Chaining: A Software Architecture
Dependence Analysis Technique

Judith A. Staffordf, Debra J. Richardson?, and Alexander L. Wolf

tDepartment of Computer Science tDept. of Information and Computer Science
University of Colorado University of California
Boulder, CO 80309 USA Irvine, CA 92697 USA
{judys,alw}@cs.colorado.edu djr@ics.uci.edu

University of Colorado
Department of Computer Science
Technical Report CU-CS-845-97 September, 1997

(© 1997 Judith A. Stafford, Debra J. Richardson, and Alexander L. Wolf

ABSTRACT

The emergence of formal architecture description languages provides an opportunity to
perform analyses at high levels of abstraction. Research has primarily focused on devel-
oping techniques such as algebraic and transition-system analysis to detect component
mismatches or global behavioral incorrectness. In this paper, we describe chaining, a
technique similar in concept and application to program slicing, in which the goal is to
reduce the portions of an architecture that must be examined by an architect for some
purpose, such as testing or debugging. In chaining, links represent the dependence re-
lationships that exist in an architectural specification. Links connect elements of the
specification that are directly related, producing a chain of dependencies that can be
followed during analysis. We illustrate the utility of chaining by showing how the tech-
nique can be used to answer various questions one might pose of a Rapide architecture
specification.

This work was supported in part by the National Science Foundation under grant CCR-97-10078 and by the Air
Force Material Command, Rome Laboratory, and the Defense Advanced Research Projects Agency under Contract
Number F30602-94-C-0253. The content of the information does not necessarily reflect the position or the policy of
the U.S. Government and no official endorsement should be inferred.

1 INTRODUCTION

Software architectures are intended as models of systems at high levels of abstraction. They
capture information about a system’s components and how those components are interconnected.
Some software architectures also capture information about the possible states of components and
about the component behaviors that involve component interaction; behaviors and data manipu-
lations internal to a component are typically not considered at the architectural level.

Formal software architecture description languages allow one to reason about the correctness
of software systems at a correspondingly high level of abstraction. Techniques have been devel-
oped for architecture analysis that can reveal such problems as potential deadlock and component
mismatches [2, 7, 9, 13].

In general, there are many kinds of questions one might want to ask at an architectural level
for purposes as varied as reuse, reengineering, fault localization, impact analysis, regression testing,
and even workspace management. For example, one might want to find out which components of
a system could receive notification of a particular event generated by some component. Or, one
might want to minimize the number of components that must be examined in order to find the
source of a system failure. Or, one might like to know which components of a system would need
to be retested when one component is replaced by a new one.

These kinds of questions are similar to those currently asked at the implementation level and
answered through static dependence analysis techniques applied to program code. It seems reason-
able, therefore, to apply similar techniques at the architectural level, either because the program
code may not exist at the time the question is being asked or because answering the question at
the architectural level is more tractable than at the implementation level.

In this paper, we introduce chaining, a dependence analysis technique we are developing for
software architectures. In chaining, links represent the dependence relationships that exist in an
architectural specification. Links connect elements of the specification that are directly related,
producing a chain of dependencies that can be followed during analysis. The traditional view of
dependence analysis is based on control and data flow relationships associated with functions and
variables [1, 4,5, 12, 15, 16]. We take a broader view of dependence relationships that is more appro-
priate to the concerns of architectures and their attention to component interactions. In particular,
we look at both the structural and the behavioral relationships among components expressed in
current-day formal architecture description languages, such as Rapide [8] and Wright [2].

We begin with a brief review of relevant questions that might reasonably be asked at the archi-
tectural level as a way to further motivate our investigation of static dependence analysis. We then
describe the concept of chaining and the architectural relationships that underlie the concept. This
is followed by a description of how chains are created and used, including the representation scheme
we employ for recording dependence relationships. For purposes of illustration, the discussion is
cast in terms of a particular architecture description language, namely Rapide. We then review
related work and conclude with a discussion of our future plans.

2 MOTIVATING QUESTIONS

As mentioned above, there are a variety of questions that should be answerable by an exami-
nation of a formal architecture description. Here we list several such questions as motivation for
the study of architectural dependence analysis.

1. Which components could have contributed to the particular state of a component?
2. Which components make use of this particular state of a component?
3. Which components could have been used if this state of the system is reached?

4. If this component is to be reused in another system, which other components of the system
are also required?

5. Which components of the system contribute to this piece of functionality?
6. What are the potential effects of dynamically replacing this component?

7. If this component uses a blackboard connector, what other components will it be communi-
cating with?

8. If a change is made to this component, what other components might be affected?

9. If the source specification for a component is checked out into a workspace for modification,
which other source specifications should also be checked out into that workspace?

These questions share the common theme of identifying the components of a system that either
affect or are affected by a particular component in some way. The idea of collecting together related
portions of a system, in an effort to reduce the amount of information that must be examined
for some purpose, recalls the notion of program slicing introduced by Weiser [22]. Sloane and
Holdsworth [19] suggest generalizing the concept of program slicing and show the potential in
slicing non-imperative programs.

Our notion of chaining is intended to support a range of analysis applications, including what
would amount to an architectural slice. Unlike previous approaches to slicing, which are based on
statements and variables, the basis for architectural slices is more general architectural relationships,
as discussed in the next section.

3 CHAINING

Chaining is a dependence analysis technique we propose for use at the architectural level. In
chaining, links represent the dependence relationships that exist in an architectural specification.
Links connect elements of the specification that are directly related, producing a chain of depen-
dencies that can be followed for further analysis.

For the purposes of this paper, we offer the following definition of a software architecture: A
software architecture is a set of components and the connections among them.

A component is comprised of four types of elements

o Component interaction elements: provide the means for connection to or interaction with
another component. These elements may also be called ports.

e Data elements: contain the data to be transformed by, provided by or used by the component.

o Processing (or behavioral) elements: provide the means for transforming or transmitting the
data and/or state of the component.

o State elements: contain the current state of the component in terms of both data and pro-
cessing elements.

Given component €' that contains elements we describe three types of chains:

o Affected-by chains: consist of the set of components and/or their elements that could poten-
tially affect the behavior of a processing element, the state of a state element, and/or the
value of a data element of C.

o Affects chains: consist of the set of components and/or the processing elements, state ele-
ments, and data elements that could be impacted by a change of C'.

e Related chains: consist of the set of components and/or their elements that may affect or
be affected-by the behavior of a processing element, the state of a state element, and/or the
value of a data element of C'; this chain is the combination of the affected-by and the affects
chain for elements of C.

As examples, an affected-by chain would contribute to answering question 1 from above, while
an affects chain would contribute to answering question 8. A related chain would contribute to
answering question 6.

Underlying chains are dependence relationships between components. Traditionally, we think
of dependence relationships at the level of program code, where control and data flow are the
most prominent aspects to study. Dependence relationships at the architectural level arise from
the connections between components and the constraints on their interactions. These relationships
may involve some form of control or data flow, but more generally they involve source structure
and behavior. Source structure (or structure, for short) has to do with static source specification
dependencies, while behavior has to do with dynamic interaction dependencies. Below we give
some examples.

e Structural Relationships

— Includes: The specification for a component may be created from numerous source
modules that are textually combined.

— Import/Fxport: The specification for a component may describe the information ex-
ported and imported between source modules (e.g., with a module interconnection lan-
guage).

— Inheritance: The specification for a component may be created through inheritance from
other source modules.

¢ Behavioral Relationships

Temporal: The behavior of one component precedes or follows the behavior of another
component.

Causal: The behavior of one component implies the behavior of another component.

— Input: A component requires information or stimulation from another component.

QOutput: A component provides information or stimulation to another component.

Both structural and behavioral dependencies are important to capture and understand when ana-
lyzing an architecture. The structural dependencies allow one to locate source specifications that
contribute to the description of some state or interaction. The behavioral dependencies (of which
control and data flow are examples) allow one to relate states or interactions to other states or
interactions.

The particular kinds of dependencies and chains that can be established among components are
heavily influenced by the primitive features of the architecture description language. For instance,
in CHAM [6] and Wright, only behavioral relationships are modeled, and those relationships are
based on synchronous input and output ports! through which data flow. Darwin [9] and Rapide
specifications can involve both structural and behavioral relationships. The structural relationships
in these languages derive from concepts of import, export, and inheritance. Rapide behavioral
specifications are particularly interesting in that they can involve event-based interactions, as we
illustrate in the next section.

4 CREATING AND USING CHAINS

As mentioned above, chains represent dependence relationships in an architectural specification
that can be followed during analysis. Individual links within a chain associate components and/or
component elements of an architecture that are directly related, while a chain of dependencies
associates components and /or component elements that are indirectly related. We develop a matrix
representation for architectures and apply a straightforward algorithm to the matrix in order to
discover chains of related component elements.

We have used chaining to discover an intentionally introduced fault in the ADAGE avionics
architecture, which is written in Rapide [10]. The ADAGE example is a two-level nested architecture
consisting of an outer-level architecture plus four sub-architectures. The four sub-architectures
together contain 30 components communicating through nearly 100 ports. It is, therefore, too
large to be presented here. Instead, we illustrate our technique using another Rapide architecture
specification, the well-known gas station example.? The Rapide code for the gas station, which
is shown in Figure 2, is taken from a teaching example available in the Rapide 1.0 Toolset. This
example unfortunately does not involve structural relationships, but is sufficient to give the flavor
of our approach.

In this section, we begin by briefly reviewing the Rapide language so that our examples can
be understood. We then describe the general method for constructing the dependence matrix
representation, and follow this by describing the method for using the matrix to discover chains.

4.1 Overview of Rapide

Rapide is intended to aid in the development and maintenance of large systems. Rapide itself
is very powerful and complex. For the purposes of this paper, we present only a brief overview of

'In both languages, connectors can be introduced to model other kinds of behavioral relationships, but these are
still based on, or built from, the primitive concept of the synchronous port.

2Tt could be argued that the gas station example is not representative of software architecture specifications,
although it is widely used in the architecture literature. It has the advantage of being well known and compact, and
does in fact exhibit features that would appear in a “real” architecture specification. In general, there appears to be
a dearth of good architecture specification examples, both large and small.

type FACE is interface architecture ARCH return sometype is
provides I1, I2: FACE;
.. connect
requires e
constraint
service .
. end ARCH
action
in 10 ;
out 00) ;
behavior
X : integer;
begin
I|> 0;
constraint

end FACE

Figure 1: Skeleton Rapide Interface Architecture.

the language features used in our example. A full description of the language is available in the
Rapide Language Manuals [20].

The architecture description for the gas station is provided in the July 1997 release of the Rapide
Toolset. There are seven versions of the example included in the release. We are using the second
version.

Within this paper, we are limiting our view of Rapide to the following features and concepts: ar-
chitectures, computations, connections, events, interfaces, in and out actions, posets, placeholders,
and triggers.

Components are defined in interfaces. The interfaces are comprised of provides, requires,
service, and action declaration sections, a behavior section that may contain local declarations,
and a constraint section. action sections contain the declaration of in and out actions, which
declare the ability to observe or emit particular events. Figure 1 shows the skeleton of an interface,
FACE, and an architecture, ARCH, where I and 0 are declared as actions. Not all architectures
and interfaces contain all of the possible sections. In fact, the gas station example does not have
provides , requires, or service sections in any of its interfaces, nor are there any constraint
sections.

For our purposes, we are interested in the behavioral view that is provided at the architecture
level. Computations are defined in a pattern language [21]. Patterns are sets of events together
with their partial ordering. The representation for the partial orders are called posets. Posets can
be used to evaluate the correctness of the architecture.

Rapide uses four symbols to represent connections in connection rules. Connection rules have
a trigger, an operator and a body.

o Agent connection (“||>”): The observation of the pattern described in the trigger asyn-
chronously generates the events in the body.

e Basic connection (“to”): A basic connection connects two functions, objects, or actions.

The connection will be made between a provides or in element of a component and and
a requires or out element of the other component. Basic connections provide a means of
synchronous communication in Rapide.

e Pipe connection (“=>7): The observation of the pattern described in the trigger asyn-
chronously generates the events in the body. The difference between a pipe and an agent
is that a pipe creates dependencies between all events generated in prior triggerings of the
rule.

o Service connection (“to”): Service connections are a special case of basic connections which
connect a service and a dual of that service. Services provide a means of bundling connectors
together. A dual of a service has the reverse of the provides, requires, in, and out actions
from the service. Service connections provide a means of synchronous communication.

Pipes and agents are also used as operators in the transition rules defined in the behavior section
of an interface. A transition rule is composed of a trigger, an operator, and a body. The trigger
may be a pattern or a boolean expression. The body may be a state assignment or a poset
generator. An event or set of events generated during a simulation is added to the computation of
that simulation. Patterns of events may be watched for in a poset. When a pattern is observed, it
triggers the events in the body of the rule. In the gas station example, the body of behaviors are
either state assignments or the generation of a single event.

In our restricted use of Rapide, connections in an architecture may be made between pattern

lists and connection sets, where a pattern list is a list of one or more patterns to be observed and
a connection set is either an expression or a pattern.
Rapide provides placeholders for use in patterns and expressions. These are designated with a
. Placeholders are used in comparisons, dynamic generation of components, as iterators, or to
bind the values of parameters. In the case of dynamic creation of components, a placeholder serves
as a universal quantifier. For instance, in the gas station example

wopn

(?C : Customer; ?X :Dollars)?C.Pre_Pay(?X) => O.Request(?X);

is interpreted as meaning “for every customer, there is to be a pipe connection between the cus-
tomer’s Pre Pay action and the operator’s Request action, where the number of Dollars in the
Request action is bound to the number of dollars in the Pre Pay action”.

4.2 Construction of the Dependence Matrix

As mentioned above, we use a matrix to represent the dependence relationships of an architec-
ture. The matrix is m X n, where m is the number of ports in the architecture plus any implicitly
declared actions, and n is simply the number of ports in the architecture. Implicitly declared ac-
tions represent events generated in the environment of the system that are watched for within an
interface. The start event in the first transition rule of the customer interface of the gas station
specification in Figure 3 is an example of an implicitly declared action.

The relationships associated with connections and state transition rule operators in an archi-
tecture educe a dependence relationship. In the dependence matrix, the columns represent the
dependent in the relationship and the rows represent the source (or object) of the dependence. For
instance, if a is dependent on b, then the cell at column @ and row b details that relationship. The

type Dollars is integer; -- enum O, 1, 2, 3 end enum;
type Gallons is integer; -- enum O, 1, 2, 3 end enum;

type Pump is interface
action in 0(), 0ff(), Activate(Cost : Dollars);
out Report(Amount : Gallons, Cost : Dollars);

behavior
Free : var Boolean := True;
Reading, Limit : var Dollars := 0;
action InUse(), Done();

begin

(7X : Dollars)(On ~ Activate(?X)) where $Free => Free := False;
Limit := ?X;
InUse;;
InUse => Reading := $Limit; Done;;
0ff or Done => Free := True; Report($Reading);;
end Pump;

type Customer is interface
action in Okay(), Change(Cost : Dollars);
out Pre Pay(Cost : Dollars)Okay(), TurnOn(), Walk(), Turn 0ff();
behavior
D : Dollars is 10;
begin
start => Pre Pay(D);;
Okay => Walk;;
Walk => TurnOn;;
end Customer;

type Operator is interface

action in Request(Cost : Dollars), Result(Cost : Dollars);
out Schedule(Cost : Dollars), Remit(Change : Dollars);

behavior

Payment : var Dollars := 0;

begin
(7X : Dollars)Request(?X) => Payment := 7X; Schedule(?7X);;
(7X : Dollars)Result(?7X) => Remit($Payment - 7X);;

end;

architecture gas_station() return root is
0 : Operator;

P : Pump;
Cl, C2 : Customer;
connect

(7C : Customer; 7X : Dollars) 7C.PrePay(7X) ||> 0.Request(?X);

(?X : Dollars) 0.Schedule(?X) ||> P.Activate(?X);

(7X : Dollars) 0.Schedule(?X) ||> C1.0kay;

(?C : Customer) 7C.TurnOn ||> P.On;

(?C : Customer) 7C.Turn0ff ||> P.O0ff;

(7X : Gallons; ?Y : Dollars)P.Report(?X, 7Y) |[|> 0.Result(?7Y);
end gas_station;

Figure 2: A Rapide Interface Architecture.

cell may, for example, reflect the existence of a direct connection, such as a remote function call,
it may indicate sharing of data, or it may indicate interaction by means of event notification and
subscription. In general, for a given architecture description language, it is necessary to understand
the various ways in which two components and their elements can be related so that the dependence
matrix can be constructed.

For example, one could identify the following direct dependence relationships derived from
Rapide transition rule and connection operators:

o Agent (“||>7): The element(s) of the body are dependent on the element(s) of the trigger.

e Basic (“to”): The requires or in element is dependent on the provides or out element of
the connection .

o Pipe (“=>7): The element(s) of the body are dependent on the element(s) of the trigger and
the element(s) of the trigger are dependent on the element(s) of the body in order to capture
possible dependencies on events generated by prior triggerings of the rule.

o Service (“to”): A service connection creates two (“symmetric”) dependencies. Fach member
of the relationship must be recognized as both the source and the dependent in the relationship
because a service can contain a combination of the provides, requires, in and out port

types.

In the case of the gas station architecture of Figure 2, there is an agent connection between the
Turn_On action for each customer and the On action of the pump, where the On action is the body,
and thus the dependent. Therefore, this connection is recorded in the matrix cells (C1.T_On,P.On)
and (C2.T_On,P.On) in Figure 3.

The method for constructing the matrix is a two step process:

e STEP 1: Build the matrix frame. Determine and record all the communication ports for the
architectural components and use these as the column and row labels of the matrix.

e STEP 2: Record dependencies in the cells. Mark the appropriate cell of the matrix for each
connection and transition rule in the architecture and transition rule in component interfaces.

For the gas station example, we took these steps in building the matrix shown in Figure 3.

STEP 1.

As stated above, the first step is to build the matrix frame. Ports in Rapide are defined in
the provides, requires, service and action sections of component interfaces. We construct the
matrix by first identifying the components of the system, and then identifying the ports within
their interfaces.

A. The gas station architecture is found at the bottom of Figure 2. The components of the
architecture, which are listed in its top section, are an operator: 0, a pump: P, and two
customers: C1 and C2.

B. The next stage of Step 1 is to check the provides, requires, action, and service sections
of the interfaces for each component to determine what its ports are. In the gas station
architecture, there are no provides, requires, or service sections in any of the interfaces.
Each interface defines all its ports in its action section. The Operator interface watches for
Request and Result events and outputs Schedule and Remit events. These are listed as
column and row labels of the matrix shown in Figure 3.

C. It is possible for implicitly declared events to be watched for by a component. These events
would be evident because they would appear in a trigger but would not be defined in the
component interface. In our gas station example, the start event of the Customer interface
is an implicitly declared event and as such will be included as a row label.

STEP 2.

After the frame of the matrix has been built, the connections and transitions are recorded in
the matrix cells.

A. The first stage of Step 2 is to record the connections defined in the architecture interface,
which is done by looking at the connect section of the architecture at the bottom of Fig-
ure 2. The first connection recorded for this example is the agent connection between each
customer’s Pre Pay action and the operator’s Request action. The use of a placeholder for
the customer tells us that the connection is to be made for each component of type Customer
in the architecture. This connection is recorded in the matrix in Figure 3 as a “||>” in the
(C1.PP,O0.Req) and (C2.PP,0.Req) cells. The rest of the connections are recorded in a similar
manner.

B. Next, the transitions defined in the behavioral part of the component interfaces are recorded,
which is done by looking at the behavior section of each interface. The relationship between
the actions in the trigger and the body of the transition rules are recorded in the appropriate
cell of the matrix. Some notable features of the behavior in the gas station interfaces are:

— start appears as the trigger of the Customer Pre Pay action. start is an implicitly
declared event that is the beginning of a given execution of the system.

— In the Customer interface, Walk is declared to be an out action. It is used both in the
body of a transition rule and as a trigger. The appearance of an out action in a trigger
indicates that the body will only be triggered by locally generated Walk events.

— The interface of the pump contains local declarations. The local variables and actions are
used to define the internal behavior that would have to occur between the observation
of the On ~ Activate pattern in the computation and the, locally visible, emission of
the Done event, which could trigger the Report event. Because we restrict our view
of behavior to the architectural level, a summary of the internal behavior of the pump
provides us with the dependence of Report on On and Activate, and conversely, since the
connection is a pipe, the dependence of On and Activate on Report.® These relationships

°If, in fact, we chose to model the internal behavior, these internal events could be included in the matrix frame
and their behavior modeled in the same way as that at the architectural level. The summarization at the architectural
level produces a direct dependence where there would otherwise be an indirect dependence.

B
OUT | ™
p(G,D) | On [Off [Aci(D)

S5} cz
ouT I

5 ™
PP(D) [T-On | Walk] T_Off | Okay | Chg(D)

8] ™
PP(D) [T-On | Walk] T-Off | Okay | Chg(D)

[I T]
[oUT T N i il |
[Eeh(D) [Rem (D) | Rea(D) [Res(DY]| il |

Re

S
OUT
Sch(D) 1T |
Rem(D) | [
N
I
|

i

Req(D) [>
Res(D) ||

T

oUT

Rep(G.D) [

N

Off il
Act(D) ||
ca
Ou'l
PP(D) >
T On

I
On T I
|

Walk >
T_Off >

PP(D) >

Figure 3: Gas Station Dependence Matrix.

are recorded in the appropriate cells of the matrix with a “=>", since the operator is a
pipe.

While composite patterns in triggers and bodies of rules can be complex, they do not need
to add complexity to the matrix representation. This is because, in general, there is no way to
tell, statically, which of the actions in the trigger are the cause of a given triggering, thus all are
recorded as sources for the relationship. This is a conservative approach and we are investigating
methods for reducing the generation of false dependencies.

Once the system’s relationships are recorded in the matrix, one can construct chains to answer
questions about the represented architecture. Affects chains involve creating links by beginning at
the row labels and locating the related column label, whereas affected-by chains are constructed by
linking from column to row labels.

In the gas station matrix, construction of an affected-by chain of events that may have caused
the P.Activate event, begins at the columns and look to the related events in the rows. The
0.Schedule event is the only possible source of the P.Activate event. These relationships are
transitive and we are assuming that all possible prior events occurred, so we repeat the process for
each of the related events. In this case, only the 0.Schedule event is directly caused by 0.Request,
which is generated by any one or both of the C1.Pre Pay or C2.Pre Pay events, which may only
be preceded by the start event of the Customer interface.

For example, construction of an affects chain that has the 0.Schedule action as its first link
begins by checking the cells that have entries in the 0.Schedule row. The P.Activate and C1.0kay
are the only columns that have entries for this row. These relationships are also transitive, so the
chain is constructed in a similar, though reversed manner, to the affected-by chain.

Chaining can be used to answer questions about an architecture. The types of chains constructed
vary depending upon the question being asked. For instance, affects chains answer questions about
which events cause other events, while affected-by chains answer the opposite. Some interesting
questions and their chain-based answers are:

10

1. What components would need to be retested if we were to decide to replace the pump? In this
case we are interested in the components that could receive information from the pump, thus
we want to construct an affects chain. We begin by looking at the rows associated with the
out ports of the pump and chain from there as follows:

(a) P.Report ==* O.Result
(b) O.Result = O.Remit
(c) O.Remit =

The 0.Remit action does not appear in a trigger therefore, this is the last link of this chain.
For this architecture, the pump and the operator need to be retested. Of course, one might
wonder about the correctness of the architecture when it contains out actions that are not
subscribed for, so in asking this question we have uncovered a possible fault in the architecture.

2. Are there any actions for which there are no subscriptions? In this case we look for blank
rows in the matrix. If there are no entries in a row, no components watch for that action.
In the gas station architecture, there are no subscribers for the C1i.Change, C2.Change, or
0.Remit actions. Taking a quick check of the connect section of the gas station architecture
reveals the fact that 0.Remit is not used as a trigger in any connection. This connection is
included in other versions of the architecture provided with the Rapide 1.0 Toolset.

If the blank row is an in action then it is probably an anomaly. If it is an out action, it may
be a case of planning for the future when a component may want to watch for this event. In
any case, it is good to be able to consider the ramifications of an event being made available
and going unused.

3. What series of events could contribute to the Turn_On event for C2% This architecture con-
tains a serious error. In particular, it is never possible for the second customer to pump gas.
The first customer does not suffer from this dilemma. Thus, one could compare the affects
chains that lead to the C1.Turn_On and C2.Turn_On events to find where they differ.

(a) C1 affects chain

i. C1L.Turn_On <= C1.Walk
ii. Cl.Walk <= C1.0kay
iii. C1.0kay <= 0O.Schedule
iv. O.Schedule <= O.Request
v. O.Request <= (C1.Pre_Pay or C2.Pre_Pay)

(b) C2 affects chain

i. C2.Turn_On <= C2.Walk
ii. C2.Walk <= C2.0kay
iii. C2.0kay <=

4
—> may be read as “causes”

11

We can see from comparing the chains, that the problem is that the C2.0kay event never is
generated, but the C1.0kay event is generated no matter who paid for the gas.

With this information at hand, we examine the architecture specification in Figure 2, look at
the connections involving the scheduling of customers, and find that C1 is the only customer
that receives the Schedule event from the operator. The information tells the system’s
architect that there is a fault in the connection based on the 0.Schedule action in the
architecture.

5 RELATED WORK

To our knowledge, the work described in this paper is the first attempt to define dependence
analysis of specifications written in current-day architecture description languages. Nevertheless,
the work builds on previous and related work in three primary areas: traditional dependence
analysis techniques; novel approaches to slicing; and applications of static concurrency analysis
tools to architecture descriptions. In this section, we review representative work in these areas.

Various tools have been developed to trace the structural dependencies within program code. An
example is the tool makedepend, which examines code to automatically derive the file dependencies
(e.g., #include in the C environment) used in Make files. Our approach applies this concept to
architecture description languages and combines the information with behavioral dependencies.

ProDAG [18] is a program dependence analysis toolset that performs statement-level depen-
dence analysis. ProDAG allows one to create and access various predefined relationships originally
identified by Podgurski and Clarke [16]. The technique of chaining raises these ideas to the archi-
tectural level, as well as incorporating the notion of structural dependence.

Sloane and Holdsworth [19] suggest advanced applications for Weiser’s concept of program
slicing [22], in which the basis for analysis includes aspects other than traditional data and control
flow. They describe a generalized slicing tool that treats slicing as tree-marking manipulations
of program syntax trees. Their concept of syntactically based generalized slicing allows them to
contemplate the slicing of non-imperative programs. They demonstrate this by describing several
tools that could be built to aid in the understanding of formal compiler specifications. We agree
with the spirit of this work and, in some sense, are pursuing a similar goal, but in the particular
context of software architectures.

Oda and Araki [14] first introduced the concept of static specification slicing for specifications
written in Z. Chang and Richardson [3] extend this work with the introduction of techniques for
creating dynamic slices. In both of these efforts, the value of a variable in a particular predicate is
used as the slicing criteria, whereas we are exploring relationships at the architectural level, where
the concept of a variable does not exist.

Zhao, Cheng, and Ushijima [23] propose the system dependence net (SDN) as a representation
of concurrent object-oriented programs. The SDN is used to find slices of CC++ (Concurrent C++)
programs, using the value of a variable or return value of a method call at a particular statement as
the slicing criteria. They point out that new types of dependence relationships should be considered
when slicing concurrent object-oriented programs. This is similar to our recognition that there are
new types of dependence relationships to consider in analyzing architecture descriptions. However,
they restrict slicing to the statement level, using the limited criteria of variable and method call
return values.

12

Naumovich et al. [13] apply INCA and FLAVERS, two static concurrency analysis tools used
for proving behavioral properties of concurrent programs, to an Ada translation of the Wright de-
scription of the gas station problem. The focus of this work is on demonstrating that existing static
concurrency analysis techniques can be applied to software architectures to help prove, or disprove,
the satisfaction of certain behavioral properties. Their approach, however, amounts to creating a
concurrent program that can simulate the intended concurrent behavior of the system. Our work
is aimed at developing general dependence analysis techniques that may, in fact, contribute to the
enhancement of the static analyses already provided by these tools.

6 CONCLUSION

The main contribution of this paper is the introduction of architectural level dependence analysis
for both the structural and behavioral aspects of a system.

Our dependence matrix representation for architectures is general enough to support analysis
capabilities beyond what is described in this paper. For instance, it can provide a view of de-
pendence relationships at a higher level of abstraction than that presented here by determining
dependences between the components themselves, thus considering the components as the labels
on the rows and columns of the matrix. Moreover, although here we describe chaining for a subset
of Rapide, our approach can be easily adapted to many other architecture description languages.
This is because the application of chaining is not language dependent, although the construction of
the dependence matrix is somewhat determined by the constructs of the language. This is similar to
traditional program dependence analysis, where the representation of the program and the def-use
annotations depends on the programming language, but the dependence analysis itself does not.
Thus, we intend to incorporate more features of the Rapide language, to extend our definition of
chaining to other languages (including CHAM [6], C2 [11], Darwin [9], and Wright [2]), and to test
our approach against more complex architectures.

We are interested in investigating heuristics for reducing the conservativeness of chaining
through patterns. In Rapide specifications, for example, there is information available such as
which combination of placeholders is required by a dependent, that could be used to reduce the
numbers of actions to be linked into a chain. We are also continuing to investigate the summa-
rization of internal component behavior. We are debating the benefits of incorporating these local
actions into the matrix or summarizing their effects.

Historically, testing has concentrated on the implementation of the system, which has meant
that it is considered fairly late in the development process. Eventually, we intend to incorporate
chaining into a complete life cycle software analysis and testing environment, such as the TAOS
environment [17]. TAOS includes dependence analysis and testing at the implementation level,
but also has support for using specifications in the testing process for test generation and result
checking. Integrating architecuture analysis techniques, such as chaining and related techniques,
would round out the life cycle support for analysis and testing.

Given the similarity between chaining and traditional program slicing, we expect comparisons
to be made between the two. There is growing skepticism in the programming languages and
software engineering research communities as to the value of slicing software systems, since slices
have not been shown to result in significant reductions in program size. It is our belief that the
savings from applying such techniques will be greatest when applied to large systems, since these
systems should be more loosely coupled. But computing statement level slices for large systems is

13

likely to be impractical. Architectural level slicing may prove a practical alternative. Moreover,
architectural level analysis offers the possibility to detect faults early in the software life cycle.

14

(1]

REFERENCES

H. Agrawal, R. A. DeMillo, and E. H. Spafford. An Execution-Backtracking Approach to Debugging.
IEFEE Software, pages 21-26, May 1991.

R. Allen and D. Garlan. Formalizing Architectural Connection. In Proceedings of the 16th International
Conference on Software Engineering, pages 71-80. IEEE Computer Society, May 1994.

J. Chang and D. J. Richardson. Static and Dynamic Specification Slicing. In Proceedings of the Fourth
Irvine Software Symposium, Irvine, CA, April 1994.

J. Cheng. Slicing Concurrent Programs — A Graph-Theoretical Approach. Lecture Notes in Computer
Science, Automated and Algorithmic Debugging, pages 223-240, 1993.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing Using Dependence Graphs. ACM Trans-
actions on Programming Languages and Systems, 22(1):26-60, January 1990.

P. Inverardi and A.L. Wolf. Formal Specification and Analysis of Software Architectures using the
Chemical Abstract Machine Model. TEEE Transactions on Software Engineering, 21(4):373-386, April
1995.

P. Inverardi, A.L. Wolf, and D. Yankelevich. Checking Assumptions in Component Dynamics at the
Architectural Level. In Proceedings of the Second International Conference on Coordination Models and
Languages. Springer-Verlag, 1997. To appear.

D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, and W. Mann. Specification and
Analysis of System Architecture Using Rapide. IEEE Transactions on Software Engineering, 21(4):336—
355, April 1995.

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Distributed Software Architectures. In Proceedings
of the Fifth European Software Engineering Conference, number 989 in Lecture Notes in Computer
Science, pages 137-153. Springer-Verlag, September 1995.

W. Mann, F. C. Belz, and P. Corneil. A Rapide-1.0 Definition of the ADAGE Avionics System.
Technical Report CSL-TR-93-585, Stanford University, 1993.

N. Medvidovic, R. N. Taylor, and Jr. E. J. Whitehead. Formal Modeling of Software Architectures
at Multiple Levels of Abstraction. In Proceedings of the California Software Symposium 1996, pages
28-40, Los Angeles, CA, April 1996.

C.T. Moore, T.O. O’Malley, D.J. Richardson, S.H.L.. Aha, and D.A. Brodbeck. ProDAG: A Program
Dependence Graph System. Technical report, Department of Information and Computer Science, Uni-
versity of California at Irvine, 1990.

G. Naumovich, G.S. Avrunin, L.A. Clarke, and L.J. Osterweil. Applying Static Analysis to Software
Architectures. In Proceedings of the Sizth European Software Engineering Conference. Springer-Verlag,
1997. To appear.

T. Oda and K. Araki. Specification Slicing in Formal Methods of Software Development. In Proceedings
of the Seventeenth Annual International Computer Software and Applications Conference, pages 313—
319. IEEE Computer Society Press, November 1993.

H. Pande, W. Landi, and B. Ryder. Interprocedural Def-Use Associations for C Systems with Single
Level Pointers. IEEE Transactions on Software Engineering, 20(5):385-403, May 1994.

A. Podgurski and L.A. Clarke. A Formal Model of Program Dependencies and its Implications for Soft-
ware Testing, Debugging, and Maintenance. IEEE Transactions on Software Engineering, 16(9):965—
979, September 1990.

15

[17] D.J. Richardson. TAOS: Testing with Analysis and Oracle Support. In Proceedings of the 199/ Inter-
national Symposium on Software Testing and Analysis (ISSTA 94), pages 138-153. ACM SIGSOFT,
August 1994.

[18] D.J. Richardson, T.O. O’Malley, C.T. Moore, and S.L.. Aha. Developing and Integrating ProDAG in the
Arcadia Environment. In SIGSOFT ’92: Proceedings of the Fifth Symposium on Software Development
Environments, pages 109-119. ACM SIGSOFT, December 1992.

[19] A.M. Sloane and J. Holdsworth. Beyond Traditional Program Slicing. In Proceedings of the 1996 Inter-
national Symposium on Software Testing and Analysis (ISSTA '96), pages 180-186. ACM SIGSOFT,
January 1996.

RAPIDE Design Team. Draft: Guide to the Rapide 1.0 Language Reference Manuals. July 1997.
RAPIDE Design Team. Draft: Rapide 1.0 Pattern Language Reference Manual. July 1997.
M. Weiser. Program Slicing. IEEE Transactions on Software Engineering, 10(4):352-357, July 1984.

J. Zhao, J. Cheng, and K. Ushijima. Static Slicing of Concurrent Object-Oriented Programs. In IFEE-
CS 20th Annual International Computer Software and Applications Conference, pages 312-320, 1996.

16

