
FShm: High-Rate Frame Manipulation in Kernel and User-Space

John Giacomoni†, John K. Bennett†, Antonio Carzaniga†‡,
Manish Vachharajani†, and Alexander L. Wolf†‡

† University of Colorado at Boulder
‡ University of Lugano

University of Colorado at Boulder
Technical Report CU-CS-1015-06

October 2006

Department of Computer Science
Campus Box 430

University of Colorado
Boulder, Colorado 80309-0430

FShm: High-Rate Frame Manipulation in Kernel and User-Space

John Giacomoni†, John K. Bennett†, Antonio Carzaniga†‡,
Manish Vachharajani†, and Alexander L. Wolf†‡

† University of Colorado at Boulder
‡ University of Lugano

Abstract
The high performance, low cost, and flexibility of com-
modity hardware systems make them appealing for net-
work processing applications. However, the standard
software architecture of such systems imposes signifi-
cant limitations. At high rates (e.g., Gigabit Ethernet)
and small frame sizes (64 byte) each frame must be pro-
cessed in less than 672 ns. System calls, synchronization,
and memory latencies can dominate this processing time.
Despite significant effort to remove this overhead, we are
aware of no general purpose mechanism that can handle
this load on commodity hardware.

This paper describes the frame-shared-memory archi-
tecture (FShm), a general-purpose software architecture
for processing network frames on commodity multi-
processor hardware. FShm supports kernel- and user-
space processing at Gigabit Ethernet rates by increas-
ing throughput, without reducing the per-frame process-
ing time, by pipelining work across multiple processors.
FShm can generate, capture, and forward frames at the
theoretical maximum rate on a Gigabit Ethernet network
for all frame sizes greater than 96 bytes, and at 95% of
maximum for the 64 byte minimum frame size (the limit
of the tested hardware).

1 Introduction

Commodity hardware systems are an appealing choice
for network processing applications that demand flexi-
bility and low cost. Unfortunately, the software archi-
tecture of these systems imposes a number of limitations
on the types of services that they can provide, especially
for frame processing tasks. For example, consider a Net-
work Intrusion Detection (NID) system designed to iden-
tify malicious traffic on a network. Since malicious traf-
fic may occur at the Ethernet frame level in any frame,
such a system must be able to handle data at the frame
level, for all valid frame sizes, at the wire rate.

For larger frame-sizes, there are a number of software
techniques to process data arriving over a very high-
bandwidth link [5, 12, 18], such as a Gigabit Ethernet.
Unfortunately, as the frame size decreases, the total time
available to process each frame also decreases. For ex-
ample, for a Gigabit Ethernet link saturated with 64 byte
frames (the minimum frame size), one has only 672ns to
process a frame [24]. However, on an AMD Opteron or
Intel Xeon, the overhead for a single system call (exclud-
ing any real work done by the OS) ranges from 171ns
to 534ns; a single lock-unlock pair may cost as much
as 354ns. These overheads are a significant fraction of
the total frame processing time. While some applications
can cope by dropping frames, in other applications such
as NID, a frame drop may be considered a definitive ap-
plication failure, since the dropped frame may contain an
attack which would be missed by the NID system.

Modern high-bandwidth processing techniques elim-
inate almost all frame-processing overhead, either by
avoiding locks and system calls altogether, or by aggre-
gating data transfers to amortize the cost of these over-
heads across many frames. Despite such effort, no exis-
tent frame processing technique has been able to demon-
strate the ability to process large numbers of small frames
at Gigabit Ethernet rates on commodity hardware.

This paper presents the Frame-Shared-Memory
(FShm) software architecture for high-rate frame
processing. FShm allows for processing of small
frames at Gigabit Ethernet rates in user-space with no
dropped frames. FShm accomplishes this by using
multiple processors to build a processing pipeline that
improves throughput, but does not decrease the available
per-frame processing time for applications. In fact, by
utilizing additional processors, FShm may increase the
per-frame processing time for applications. This allows
FShm to scale to faster future networks by using the
extra cores that future commodity multi-core processors
will provide. This paper describes experiments that
demonstrate the transmission, reception, and forwarding

1

of Gigabit Ethernet frames at the theoretical maximum
with no drops for frames 96B and larger, and at at
95% of the theoretical maximum wire-rate (the most
the hardware can generate) with no drops for 64B
frames. Furthermore, we demonstrate that FShm allows
user-space threads to perform sophisticated processing.

The remainder of this paper is organized as follows.
Section 2 precisely describes FShm’s design goals and
then discusses system constraints that make achieving
these goals difficult. Section 3 then presents the design of
the FShm pipeline and discusses how FShm overcomes
each of the bottlenecks in Section 2. Section 4 evaluates
how well FShm meets its design goals by measuring its
performance at Gigabit rates at a variety of frame sizes
for a range of tasks. Section 5 presents related work not
covered elsewhere in the paper. Section 6 concludes.

2 Design Criteria and Constraints

This section defines the the design goals for FShm and
discusses the bottlenecks present in commodity systems.

2.1 Desired Features
FShm was designed to satisfy the following two criteria:

1. FShm must provide the ability to transmit, receive,
and forward packets at close to the wire-rate (at Gi-
gabit Ethernet speeds, for the purposes of this pa-
per) without increasing the drop rate imposed by the
underlying hardware (ideally dropping no frames).

2. FShm must have overhead that is small enough so
real work can be accomplished by the application
when dealing with a network saturated with small
frames. A system that consumes all per-frame pro-
cessing time simply to deliver data to and send data
from an application is nearly useless.

In addition to high performance, a general-purpose
framework is desirable. Exactly what is considered gen-
eral purpose is clearly influenced by the targeted applica-
tion. However, certain properties are required by a large
number of network applications, and FShm has been de-
signed to support these. The additional criteria imposed
by the desire for a general purpose system are as follows:

3. FShm must be able to process every frame on the
incoming network interface. To understand this re-
quirement, consider applications such as network
intrusion detection (NID). Since any frame may
contain an attack, dropped frames may result in
missed attacks. If a system has trouble at high-rates,
attackers can evade detection simply by sending a
flood of small frames. It is easy to imagine addi-
tional applications that might monitor every frame.

4. FShm should support both in-order and out-of-order
frame delivery. Consider a router application. This
application will likely want to process frames out
of order, to boost performance. However, a NID
system may require in-order delivery of frames.

5. FShm should support user-space processing of
frames since complex applications, such as NID
or content-based routing, may involve sophisticated
user-specified code written in high-level languages
with an eye towards portability.

6. FShm should provide a mechanism to trade-off la-
tency for expanded processing time without sacri-
ficing throughput, since some applications require
fairly complex operations on a per-frame basis.

2.2 Network Imposed Constraints
The first constraint faced by any frame processing system
targeting wire-rate processing with no drops is the frame
arrival rate (or the inter-frame arrival period). Consider
a saturated Gigabit Ethernet link. On such a link, the
inter-frame arrival period is given by

T =
InterframeGap + Pre&Postamble + FrameSize

Bitrate

where the InterframeGap ≥ 96 bits,
Pre&Postamble = 64 bits, and FrameSize is the
frame size measured in bits (including the 32 bits of
CRC). Setting the Bitrate = 1 × 109 bps and the
InterframeGap = 96 bits, we can readily find the
maximum frame rate at different frame sizes. For
example, with 64B frames, there are 1,488,095 frames
per second (fps) implying the system needs to be ready
for a frame every 672 ns. With 256B frames there are
only 452,951 fps or a frame every 2207 ns. On a 2GHz
machine (e.g., the AMD Opteron on which FShm was
evaluated) this is the difference between 1338 processor
cycles and 4397 cycles.

The smaller the frame size, the more difficult it is
to support wire-rate, since the frame-rate is consider-
ably higher, even though the total bandwidth utilized is
less due to constant per-frame overhead on the network.
Contrast the 1, 488, 095 fps at 761 Mbps for 64B frames
versus the meager 81, 274 fps at 987 Mbps for 1518B
frames. Thus, the subsequent discussion on system bot-
tlenecks focuses on the 64B frame-size with the implicit
understanding that if a system can handle 64B frames it
can easily handle larger frame sizes.

2.3 Operating System Bottlenecks
To understand the Operating System bottlenecks in frame
processing, it is useful to examine the application flow

2

Application

libpcap

libc
syscalls

VFS

BPF
BPF

driver

pcap_next()

read()

read()

bpfread()

bcopy(buf)

uiomove(buf)

NIC
DMA

Application

libc
syscalls

VFS

BPF

write()

bpfwrite()

if_ethernet

if_output()

driver

NIC
DMA

bpf_mtap()
interrupt

kernel-space

user-space

uiomove(buf)

Receive Transmit

Figure 1: Call chain for the Berkeley Packet Filter

through both kernel and user-space for a canonical net-
work processing system. Figure 1 shows the flow of
the send and receive operation in the Berkeley Packet
Filter (BPF) [23] network application as implemented
in FreeBSD, which is representative of common user-
space network processing. Here, the application must go
through six or more levels to send or receive a packet. On
the receive side libpcap[20] is typically used to read from
the BPF interface and provide a cross-platform frame in-
terface. Libpcap invokes the read system-call on the BPF
device node. In the kernel, the VFS layer translates this
call to a read from the kernel-space BPF buffer. This read
operation invokes uiomove which then copies the buffer
into user-space. At interrupt time, when the DMA trans-
fer of new frame data from the network interface card
(NIC) is complete, the BPF layer copies the data from
the driver into the BPF buffer. Send operates in reverse
order. The application calls write on the network device,
which invokes the kernel. The VFS layer translates this
into a call to the BPF subsystem which uses uiomove to
copy the user data into kernel-space. From here, the data
is passed to the Ethernet driver which then DMAs the
data to the NIC.

These mechanisms require several copies (the bcopy
and the uiomove), a system-call, and passage through
the VFS layer. Furthermore, since the BPF buffers are
accessed simultaneously by the Ethernet driver and the
BPF kernel code, a lock must be acquired and released
before the BPF buffers can be accessed. The three main
Operating System bottlenecks in this process are the sys-
tem calls, lock acquisition, and the VFS layer. These are

VCPU # Thr. System Calls (ns) ioctl (ns)
0 1 171 538
1 1 851 1826
1 2 1334 1674
2 2 911 1284
2 3 912 1223

Note: For VCPU=0, no scheduler activations are used; scheduler acti-
vations result in reduced performance even for single thread tests.

Table 1: System-call and ioctl costs on an AMD Opteron.

discussed below. (Overhead due to copies, which is pri-
marily memory overhead, and I/O costs are covered in
Section 2.4.)

2.3.1 System Calls

For most applications, the cost of system calls are irrel-
evant as they occur relatively infrequently compared to
other application operations. However, when handling
the frame rates described above, they quickly overwhelm
the system’s ability to process frames resulting in a sig-
nificant number of dropped frames. Table 1 quantifies
the costs of performing system calls on a dual processor
dual core 2.0GHz AMD Opteron 270, running FreeBSD
5.5 (the fastest configuration we had available, according
to our measurements). The “# VCPU” column indicates
the number of processors available to the application (as
defined by Scheduler Activations [1]), and the “# Thr.”
column indicates the number of concurrent threads in the
process for which the system-call time was measured.
Notice that the Opteron system is not able to perform
even a single system call and remain within the 672 ns
service time for a single 64B frame on a saturated Gi-
gabit Ethernet link, assuming a multi-threaded environ-
ment. This overhead is due to the additional complexity
of the user-space scheduler provided by scheduler acti-
vations.

Most recent prior work uses shared memory to trans-
fer data between the NIC device driver and the net-
work processing application to avoid the cost of system
calls[29, 21]. As Section 3 describes, this is the approach
used by FShm to eliminate system calls for the transfer
of data between different contexts, be it between a ker-
nel and user context or multiple user contexts (i.e., pro-
cesses).

2.3.2 Locking Mechanisms

In order to prevent concurrent access to a single buffer
(resulting in corrupted data), most production operating
systems use mutexes (also known as locks). Table 2 enu-
merates the costs of mutex operations in kernel- and user-
space for the same AMD Opteron described earlier. The

3

Lib Lock (ns) Unlock (ns) Lock & Unlock (ns)
pthread 75 78 159
kernel 28 19 27

Table 2: Mutex operation costs for an AMD Opteron

minimum cost of passing a variable between two threads,
assuming no cache misses or contention on the locks, is
double the cost of a single lock/unlock pair since both the
reader and writer must lock the data structure when per-
forming the respective operation. This implies that on
the order of 318 ns (for user↔user communication) or
54 ns (for kernel↔kernel/user) would be spent passing a
single variable out of a budget of 672 ns for 64B frames;
this is intolerable in the former case and less than ideal in
the latter. Note that these numbers are best-case because
the mutex variable is already in the processor cache.

One could aggregate writes to amortize the cost of
a lock-unlock pair. However, the costs of such ag-
gregation must still be addressed. Section 3 describes
how FShm eliminates the need for explicit locking by
utilizing concurrent lock-free queues and leverages the
cache coherency manager to implicitly achieve the lock-
ing needed to ensure data consistency.

2.3.3 VFS Layer Overhead

The indirection of reads and writes through the VFS
(filesystem) layer of the kernel incurs the largest over-
head. Table 1 shows the cost of a null ioctl call (thus
capturing just the overhead of the system-call and VFS
layer) for the same Opteron system. We can see that the
cost of an ioctl can be up to triple that of a plain system
call. Recall that system calls alone overwhelmed the 672
ns processing windows for 64B Gigabit Ethernet frames,
passing through the VFS layer is clearly intolerable for
FShm. Section 3 describes how FShm’s shared-memory
architecture avoids both the system-call and VFS layer
costs.

2.4 Hardware Bottlenecks
While the hardware plays a prominent role in the cost
of the various OS bottlenecks described above, there are
other potential bottlenecks in the hardware that are more
difficult to control. Of these, the overall system I/O ar-
chitecture and memory subsystem play the most signif-
icant role. Since it is difficult for software techniques
(such as FShm and much of the prior work) to mitigate
these bottlenecks, one should bear in mind that they may
ultimately limit the performance of any system. Fortu-
nately, FShm is still able to handle 64 byte frames at Gi-
gabit Ethernet rates for the Opteron system on which it

Processor 1

Processor 2

North
Bridge

PCI
Hub 1

PCI
Hub 2

Memory

PCI 2

PCI 1

PCI 3

PCI 4

Figure 2: Host Bus Architecture

Processor 1

Processor 2

Switched
Fabric

PCI
Hub 1

PCI
Hub 2

Memory

PCI 2

PCI 1

PCI 3

PCI 4

Figure 3: Switched Architecture

was evaluated (See Section 4).

2.4.1 System Architecture

To understand the potential bottlenecks in the system ar-
chitecture, consider Figure 2 and Figure 3. In the host
bus architecture (Figure 2), the first potential bottleneck
is the shared communication bus between the two pro-
cessors. Since access to memory, access to snoop results
from other processors, and access to the PCI bus all con-
tend for the same interface, it can become a bottleneck.

Even if the processor front-side bus is not a problem,
the internal organization of the North Bridge can limit
performance. For example, it may be the case that a
PCI device on one bus cannot DMA to memory at the
same time that a processor wishes to deliver a command
to the other PCI bus. Other issues in the North Bridge
design, such as interrupt scheduling and command la-
tency, can also have tremendous impact on total achiev-
able throughput to NICs on the PCI bus.

Consider the data in Table 3 which compares the num-

PCI Frame Max
System NIC Bus Size Frames/s
1.0 GHz Intel 64-bit

PIII 82545 GM 66 MHz 64B 811 kfps
2.66 GHz Intel 64-bit
P4 Xeon 82545 GM 133 MHz 64B 723 kfps

Table 3: Throughput on a Pentium III & Pentium 4 Xeon.

4

ber of minimum size Ethernet frames that can be gener-
ated on a Pentium III system and Pentium 4 Xeon system
with Linux pktgen [27]. Notice that the Pentium III sys-
tem has a slower PCI bus, is a slower processor, and yet
can place frames on the network faster than the Pentium
4 Xeon system (our numbers confirm this). However,
the Pentium III system contains a high-end server moth-
erboard that utilizes the ServerWorks HE-SL chipset,
whereas the Pentium 4 Xeon has a standard motherboard.
Here, the chipset makes all the difference.

The switched system architecture shown in Figure 3 is
an improvement over the bus-based architecture in that
multiple independent data transactions need not inter-
fere. For example, depending on the network topology
in the switched cloud, it is possible for a processor to
access main-memory while another processor services a
cache snoop request. This reduces the contention for lim-
ited system resources, however, bottlenecks may still ex-
ist since the switched interconnect network is not a full
crossbar. The AMD Opteron system on which FShm is
evaluated is a switched architecture.

2.4.2 Memory Latency

Another major obstacle to high-performance frame pro-
cessing is the discrepancy between processor clock rates
and main memory. It can take hundreds of CPU clock
cycles to fetch a single cache line from the memory sub-
system (translating to 50-100 ns). Furthermore, modern
system architectures make this penalty difficult to avoid.
DMA transfers from commodity NICs always write to
main memory forcing the processor to fetch data from
main memory. Since cache line size is on the order of
frame size for small frames, each frame requires a main
memory transaction. Some of this overhead can be hid-
den through prefetching [7] and other techniques, but the
tight time bound for processing 64B frames at gigabit
rates, limits the effectiveness of these techniques.

3 FShm Design

Meeting the design goals enumerated in Section 2.1 is
difficult given the overheads in the existing frame socket
interfaces. Previous work has reduced the per-frame
costs by minimizing this overhead via aggregated trans-
fers or “safe” zero-copy semantics. While these tech-
niques minimize almost all the overhead, the per-frame
non-application processing time still exceeds the 672 ns
available for 64B frames on a saturated Gigabit Ethernet
link.

This section describes the design of the FShm archi-
tecture. FShm is capable of processing 64B frames on
a saturated Gigabit Ethernet link with no drops. FShm

Application

libpcap

libc
syscalls

VFS

BPF
BPF

if_ethernet
driver

pcap_next()

read()

read()

bpfread()
bcopy(buf)

uiomove(buf)

driver

NIC
DMA

NIC

poll()

Application

Shared
Memory

put()

get() put()

get()
buf

buf

kernel-space

user-space

interrupt

I/O Handler

allocup

Figure 4: BPF Receive (left) and FShm receive (right)

concedes that the prior work has done as much as possi-
ble to reduce per-frame processing overhead on a single
processor system. Instead of targeting overhead, FShm
uses the concept of pipelining (extremely common in
hardware design) to distribute the work for each frame
across multiple processors in software. This allows in-
creased frame throughput without the need to reduce per-
frame processing overhead. In fact, by increasing the
number of pipeline stages, FShm can expand the avail-
able time to process each frame by increasing frame la-
tency, but still maintaining frame throughput.

To understand the design of FShm, this section first
discuss why it is unlikely that per-frame processing time
can be reduced on a single processor machine. The sec-
tion then introduces the pipeline organization used in
FShm to improve throughput and increase available pro-
cessing time, even though per-frame processing overhead
is not reduced. The section concludes by describing how
the inter-stage (i.e, processor to processor) communica-
tion mechanism is designed to avoid lock-unlock and
system-call overhead.

3.1 Optimizing the Frame Socket Interface
To understand why single-processor per-frame process-
ing overhead is unlikely to be reduced, it is instructive
to examine the bottlenecks in the frame socket interface
(described earlier in Section 2) and examine how prior
work mitigates these costs. To recap, the critical bottle-
necks are the system calls, navigating the VFS layer, the
double copies (i.e., the bcopy and the uiomove), and the
locking between the interrupt handler and the high-level
of the kernel, as shown in Figure 4.

Implementations of the BPF attempt to minimize the

5

impact of the copies, locking, and system calls by ag-
gregating multiple frames worth of data into a single
buffer and returning the entire block in a single system
call. By using two buffers, the lock contention between
the interrupt handler and the kernel is minimized since
the lock only needs to be acquired when swapping the
buffers or copying the contents to user-space. Unfortu-
nately while all the bottlenecks are minimized, they are
not eliminated. By design the bcopy in the interrupt han-
dler cannot be eliminated or minimized as the system is
designed to forward the frame to the network stack in ad-
dition to capturing it. Monitor mode prevents the frame
from traveling the network stack, however, the bcopy is
still necessary to maintain the semantics of the higher-
level API.

Other prior work focuses on eliminating the over-
head of the uiomove operation that copies frames from
kernel-to user-space as copies can be a significant bottle-
neck [6, 5, 18]. These techniques provide loose copy se-
mantics, which is all that is necessary for high-bandwidth
(vs. high frame-rate) applications. Additional work
eliminated the copies by memory mapping a shared re-
gion of kernel memory into the application’s address
space [21]. These solutions minimize or eliminate the
cost of copying but retain the overhead of the system
calls and the VFS layer.

Alternative approaches focus on minimizing the ker-
nel overhead by employing NICs capable of DMAing
frames directly into the address spaces of interested
applications [12, 30]. This is done by mapping the
NIC’s buffer rings directly into an application’s address
space [9] or by permitting user-space DMA.

The approaches described above completely elimi-
nate buffer copying via shared pages across the user-
space/kernel-space boundary, and completely eliminate
system calls and VFS overhead by DMAing directly into
user-space. However, none techniques can eliminate the
overhead of DMA transfers and other memory accesses.
Furthermore, none of these techniques allow Gigabit rate
processing of small frames, even though overhead is
minimized. As a result, the real non-application over-
head involved in processing frames on commodity hard-
ware exceeds the service time for small frames at gigabit
rates.

Therefore, we believe it is necessary to develop tech-
niques that can improve throughput without requiring
further reductions in the per-frame processing time (in-
cluding overhead).

3.2 The FShm Pipeline

As shown in Figure 4, the design of FShm eliminates the
previously described overheads. The key to FShm’s abil-
ity to process small frames at gigabit rates comes from

IP (P1) APP (P2) OP (P3)

IP APP OP

P1
(IP)

P2
(APP)

P3
(OP)

IP (P1) APP (P2) OP (P3)
IP (P1) APP (P2) OP (P3)

IP (P1) APP (P2)
IP (P1)

T/3 T/3 T/3 T/3 T/3

T

Frame 1
Frame 2
Frame 3
Frame 4
Frame 5

Processors

Time

Execution Stages
for Single Frame

Pipelined
Execution

Figure 5: The Basic FShm Pipeline

its use multiple processors (or multiple cores on multi-
core systems) to pipeline per-frame work. This improves
frame throughput without sacrificing latency

Figure 5 depicts an overview of the FShm processing
pipeline. From the diagram, we see that each frame takes
T nanoseconds to process. From the previous discussion,
we know that T ≥ 672ns, the inter-frame arrival period
for 64-byte frames on a saturated Gigabit Ethernet link.
While we cannot reduce this processing time, it is pos-
sible to improve the throughput of processing by using
multiple processors as shown in the figure.

In the general case, the processing of each frame is di-
vided into at least three stages, Input processing (IP), Ap-
plication processing (APP), and Output processing (OP).
There are degenerate cases where there is no IP phase
(e.g., frame generation) and where there is no OP phase
(e.g., frame capture). Each stage is executed as a thread
on a separate processor. Ignoring communication over-
head, and assuming an ideal division of labor, we see that
the processing for each frame can be divided into stages
with duration T/3 nanoseconds. Thus, each frame still
takes T nanoseconds to go from input to output. This
agrees with the earlier assertion that per-frame process-
ing time cannot be reduced. However, by dividing the
work across 3 processors, it is possible to initiate pro-
cessing on a new frame every T/3 nanoseconds, tripling
the frame throughput. Because there is still only one
processor handling input for the NIC(s), and another for
the output, no mutual exclusion is needed to manage
the resources because there is no contention. In short,
we parallelize frame processing without introducing con-
tention.

In reality, communication overhead is introduced by
splitting work into stages that run on separate processors.
Furthermore, the IP, OP, and APP stages may not each
take a third of the total time. Typically, the APP stage
will be much more time consuming than IP and OP. How-
ever, even in this case throughput still increases, though

6

P1
(IP)

P2
(APP)

P4
(OP)

P3
(APP)

IP (P1) APP (P2) OP (P4)

IP APP OP

T/4 T/4 T/4 T/4 T/4

T

Frame 1
Frame 2
Frame 3
Frame 4
Frame 5

Time

Execution Stages
for Single Frame

Pipelined
Execution

IP (P1) APP (P3) OP (P4)
IP (P1) APP (P2)

IP (P1) APP (P3)
IP (P1)

Processors

Figure 6: The FShm Pipeline with multiple APP Units

not optimally. It is possible to further improve through-
put in this unbalanced scenario by utilizing additional
processors to allow multiple APP stages to run in par-
allel. Effectively, this expands the amount of processing
time per-frame without affecting throughput. Figure 6
shows such an example where the APP stage takes twice
as long as either IP or OP and cannot be divided amongst
processors. Here by utilizing a single extra processor, it
is still possible to quadruple the frame throughput versus
the original single processor solution. Again, this hap-
pens without shortening the per-frame processing time.

This pipeline structure and careful implementations of
inter-process communication, allows FShm to process
frames at Gigabit Ethernet rates, even for small frames.
With shared memory inter-process communication be-
tween kernel and user space, pipeline stages can occur
in either in kernel-space or in user-space. In FShm, we
keep the IP and OP phases are kept in kernel space to
allow sharing of resources amongst applications.

3.3 CLF Queues

Though Figures 5 and 6 show constant durations for each
pipeline stage, in reality execution time may vary. To
accommodate this variation, FShm passes frames from
one stage to the next using point-to-point queues. Each
pipeline stage writes to one or more output queues and
reads from a single input queue. Absent careful design-
ing, the overhead of queuing and dequeuing data from
could easily wipe-out all throughput gains.

In order to minimize the overhead of communi-
cating among pipeline stages (in particular the lock-
ing overhead), FShm uses concurrent lock-free (CLF)
queues [25]. Typically, these queues require no locking
provided that the hardware supports an atomic memory

1 put_nonblock(...) {
2 if (NULL == queue[head])
3 {
4 queue[head] = ptr;
5 head = NEXT(head);
6 }
7 }
8
9 get_nonblock(...) {

10 if (NULL != queue[tail])
11 {
12 ptr = queue[tail];
13 queue[tail] = NULL;
14 tail = NEXT(tail);
15 }
16 }

Figure 7: CLF Queue: Put nonblocking

exchange instruction. However, FShm uses only point-
to-point queues with a single thread reading and writing
each queue. In this special case, proper queue semantics
can be guaranteed using the hardware’s cache coherence
mechanism rather than expensive high-level mutual ex-
clusion primitives (see implementation notes below).

Notice that point-to-point only CLF queues in FShm
also imply that there is no high-level contention in the
queues. Just as there is a single read stage for the input
NIC and a single write stage for the output NIC to avoid
contention, each queue only has a single writer and a sin-
gle reader.

At the low-level, there may be contention for the
cache-lines that contain the queue entries. Ideally, if
there are two active processors operating on a single
queue, as in FShm, they will be processing queue entries
separated by more than a single cache line, eliminating
the overhead of cache coherence due to this contention.
In practice, we demonstrate excellent performance even
without cache-line separation.

More advanced mechanisms such as transactional
memory architectures [15] may be able to mask the
cache coherence time when two processors are shar-
ing a single cache line. Furthermore, the transactional
semantics allow low-overhead multipoint-to-multipoint
queues, which can be advantageous.

The biggest advantage of CLF queues in FShm is seen
when performing cross-domain messaging (e.g. process
↔ process and process↔ kernel). In traditional message
passing systems one would need to perform an expensive
operation to synchronize the two processors or spin until
it is safe to proceed. Neither technique is acceptable for
the rates possible on modern networks. This does not
happen with CLF queues.

7

3.3.1 CLF Queue Implementation Notes

The implementation of CLF queues creates a per-queue
shared memory region containing an array and a shared
control region that that manifest as a single device node
to user-space applications. Utilizing device nodes pro-
vides a simple API that makes it easy to manage device
specific calls and track misbehaving applications that for-
get to disconnect from a queue, without modifying kernel
data structures. Recall from Section 2 that VFS and ioctl
calls are prohibitively expensive. However, by FShm’s
design, these are only accessed on startup and shutdown.

Both the shared array and control regions are mapped
read/write as there is a small amount of shared state. In
addition there is a non-shared memory version that pro-
vides a process-local thread ↔ thread communication
mechanism suitable for user-space inter-thread commu-
nication.

The main implementation challenge for CLF queues
is in ordering operations such that they only rely on
memory coherence, not the memory consistency model
(which varies across processors) or high-level mutual ex-
clusion primitives. Figure 7 shows pseudo-code for the
non-blocking put and get operations using the shared re-
gions. This code works with all processor consistency
models, as only coherence is necessary for mutual exclu-
sion. To see this, recall that the queue is point-to-point
so there is only a single thread calling put and a single
thread calling get. Furthermore, put will only write to
the shared region when the queue node is NULL and get
will only write the node when the value is not NULL.
Finally, since stores are atomic on all coherent memory
systems, the getter and putter will never update the same
node simultaneously.

Pipeline stages can dynamically switch to using block-
ing operations permitting process sleep during times of
reduced load.

3.4 BSD Implementation Notes

Given a set of CLF queues, implementing a shared buffer
region that is compatible with the existing BSD mbuf
message passing system is straightforward. First a struc-
ture is defined that contains an mbuf as the first item,
permitting us to typecast between the two as needed; we
are breaking strict type rules so the programmer needs
to be careful. Additionally, we store the kernel address
of the structure and a pointer to the kernel address of its
associated data buffer. The data buffer is functionally the
same as the one the mbuf cluster allocator would create
for a normal mbuf when allocating a buffer for a network
interface. For convenience, our data buffers are set to
2048B easily preserving page alignment for the network
interfaces. We track kernel addresses as they are constant

for all applications; presently FreeBSD does not export
an API to make kernel virtual addresses directly accessi-
ble by a user-space application.

3.5 Network Interfaces
Given the general purpose nature of the FShm architec-
ture, the integration of the network interface is not a pri-
mary concern. A variety of different high-performance
interconnection architectures are possible. We chose
to slightly modify the stock drivers in FreeBSD for
the Broadcom 5703 & 5704 and Intel 1000/Pro Ether-
net network interfaces and attach the FShm architec-
ture in the kernel. Alternative mechanisms could uti-
lize user-space DMA or mapping the interface’s trans-
mit and receive descriptor rings to the application [9].
We chose to manage our interfaces in the kernel to
demonstrate kernel↔process communication. Addition-
ally, FreeBSD lacks an API to pin user-space threads
which is needed for maximum performance with a user-
space interface.

To manage the network interfaces we implemented
two additional kernel modules to handle receiving (IP)
and transmitting (OP). These modules each are capa-
ble of mapping one or more interfaces to one or more
queues. A more detailed description of these modules
can be found in Sections 4.3.1 & 4.3.2.

Presently the modules purely poll their inputs for
work, although they could also be implemented with a
hybrid interrupt and polling organization to conserve sys-
tem resources and prevent livelock [26]. We chose not to
implement this as we are demonstrating the limits of the
system where every processor will be utilized at 100%,
and therefore interrupts would never be activated.

3.6 Safety
Safety is a critical concern when sharing memory and
passing memory references between processes. Any pro-
cess at any time can misbehave and write invalid and or
inconsistent values into the memory so that a correctly
behaving process reads it and does the wrong thing. Ex-
amples of errors are writing an invalid address causing
the reading process to examine the wrong memory and
failing to ensure group-write operations are atomic in na-
ture. In its evaluated form, FShm assumes that applica-
tions sharing the FShm memory region are not malicious
and makes no serious effort to protect itself again misbe-
having participants. This is a fair assumption as an ap-
plication could be written as a single large multi-threaded
application with user-space access to the network drivers
where a fault would still terminate the application.

This does not imply that security was not a concern in
the design of the system and several steps were taken

8

to architect the system so that it could protect itself
when necessary. First, access to the queues is performed
though device entries and thus gains the underlying se-
curity model maintained by the host operating system.
Second, the queues are in a separate region from the sbuf
regions and the sbuf regions are split into an sbuf region
and a data region. This division makes it possible for the
kernel to share the sbuf header as read-only with user-
space applications preventing the applications from cor-
rupting the sbuf header itself (e.g. corrupting data point-
ers or the reference count field). This permits the appli-
cation to only manipulate the frame data or the reference
in the queue. Corruption of the frame data is not a con-
cern for the kernel as it does not process it. However,
corrupting the sbuf reference in the queue is a concern
and can be dealt with by checking the address against the
known bounds of the sbuf region. Premature processing
of a frame in the kernel is also not a concern for the ker-
nel itself as the worst case scenario is transmission of a
garbage frame resulting in application failure but not sys-
tem failure. Bounds checking can easily be performed
in the available time for processing at any frame size as
all the necessary information will be resident in the first
level cache or registers.

Recovering from leaked buffers is the only difficult
problem for the application to deal with and the only rea-
sonable recovery mechanism is to restart the entire ap-
plication. Selective restarting of application components
may be possible for certain applications. However, the
necessary bookkeeping adds significant overhead.

4 Evaluation

This section presents an evaluation of FShm.

4.1 Evaluation Criteria

To measure the effectiveness of FShm, three metrics are
used: (1) frame latencies, both end-to-end and in-system,
(2) wall-clock time available for frame processing, and
(3) frame drop rates.

Each of these quantities is measured in frame gener-
ation, frame capture, and frame forwarding configura-
tions, under a variety of frame sizes. The scenarios will
be described in more detail below. Drop rates are mea-
sured by comparing how many frames should have been
processed to the number of frames that were actually
processed. Wall-clock time for actual work is measured
by monitoring the drop rate as the duration of a dummy
work loop is steadily increased. The time taken by the
dummy work loop is measured using fine-grain timing
instructions (rdtsc on x86 platforms) and the duration
of the longest work loop that results in no increase in the

NIC

NIC

Frame
Generator

NIC

Evaluation
Target

NIC

App

NIC

NIC Internal
Latency

End-to-end
Latency

Figure 8: Frame Latencies

drop-rate gives the wall-clock time for performing actual
work on a frame.

The two frame latency measurements are illustrated
in Figure 8. For end-to-end latency, since the sender
and receiver are on the same machine, the end-to-end
frame latency is measured by inserting a 64-bit time-
stamp (via the processor cycle-accurate TSC register on
the x86 platform) when the frame is sent and compar-
ing to the time the frame is received. Internal frame-
latency is computed by time-stamping the frame when it
is first seen in software on the processing machine and
then comparing it to the time the frame leaves software
control. For generation and capture of frames, we were
unable to measure the end-to-end frame latency because
the clocks (i.e., TSC register) of the frame generator and
frame receiver are not synchronized.

4.2 Evaluation Platform
The network testing environment consisted of two AMD
Opteron systems connected with either the on-board
Broadcom 5704C (dual Gigabit Ethernet), off-board HP
NC7771 (Broadcom 5703), or an Intel 82545 GM Net-
work Interface Controller. The AMD Opteron systems
were based on the Tyan Thunder K8SR (S2881) mother-
board with dual Opteron 270 dual-core processors run-
ning at 2GHz. The relevant chipsets on the motherboard
are the AMD-8131 (HyperTransport PCI-X Tunnel) and
the AMD-8111 (HyperTransport I/O Hub).

4.3 Evaluation Modules
Each evaluation scenario uses a configuration with in-
stances of four conceptual modules: receiver, transmitter,
frame generator, and handler. Each module corresponds
to a pipeline stage in Section 3 and runs as a thread on
a dedicated processor, in the ideal case. The details of
each module are described below.

4.3.1 Receiver

The kernel receiver module (KRx) corresponds to the IP
stage and handles the task of moving frames from the in-

9

put interfaces to the associated FShm queues. The mod-
ule permits every NIC-to-queue mapping possible.

The receiver performs four tasks for the evaluation.
First, it measures the average amount of free wall-clock
time per frame by spinning in an idle loop. This gives
a measure of the possible duration of early frame pro-
cessing (e.g. selecting output queues). Second, by spin-
ning the receiver smooths out the arrival rate of frames
to make frame latency calculations more accurate by re-
ducing bursting due to batched DMA. Third, the receiver
measures the time it takes to enqueue the frame onto its
output queue. From these two measures we can compute
the amount of time spent polling the input interfaces. Fi-
nally, the receiver can timestamp frames so that the trans-
mitter can measure in-system latency. There is also a
specialized receiver module that computes the average
frame round-trip time.

4.3.2 Transmitter

The kernel transmitter module (KTx) corresponds to the
OP pipeline stage. It handles the task of moving frames
from a set of incoming FShm queues to their associated
network interfaces. Again, the module is designed to
permit every queue to NIC mapping possible. The map-
ping of multiple queues to separate network interfaces is
demonstrated in Section 4.6.

The transmitter performs two tasks for the evaluation.
It optionally timestamps frames just before it enqueues
them onto its transmit interface permitting round-trip la-
tency measures as seen by the receiver module. In-
system latency is also measured by comparing the cur-
rent time to the receiver time-stamp when a frame is
about to be enqueued to its output network interface.

4.3.3 Generator

Frame generation is performed by three different mod-
ules: KSend1, KSend, and USend. KSend1 is a ded-
icated kernel module that generates a single frame in a
buffer and enqueues that same buffer for every frame
transmitted. This avoids the latency in flushing the frame
from the cache to main memory so the network card can
DMA the frame without stalling. The remaining two
modules (KSend and USend) operate by dequeuing an
sbuf from the allocator queue, populating its data buffer
with a frame, and enqueuing it onto the output queue
for the transmitter module to output. KSend operates in
kernel-space and USend operates in user-space. KSend
and USend implement degenerate case APP stages.

4.3.4 Handler

The handler module is a simple APP stage whose pri-
mary task is to evaluate how much wall-clock work

[UK]Send

KTx

NIC

Queue

Queue
(Alloc)

KSend1

NIC

Figure 9: Setup: Generation

time is possible. We have implemented versions of the
module to operate in both kernel-space (KHandle) and
user-space (UHandle) permitting direct evaluation of
the user-space scheduler. The effect of the user-space
scheduler could be eliminated with process pinning, but
FreeBSD does not support this. The handler is informed
of the total per-frame service time allowing it to identify
time taken by the scheduler in the absence of pinning.

4.4 Generation
The generation scenario measures how well FShm allows
kernel-space and user-space code to generate frames for
transmission. For this set of experiments, one Opteron
system (the evaluation target) running FShm is used as a
frame generator. The NIC is connected to a dummy NIC
that will sink frames at whatever rate they are generated.

The high-level arrangement of modules on the evalu-
ation target is shown in Figure 9. On the left, we have
the full generation setup using FShm. Here, the USend
or KSend module pulls a free buffer (an sbuf in partic-
ular) from the allocation queue, fills the buffer and then
enqueues the sbuf for the KTx module. The KTx mod-
ule deallocates the buffer, sends the frame and adds the
now free sbuf back to the allocation queue. Each queue is
an FShm CLF queue that delivers frames in-order. KTx
transmits all frames in-order. The right of the figure
shows a simplified frame generation configuration that
is used to test the maximum transmission rate supported
by the hardware. Note that KSend1 communicates di-
rectly with the device driver and no other communication
is needed.

Figure 10 depicts the results for the frame generation
tests. The bar labeled Theoretic Max shows the maxi-
mum frame rate supported by Gigabit Ethernet for the
given frame size. The remaining bars show the actual
transmission rates for the various generation configura-
tions. The bars labeled KSend1 are for the configuration
to the right of Figure 9 and the remaining bars are for
the configuration to the left. Recall that a U prefix signi-
fies a user-space sender and the K prefix a kernel-space
sender. The graph shows generation rates using a Broad-

10

0.0

5.0 · 105

1.0 · 106

1.5 · 106
Fr

am
es

pe
r

Se
co

nd

64
B

96
B

12
8B

19
2B

25
6B

38
4B

51
2B

76
8B

10
24

B

15
18

B

Frame Size (Bytes)

Theoretic Max
133MHz KS1
133MHz KS
133MHz US
133MHz libdnet
100MHz KS1
100MHz KS
100MHz US
100MHz libdnet

Figure 10: Generation Rates

[UK]Handler

KRx

NIC

Queue
(Alloc)

Queue

Figure 11: Setup: Capture

com 5703-based NIC on both the Opteron’s 133 MHz
PCI bus and the 100 MHz PCI bus. The bars labeled
libdnet serve as a reference and show the frame trans-
mission rates for a frame generator based on libdnet.

Notice that for all but the 64 byte frame size, FShm is
able to generate frames at the theoretic maximum for Gi-
gabit Ethernet. Clock skew accounts for the few bars that
are slightly above theoretic maximum. For small frames,
libdnet is not even close the theoretic maximum. For 64
byte frames, even KSend1 only comes to within 95% of
theoretic max showing that the hardware is the limiting
factor. The FShm numbers lag the hardware limit by a
bit, most likely due to cache coherence issues.

For all future experiments in which a frame genera-
tor is needed to saturate the link, an Opteron system us-
ing KSend1 with the NIC on the 133 MHz bus is used
to generate 64B frames. The same Opteron and bus are
used with KSend to generate the other frame sizes.

4.5 Capture
In this scenario a frame generator is connected to an-
other Opteron system (the evaluation target) configured
to capture frames. The configuration of FShm is shown
in Figure 11. Again, each module runs in its own thread,
and all queues are FShm queues. Here, the KRx module
pulls a free sbuf off the allocation queue, fills the sbuf
with data from the NIC and enqueues the sbuf for the
Handler. The Handler consumes the frame and returns
the now free sbuf to the allocation queue.

Results are shown in Figure 12 which breaks down

0.00

2.50 · 103

5.00 · 103

7.50 · 103

1.00 · 104

1.25 · 104

na
no

se
co

nd
s

KH
64

B

KH
96

B

KH
12

8B

KH
19

2B

KH
25

6B

KH
38

4B

KH
51

2B

KH
76

8B

KH
10

24
B

KH
15

18
B

UH
64

B

UH
96

B

UH
12

8B

UH
19

2B

UH
25

6B

UH
38

4B

UH
51

2B

UH
76

8B

UH
10

24
B

UH
15

18
B

Frame Size (Bytes)

Input

Output

Work

Figure 12: Capture Work

the amount of time available for work in-handler (work
time), the time spent forwarding the frame to the next
queue (output time), and the time taken to read the in-
coming frame (the input time). It is important to no-
tice that the time spent handling the queues remains con-
stant in both the kernel and user-space handler modules
demonstrating FShm’s scalability. Note that no frames
are dropped at any frame size.

Compare this to BPF capturing the same generated
frame stream, using stock FreeBSD drivers and the
Broadcom 5703 NIC. Here, the drop rate exceeded 75%
for small frames. Furthermore, only 99.95% of frames
were captured, even for the largest frame sizes.

Observed latencies for the kernel-space handler are all
bounded by twice the available service time. Since there
are two pipeline stages in this degenerate scenario (IP
and APP), this means that all frames are processed with-
out drops. Although user latency could not be measured
directly, the average latency can be bounded by experi-
mentation and is within acceptable limits. This was eval-
uated by sending 109 frames (i.e., 64 GB of traffic and
ensuring there were no drops. With eleven minutes of
sustained traffic we can be confident that this throughput
can be sustained indefinitely.

4.6 Forwarding

For the forwarding experiments, a frame generator sends
frames to an Opteron system (the evaluation target). The
frames forwarded by the evaluation target are then re-
turned to the frame generator so that it may compute end-
to-end latency, drop rates, and round-trip time.

Initially we evaluated the performance of a single
thread forwarding frames from one NIC to another with-

11

[UK]Handler

KRx

NIC NIC

Queue

Queue
(Alloc)

Queue

KTx

Figure 13: Setup: Forwarding

[UK]Handler

KRx

NIC NIC NIC

Queue

Queue
(Alloc)

Queue

KTx

Queue

Figure 14: Setup: Forwarding 64-byte

out the FShm architecture and found a non-zero drop
rate at every frame size, indicating that one thread cannot
keep up with Gigabit Ethernet.

For the FShm test, the configuration of the evaluation
target is shown in Figure 13. Forwarding is evaluated
with exactly the same setup as the capture evaluation,
only instead of the handler’s output queue being the al-
locator, it is connected to a KTx module that outputs the
frames on the appropriate NIC, in-order. The in-system
latency, in the forwarding setup, must be bounded by
three times the service rate for each frame as this setup
has three pipeline stages. The external latency is shown
in Table 4. This is measured by taking the average round
trip time and dividing by two. Dividing the external la-

Frame kernel-space user-space
Size Time (ns) # Frames Time (ns) # Frames
64B N/A N/A N/A N/A
96B 394373 213 528102 286

128B 484701 206 664873 282
192B 529621 157 650713 193
256B 716337 163 1212474 276
384B 1036671 161 1896708 295
512B 1353471 160 2178294 257
768B 1737235 138 2750763 219

1024B 2233380 134 3639886 219
1518B 3207739 131 5239745 214

Note: times for 64B frames were too small for accurate measurement.

Table 4: Forwarding System Latency

0.00

2.50 · 103

5.00 · 103

7.50 · 103

1.00 · 104

1.25 · 104

na
no

se
co

nd
s

KH
64

B

KH
96

B

KH
12

8B

KH
19

2B

KH
25

6B

KH
38

4B

KH
51

2B

KH
76

8B

KH
10

24
B

KH
15

18
B

UH
64

B

UH
96

B

UH
12

8B

UH
19

2B

UH
25

6B

UH
38

4B

UH
51

2B

UH
76

8B

UH
10

24
B

UH
15

18
B

Frame Size (Bytes)

Input

Output

Work

Figure 15: Forwarding Work

tency by the inter-frame arrival period, we can confirm
that NIC queuing is causing the high latencies.

There is some difficulty evaluating forwarding of 64-
byte frames. Section 4.4 shows that there is an hardware
limitation in generating frames to a separate buffer at the
full rate. This implies that to forward 64 byte frames at
the maximum arrival rate, we need to use multiple out-
put NICs. Therefore we used both output ports on the
Opteron’s on-board Broadcom 5704C NIC which inter-
nally times its DMAs to avoid interference on the bus.
Also, a side effect of generating at the 95% transmission
rate using the KSend1 module is that it is impossible to
insert a timestamp into outbound frames to measure ex-
ternal latency. Furthermore, due to cache miss latencies
in the KTx and KRx modules, it was not possible to in-
sert timestamps to compute in-system latency. To com-
pensate for the absence of direct measurement we used
the sustained traffic technique from Section 4.5.

Figure 15 shows the amount of useful work that the
handler can perform before the system begins to drop
frames. The bar to the left of each bar-pair shows the
amount of work (and overhead) that can be done in the IP
stage (i.e., the receiver module) and the bar on the right
quantifies the work in the APP (i.e., the handler module)
stage. Notice that most of the time at large frame sizes
is available for work. Note further that the total avail-
able work time is more that twice the actual inter-frame
arrival period, verifying that FShm does indeed permit
time-expansion through pipelining.

At smaller frame sizes, less work is possible. At the
64 byte frame size, FShm consumes almost all avail-
able time leaving no time for work. However, recall that
FShm can expand work-time with additional processors,
it can still allow real work to be performed. For example,

12

the handler could forward frames to N additional han-
dlers. This would give N times the per-frame processing
time. The stream would then be reassembled at the out-
put module. While existing commodity systems lack the
processors to do this, we have demonstrated that the han-
dler can split an incoming stream of 64 byte frames with
no drops by testing the configuration in Figure 14. With
the upcoming quad core dual processor systems, FShm
will be more than able to do zero-drop in-order process-
ing of 64 byte frames and still allow actual work to be
accomplished, even though the original configuration in
Figure 13 does not.

5 Related Work

As outlined in the prior sections, the FShm architecture
builds upon a rich body of prior work by synthesizing
ideas from the areas of operating system design [3, 13,
16, 22], message passing [2, 6, 28, 11, 5, 30, 12, 18],
networking architecture [8, 10, 14, 19, 23, 31], and high
performance computing[22, 25].

Of these works, the Synthesis Kernel[22] has been
most influential. The Synthesis Kernel pervasively em-
ployed concurrent lock-free queues for passing messages
between tasks, and is the inspiration for many of the
ideas in FShm’s communication mechanism. Specifi-
cally, FShm utilizes the single-producer/single-consumer
array based queue for all message-passing.

Both FShm and NetTap[4], an existing system to per-
mit high-speed user-space processing of packets, use
CLF queues and shared memory to communicate be-
tween kernel and user-space contexts. NetTap focused on
providing a specific API that was optimized for the single
processor machines that were available on the commod-
ity market at the time. They achieve satisfactory results.
FShm concerns itself with providing a general purpose
API designed to efficiently utilize multi-processor and
multi-core commodity systems. Furthermore, given the
time of publication, NetTap was evaluated on 100 Mbps
Ethernet and may not fare well on modern networks.

Recently Intel has been working on extending the ar-
chitectures of the Virtual Interface Architecture [12] and
InfiniBand [17]. Their goal is to accelerate the pro-
cessing of TCP/IP packets by dedicating a processor to
act as a TCP/IP onloading engine [29]. This processor
would preprocess packets and deliver them to applica-
tions through a set of queue structures with an interface
optimized for TCP/IP. However, ETA does not pipeline
frame processing and is not evaluated on small frame
transmissions. Furthermore, FShm remains agnostic to
the application whereas ETA is TCP/IP centric.

Finally, the Click Modular Router[19] is a network
processing architecture with goals similar to those of
the FShm. Click succeeds at providing a modular

network processing infrastructure with general purpose
user-space processing. The key to their success is that
modules can be tested in user-space and then recompiled
as a kernel module, thereby avoiding expensive commu-
nication between kernel-and user-space. By combining
FShm and Click one can gain the benefits of both.

6 Conclusion

The flexibility and low cost of commodity hardware sys-
tems make them an appealing choice for network pro-
cessing applications. However, as seen from Section 2,
several bottlenecks in the software architecture make
processing frames at Gigabit Ethernet rates difficult. Fur-
thermore applications such as network intrusion detec-
tion (NID) must be able to process all frame sizes on
saturated links. Prior to this work, this has not demon-
strated on commodity hardware. Worse still, it appears
as if prior work has eliminated almost all overhead for
frame processing on single processor machines.

To surmount the barrier to wire-rate small frame pro-
cessing, The FShm frame processing architecture, pre-
sented here, increases frame throughput by pipelin-
ing frame processing operations across multiple proces-
sors. To reduce the overhead of communicating between
pipeline stages, FShm uses shared memory and concur-
rent lock-free queues to permit user-space applications
to process all frames on a saturated Gigabit Ethernet
link, at all frame sizes, including 64 byte frames. Fur-
thermore, because FShm does not discriminate between
user↔user, kernel↔kernel, and kernel↔user communi-
cation, it allows pipeline stages in both kernel and user-
space. Finally, since the number of pipeline stages is
limited only by processor resources, FShm can be used
to split frame streams and expand per-frame processing
time with additional processors. This makes FShm ideal
for today’s and the future’s multi-core systems. Using
FShm, we demonstrate that (1) FShm can indeed process
all frame sizes at Gigabit Ethernet rates with no frame
drops, (2) quantify that FShm permits useful per-frame
work, and (3) that FShm can at least double the per-frame
processing time through use of multiple processors.

7 Acknowledgments

This material is based in part upon work sponsored by
ARO under Contract DAAD19-01-1-0484. The content
does not necessarily reflect the position or the policy of
the Government and no official endorsement should be
inferred. This work is also supported by the generosity of
AMD Corporation and the National Science Foundation
under grant CNS 0454404, “Wireless Internet Building
Blocks for Research, Policy, and Education.”

13

8 Availability

Project information and source will be made avail-
able at http://systems.cs.colorado.edu/
mediawiki/index.php/FShm

References
[1] ANDERSON, T. E., BERSHAD, B. N., LAZOWSKA, E. D., AND

LEVY, H. M. Scheduler activations: Effective kernel support for
the user-level management of parallelism. ACM Transactions on
Computer Systems 10, 1 (February 1992), 53–79.

[2] BERSHAD, B. N., ANDERSON, T. E., LAZOWSKA, E. D., AND
LEVY, H. M. Lightweight remote procedure call. In 12th
Symposium on Operating Systems Principles (December 1989),
pp. 102–113.

[3] BERSHAD, B. N., SAVAGE, S., PARDYAK, P., SIRER, E. G., FI-
UCZYNSKI, M., BECKER, D., EGGERS, S., AND CHAMBERS,
C. Extensibility, safety and performance in the SPIN operat-
ing system. In 15th Symposium on Operating Systems Principles
(Copper Mountain, Colorado, 1995), pp. 267–284.

[4] BLOTT, S., BRUSTOLONI, J., AND MARTIN, C. NetTap: An ef-
ficient and reliable PC-based platform for network programming,
1999.

[5] BRUSTOLONI, J. C. Interoperation of copy avoidance in network
and file i/o. In INFOCOM (2) (1999), pp. 534–542.

[6] BRUSTOLONI, J. C., AND STEENKISTE, P. Effects of buffer-
ing semantics on I/O performance. In OSDI ’96: Proceedings
of the second USENIX symposium on Operating systems design
and implementation (New York, NY, USA, 1996), ACM Press,
pp. 277–291.

[7] CHEN, T.-F., AND BAER, J.-L. Reducing memory latency via
non-blocking and prefetching caches. In Proceedings of the 5th
International Conference on Architectural Support for Program-
ming Languages and Operating System (ASPLOS) (New York,
NY, 1992), vol. 27, ACM Press, pp. 51–61.

[8] DECASPER, D., DITTIA, Z., PARULKAR, G., AND PLATTNER,
B. Router plugins: a software architecture for next-generation
routers. IEEE/ACM Trans. Netw. 8, 1 (2000), 2–15.

[9] DERI, L. nCap: Wire-speed packet capture and transmission. In
Proceedings of E2EMON (2005).

[10] DITTA, Z. D., AND ET AL. The APIC approach to high perfor-
mance network interface design: Protected dma and other tech-
niques.

[11] DRUSCHEL, P., AND PETERSON, L. L. Fbufs: a high-bandwidth
cross-domain transfer facility. In SOSP ’93: Proceedings of
the fourteenth ACM symposium on Operating systems principles
(New York, NY, USA, 1993), ACM Press, pp. 189–202.

[12] DUNNING, D., REGNIER, G., MCALPINE, G., SHUBERT, B.,
BERRY, F., MERRITT, A. M., GRONKE, E., AND DODD, C. The
virtual interface architecture. IEEE Micro 18, 2 (1998), 66–76.

[13] ENGLER, D. R., KAASHOEK, M. F., AND J. O’TOOLE, J. Ex-
okernel: an operating system architecture for application-level
resource management. In SOSP ’95: Proceedings of the fifteenth
ACM symposium on Operating systems principles (New York,
NY, USA, 1995), ACM Press, pp. 251–266.

[14] HANDLEY, M., KOHLER, E., GHOSH, A., HODSON, O., AND
RADOSLAVOV, P. Designing extensible ip routers software. In
NSDI ’05: 2nd USENIX Symposium on Networked Systems De-
sign and Implementation (2005).

[15] HERLIHY, M., AND MOSS, J. E. B. Transactional memory: Ar-
chitectural support for lock-free data structures. In Proceedings of
theTwentiethAnnual International Symposium on Computer Ar-
chitecture (1993).

[16] HUTCHINSON, N. C., AND PETERSON, L. L. The x-kernel: An
architecture for implementing network protocols. IEEE Transac-
tions on Software Engineering 17, 1 (1991), 64–76.

[17] INFINIBAND TRADE ASSOCIATION. http://www.
infinibandta.org.

[18] KHALIDI, Y. A., AND THADANI, M. N. An efficient zero-copy
i/o framework for unix. Tech. rep., Mountain View, CA, USA,
1995.

[19] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The click modular router. ACM Transac-
tions on Computer Systems 18, 3 (2000), 263–297.

[20] libpcap. http://www.tcpdump.org.

[21] libpcap-mmap. http://public.lanl.gov/cpw/.

[22] MASSALIN, H., AND PU, C. Threads and input/output in the
synthesis kernel. In Proceedings of the 12th ACM Symposium on
Operating Systems Principles (SOSP) (1989), vol. 23, pp. 191–
201.

[23] MCCANNE, S., AND JACOBSON, V. The BSD packet filter: A
new architecture for user-level packet capture. In USENIX Winter
(1993), pp. 259–270.

[24] METCALFE, R. M., AND BOGGS, D. R. Ethernet: Distributed
packet switching for local computer networks. Communications
of the ACM 19, 5 (July 1976), 395–404.

[25] MICHAEL, M. M., AND SCOTT, M. L. Nonblocking algo-
rithms and preemption-safe locking on multiprogrammed shared
— memory multiprocessors. Journal of Parallel and Distributed
Computing 51, 1 (1998), 1–26.

[26] MOGUL, J. C., AND RAMAKRISHNAN, K. K. Eliminating re-
ceive livelock in an interrupt-driven kernel. ACM Transactions
on Computer Systems 15, 3 (1997), 217–252.

[27] OLSSON, R. pktgen the linux packet generator. In Proc. lin-
uxsymposium 2005 (2005), vol. 2, pp. 11–24.

[28] PAI, V. S., DRUSCHEL, P., AND ZWAENEPOEL, W. Io-lite: a
unified i/o buffering and caching system. In OSDI ’99: Proceed-
ings of the third symposium on Operating systems design and im-
plementation (Berkeley, CA, USA, 1999), USENIX Association,
pp. 15–28.

[29] REGNIER, G., MAKINENI, S., ILLIKKAL, R., IYER, R.,
MINTURN, D., HUGGAHALLI, R., NEWELL, D., CLINE, L.,
AND FOONG, A. Tcp onloading for data center servers. IEEE
Computer 37, 11 (2004), 48–58.

[30] VON EICKEN, T., BASU, A., BUCH, V., AND VOGELS, W. U-
net: a user-level network interface for parallel and distributed
computing (includes url). In SOSP ’95: Proceedings of the fif-
teenth ACM symposium on Operating systems principles (New
York, NY, USA, 1995), ACM Press, pp. 40–53.

[31] WELSH, M., CULLER, D., AND BREWER, E. Seda: an archi-
tecture for well-conditioned, scalable internet services. In SOSP
’01: Proceedings of the eighteenth ACM symposium on Operat-
ing systems principles (New York, NY, USA, 2001), ACM Press,
pp. 230–243.

14

