
Chaining: A Software ArchitectureDependence Analysis TechniqueJudith A. Sta�ordy, Debra J. Richardsonz, and Alexander L. Wolf yyDepartment of Computer Science zDept. of Information and Computer ScienceUniversity of Colorado University of CaliforniaBoulder, CO 80309 USA Irvine, CA 92697 USAfjudys,alwg@cs.colorado.edu djr@ics.uci.eduUniversity of ColoradoDepartment of Computer ScienceTechnical Report CU-CS-845-97 September, 1997c 1997 Judith A. Sta�ord, Debra J. Richardson, and Alexander L. WolfABSTRACTThe emergence of formal architecture description languages provides an opportunity toperform analyses at high levels of abstraction. Research has primarily focused on devel-oping techniques such as algebraic and transition-system analysis to detect componentmismatches or global behavioral incorrectness. In this paper, we describe chaining, atechnique similar in concept and application to program slicing, in which the goal is toreduce the portions of an architecture that must be examined by an architect for somepurpose, such as testing or debugging. In chaining, links represent the dependence re-lationships that exist in an architectural speci�cation. Links connect elements of thespeci�cation that are directly related, producing a chain of dependencies that can befollowed during analysis. We illustrate the utility of chaining by showing how the tech-nique can be used to answer various questions one might pose of a Rapide architecturespeci�cation.This work was supported in part by the National Science Foundation under grant CCR-97-10078 and by the AirForce Material Command, Rome Laboratory, and the Defense Advanced Research Projects Agency under ContractNumber F30602-94-C-0253. The content of the information does not necessarily reect the position or the policy ofthe U.S. Government and no o�cial endorsement should be inferred.

1 INTRODUCTIONSoftware architectures are intended as models of systems at high levels of abstraction. Theycapture information about a system's components and how those components are interconnected.Some software architectures also capture information about the possible states of components andabout the component behaviors that involve component interaction; behaviors and data manipu-lations internal to a component are typically not considered at the architectural level.Formal software architecture description languages allow one to reason about the correctnessof software systems at a correspondingly high level of abstraction. Techniques have been devel-oped for architecture analysis that can reveal such problems as potential deadlock and componentmismatches [2, 7, 9, 13].In general, there are many kinds of questions one might want to ask at an architectural levelfor purposes as varied as reuse, reengineering, fault localization, impact analysis, regression testing,and even workspace management. For example, one might want to �nd out which components ofa system could receive noti�cation of a particular event generated by some component. Or, onemight want to minimize the number of components that must be examined in order to �nd thesource of a system failure. Or, one might like to know which components of a system would needto be retested when one component is replaced by a new one.These kinds of questions are similar to those currently asked at the implementation level andanswered through static dependence analysis techniques applied to program code. It seems reason-able, therefore, to apply similar techniques at the architectural level, either because the programcode may not exist at the time the question is being asked or because answering the question atthe architectural level is more tractable than at the implementation level.In this paper, we introduce chaining, a dependence analysis technique we are developing forsoftware architectures. In chaining, links represent the dependence relationships that exist in anarchitectural speci�cation. Links connect elements of the speci�cation that are directly related,producing a chain of dependencies that can be followed during analysis. The traditional view ofdependence analysis is based on control and data ow relationships associated with functions andvariables [1, 4, 5, 12, 15, 16]. We take a broader view of dependence relationships that is more appro-priate to the concerns of architectures and their attention to component interactions. In particular,we look at both the structural and the behavioral relationships among components expressed incurrent-day formal architecture description languages, such as Rapide [8] and Wright [2].We begin with a brief review of relevant questions that might reasonably be asked at the archi-tectural level as a way to further motivate our investigation of static dependence analysis. We thendescribe the concept of chaining and the architectural relationships that underlie the concept. Thisis followed by a description of how chains are created and used, including the representation schemewe employ for recording dependence relationships. For purposes of illustration, the discussion iscast in terms of a particular architecture description language, namely Rapide. We then reviewrelated work and conclude with a discussion of our future plans.2 MOTIVATING QUESTIONSAs mentioned above, there are a variety of questions that should be answerable by an exami-nation of a formal architecture description. Here we list several such questions as motivation forthe study of architectural dependence analysis. 1

1. Which components could have contributed to the particular state of a component?2. Which components make use of this particular state of a component?3. Which components could have been used if this state of the system is reached?4. If this component is to be reused in another system, which other components of the systemare also required?5. Which components of the system contribute to this piece of functionality?6. What are the potential e�ects of dynamically replacing this component?7. If this component uses a blackboard connector, what other components will it be communi-cating with?8. If a change is made to this component, what other components might be a�ected?9. If the source speci�cation for a component is checked out into a workspace for modi�cation,which other source speci�cations should also be checked out into that workspace?These questions share the common theme of identifying the components of a system that eithera�ect or are a�ected by a particular component in some way. The idea of collecting together relatedportions of a system, in an e�ort to reduce the amount of information that must be examinedfor some purpose, recalls the notion of program slicing introduced by Weiser [22]. Sloane andHoldsworth [19] suggest generalizing the concept of program slicing and show the potential inslicing non-imperative programs.Our notion of chaining is intended to support a range of analysis applications, including whatwould amount to an architectural slice. Unlike previous approaches to slicing, which are based onstatements and variables, the basis for architectural slices is more general architectural relationships,as discussed in the next section.3 CHAININGChaining is a dependence analysis technique we propose for use at the architectural level. Inchaining, links represent the dependence relationships that exist in an architectural speci�cation.Links connect elements of the speci�cation that are directly related, producing a chain of depen-dencies that can be followed for further analysis.For the purposes of this paper, we o�er the following de�nition of a software architecture: Asoftware architecture is a set of components and the connections among them.A component is comprised of four types of elements� Component interaction elements: provide the means for connection to or interaction withanother component. These elements may also be called ports.� Data elements: contain the data to be transformed by, provided by or used by the component.� Processing (or behavioral) elements: provide the means for transforming or transmitting thedata and=or state of the component. 2

� State elements: contain the current state of the component in terms of both data and pro-cessing elements.Given component C that contains elements we describe three types of chains:� A�ected-by chains: consist of the set of components and=or their elements that could poten-tially a�ect the behavior of a processing element, the state of a state element, and=or thevalue of a data element of C.� A�ects chains: consist of the set of components and=or the processing elements, state ele-ments, and data elements that could be impacted by a change of C.� Related chains: consist of the set of components and=or their elements that may a�ect orbe a�ected-by the behavior of a processing element, the state of a state element, and/or thevalue of a data element of C; this chain is the combination of the a�ected-by and the a�ectschain for elements of C.As examples, an a�ected-by chain would contribute to answering question 1 from above, whilean a�ects chain would contribute to answering question 8. A related chain would contribute toanswering question 6.Underlying chains are dependence relationships between components. Traditionally, we thinkof dependence relationships at the level of program code, where control and data ow are themost prominent aspects to study. Dependence relationships at the architectural level arise fromthe connections between components and the constraints on their interactions. These relationshipsmay involve some form of control or data ow, but more generally they involve source structureand behavior. Source structure (or structure, for short) has to do with static source speci�cationdependencies, while behavior has to do with dynamic interaction dependencies. Below we givesome examples.� Structural Relationships{ Includes: The speci�cation for a component may be created from numerous sourcemodules that are textually combined.{ Import/Export: The speci�cation for a component may describe the information ex-ported and imported between source modules (e.g., with a module interconnection lan-guage).{ Inheritance: The speci�cation for a component may be created through inheritance fromother source modules.� Behavioral Relationships{ Temporal: The behavior of one component precedes or follows the behavior of anothercomponent.{ Causal: The behavior of one component implies the behavior of another component.{ Input: A component requires information or stimulation from another component.{ Output: A component provides information or stimulation to another component.3

Both structural and behavioral dependencies are important to capture and understand when ana-lyzing an architecture. The structural dependencies allow one to locate source speci�cations thatcontribute to the description of some state or interaction. The behavioral dependencies (of whichcontrol and data ow are examples) allow one to relate states or interactions to other states orinteractions.The particular kinds of dependencies and chains that can be established among components areheavily inuenced by the primitive features of the architecture description language. For instance,in CHAM [6] and Wright, only behavioral relationships are modeled, and those relationships arebased on synchronous input and output ports1 through which data ow. Darwin [9] and Rapidespeci�cations can involve both structural and behavioral relationships. The structural relationshipsin these languages derive from concepts of import, export, and inheritance. Rapide behavioralspeci�cations are particularly interesting in that they can involve event-based interactions, as weillustrate in the next section.4 CREATING AND USING CHAINSAs mentioned above, chains represent dependence relationships in an architectural speci�cationthat can be followed during analysis. Individual links within a chain associate components and=orcomponent elements of an architecture that are directly related, while a chain of dependenciesassociates components and=or component elements that are indirectly related. We develop a matrixrepresentation for architectures and apply a straightforward algorithm to the matrix in order todiscover chains of related component elements.We have used chaining to discover an intentionally introduced fault in the ADAGE avionicsarchitecture, which is written in Rapide [10]. The ADAGE example is a two-level nested architectureconsisting of an outer-level architecture plus four sub-architectures. The four sub-architecturestogether contain 30 components communicating through nearly 100 ports. It is, therefore, toolarge to be presented here. Instead, we illustrate our technique using another Rapide architecturespeci�cation, the well-known gas station example.2 The Rapide code for the gas station, whichis shown in Figure 2, is taken from a teaching example available in the Rapide 1.0 Toolset. Thisexample unfortunately does not involve structural relationships, but is su�cient to give the avorof our approach.In this section, we begin by briey reviewing the Rapide language so that our examples canbe understood. We then describe the general method for constructing the dependence matrixrepresentation, and follow this by describing the method for using the matrix to discover chains.4.1 Overview of RapideRapide is intended to aid in the development and maintenance of large systems. Rapide itselfis very powerful and complex. For the purposes of this paper, we present only a brief overview of1In both languages, connectors can be introduced to model other kinds of behavioral relationships, but these arestill based on, or built from, the primitive concept of the synchronous port.2It could be argued that the gas station example is not representative of software architecture speci�cations,although it is widely used in the architecture literature. It has the advantage of being well known and compact, anddoes in fact exhibit features that would appear in a \real" architecture speci�cation. In general, there appears to bea dearth of good architecture speci�cation examples, both large and small.4

type FACE is interfaceprovides: : :requires: : :service: : :actionin I() ;out O() ;behaviorX : integer;beginI k> O;constraint: : :end FACE
architecture ARCH return sometype isI1, I2: FACE;connect: : :constraint: : :end ARCH

Figure 1: Skeleton Rapide Interface Architecture.the language features used in our example. A full description of the language is available in theRapide Language Manuals [20].The architecture description for the gas station is provided in the July 1997 release of the RapideToolset. There are seven versions of the example included in the release. We are using the secondversion.Within this paper, we are limiting our view of Rapide to the following features and concepts: ar-chitectures, computations, connections, events, interfaces, in and out actions, posets, placeholders,and triggers.Components are de�ned in interfaces. The interfaces are comprised of provides, requires,service, and action declaration sections, a behavior section that may contain local declarations,and a constraint section. action sections contain the declaration of in and out actions, whichdeclare the ability to observe or emit particular events. Figure 1 shows the skeleton of an interface,FACE, and an architecture, ARCH, where I and O are declared as actions. Not all architecturesand interfaces contain all of the possible sections. In fact, the gas station example does not haveprovides , requires, or service sections in any of its interfaces, nor are there any constraintsections.For our purposes, we are interested in the behavioral view that is provided at the architecturelevel. Computations are de�ned in a pattern language [21]. Patterns are sets of events togetherwith their partial ordering. The representation for the partial orders are called posets. Posets canbe used to evaluate the correctness of the architecture.Rapide uses four symbols to represent connections in connection rules. Connection rules havea trigger, an operator and a body.� Agent connection (\k>"): The observation of the pattern described in the trigger asyn-chronously generates the events in the body.� Basic connection (\to"): A basic connection connects two functions, objects, or actions.5

The connection will be made between a provides or in element of a component and anda requires or out element of the other component. Basic connections provide a means ofsynchronous communication in Rapide.� Pipe connection (\=>"): The observation of the pattern described in the trigger asyn-chronously generates the events in the body. The di�erence between a pipe and an agentis that a pipe creates dependencies between all events generated in prior triggerings of therule.� Service connection (\to"): Service connections are a special case of basic connections whichconnect a service and a dual of that service. Services provide a means of bundling connectorstogether. A dual of a service has the reverse of the provides, requires, in, and out actionsfrom the service. Service connections provide a means of synchronous communication.Pipes and agents are also used as operators in the transition rules de�ned in the behavior sectionof an interface. A transition rule is composed of a trigger, an operator, and a body. The triggermay be a pattern or a boolean expression. The body may be a state assignment or a posetgenerator. An event or set of events generated during a simulation is added to the computation ofthat simulation. Patterns of events may be watched for in a poset. When a pattern is observed, ittriggers the events in the body of the rule. In the gas station example, the body of behaviors areeither state assignments or the generation of a single event.In our restricted use of Rapide, connections in an architecture may be made between patternlists and connection sets, where a pattern list is a list of one or more patterns to be observed anda connection set is either an expression or a pattern.Rapide provides placeholders for use in patterns and expressions. These are designated with a\?". Placeholders are used in comparisons, dynamic generation of components, as iterators, or tobind the values of parameters. In the case of dynamic creation of components, a placeholder servesas a universal quanti�er. For instance, in the gas station example(?C : Customer; ?X :Dollars)?C.Pre Pay(?X) => O.Request(?X);is interpreted as meaning \for every customer, there is to be a pipe connection between the cus-tomer's Pre Pay action and the operator's Request action, where the number of Dollars in theRequest action is bound to the number of dollars in the Pre Pay action".4.2 Construction of the Dependence MatrixAs mentioned above, we use a matrix to represent the dependence relationships of an architec-ture. The matrix is m � n, where m is the number of ports in the architecture plus any implicitlydeclared actions, and n is simply the number of ports in the architecture. Implicitly declared ac-tions represent events generated in the environment of the system that are watched for within aninterface. The start event in the �rst transition rule of the customer interface of the gas stationspeci�cation in Figure 3 is an example of an implicitly declared action.The relationships associated with connections and state transition rule operators in an archi-tecture educe a dependence relationship. In the dependence matrix, the columns represent thedependent in the relationship and the rows represent the source (or object) of the dependence. Forinstance, if a is dependent on b, then the cell at column a and row b details that relationship. The6

type Dollars is integer; -- enum 0, 1, 2, 3 end enum;type Gallons is integer; -- enum 0, 1, 2, 3 end enum;type Pump is interfaceaction in O(), Off(), Activate(Cost : Dollars);out Report(Amount : Gallons, Cost : Dollars);behaviorFree : var Boolean := True;Reading, Limit : var Dollars := 0;action In Use(), Done();begin(?X : Dollars)(On � Activate(?X)) where $Free => Free := False;Limit := ?X;In Use;;In Use => Reading := $Limit; Done;;Off or Done => Free := True; Report($Reading);;end Pump;type Customer is interfaceaction in Okay(), Change(Cost : Dollars);out Pre Pay(Cost : Dollars)Okay(), Turn On(), Walk(), Turn Off();behaviorD : Dollars is 10;begin start => Pre Pay(D);;Okay => Walk;;Walk => Turn On;;end Customer;type Operator is interfaceaction in Request(Cost : Dollars), Result(Cost : Dollars);out Schedule(Cost : Dollars), Remit(Change : Dollars);behaviorPayment : var Dollars := 0;begin (?X : Dollars)Request(?X) => Payment := ?X; Schedule(?X);;(?X : Dollars)Result(?X) => Remit($Payment - ?X);;end;architecture gas station() return root isO : Operator;P : Pump;C1, C2 : Customer;connect(?C : Customer; ?X : Dollars) ?C.Pre Pay(?X) ||> O.Request(?X);(?X : Dollars) O.Schedule(?X) ||> P.Activate(?X);(?X : Dollars) O.Schedule(?X) ||> C1.Okay;(?C : Customer) ?C.Turn On ||> P.On;(?C : Customer) ?C.Turn Off ||> P.Off;(?X : Gallons; ?Y : Dollars)P.Report(?X, ?Y) ||> O.Result(?Y);end gas station;Figure 2: A Rapide Interface Architecture.7

cell may, for example, reect the existence of a direct connection, such as a remote function call,it may indicate sharing of data, or it may indicate interaction by means of event noti�cation andsubscription. In general, for a given architecture description language, it is necessary to understandthe various ways in which two components and their elements can be related so that the dependencematrix can be constructed.For example, one could identify the following direct dependence relationships derived fromRapide transition rule and connection operators:� Agent (\k>"): The element(s) of the body are dependent on the element(s) of the trigger.� Basic (\to"): The requires or in element is dependent on the provides or out element ofthe connection .� Pipe (\=>"): The element(s) of the body are dependent on the element(s) of the trigger andthe element(s) of the trigger are dependent on the element(s) of the body in order to capturepossible dependencies on events generated by prior triggerings of the rule.� Service (\to"): A service connection creates two (\symmetric") dependencies. Each memberof the relationship must be recognized as both the source and the dependent in the relationshipbecause a service can contain a combination of the provides, requires, in and out porttypes.In the case of the gas station architecture of Figure 2, there is an agent connection between theTurn On action for each customer and the On action of the pump, where the On action is the body,and thus the dependent. Therefore, this connection is recorded in the matrix cells (C1.T On,P.On)and (C2.T On,P.On) in Figure 3.The method for constructing the matrix is a two step process:� STEP 1: Build the matrix frame. Determine and record all the communication ports for thearchitectural components and use these as the column and row labels of the matrix.� STEP 2: Record dependencies in the cells. Mark the appropriate cell of the matrix for eachconnection and transition rule in the architecture and transition rule in component interfaces.For the gas station example, we took these steps in building the matrix shown in Figure 3.STEP 1.As stated above, the �rst step is to build the matrix frame. Ports in Rapide are de�ned inthe provides, requires, service and action sections of component interfaces. We construct thematrix by �rst identifying the components of the system, and then identifying the ports withintheir interfaces.A. The gas station architecture is found at the bottom of Figure 2. The components of thearchitecture, which are listed in its top section, are an operator: O, a pump: P, and twocustomers: C1 and C2. 8

B. The next stage of Step 1 is to check the provides, requires, action, and service sectionsof the interfaces for each component to determine what its ports are. In the gas stationarchitecture, there are no provides, requires, or service sections in any of the interfaces.Each interface de�nes all its ports in its action section. The Operator interface watches forRequest and Result events and outputs Schedule and Remit events. These are listed ascolumn and row labels of the matrix shown in Figure 3.C. It is possible for implicitly declared events to be watched for by a component. These eventswould be evident because they would appear in a trigger but would not be de�ned in thecomponent interface. In our gas station example, the start event of the Customer interfaceis an implicitly declared event and as such will be included as a row label.STEP 2.After the frame of the matrix has been built, the connections and transitions are recorded inthe matrix cells.A. The �rst stage of Step 2 is to record the connections de�ned in the architecture interface,which is done by looking at the connect section of the architecture at the bottom of Fig-ure 2. The �rst connection recorded for this example is the agent connection between eachcustomer's Pre Pay action and the operator's Request action. The use of a placeholder forthe customer tells us that the connection is to be made for each component of type Customerin the architecture. This connection is recorded in the matrix in Figure 3 as a \k>" in the(C1.PP,O.Req) and (C2.PP,O.Req) cells. The rest of the connections are recorded in a similarmanner.B. Next, the transitions de�ned in the behavioral part of the component interfaces are recorded,which is done by looking at the behavior section of each interface. The relationship betweenthe actions in the trigger and the body of the transition rules are recorded in the appropriatecell of the matrix. Some notable features of the behavior in the gas station interfaces are:{ start appears as the trigger of the Customer Pre Pay action. start is an implicitlydeclared event that is the beginning of a given execution of the system.{ In the Customer interface, Walk is declared to be an out action. It is used both in thebody of a transition rule and as a trigger. The appearance of an out action in a triggerindicates that the body will only be triggered by locally generated Walk events.{ The interface of the pump contains local declarations. The local variables and actions areused to de�ne the internal behavior that would have to occur between the observationof the On � Activate pattern in the computation and the, locally visible, emission ofthe Done event, which could trigger the Report event. Because we restrict our viewof behavior to the architectural level, a summary of the internal behavior of the pumpprovides us with the dependence of Report on On and Activate, and conversely, since theconnection is a pipe, the dependence of On and Activate on Report.3 These relationships3If, in fact, we chose to model the internal behavior, these internal events could be included in the matrix frameand their behavior modeled in the same way as that at the architectural level. The summarization at the architecturallevel produces a direct dependence where there would otherwise be an indirect dependence.9

O P C1 C2OUT IN OUT IN OUT IN OUT INSch(D) Rem(D) Req(D) Res(D) Rep(G,D) On Off Act(D) PP(D) T On Walk T Off Okay Chg(D) PP(D) T On Walk T Off Okay Chg(D)OOUTSch(D) k> k>Rem(D)INReq(D) k>Res(D) k>POUTRep(G,D) k> => => =>INOn =>Off =>Act(D) =>C1OUTPP(D) k>T On k>Walk k>T Off k>INOkay k>Chg(D)start k>C2OUTPP(D) k>T On k>Walk k>T Off k>INOkay k>Chg(D)start k>Figure 3: Gas Station Dependence Matrix.are recorded in the appropriate cells of the matrix with a \=>", since the operator is apipe.While composite patterns in triggers and bodies of rules can be complex, they do not needto add complexity to the matrix representation. This is because, in general, there is no way totell, statically, which of the actions in the trigger are the cause of a given triggering, thus all arerecorded as sources for the relationship. This is a conservative approach and we are investigatingmethods for reducing the generation of false dependencies.Once the system's relationships are recorded in the matrix, one can construct chains to answerquestions about the represented architecture. A�ects chains involve creating links by beginning atthe row labels and locating the related column label, whereas a�ected-by chains are constructed bylinking from column to row labels.In the gas station matrix, construction of an a�ected-by chain of events that may have causedthe P.Activate event, begins at the columns and look to the related events in the rows. TheO.Schedule event is the only possible source of the P.Activate event. These relationships aretransitive and we are assuming that all possible prior events occurred, so we repeat the process foreach of the related events. In this case, only the O.Schedule event is directly caused by O.Request,which is generated by any one or both of the C1.Pre Pay or C2.Pre Pay events, which may onlybe preceded by the start event of the Customer interface.For example, construction of an a�ects chain that has the O.Schedule action as its �rst linkbegins by checking the cells that have entries in the O.Schedule row. The P.Activate and C1.Okayare the only columns that have entries for this row. These relationships are also transitive, so thechain is constructed in a similar, though reversed manner, to the a�ected-by chain.Chaining can be used to answer questions about an architecture. The types of chains constructedvary depending upon the question being asked. For instance, a�ects chains answer questions aboutwhich events cause other events, while a�ected-by chains answer the opposite. Some interestingquestions and their chain-based answers are: 10

1. What components would need to be retested if we were to decide to replace the pump? In thiscase we are interested in the components that could receive information from the pump, thuswe want to construct an a�ects chain. We begin by looking at the rows associated with theout ports of the pump and chain from there as follows:(a) P.Report =)4 O.Result(b) O.Result =) O.Remit(c) O.Remit =)The O.Remit action does not appear in a trigger therefore, this is the last link of this chain.For this architecture, the pump and the operator need to be retested. Of course, one mightwonder about the correctness of the architecture when it contains out actions that are notsubscribed for, so in asking this question we have uncovered a possible fault in the architecture.2. Are there any actions for which there are no subscriptions? In this case we look for blankrows in the matrix. If there are no entries in a row, no components watch for that action.In the gas station architecture, there are no subscribers for the C1.Change, C2.Change, orO.Remit actions. Taking a quick check of the connect section of the gas station architecturereveals the fact that O.Remit is not used as a trigger in any connection. This connection isincluded in other versions of the architecture provided with the Rapide 1.0 Toolset.If the blank row is an in action then it is probably an anomaly. If it is an out action, it maybe a case of planning for the future when a component may want to watch for this event. Inany case, it is good to be able to consider the rami�cations of an event being made availableand going unused.3. What series of events could contribute to the Turn On event for C2? This architecture con-tains a serious error. In particular, it is never possible for the second customer to pump gas.The �rst customer does not su�er from this dilemma. Thus, one could compare the a�ectschains that lead to the C1.Turn On and C2.Turn On events to �nd where they di�er.(a) C1 a�ects chaini. C1.Turn On (= C1.Walkii. C1.Walk (= C1.Okayiii. C1.Okay (= O.Scheduleiv. O.Schedule (= O.Requestv. O.Request (= (C1.Pre Pay or C2.Pre Pay)(b) C2 a�ects chaini. C2.Turn On (= C2.Walkii. C2.Walk (= C2.Okayiii. C2.Okay (=4=) may be read as \causes" 11

We can see from comparing the chains, that the problem is that the C2.Okay event never isgenerated, but the C1.Okay event is generated no matter who paid for the gas.With this information at hand, we examine the architecture speci�cation in Figure 2, look atthe connections involving the scheduling of customers, and �nd that C1 is the only customerthat receives the Schedule event from the operator. The information tells the system'sarchitect that there is a fault in the connection based on the O.Schedule action in thearchitecture.5 RELATED WORKTo our knowledge, the work described in this paper is the �rst attempt to de�ne dependenceanalysis of speci�cations written in current-day architecture description languages. Nevertheless,the work builds on previous and related work in three primary areas: traditional dependenceanalysis techniques; novel approaches to slicing; and applications of static concurrency analysistools to architecture descriptions. In this section, we review representative work in these areas.Various tools have been developed to trace the structural dependencies within program code. Anexample is the tool makedepend, which examines code to automatically derive the �le dependencies(e.g., #include in the C environment) used in Make �les. Our approach applies this concept toarchitecture description languages and combines the information with behavioral dependencies.ProDAG [18] is a program dependence analysis toolset that performs statement-level depen-dence analysis. ProDAG allows one to create and access various prede�ned relationships originallyidenti�ed by Podgurski and Clarke [16]. The technique of chaining raises these ideas to the archi-tectural level, as well as incorporating the notion of structural dependence.Sloane and Holdsworth [19] suggest advanced applications for Weiser's concept of programslicing [22], in which the basis for analysis includes aspects other than traditional data and controlow. They describe a generalized slicing tool that treats slicing as tree-marking manipulationsof program syntax trees. Their concept of syntactically based generalized slicing allows them tocontemplate the slicing of non-imperative programs. They demonstrate this by describing severaltools that could be built to aid in the understanding of formal compiler speci�cations. We agreewith the spirit of this work and, in some sense, are pursuing a similar goal, but in the particularcontext of software architectures.Oda and Araki [14] �rst introduced the concept of static speci�cation slicing for speci�cationswritten in Z. Chang and Richardson [3] extend this work with the introduction of techniques forcreating dynamic slices. In both of these e�orts, the value of a variable in a particular predicate isused as the slicing criteria, whereas we are exploring relationships at the architectural level, wherethe concept of a variable does not exist.Zhao, Cheng, and Ushijima [23] propose the system dependence net (SDN) as a representationof concurrent object-oriented programs. The SDN is used to �nd slices of CC++ (Concurrent C++)programs, using the value of a variable or return value of a method call at a particular statement asthe slicing criteria. They point out that new types of dependence relationships should be consideredwhen slicing concurrent object-oriented programs. This is similar to our recognition that there arenew types of dependence relationships to consider in analyzing architecture descriptions. However,they restrict slicing to the statement level, using the limited criteria of variable and method callreturn values. 12

Naumovich et al. [13] apply INCA and FLAVERS, two static concurrency analysis tools usedfor proving behavioral properties of concurrent programs, to an Ada translation of the Wright de-scription of the gas station problem. The focus of this work is on demonstrating that existing staticconcurrency analysis techniques can be applied to software architectures to help prove, or disprove,the satisfaction of certain behavioral properties. Their approach, however, amounts to creating aconcurrent program that can simulate the intended concurrent behavior of the system. Our workis aimed at developing general dependence analysis techniques that may, in fact, contribute to theenhancement of the static analyses already provided by these tools.6 CONCLUSIONThe main contribution of this paper is the introduction of architectural level dependence analysisfor both the structural and behavioral aspects of a system.Our dependence matrix representation for architectures is general enough to support analysiscapabilities beyond what is described in this paper. For instance, it can provide a view of de-pendence relationships at a higher level of abstraction than that presented here by determiningdependences between the components themselves, thus considering the components as the labelson the rows and columns of the matrix. Moreover, although here we describe chaining for a subsetof Rapide, our approach can be easily adapted to many other architecture description languages.This is because the application of chaining is not language dependent, although the construction ofthe dependence matrix is somewhat determined by the constructs of the language. This is similar totraditional program dependence analysis, where the representation of the program and the def-useannotations depends on the programming language, but the dependence analysis itself does not.Thus, we intend to incorporate more features of the Rapide language, to extend our de�nition ofchaining to other languages (including CHAM [6], C2 [11], Darwin [9], and Wright [2]), and to testour approach against more complex architectures.We are interested in investigating heuristics for reducing the conservativeness of chainingthrough patterns. In Rapide speci�cations, for example, there is information available such aswhich combination of placeholders is required by a dependent, that could be used to reduce thenumbers of actions to be linked into a chain. We are also continuing to investigate the summa-rization of internal component behavior. We are debating the bene�ts of incorporating these localactions into the matrix or summarizing their e�ects.Historically, testing has concentrated on the implementation of the system, which has meantthat it is considered fairly late in the development process. Eventually, we intend to incorporatechaining into a complete life cycle software analysis and testing environment, such as the TAOSenvironment [17]. TAOS includes dependence analysis and testing at the implementation level,but also has support for using speci�cations in the testing process for test generation and resultchecking. Integrating architecuture analysis techniques, such as chaining and related techniques,would round out the life cycle support for analysis and testing.Given the similarity between chaining and traditional program slicing, we expect comparisonsto be made between the two. There is growing skepticism in the programming languages andsoftware engineering research communities as to the value of slicing software systems, since sliceshave not been shown to result in signi�cant reductions in program size. It is our belief that thesavings from applying such techniques will be greatest when applied to large systems, since thesesystems should be more loosely coupled. But computing statement level slices for large systems is13

likely to be impractical. Architectural level slicing may prove a practical alternative. Moreover,architectural level analysis o�ers the possibility to detect faults early in the software life cycle.

14

REFERENCES[1] H. Agrawal, R. A. DeMillo, and E. H. Spa�ord. An Execution-Backtracking Approach to Debugging.IEEE Software, pages 21{26, May 1991.[2] R. Allen and D. Garlan. Formalizing Architectural Connection. In Proceedings of the 16th InternationalConference on Software Engineering, pages 71{80. IEEE Computer Society, May 1994.[3] J. Chang and D. J. Richardson. Static and Dynamic Speci�cation Slicing. In Proceedings of the FourthIrvine Software Symposium, Irvine, CA, April 1994.[4] J. Cheng. Slicing Concurrent Programs | A Graph-Theoretical Approach. Lecture Notes in ComputerScience, Automated and Algorithmic Debugging, pages 223{240, 1993.[5] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing Using Dependence Graphs. ACM Trans-actions on Programming Languages and Systems, 22(1):26{60, January 1990.[6] P. Inverardi and A.L. Wolf. Formal Speci�cation and Analysis of Software Architectures using theChemical Abstract Machine Model. IEEE Transactions on Software Engineering, 21(4):373{386, April1995.[7] P. Inverardi, A.L. Wolf, and D. Yankelevich. Checking Assumptions in Component Dynamics at theArchitectural Level. In Proceedings of the Second International Conference on Coordination Models andLanguages. Springer-Verlag, 1997. To appear.[8] D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, and W. Mann. Speci�cation andAnalysis of System Architecture Using Rapide. IEEE Transactions on Software Engineering, 21(4):336{355, April 1995.[9] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Distributed Software Architectures. In Proceedingsof the Fifth European Software Engineering Conference, number 989 in Lecture Notes in ComputerScience, pages 137{153. Springer-Verlag, September 1995.[10] W. Mann, F. C. Belz, and P. Corneil. A Rapide-1.0 De�nition of the ADAGE Avionics System.Technical Report CSL-TR-93-585, Stanford University, 1993.[11] N. Medvidovic, R. N. Taylor, and Jr. E. J. Whitehead. Formal Modeling of Software Architecturesat Multiple Levels of Abstraction. In Proceedings of the California Software Symposium 1996, pages28{40, Los Angeles, CA, April 1996.[12] C.T. Moore, T.O. O'Malley, D.J. Richardson, S.H.L. Aha, and D.A. Brodbeck. ProDAG: A ProgramDependence Graph System. Technical report, Department of Information and Computer Science, Uni-versity of California at Irvine, 1990.[13] G. Naumovich, G.S. Avrunin, L.A. Clarke, and L.J. Osterweil. Applying Static Analysis to SoftwareArchitectures. In Proceedings of the Sixth European Software Engineering Conference. Springer-Verlag,1997. To appear.[14] T. Oda and K. Araki. Speci�cation Slicing in Formal Methods of Software Development. In Proceedingsof the Seventeenth Annual International Computer Software and Applications Conference, pages 313{319. IEEE Computer Society Press, November 1993.[15] H. Pande, W. Landi, and B. Ryder. Interprocedural Def-Use Associations for C Systems with SingleLevel Pointers. IEEE Transactions on Software Engineering, 20(5):385{403, May 1994.[16] A. Podgurski and L.A. Clarke. A Formal Model of Program Dependencies and its Implications for Soft-ware Testing, Debugging, and Maintenance. IEEE Transactions on Software Engineering, 16(9):965{979, September 1990. 15

[17] D.J. Richardson. TAOS: Testing with Analysis and Oracle Support. In Proceedings of the 1994 Inter-national Symposium on Software Testing and Analysis (ISSTA '94), pages 138{153. ACM SIGSOFT,August 1994.[18] D.J. Richardson, T.O. O'Malley, C.T. Moore, and S.L. Aha. Developing and Integrating ProDAG in theArcadia Environment. In SIGSOFT '92: Proceedings of the Fifth Symposium on Software DevelopmentEnvironments, pages 109{119. ACM SIGSOFT, December 1992.[19] A.M. Sloane and J. Holdsworth. Beyond Traditional Program Slicing. In Proceedings of the 1996 Inter-national Symposium on Software Testing and Analysis (ISSTA '96), pages 180{186. ACM SIGSOFT,January 1996.[20] RAPIDE Design Team. Draft: Guide to the Rapide 1.0 Language Reference Manuals. July 1997.[21] RAPIDE Design Team. Draft: Rapide 1.0 Pattern Language Reference Manual. July 1997.[22] M. Weiser. Program Slicing. IEEE Transactions on Software Engineering, 10(4):352{357, July 1984.[23] J. Zhao, J. Cheng, and K. Ushijima. Static Slicing of Concurrent Object-Oriented Programs. In IEEE-CS 20th Annual International Computer Software and Applications Conference, pages 312{320, 1996.

16

