFTWARE RELEASE MANAGEMENT 85

Figure 3. Selecting component dependencies.

releases of the same component within a release database. SRM could prescribe a particular versioning
scheme or convention. Doing so, however, would be a mistake and actually decrease its applicability
in the context of decentralized release management. Different organizations typically use different
versioning schemes, and forcing all of those organizations to adopt a single versioning scheme just to
use SRM is unreasonable. SRM, therefore, allows each organization to label its component releases
according to its own versioning scheme.

To inform a potential user of the differences among component versions, one of the critical pieces
of metadata that can be filled out is a textual description of the functionality that has changed between
one component version and its predecessor. Users can peruse this field as it changes from release to
release to determine the evolution of a component over time.

The second piece of information that a developer must provide describes the direct, first-level
dependencies of a component on other components. SRM is able to calculate transitive dependencies
across multiple components by following paths over first-level dependencies. Using a small subset of
actual component releases that are currently available on the Red Hat Linux distribution Web site [26],
Figure 3 shows an example of how SRM’s user interface displays the specification of dependencies
for a new component release, namely version 2.5 of the component up2date. (Note that the current
version of the SRM interface uses the term ‘tools’ for dependent components and ‘release’ for the actual
component being released.) The interface allows for a simple point-and-click selection of first-level
dependencies. In this case, one dependency is selected and consequently highlighted by dark shading,
namely python-xmlrpc version 1.4. The SRM automatically includes a transitive dependency
that it has calculated from previously recorded information regarding python-xmlrpc version 1.4.
In particular, lighter shading highlightsrhn register version 1.3.2 as a transitive dependency for
the component up2date version 2.5. The combination of the first-level and transitive dependencies
is the complete set of dependencies maintained by SRM for any of the components being released.

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

86 A. VAN DER HOEK AND A. L. WOLF

It should be noted that specifying a remotely released component as a dependency is as easy as
specifying a locally released component as a dependency, since the release database is transparently
distributed. All released components, regardless of location, are uniformly shown in the dependency
selection process.

It should also be noted that the information in the release interface is purposely brief. Developers
generally are fully aware of which components they used during the development of their component.
Selecting those components as dependencies is simply a matter of locating them quickly in the list of
components presented. If for some reason more information is needed to reaffirm a particular choice,
SRM can bring up more metadata regarding any of the listed components.

The third piece of information is the source location of a component. SRM assumes that a component
release is contained in a single archive, such as a tar, zip, or jar file. Since SRM makes no assumptions
about the format of the file, different formats can be used for different components.

Finally, a developer must choose the scope of a component release. SRM provides three
complementary mechanisms that can be used to control scope: release groups, an access control
mechanism based on user names and passwords, and licenses.

Release groups are used to partition components into different tracks. For example, one could
imagine dividing all the components that are available on the Red Hat Linux distribution site into five
different groups: (1) kernel components; (2) applications; (3) patches; (4) experimental alpha releases;
and (5) external contributions. In cases where thousands of components are released, partitioning is
necessary to allow potential users to quickly find components that match their interest. Note that
components can be part of multiple groups, allowing the partitioning of components along multiple
dimensions and, thus, facilitating multiple paths of entry into the release database.

To control which potential users have access to the components in a release group, developers can
specify a set of user names and associated passwords. This feature of SRM can be used, for example, to
guarantee limited access to components that are released to in-house developers or paying customers.
The first group would be protected with a username and password known only to the developers, the
second with usernames and passwords that are distributed on a per-user basis whenever a component
is purchased by an interested party.

Within a group, each component may have an associated license to which an interested user must
agree before a component can be downloaded. The license text can be specified by the developer, and
may range from a simple disclaimer to something as elaborate as the GNU General Public License
[27]. In addition to a strictly enforced license, a developer may also choose to use a license in a manner
similar to the traditional concept of a warranty. In such a case, the license is displayed after a component
has been downloaded and only needs to be agreed to on a voluntary basis. This kind of license is
generally used to present to an interested party a disclaimer or message that is not directly related to
the download process itself.

SRM stores in the release database all metadata, all dependencies, and a copy of the archive
containing each component. Old versions of a component are not removed and a new release will co-
exist with the old release. Therefore, the release database becomes a source of historical information
about the various released components and their dependent components. In essence, SRM repository
automatically documents the release management process.

One assumption we have made up to this point in the discussion is that all components are
released through SRM. However, there may very well be dependencies on components that have been
produced by organizations that do not use SRM. For such cases, SRM provides the concept of foreign

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

SOFTWARE RELEASE MANAGEMENT 87

components. A developer who wants to release a component that is dependent on a foreign component
simply releases two components. First, the developer releases the foreign component to SRM. Then,
the developer releases the component that needed to be released in the first place. In both cases, the
same process is followed, and in both cases, the result is a component stored inside SRM that can
be used as a dependent component and retrieved by potential users. However, there is one important
difference: for a foreign component, a developer specifies a URL through which that component can
be retrieved, rather than providing an archive containing a release.

As an example, consider a developer who wishes to release a new chat component. The chat
component uses python-xmlrpc version 1.4 as well as an external XML library provided by
some other organization that does not use SRM. To release the chat component, the developer releases
two components. First, the developer ‘releases’ the external XML library as a foreign component,
providing to SRM its descriptive metadata and the URL through which it can be retrieved from its Web
site. Second, the developer releases the chat component and selects, using normal point-and-click,
python-xmlrpc version 1.4 and the library as dependencies. When a user attempts to download
the chat system, SRM will use the given URL for the library to transparently retrieve the foreign
component. It then returns it to the user as part of a single archive that also includes the chat system,
the internally maintained dependencypython-xmlrpc version 1.4, and the automatically included
transitive dependency rhn register version 1.3.2.

It should be noted that the use of URLs for foreign components breaks the consistency that a SRM
otherwise guarantees, since a URL may become invalid over time. Nonetheless, the use of URLs
forms a compromise in treating all dependencies in a uniform manner, irrespective of whether the
dependencies are maintained by SRM. If absolute consistency must be guaranteed, a physical copy
of the foreign component can always be stored inside the release database using normal release
procedures.

The discussion thus far ignores the following three issues that are pertinent to software release
management.

• Variants. At times, organizations release one particular version of a component as a series of
related, but alternative variants. Consider, for example, an organization that releases different
variants of its components for different customers or an organization that makes available both a
lightweight, inexpensive variant of a component and a more function-rich, more costly variant.
SRM provides two complementary mechanisms for dealing with variability. First, it is possible to
use the version identifier to distinguish different variants. For example, one could release version
1.6-lightweight and version 1.6-heavyweight and use the rest of the metadata to
further explain the difference. A second solution relies on the use of release groups. One could
create a release group for each variant of a component (and its dependencies) and release
different variants of the component to the appropriate release groups.

• Platform dependencies. SRM provides metadata entries through which developers specify both
the software and hardware platform(s) upon which a component can be properly installed and
executed. Because SRM is meant to be generic and cannot a priori predict all of the potential
platforms upon which components may be installed (new languages, new versions of operating
systems, and even new devices such as programmable PDAs continue to enter the marketplace),
this entry is purely textual. SRM does not use these entries to, for example, determine the
compatibility of components with target platforms. Nonetheless, it is often desirable to group

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

88 A. VAN DER HOEK AND A. L. WOLF

together those components that all operate on the same platform. Release groups can be
effectively used for this purpose. By partitioning the complete set of available components in
different release groups, one for each platform, users can assess whether or not the component
in which they are interested is suitable for use in their organization. Because a single component
release can be part of multiple release groups (e.g. Windows XP and Windows 2000), the release
of components that operate on multiple platforms is supported. Moreover, it allows partitioning
of components along multiple dimensions (e.g. a component can be part of both a Windows XP
group and a JDK 1.4 group).

• Patches. The use of patches is a popular method of releasing component updates, and is often
used to make available bug fixes. In contrast to releasing a whole new version of a component,
a patch only contains a small set of changes to be applied to a specific version of a component.
SRM naturally supports the use of patches. A developer simply releases a patch and specifies as
a dependency the particular component version upon which the patch is built. When patches are
released incrementally, the dependencies form a chain of patches, the last of which is dependent
on a particular component version. The advantage of such a chain is that a user is not only
guaranteed to retrieve the right set of patches, but is also informed of the right order in which to
apply them.

Note that these techniques work irrespective of whether a component is directly released to SRM
or wrapped as a foreign component. Proper use of metadata and release groups uniformly supports
variants, platform dependencies, and patches in both cases.

Modifying a release

SRM allows a developer to modify the information describing a release. One simple reason is that
metadata, such as a contact person or e-mail address, may change. A more important reason is
that underlying dependencies may change. For example, python-xmlrpc version 1.4, as shown
in Figure 3, depends on rhn register version 1.3.2. Because the latter component evolves
independently of the first one, it may happen that a new version is created (for example, to fix a bug or
to add new functionality) while python-xmlrpc stays the same. If the changes to rhn register
leave its interface and behavior intact, python-xmlrpc will not need to change to interoperate
with the new version. Once it is determined that python-xmlrpc version 1.4 works properly
with the new version of rhn register, SRM can be used to switch the version of the dependent
component python-xmlrpc version 1.4 to the new version. Notice that a mechanism based on a
default version, such as ‘the latest’, would not work in this scenario. This is because the version of
the dependent component would have switched automatically from the old to the new before it was
verified that the new version was compatible.

Changes in dependencies are not automatically propagated to users, since that would be a violation
of their autonomy. Rather, users have to decide when they are ready to upgrade, download the necessary
components, and most likely invoke a deployment system to properly install and configure the newly
downloaded components. SRM keeps a history of retrievals and allows users to register for future
notifications (see Section 4.3), which helps in creating a list of users to be contacted when dependencies
change.

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

SOFTWARE RELEASE MANAGEMENT 89

The need to change the scope of a release is more common than the need to modify dependencies
without creating a new version. To change the scope, developers can change the release groups to
which a component belongs, modify the access control lists that govern access to the components in a
release group, and adjust the enforcement and text of licenses as necessary.

Withdrawing a release

The third operation supported by the release interface allows developers to withdraw components
from the release database. This functionality is provided to make an obsolete or non-supported
component unavailable for download and delete it altogether from the release database. To guarantee
the integrity of the release database, one restriction is placed on the withdrawal of components: they
can only be withdrawn if they are not serving as a dependency for other components. For example,
since python-xmlrpc version 1.4 depends on rhn register version 1.3.2, rhn register
version 1.3.2 cannot be withdrawn from the release database. If a developer still wants to withdraw
rhn register version 1.3.2, either python-xmlrpc version 1.4 needs to be withdrawn first,
or the dependencies of python-xmlrpc version 1.4 need to be changed to include a different
version of rhn register.

A second way of withdrawing a component is to change its scope by removing it from one or more
release groups. The component will then no longer be visible to a potential user who browses the
components in those release groups, but is still present in the database for use as a dependency. This
mechanism allows fine-grained control over the audiences to which a component will still be visible,
thereby making it possible to phase out a component in a controlled manner. Once a component has
been removed from all of its release groups, primary downloads of the component will be radically
reduced, but the component can still be downloaded as part of another component release until it is
explicitly deleted from the release database.

4.3. The retrieve interface

Once components have been placed into the release database, the retrieve interface of SRM can be used
to retrieve the components from the database. SRM uses information in the release database to support
a user in locating and retrieving components. In effect, the retrieve interface forms a bridge between
the development environment and the user’s deployment environment.

The retrieve interface is built as an automatically generated, static, Web-page-based interface to
allow widespread access to the release database. Every time a component is released, SRM creates a
Web page for that component and updates the Web pages for the release groups to which the component
belongs. These release-group Web pages are the primary access points to the release database and each
presents a listing containing short synopses of the components that are part of the group.

Upon selection of a component from a group Web page, the Web page corresponding to the selected
component is presented to the user. This Web page contains all of the descriptive metadata supplied by
the developer, allowing a user to assess the suitability of the selected component. In addition, the Web
page shows the dependence graph for the component and provides selection buttons to manually turn
off or on dependencies for retrieval. This portion of the interface is shown in Figure 4. In this example,
up2date version 2.5 is being retrieved, and both of its dependencies have been selected for retrieval
as well.

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

90 A. VAN DER HOEK AND A. L. WOLF

Figure 4. Downloading a component using the SRM retrieve interface.

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

SOFTWARE RELEASE MANAGEMENT 91

Figure 5. Actual dependence graph showing a richer set of dependencies.

Upon confirmation of the selection, SRM assembles an archive containing all selected components
and delivers this archive to the user. In case SRM delivers a single component, the format of the archive
maintains that of the original tar file, zip file, or jar file. If, on the other hand, multiple components are
delivered, the current implementation of SRM assembles the individual archives into a single tar file.
Upon receipt, a user first must untar this archive to gain access to the archives containing the individual
components. In today’s Web browsers, such functionality is usually automatic.

In case of richer dependencies than those shown in the example of Figure 4, it is possible that
a single component is listed as a dependency for multiple other components. Because of SRM’s
detailed tracking of dependencies, it is able to determine such occurrences and, consequently, will
only include a single instance of the component in the archive that is delivered to the user. For
example, consider the dependence graph shown in Figure 5. This graph was obtained from an actual
installation of SRM at one of its user sites. As the graph shows, two components specify the component
Object Cache Runtime version 1.0a as a dependency. Since SRM is aware of this fact, it
will only include a single copy of this component upon download of the component Juliette
Interpreter version 2.0d2 with all of its dependencies. The same holds for the component
Grapevine Runtime version 1.0.

Cyclic dependencies are managed in a similar manner. SRM detects their presence and presents
users with an archive in which each component that is part of the cycle is included only once. SRM
takes versions into account when determining the presence or absence of cycles. Different versions of
the same component are allowed in a single archive and do not trigger the detection of a cycle. This

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

92 A. VAN DER HOEK AND A. L. WOLF

facilitates situations in which parts of a software system use an old version of a component and other
parts have already been upgraded to a newer version. While such situations may lead to installation
or configuration problems, there are cases in which it is legitimate and necessary to include multiple
versions of a single component in a single archive, hence the support by SRM.

A user of the retrieve interface is not aware that the various components might have originated from
several geographically dispersed sites. Physical distribution is hidden within SRM release database,
which silently retrieves the components from the various repositories and ships all of them back to
the user as a single archive. From there, the user is responsible for further installation. The goal of
SRM, after all, is only to deliver the right set of components to a user. Nevertheless, a specialized
software deployment tool may subsequently be used to install the components that have been retrieved.
An experimental integration of SRM with one such system, the Software Dock [28], was made to
demonstrate the feasibility of this approach.

Before giving a user access to the archive containing the desired components, SRM verifies whether
one or more of the components in the archive have an associated license. If so, it displays these licenses
first and requires a user to agree with their contents before access to the archive is granted. Developers
using SRM, thus, can be assured of a process in which their licenses are explicitly presented and read.

After a user has downloaded the desired components, the SRM retrieve interface optionally presents
them with a registration page. On this page, the user can fill out their name, e-mail address, and reason
for downloading the selected components. This information is forwarded to the developers of the
downloaded components, allowing them to maintain a list of users who may be interested in receiving
product updates.

Finally, it should be noted that the retrieve interface keeps statistical information about the number
of retrievals that have taken place, allowing developers to assess the usage of their components.

5. IMPLEMENTATION AND EXPERIENCE

SRM was first developed in late 1996 to demonstrate the utility of the NUCM repository for
distributed configuration management [24] in addressing a real-world software release management
problem concerning four universities jointly developing and releasing an interrelated set of about 50
components [9]. SRM has since undergone a series of extensive revisions, culminating in the system
that is available today. NUCM still serves as the release database. The release interface is implemented
in Tcl/Tk [29], whereas the retrieve interface is implemented as a series of statically generated Web
pages that are accessed from a standard Web browser via cgi scripts [30].

In total, SRM comprises about 18 000 lines of source code, approximately 80% of which is dedicated
to presenting an appropriate user interface for the release process and generating Web pages for the
retrieve process. The remaining 20% implement: (1) the storage and retrieval of component releases in
the release database; (2) the cgi scripts that return requested metadata, component releases, and licenses
to a user’s Web browser; and (3) the storage of download statistics and user registrations in the release
database. All parts of SRM are designed to handle concurrency by using NUCM’s locking primitives in
implementing a two-phase commit protocol. As a result, multiple users can simultaneously download
sets of interrelated components, even as multiple developers release, modify, and remove components
at the very same time.

SRM has been successfully installed and tested on a variety of Unix platforms (e.g. Solaris, HP-UX,
and Linux). The limitation to Unix platforms is largely due to the use of NUCM as the release database.

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

SOFTWARE RELEASE MANAGEMENT 93

SRM itself could easily be ported to non-Unix platforms. However, such an effort would require
migrating to a different release database.

SRM has been downloaded over 600 times over the four-year period of 1997 to 2001. We ourselves
have used it extensively, which has allowed us to evaluate its user interface and basic functionality
first hand. In fact, many modifications and enhancements were made over the years, resulting in the
system presented here. Of the users who downloaded SRM, about 150 registered to receive update
announcements, indicating the usefulness of this part of the retrieve interface in building a community
of users and allowing users the freedom to decide whether or not to be part of this community.

Our primary use of SRM has been as the release management system for the software produced
in the Software Engineering Research Laboratory (SERL) at the University of Colorado. It has been
used to release about ten different systems in a number of different versions. Over 1800 downloads
were performed using the SERL SRM site. The benefits for the developers of the components released
by SERL are evident. First, SRM informs them of the number of downloads, in essence providing a
‘popularity’ gauge. Second, very little time needs to be spent on creating Web pages and recording
dependencies to release a new version of a component, since SRM does so automatically and only
needs as input the metadata and dependencies that have changed as compared to the previous version of
the component. Lastly, component releases are consistent. A user who downloads a set of components
with their dependencies should not experience any installation or execution problems that are due to
incompatible versions (unless, of course, the wrong information was provided by the developers).

The inherently distributed nature of SRM was tested during an 18-month tenure as the software
release management tool for the Evolutionary Design of Complex Software (EDCS) program
sponsored by the United States Defense Advanced Research Project Agency (DARPA). Participating
organizations from all over the U.S. released about 15 components to SRM, which were retrieved about
150 times. Due to the specific domain and experimental nature of the components, the usage numbers
of the EDCS release database were not as high as one might expect. Nonetheless, this particular
installation demonstrated an important aspect of SRM in being fully capable of supporting a group
of autonomous, loosely collaborating organizations that all resided in physically different locations.
For the EDCS program, SRM created a single resource where components were released perused,
assessed, and retrieved, thereby reinforcing the critical role software release management plays in such
an environment.

6. RELATED WORK

In this section, we discuss the four areas of work most closely related to SRM. First, we examine
relevant Web sites through which software is distributed. Second, we present an overview of software
deployment, which is the larger context of software distribution, installation, and configuration in
which software release management plays a crucial role. Third, we look at the field of configuration
management. Finally, we discuss component platforms.

6.1. Web sites for software distribution

Web sites have long been used to distribute software [25]. Initially, they were used in an ad hoc manner
to distribute software that an individual person or organization had produced. The ability to link to
different locations was soon after explored to create Web sites that served as indexes to available

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

94 A. VAN DER HOEK AND A. L. WOLF

software. The rapid increase in popularity of these indexes, combined with the business opportunity
to generate revenue out of advertising, quickly led to the development of professionally maintained
Web sites that provide the ability to not only search for and download appropriate software, but to also
upload software to be published. Exemplified by Gamelan [13] and Tucows [15], these Web sites now
index and make available thousands of software titles and are remarkably popular.

The influence of component-based software can be found in several smaller-scale, and usually more
focused, indexes. The open source domain [31] provides a particularly useful example: since the trend
is to build upon components provided by other developers, open source Web indexes such as freshmeat
[32] and SourceForge [14] have started to keep track of dependencies among components. Specifically,
the description of each available component contains an explicit section with a list of other components
that a user must obtain before the desired component can be installed, configured, and run.

Two important differences exist between these Web sites and SRM. First SRM is specifically
designed to provide management of component releases and their dependencies in a distributed and
decentralized setting. Most Web sites, on the other hand, require all component releases to be managed
at their central site. The second difference lies in the use of dependencies to support the download
process. Whereas the Web sites provide a rudimentary mechanism that lists necessary components
but requires users to download them one-by-one, SRM automatically bundles a component and its
dependent components, and delivers them at once in a single archive.

6.2. Software deployment

Software release management is an important part of the overall process of software deployment.
Defined by the software deployment life cycle [33], software deployment covers those activities that
occur after a piece of software has been developed. Specifically, software deployment covers the release
and retirement of software by its producer; the installation and removal of software on a particular
user machine; the update, reconfiguration, and adaptation of installed software to change its desired
behavior; and the activation and deactivation of installed software to ensure proper initialization and
destruction sequences are adhered to when the software is executed. One of the earliest software
deployment systems was AT&T’s ship [16], which since has been followed by a host of commercial
systems (e.g. InstallShield [17], NetDeploy [18], Tivoli [34,35]), an open source system (RPM [21,22]),
and a comprehensive research system (Software Dock [33]).

The influence of component-based software is as much visible in software deployment as it is in Web
sites for software distribution. The Software Dock and RPM both were specifically designed to manage
dependencies among components. For example, both prohibit the removal of installed components
upon which other installed components rely for their proper functioning. Similarly, InstallShield and
NetDeploy are able to check, prior to installation of a component, whether all of the other components
are already installed for the component itself to be installed and function. The Software Dock and RPM
take this even further and will automatically download and install necessary components.

The primary difference between these deployment systems and SRM lies in their focus. Although
deployment systems do incorporate some rudimentary form of software release management, their
focus on installation and configuration typically limits their support to the retrieval of information
and components through a simple form of connectivity between the deployment tool and the original
release site. This, as can be seen in Section 3, is only a small portion of the functionality needed to
fully support software release management.

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

SOFTWARE RELEASE MANAGEMENT 95

6.3. Configuration management

Configuration management systems (e.g. ClearCase [36], Continuus [23], CVS [37]) have long been
used to manage the evolution of software. In precisely capturing different versions of a software system
and its constituent source files, the use of a configuration management system creates a historical
record of all changes made during the development process. Baselines [38] are used to label and record
important sets of versions of artifacts, such as those used in a particular release.

The influence of component-based software development on configuration management can be
found in the advent of vendor code management [39]. Vendor code management allows an organization
to periodically import into its configuration management system source code developed by another
organization using another configuration management system. This allows the organization to
incorporate and assume control over ‘foreign’ components in the development of its software. A similar
mechanism is used in source tree composition [40], a technique that refines vendor code management
to support public domain software.

Configuration management systems and SRM serve a complementary role. Whereas configuration
management systems focus on managing the development and evolution of software components,
SRM supports the actual release and download of archives containing such components. No current
configuration management system supports the kinds of functionality that SRM provides.

6.4. Component platforms

Recent advances in component technology present some interesting alternative views on the issue of
release management and dependencies. For instance, component models such as .NET [4] inherently
support the specification of dependencies, which are automatically downloaded by a supporting
infrastructure to instantiate a component at run time. Each component has a version identifier, which
adheres to a specific scheme to encode whether or not the interface of a component is backward
compatible from version to version. While at first .NET may seem to make SRM obsolete, the truth
is that SRM and .NET are complementary: the .NET mechanism of specifying dependencies as URLs
still needs a reliable release archive that guarantees the consistency and presence of those dependencies
over time. URLs by themselves cannot do so, but using the URLs to mimic those used by SRM retrieve
interface can provide this functionality. Doing so is trivial, since the SRM retrieve interface already
relies on the standard HTTP protocol to retrieve desired components.

The system that is most similar to SRM is the Aonix Select Component Manager [41], which
provides organizations with a comprehensive component repository. The component repository
maintains dependencies, versions components, publishes and catalogues components, and supports
searching and distribution of components. A strongpoint of the Aonix Select Component Manager
is its integral use of structured metadata in not only a descriptive manner, but also as the basis for
consistency analyses. While clearly stronger than SRM in this manner, SRM is unique in its support
for managing dependencies across multiple, distributed, and decentralized release sites.

7. CONCLUSIONS

The work described here represents a novel approach to the software release process for component-
based software. By means of a software release management tool, a bridge has been built between the

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

96 A. VAN DER HOEK AND A. L. WOLF

development process and the deployment process. The current version of SRM covers, to a greater
or lesser extent, the requirements for software release management enumerated in Section 3. Most
importantly, it hides distribution, supports the release of components by autonomous and decentralized
organizations, promotes the explicit use of dependencies, and supports users in obtaining a consistent
set of components.

The basic concept behind SRM is simple: to provide distribution transparency to the release of
software components while guaranteeing consistency of the dependencies among those components.
However, its fundamental contribution of explicitly recognizing and supporting release management is
extremely important. In the past, this part of the software development process was largely ignored. Its
essential role in component-based software development, however, necessitates a system like SRM to
explicitly support the process that takes place.

SRM has another advantage that extends beyond the scope of component-based software. In settings
where a set of semi-independent groups is cooperating to build one or more software products, the old
and often ad hoc release management process employed by the various participating groups can be
replaced by a single, more disciplined, and unified process employed by all groups. Each of the groups
is still able to use its own development process, its own configuration management system, and its
own development tools. However, the various mechanisms for release management are unified under
SRM to provide a common point of intersection for the organizations. In this way, the various groups
are flexibly joined at a high level of abstraction. In particular, SRM provides developers with a basis
for communicating about interdependent components that avoids low-level details of path names, ftp
sites, and/or URLs. Moreover, because SRM maintains all versions of all components in its release
database, it becomes the language and mechanism for intergroup communication about interdependent
components.

We believe SRM represents only the beginning of a research direction that further elaborates and
supports software release management as a distinct role between development and deployment of
component-based software. At the forefront of our future research are the following two issues that
we deem most important in advancing software release management.

• Exploring further interoperability with configuration management and software deployment
systems. We already performed a simple integration with an existing software deployment system
[28]. Our experience with this integration illustrates that many issues remain to be addressed.
For example, we want to automatically import dependencies from a configuration management
system, rather than making developers specify them by hand (consider having to document
one-by-one all the dependencies of a COM [42] component). In addition, we believe SRM
needs to evolve into a bi-directional bridge between the domains of configuration management
and software deployment. To truly gain control of component-based software development, it
is necessary to deploy and install components into a configuration management system and
automatically release components out of a configuration management system [43].

• Exploring the relationship of SRM to component models. Recent component models such
as .NET [4] allow the specification of dependent components as structured metadata inside
a component itself. Upon instantiation of the component, its dependent components are
downloaded and instantiated as well. Unfortunately, in .NET dependencies are specified as
URLs, which may change or disappear just as in the RPM example of Section 2. A separate
release management tool that circumvents these kinds of problems is still required. We believe

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

SOFTWARE RELEASE MANAGEMENT 97

that an integration of SRM with a tool that resolves dependencies at run time can guarantee that
a consistent set of components is delivered and executed.

The implementation of SRM as described in this paper can also be improved. The available
technology has significantly advanced since SRM was first developed, and we believe a more dynamic,
non-HTML version of SRM will provide users with a much friendlier experience. Finally, we realize
that the problem of managing the release of distributed, interdependent components can be generalized
to other domains. As such, we have begun experimentation with a generic version of SRM, which
inherits all of the functionality described in this paper, but is based on an XML-based engine to allow
full configuration of the metadata, distribution mechanism, and user interface [25].

ACKNOWLEDGEMENTS

We would like to thank the present members and past graduates of SERL for their invaluable contributions that
led to the current incarnation of SRM. In particular, we wish to acknowledge Robert Smith and Michael Hollis for
their contributions to the design and implementation of SRM, and Dennis Heimbigner, Antonio Carzaniga, and
Richard Hall for their extensive trial use and continuous feedback. We also wish to thank the participants in the
DARPA EDCS program for their willing use of SRM.

This effort is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory, Air Force Materiel Command, USAF, under agreement Nos. F30602-00-2-0599 and
F30602-00-2-0608. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), the Air Force Research Laboratory, or the U.S. Government.

REFERENCES

1. Szyperski C. Component Software—Beyond Object-Oriented Programming. Addison-Wesley/ACM Press: Boston, MA,
1998.

2. Crnkovic I et al. Proceedings of the Fourth ICSE Workshop on Component-Based Software Engineering: Component
Certification and System Predication. Software Engineering Institute: Pittsburgh, PA, 2001.

3. Heineman GT, Councill WT (eds.). Component-Based Software Engineering: Putting the Pieces Together. Addison-
Wesley: Reading, MA, 2001.

4. Platt DS. Introducing Microsoft Dot-Net. Microsoft: Redmond, WA, 2001.
5. Matena V, Hapner M. Enterprise Java Beans Specification, v1.1.

ftp://ftp.java.sun.com/pub/ejb/11final-129822/ejb1 1-spec.pdf [2000].
6. van Ommering R et al. The Koala component model for consumer electronics software. Computer 2000; 33(3):78–85.
7. Aldrich J, Chambers C, Notkin D. ArchJava: Connecting software architecture to implementation. Proceedings Twenty-

fourth International Conference on Software Engineering. IEEE Computer Society Press: Los Alamitos, CA, 2002;
187–197.

8. Sreedhar VC. Mixin’Up components. Proceedings 24th International Conference on Software Engineering. IEEE
Computer Society Press: Los Alamitos, CA, 2002; 198–207.

9. van der Hoek A et al. Software release management. Proceedings of the Sixth European Software Engineering Conference
together with the Fifth ACM SIGSOFT Symposium on the Foundations of Software Engineering. Springer: Heidelberg,
Germany, 1997; 159–175.

10. Allen L et al. ClearCase MultiSite: Supporting geographically-distributed software development. Software Configuration
Management: ICSE SCM-4 and SCM-5 Workshops Selected Papers. Springer: Heidelberg, Germany, 1995; 194–214.

11. Fogel K. Open Source Development with CVS. Coriolis: Scottsdale, 1999.
12. Merant. Using PVCS for Enterprise Distributed Development. Merant: Hillsboro, OR, 1998.

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

98 A. VAN DER HOEK AND A. L. WOLF

13. Earthweb. http://www.gamelan.com/ [2001].
14. SourceForge. http://www.sourceforge.net/ [2001].
15. Tucows. http://www.tucows.com/ [2001].
16. Fowler G et al. Libraries and file system architecture. Practical Reusable UNIX Software, Krishnamurthy B (ed.). Wiley:

New York, NY, 1995; 78–90.
17. InstallShield. http://www.installshield.com/ [2001].
18. NetDeploy. http://www.netdeploy.com/ [2001].
19. The GNU Foundation. http://www.gnu.org/directory/index.html [2001].
20. ComponentSource. http://www.componentsource.com/ [2002].
21. Bailey EC. Maximum RPM. http://www.rpm.org/max-rpm/ [2002].
22. Red Hat. http://www.rpm.org/ [2001].
23. Continuus Software Corporation. Distributed Code Management for Team Engineering, 1998.
24. van der Hoek A et al. A testbed for configuration management policy programming. IEEE Transactions on Software

Engineering 2002; 28(1):79–99.
25. Smith RA. Analysis and design for a next generation software release management system. MS Thesis, University of

Colorado at Boulder, 1999.
26. Red Hat. http://www.redhat.com/products/software/linux/ [2001].
27. The GNU Foundation. http://www.gnu.org/licenses/gpl.html [2001].
28. Hall RS et al. An architecture for post-development configuration management in a wide-area network. Proceedings 1997

International Conference on Distributed Computing Systems. IEEE Computer Society: Baltimore, MD, 1997; 269–278.
29. Ousterhout JK. Tcl and the Tk Toolkit. Addison-Wesley: Reading, MA, 1994.
30. Guelich S, Gundavaram S, Birznieks G. CGI Programming with Perl (2nd edn). O’Reilly: Cambridge, MA, 2000.
31. Raymond ES. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary.

O’Reilly: Cambridge, MA, 2001.
32. Freshmeat. http://www.freshmeat.com/ [2001].
33. Hall RS, Heimbigner DM, Wolf AL. A cooperative approach to support software deployment using the software dock.

Proceedings of the 1999 International Conference on Software Engineering. ACM Press: New York, NY, 1999; 174–183.
34. Tivoli Systems. Application Management Specification. Tivoli: Austin, TX, 1997.
35. Tivoli Systems. http://www.tivoli.com/ [2001].
36. Atria Software. ClearCase Concepts Manual. Atria Software: Lexington, MA, 1992.
37. Berliner B. CVS II: Parallelizing software development. Proceedings of 1990 Winter USENIX Conference, Washington,

DC. Usenix Association: Monterey, CA, 1990.
38. Conradi R, Westfechtel B. Version models for software configuration management. ACM Computing Surveys 1998;

30(2):232–282.
39. Continuus Software Corporation. Continuus Task Reference, 1994.
40. de Jonge M. Source tree composition. Technical Report SEN-R0204, CWI Amsterdam, The Netherlands, 2001.
41. Aonix. Aonix Select Component Manager. http://www.aonix.com/content/products/select/select compman.html [2002].
42. Sessions R. COM and DCOM: Microsoft’s Vision for Distributed Objects. Wiley: New York, 1997.
43. van der Hoek A. Integrating configuration management and software deployment. Proceedings of the Working Conference

on Complex and Dynamic Systems Architecture. DSTC: Brisbane, Australia, 2001.

Copyright 2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 33:77–98

	1 INTRODUCTION
	2 MOTIVATION
	3 REQUIREMENTS FOR SOFTWARE RELEASE MANAGEMENT
	4 A SOFTWARE RELEASE MANAGER
	4.1 The release database
	4.2 The release interface
	Releasing a component
	Modifying a release
	Withdrawing a release

	4.3 The retrieve interface

	5 IMPLEMENTATION AND EXPERIENCE
	6 RELATED WORK
	6.1 Web sites for software distribution
	6.2 Software deployment
	6.3 Configuration management
	6.4 Component platforms

	7 CONCLUSIONS

