
A Cooperative Approach to Support Software Deployment
Using the Software Dock

Technical Report CU-CS-871-98
Richard S. Hall, Dennis Heimbigner, Alexander L. Wolf

Department of Computer Science
University of Colorado

Campus Box 430
Boulder, CO 80309 USA

303-492-8115
[rickhall,dennis,alw]@cs.colorado.edu

ABSTRACT
Software deployment is an evolving collection of interre-
lated processes such as release, install, adapt, reconfigure,
update, activate, deactivate, remove, and retire. The con-
nectivity of large networks, such as the Internet, is affecting
how software deployment is being performed. To take full
advantage of this connectivity, new software deployment
technologies must be introduced in order to support these
processes. The Software Dock research project is creating
a distributed, agent-based deployment framework to sup-
port the ongoing cooperation and negotiation among soft-
ware producers themselves and among software producers
and software consumers. This deployment framework is
enabled by the use of a standardized semantic schema for
describing software systems, called the Deployable Soft-
ware Description (DSD) format. The Software Dock em-
ploys agents to traverse between software producers and
consumers and to perform software deployment activities
by interpreting the semantic descriptions of the software
systems. The Software Dock infrastructure enables soft-
ware producers to offer high-level deployment services that
were previously not possible to their customers.

Keywords
Software deployment, Java, mobile agents, configuration
management

1 INTRODUCTION
The connectivity of large networks, such as the Internet, is
affecting how software deployment is being performed.
The simple notion of providing a complete installation pro-
cedure for a software system on a CD-ROM is giving way
to a more sophisticated notion of ongoing cooperation and
negotiation among software producers and consumers.

This connectivity and cooperation allows software produc-
ers to offer high-level deployment services that were previ-
ously not available to their customers. In the past, only
software system installation was widely supported, but al-
ready support for the update process is becoming common.
Support for other software deployment processes, though,
such as release, adapt, activate, deactivate, remove, and
retire [see Section 2] is still virtually non-existent.

As new enabling technologies become available, software
producers are slowly accepting more of the shared respon-
sibility for the long-term operation of their software sys-
tems. In order to fully support software deployment, these
enabling technologies must:

• operate on a variety of platforms and network environ-
ments, ranging from single sites to the entire Internet,

• provide a semantic model for describing a wide range of
software systems in order to facilitate some level of
software deployment process automation,

• provide a semantic model of target sites for deployment
in order to describe the context in which deployment
processes occur, and

• provide decentralized control for both software producers
and consumers.

The Software Dock research project is addressing these
concerns. The Software Dock is a system of loosely cou-
pled, cooperating, distributed components. The Software
Dock supports software producers by providing the release
dock that acts as a repository of software system releases.
At the heart of the release dock is a standard semantic
schema for describing software systems. The field dock
supports the consumer by providing an interface to the con-
sumer’s resources, configuration, and deployed software
systems. The Software Dock employs agents that travel
from release docks to field docks in order to perform spe-
cific software deployment tasks while docked at a field
dock. The agents perform their tasks by interpreting the
semantic descriptions of both the software systems and the
target consumer site description. A wide-area event system

 2

connects release docks to field docks and enables asyn-
chronous, bi-directional connectivity.

The purpose of this paper is to discuss how the Software
Dock project supports software deployment processes.
This is accomplish by first introducing the processes that
comprise software deployment. Section 3 provides a high-
level introduction of the Software Dock architecture, while
Section 4 describes the Deployable Software Description
(DSD) format, a critical piece of the Software Dock project
used to semantically describe software systems. Section 5
discusses specific deployment process support through the
use of agents. Section 6 discusses security and electronic
commerce as it relates to the deployment and the Software
Dock specifically, while Section 7 discusses related work.
Lastly, the current status and future work is discussed in
Sections 8 and 9, respectively, followed by the conclusion.

2 SOFTWARE DEPLOYMENT LIFE CYCLE
PROCESSES

In the past, software deployment has largely been defined
as the installation of a developed software system; this
view of software deployment is incomplete. Software de-
ployment is actually a collection of interrelated activities
that form the software deployment life cycle. The software
deployment life cycle, as we have defined it, is an evolving
definition that consists of the following processes: release,
retire, install, activate, deactivate, reconfigure, update,
adapt, and remove. Each process pertains to either a pro-
ducer-side or a consumer-side activity and is described in
more detail below.

Producer-side Processes
One of the main deployment concerns of the software pro-
ducer is that of the release process. The release process is
the bridge between development and deployment. It en-
compasses all the activities needed to package, prepare,
provide, and advertise a system for deployment to con-
sumer sites. The release package that is created not only
consists of the physical artifacts that comprise a given
software system, it must also consist of a semantic descrip-
tion of the software system in order to enable automated
processing. As modification or updates are made to the
software system, the software producer must repeat the
release process to create an updated release package.

When a software producer is no longer able or willing to
support a given software system, it is necessary to perform
the retire process. The retire process withdraws support for
a software system or a given configuration of a software
system. The retire process should not be confused with the
consumer-side remove process; retiring a software system
makes it unavailable for future deployment, but it does not
necessarily affect consumer sites where the retired software
system is currently deployed. Consumers of the software
may continue to use the software without knowing that it
has been retired, but the retire process should attempt to

notify current users that support for the software system is
being withdrawn.

Consumer-side Processes
The install process is the initial deployment activity per-
formed by a consumer. The install process must configure
and assemble all of the resources necessary to use a given
software system. The install process uses the package cre-
ated in the release process above. For a specific package,
the install process interprets the encoded knowledge and
then examines the target consumer site in order to deter-
mine how to properly configure the software system for the
specific site. Once installation is completed the deployed
software system is ready for use and is ready for other de-
ployment activities.

After a software system is installed, the activate and deac-
tivate processes allow the consumer to actually use the
software system. The activate process is responsible for
running or executing a deployed software system. For a
simple tool, activation involves establishing some form of
command (or clickable graphical icon) for executing the
binary component of the tool. For a distributed system,
there may be multiple components that need to be running
in order for the system to be usable. The deactivate process
is the inverse of the activate process. It is responsible for
shutting down any executing components of an activated
software system.

Throughout the lifetime that a software system is installed
at a consumer site, it is not a static entity with respect to
software deployment. Instead, the reconfigure, update,
and adapt processes are responsible for changing and main-
taining the deployed software system configuration. These
processes may occur in any order and any number of times.

The update process modifies a previously installed software
system. The main purpose of update is to deploy a new,
previously unavailable configuration of a software system.
An update becomes necessary when a software producer
makes changes to the semantic description of a deployed
software system. The changes to the semantic description
may denote a new version of the software system, a content
update, or simply a description update.

The reconfigure process also modifies a previously in-
stalled software system, but its purpose is to select a differ-
ent configuration of a deployed software system from its
existing semantic description.

 The purpose of the adapt process is to maintain the consis-
tency of the currently selected configuration of a deployed
software system. The adapt process must monitor changes
at the consumer site and respond to those changes in order
to maintain consistency in the deployment software system.
Adaptation becomes necessary when a change is made to
the local consumer site that affects the deployed software
system.

 3

Once a software system is no longer required at a consumer
site, the remove process is performed. The remove process
must undo all of the changes to the consumer site that may
have been caused by previous deployment activities for a
given software system. Special attention has to be paid to
shared resources such as data files and libraries in order to
prevent dangling references to a required resource. As a
result, the remove process must examine the current state of
the consumer site, its dependencies, and constraints, and
then remove the software package in such a way as to not
violate these dependencies and constraints.

3 SOFTWARE DOCK ARCHITECTURE
The Software Dock research project, originally described in
[8], addresses support for software deployment processes
by creating a framework that enables cooperation among
software producers themselves and between software pro-
ducers and software consumers. In order to provide such a
framework, the Software Dock architecture [see Figure 1]
defines components that represent these two participants in
the software deployment problem space. The release dock
represents the software producer and the field dock repre-
sents the software consumer. In addition to these compo-
nents the Software Dock employs agents to perform spe-
cific deployment process functionality and a wide-area

event system to provide connectivity between the release
docks and the field docks.

In the Software Dock framework, the release dock is a
server that resides within a software producing organiza-
tion. The purpose of the release dock is to serve as a re-
lease repository for the software systems that the software
producer provides. The release dock provides a Web-based
release mechanism that is not wholly unlike the release
mechanisms that are currently in use; it provides a browser-
accessible means for software consumers to browse and
select software for deployment.

The release dock, though, is more sophisticated than most
current release mechanisms. Within the release dock, each
software release is semantically described using a standard

semantic schema; this standard semantic schema is pre-
sented in more detail in the next section. Each software
release is accompanied with generic agents that perform
software deployment processes by interpreting the semantic
description of the software release. The release dock pro-
vides a programmatic interface for agents to access its ser-
vices and content. Finally, the release dock generates
events as changes are made to the software releases that it
houses. Agents associated with deployed software systems
can subscribe for these events in order to be informed when
specific deployment processes may be necessary, such as
an update.

The field dock is a server that resides at a software con-
sumer site. The purpose of the field dock is to serve as an
interface to the consumer site. This interface provides in-
formation about the state of the consumer site’s resources
and configuration; this information provides the context
into which software systems from a release dock will be
deployed. Agents that accompany software releases “dock”
themselves at the target consumer site’s field dock. The
interface provided by the field dock is the only interface
that an agent has to the underlying consumer site. This
interface includes capabilities to query and examine the
resources and configuration of the consumer site; examples
of each might include installed software systems and the
operating system configuration.

The release dock and the field dock are very similar com-
ponents. Both are servers where agents can “dock” and
perform activities, and both house a standardized, hierar-
chical registry of information that records the configuration
or the contents of their respective sites and create a com-
mon namespace within the framework. The registry model
used in both the release and field docks is nested collec-
tions of attribute-value pairs, where the nested collections
form a hierarchy. Any change to the registry generates an
event that agents may receive in order to perform subse-
quent activities. The registry of the release dock mostly
provides a list of available software releases, whereas the
registry of the field dock performs a much more valuable
role.

Consumer-side information is critical in performing nearly
any software deployment process. In the past software
deployment was complicated by the fact that consumer-side
information was not available in any standardized fashion.
The field dock registry addresses this issue by creating a
detailed, standardized, hierarchical schema for describing
the state of a consumer site. By standardizing the informa-
tion available at a consumer site, the field dock creates a
common software deployment namespace for accessing
consumer site properties, such as operating system and
computing platform information. This information, when
combined with the semantic description of a software sys-
tem, can be used to perform specific software deployment
processes. As such, the two semantic descriptions can be

Figure 1: Software Dock Architecture

Event
Service

AgentAgent

Agent
Release

Dock

Agent

Agent

Agent Field
Dock

Agent

Agent

Field
Dock

Field docks represent the consumer and
provide an interface to the consumer site

A wide-area event service
provides connectivity
between producers and
consumers

Agents provide deployment
process functionality

Release docks represent the producer and
provide an interface to software releases

 4

considered two halves of a whole.

Agents are used to perform the actual software deployment
process functionality. When a software system is requested
to be installed on a given consumer site, initially only an
agent responsible for installing the specific software system
and the semantic description of the specific software sys-
tem are loaded onto the consumer site from the originating
release dock. The installation agent docks at the local field
dock and uses the semantic description of the software sys-
tem and the consumer site state information provided by
the field dock to configure the selected software system.
When the agent is done configuring the software system for
the specific target consumer site, it requests the precise
configuration that it requires from its release dock.

As part of the initial installation process, the installation
agent may request other agents from its release dock to
come and dock at the local field dock. These other agents
are responsible for other deployment activities, such as
update, adapt, reconfigure, and remove. Each agent per-
forms its associated process by interpreting the semantic
information of the software system description and the con-
sumer site configuration.

The wide-area event service in the Software Dock architec-
ture provides a means of connectivity between software
producers and consumers for “push”-style capabilities.
Agents that are docked at remote field docks can subscribe
for events from other release docks and can then perform
subsequent actions in response to those events, such as per-
forming an update. Direct communication between agents
and release docks is provided by standard protocols over
the Internet. Both forms of connectivity combine to pro-
vide the software producer and consumer the opportunity to
cooperate in their pursuit of software deployment process
support.

4 DEPLOYABLE SOFTWARE DESCRIPTION
(DSD) FORMAT

In order to automate or simplify software deployment proc-
esses it is necessary to have some form of semantic knowl-
edge about the software systems being deployed. One ap-
proach to this requirement is the use of a standardized lan-
guage or schema for describing a software system; this is
the approach adopted by the Software Dock research pro-
ject. In such a language or schema approach it is common
to model software systems as collections of properties,
where semantic information is mapped into standardized
properties and values.

Minimally five classes of semantic information have been
identified [6] that must be described by the software system
model. These classes of semantic information are:

• Assertions – describe constraints on consumer-side
properties that must be true otherwise the specific de-
ployment process fails, such as supported hardware plat-
forms or operating systems.

• Dependencies – describe constraints on consumer-side
properties where a resolution is possible if the constraint
is not true, such as installing dependent subsystems or re-
configuring operating system parameters.

• Configuration – describes relationships inherent in the
software system itself, such as revisions and variants, and
describes the deployment interfaces provided by the
software system.

• Artifacts – describe the actual physical artifacts that
comprise the software system.

• Activities – describe any specialized activities that are
outside of the purview of standard software deployment
processes.

The Software Dock project has defined the Deployable
Software Description (DSD) format to address these se-
mantic description needs. DSD is a critical piece of the
Software Dock research project that is used to create ge-
neric software deployment process definitions.

DSD provides a standard semantic schema for describing a
software system family. In this usage, a family is defined
as all revisions and variants of a specific software system.
The software system family was chosen as the unit of de-
scription, rather than a single revision, variant, or some
combination, because it provides flexibility when specify-
ing dependencies, enables description reuse, and provides
characteristics, such as extending revision lifetime, that are
necessary in component-based development.

The family description in DSD is broken up into multiple
elements that address the five semantic classes of informa-
tion described above. The sections of a DSD family de-
scription are identification, imported properties, system
properties, property composition, assertions, dependencies,
artifacts, interfaces, notifications, and activities. Some of
these sections map directly onto the five semantic classes
of information, others, such as system properties, property
composition, interfaces, and notifications, combine to map
onto the configuration class of semantic information. The
identification section is largely human-readable content and
is not for processing.

A DSD family description is a simple, hierarchical schema
that is built around the notion of properties of the software
system being described. For example, a typical property of
a software system might be a version number. By defining
such a property in a family description it is possible to or-
ganize the other pieces of the family description, such as
assertions, dependencies, and artifacts, with respect to a
given version number. Other examples of software system
properties are performance variants and optional capabili-
ties. Once the properties of a software system are defined
then the property composition section describes the rela-
tionships between properties. For example, one property
may include or exclude another property or may require
secondary property selections. The composition rules de-

 5

scribe valid configuration for the software system being
described.

The remaining DSD family description sections are
guarded by arbitrary boolean property expressions that in-
dicate whether a specific schema element is applicable to a
specific configuration. The property expression guards can
be expressions over software system properties, consumer
site properties, or both.

The following examples depict portions of a DSD descrip-
tion that describes a software system that has optional on-
line help documentation. To describe the optional online
help documentation, a software system property to repre-
sent the inclusion of the documentation is created:

Property {
 Name = “Online Help”
 Type = “Boolean”
 Description = “Include online help.”
 … }

The above property definition creates a boolean property of
the software system that is to be used for determining
whether the online help documentation is applicable to a
given configuration of the software system.

Also consider that the software system being described
only supports the Solaris and Window 95 operating sys-
tems. To guarantee that these constraints are true an asser-
tion is created:

Assertion {
 Condition = “(OS == ‘Solaris’) ||
 (OS == ‘Win95’)”
 Description = “Test for supported
 operating system.”
 … }

This assertion tests the target consumer site’s operating
system properties by using the standard namespace that is
created by the field dock registry. In the above assertion
example, the variable OS is actually shorthand intro-
duced for brevity; the actual variable is the standard field
dock registry path expression of :

$/Local/Software/OperatingSystem/Name$.

The artifacts that comprise the online help documentation
must also be described:

Artifacts {
 Guard = “($Online Help$ == true)”
 Artifact {
 Guard = “(OS == ‘Solaris’)”
 Signature = “a4ca443b8902d3410ec832”
 Type = “DOCUMENTATION”
 SourceName = “help.html”
 Source = “/proj/doc”
 DestinationName = “help.html”
 Destination = “doc”

 Mutable = false
 … }
 Artifact {
 Guard = “(OS == ‘Win95’)”
 Signature = “9283cd2378102f1a3b12ee”
 Type = “DOCUMENTATION”
 SourceName = “help.hlp”
 Source = “/proj/doc”
 DestinationName = “help.hlp”
 Destination = “doc”
 Mutable = false
 … } }

The artifacts are described by nesting them in an artifact
collection. The above artifact collection is guarded by a
property expression that tests the applicability of the arti-
fact collection with respect to a specific configuration; in
this case, the artifact collection is only applicable if the
“Online Help” property of the software system is true. The
actual online help documentation artifacts are described
within the artifact collection, each of which are guarded by
property expressions that test for a specific consumer site
operating system value. The end result is that the proper
artifact is installed with respect to the target consumer site
and the selected configuration of the software system.

As a note, software system properties are arbitrary names;
they have no meaning within DSD. Therefore, a property
such as “version” has no special significance in DSD as it
might in other configuration management disciplines. One
result of this approach is that properties can be used to or-
ganize a software system in a variety of ways. For exam-
ple, properties can be mapped to the traditional configura-
tion management view of versions, the components in the
software system architecture, or the features or capabilities
of the software system.

5 SOFTWARE DOCK AGENTS
Agents play a pivotal role in the Software Dock project.
Most of the other components in the Software Dock archi-
tecture are relatively passive elements, such as data and
interfaces. Agents, on the other hand, are responsible for
performing the functionality of nearly all of the software
deployment processes.

One goal of the Software Dock is to provide a collection of
generic agents that perform many of the standard software
deployment processes, such as install, update, adapt, recon-
figure, and remove. The agents, though useful in many
cases, may not be sufficient for every case and therefore
may also be used as base classes for the creation of other,
more specialized deployment agents.

Agents perform their deployment processes by encoding
some functionality that is then parameterized by the seman-
tic information provided in the software family descriptions
and the consumer site descriptions. In this fashion a single
agent definition can be used for any software system de-

 6

scribed using DSD and that software system can be de-
ployed to any consumer site that has a field dock.

The Generic Agent Process
As described in Section 4, DSD models a software system
based on properties and the proper configuration of those
properties. A result of this approach led to the discovery of
an abstract deployment process definition.

Many of the software deployment processes can be de-
scribed as a modification to the values of the properties of a
given software system. This valid set of software system
properties defines a particular configuration of the software
system. Once a configuration is determined it is possible to
determine the applicable elements of the software family
description. At this point a software deployment process
only needs to make the deployed software system corre-
spond to the applicable schema description elements. For
example, if the version of a software system is changed
from “1.0” to “1.1,” then all of the artifacts associated with
version “1.0” must be removed and the artifacts associated
with version “1.1” must be added.

In general, the install, update, reconfigure, adapt, and re-
move software deployment processes all follow this same
abstract algorithm.

Specific Agent Processes
The install agent is different from many of the other soft-
ware deployment process agents because it is not working
with an existing software system configuration. The install
agent must determine the configuration of the software
system to be installed by que-
rying the field dock for neces-
sary consumer site properties.
In order to determine the val-
ues for software system prop-
erties, such as version or op-
tional capabilities, the install
agent may ask the consumer
[see Figure 2]. Once a con-
figuration is determined the
install agent only needs to
perform the actions associated
with all of the applicable
schema elements for the se-
lected configuration, such as
testing assertions, resolving
dependencies, and retrieving
artifacts.

The update agent deploys a
new, previously unavailable
configuration of a deployed
software system. The new configuration is provided in a
new semantic description of the software system that the
update agent retrieves from its release dock. The update
process must account for a previously deployed configura-

tion of a software system. The update process may either
be specifically directed by the “push” of a new configura-
tion, such as a new version, or it may be undirected in the
case of a “pull” update where a new configuration must be
discovered or specifically selected by the user. An update,
though, is not always the result of a change to the currently
selected configuration, an update may only be a content
update. In such a scenario, the update does not change the
selected configuration of the software system, rather the
content of the current configuration is updated. This is
typical in many software systems that use a “channel” or
content delivery model. In either case the update agent
performs differential processing of the applicable schema
elements, undoing the schema elements corresponding to
the prior configuration if necessary and performing the
activities associated with the schema elements of the new
configuration. Any schema elements that are shared among
configurations are left untouched.

The reconfigure agent allows the current configuration of a
deployed software system to be changed. The changes that
are allowed, though, do not include any new changes that
have been made to the software system description on the
release side; these types of changes are considered to be an
update. As such, the reconfigure agent manipulates the
existing semantic family description of a previously de-
ployed software system. Once a new configuration is cho-
sen from the existing family description, the reconfigure
agent performs differential processing on the applicable
schema elements much like the update agent.

The adapt agent tries to maintain the consistency of the
currently selected configuration of a software system in the
context of the consumer site. The adapt agent monitors
events that might affect the deployed software system and
takes an appropriate action when such events occur. The
adapt agent may operate in a “pull” mode as well. In this
mode, the adapt agent re-verifies the deployed configura-
tion; for example, it rechecks assertions and dependencies,
and it validates all of the artifacts. In either mode of opera-
tion the adapt agent attempts to resolve any problems it
encounters.

The remove agent is responsible for removing a deployed
configuration from a consumer site. The remove agent
must ensure that no constraints are violated by the removal
of the software system. For example, if other deployed
software systems depend on the software system that is
being removed, the remove should fail. The remove agent
is also responsible for removing any dependent subsystems
that it may have installed during its own deployment, if
necessary.

There is an interesting, implicit issue with respect to all of
the agents described above. All of the agents manipulate
the schema description of a given software system in isola-
tion of the software system itself. This means that an agent
only needs the description of a software system to perform

Figure 2:
Configuration Editor

 7

most of its tasks. As a result, an agent can be much more
efficient, especially in the area of transfer time, since by
manipulating the schema description first, the agents only
need to request exactly what they need to finish their tasks.
This is possible since the release dock works in cooperation
with the agents to perform the deployment processes.

6 SECURITY AND ELECTRONIC COMMERCE
Security and electronic commerce have an impact on the
Software Dock research, but they have not been primary
research issues. Despite this fact, these issues have not
been summarily excluded in the solution discussed thus far.

Mobile agents cause a large security concern because they
come from unknown sources. In order to address some of
the security concerns in the Software Dock, agents operate
in the Java Virtual Machine (JVM) sandbox. The field
dock is the only local interface that an agent has to perform
its tasks. To extend the interface provided to agents, the
field dock uses a capability approach. The capability ap-
proach provided by the field dock allows certain restricted
operations, such as controlled access to the disk. Currently,
the JVM does not support a true capability approach, but
this functionality is expected in the next release of Java.
Regardless, all current agents are implemented as though
this approach was in effect; thus there is a relatively simple
transition when support for the capability-based security
approach is released. In addition, this approach can be ex-
tended to adopt a mechanism by which agents can become
trusted entities. In such a scenario, trusted agents may be
provided with even more sensitive capabilities.

The Software Dock framework is also open to electronic
commerce considerations. The Software Dock can easily
be extended by the creation of additional agents at the re-
lease and field sites. As such, agents could be created to
keep track of licensing issues. From a release perspective,
agents could monitor each time a software system is in-
stalled or updated and then perform some procedure to
charge a licensing fee to the consumer. Any variety of ap-
proaches is possible in this area, but none have been inves-
tigated since some scoping of the research area was neces-
sary.

7 RELATED WORK
Since the scope of the Software Dock project is so large,
there are many related technologies. This section only cov-
ers some of the most important related work. For some
more detailed information on related technologies refer to
[3] and [7].

The DSD schema created for the Software Dock project is
not a unique attempt to create a standard schema for de-
scribing software systems. A handful of related technolo-
gies are also trying to address the same issue with similar
approaches. Traditional configuration management model-
ing approaches, such as Adele [5] and PCL [21], have in-
fluenced DSD, particularly in the area of configuration se-

lection. These traditional approaches, though, are more
general configuration modeling languages that do not ad-
dress software deployment in any fashion. In general, these
approaches did not attempt to create a standard schema for
any specific task, rather the modeling language was the
primary contribution.

A more recent, high-profile effort to create a standard soft-
ware deployment schema is called the Open Software De-
scription (OSD) [9] format. This effort is an initial collabo-
ration between Microsoft and Marimba to create a schema
for describing software systems for “push” technologies.
OSD is very premature and merely allows for the descrip-
tion of multiple coarse-grain variants of a single revision of
a software system; dependent software systems may also be
specified. The descriptive information includes some iden-
tification information and pointers to archives where the
physical artifacts can be found. The resulting description is
too simplistic to perform any significant software deploy-
ment automation.

The Desktop Management Task Force (DMTF) has created
the Management Information Format (MIF) [4] for describ-
ing software systems. DMTF formed working groups to
create standard syntax elements in MIF for describing vari-
ous computing resources, including software systems. An
extension to MIF has been created by Tivoli and is called
the Application Management Specification (AMS) [19].
Since AMS is a superset of MIF, only AMS is discussed
here. AMS is much more mature than OSD. AMS de-
scribes a single revision of a single variant of a software
system in great detail. Software system composition, con-
straints, dependencies, identification, support, and artifacts
are some of the elements that AMS describes. AMS is not
intended, though, to automate all of the software deploy-
ment processes. Instead, AMS describes a semi-static con-
figuration of a software system that is to be installed and
monitored at a consumer site; the notion of manipulating
internal software system properties like revisions or vari-
ants is not directly supported. It is also assumed that there
is no cooperation between software producers and software
consumers, rather there is a more centralized “administra-
tion” authority that is responsible for maintaining the state
of deployed software systems.

The Defense Information Infrastructure Common Operat-
ing Environment (DII COE) [12] is a Department of De-
fense effort to restrict the set of components used to build
their software systems. The COE supports, among other
things, a standard means for packaging components for
delivery and installation. These packages are called seg-
ments [13], where each segment is a separate, installable
entity. The DII COE segment describes the constraints,
dependencies, and artifacts of a software system. High-
level software deployment process support is provided in
the form of scripts, though all deployment activities are not
directly supported. Like other approaches, the deployed

 8

software system configurations are largely considered static
entities that do not change or cannot be manipulated. The
support provided is intended more for a centralized admini-
stration authority and there is no release-side support.

Other approaches, such as GNU Autoconf [15], try to re-
solve consumer site description by using scripts and heuris-
tics to directly examine the state of a site, but these meth-
ods are not always accurate and they do not scale well. The
Microsoft Registry [10], is a hierarchical registry of con-
sumer site information for the Windows platform. The
schema used in this registry is only partially standardized
and even the standardized portions are not sufficient to se-
mantically describe software systems for deployment.

The Redhat Package Manager (RPM) [1] is a tool for the
Linux user community that provides many software de-
ployment features. RPM packages contain the software
system to be deployed and a semantic description of the
software system; this description includes constraints, de-
pendencies, artifacts, and activities in the form of scripts.
The granularity of an RPM package is a single revision and
a single variant. As a result, only limited forms of configu-
ration selection are supported. RPM does not have a notion
of a “release-side” and therefore is only able to request and
manipulate complete packages. Also, RPM is intended
more for single-site deployment and provides no support
for multi-site deployment or management.

A host of install utilities exist in the commercial world,
such as InstallShield [11]. These systems typically work
real well for installation, but only address a handful of de-
ployment processes, such as reconfigure and remove, in a
limited form. Recent install utilities are starting to address
the connectivity of the Internet, such as netDeploy [18] and
PC-Install with Internet Extensions [22]. Some of these
utilities are addressing the update process as well. In gen-
eral, most of these solutions do not provide reasonable
software system description capabilities. The level of se-
mantic information is less declarative than necessary for
generic software deployment automation.

Another class of commercial and research utilities exist to
support artifact update; some of these systems include Cas-
tanet [16], NSBD [14], and rsync [20]. In most of these
systems, there is little if any support for other software de-
ployment processes. These solutions provide only a very
simple model for describing software systems, in most
cases a software system is merely considered to be a collec-
tion of files.

8 CURRENT STATUS
A prototype of the Software Dock deployment framework
has been created. The Software Dock prototype has been
implemented entirely in Java and uses Voyager [17] from
ObjectSpace as an inter-process communication mecha-
nism and a mobile agent enabling technology. A related
research project at the University of Colorado, called

SIENA [2], provides a wide-area event service.

An evolving definition of the DSD was created. The cur-
rent definition of the DSD contains most of the main ele-
ments to support gross software deployment behavior.

The current implementation of the Software Dock infra-
structure includes elements for both the release-side and the
consumer-side. A release dock implementation has been
created to house the various software system releases that a
software producer has available. The creation of release
packages for the release dock is supported by a schema
editing tool. This simple schema editor provides a way to
create and edit DSD descriptions of software systems and
automates some tasks, such as the entry of software arti-
facts into the DSD description. Once a DSD description
has been created with the schema editor, the new or up-
dated release can be submitted to the local release dock and
made available for deployment. The submission of a re-
lease to the release dock automatically generates a set of
HTML pages for the new release that can be browsed by
consumers and used to instigate the install process.

On the consumer-side a field dock has been created. The
field dock describes various aspects of the consumer site,
such as platform, operating system, memory, and resources.
The field dock also provides a place for agents to “dock”
and perform software deployment related tasks by provid-
ing an interface to the underlying consumer site. To further
support the consumer-side, a tool, called a docking station
[see Figure 3], has been created that provides an interface
to the software systems that have been deployed at the con-
sumer site. The docking station provides an interface to the

deployment processes that can be performed on the locally
deployed software systems. The docking station can be
used to request updates, reconfigures, adapts, and removes.

A collection of generic agents has been created to interpret
the DSD software system descriptions in order to perform
specific software deployment processes. These generic
agents include install, reconfigure, update, adapt, and re-
move. Each of these agents is fully parameterized by the
DSD software description. All generically perform the
configuration and selection process and then check asser-
tions, resolve subsystem dependencies, and request and
retrieve physical artifacts. The end result is support for the
release and deployment of configurable content software
systems.

Figure 3: Docking Station Support Tool

 9

The current implementation has been used in a demonstra-
tion to describe a Web content-based software system
called the Online Learning Academy (OLLA) created by a
division of Lockheed Martin. OLLA consists of 45 mega-
bytes in over 1700 files. OLLA also demonstrated depend-
encies on two subsystems called Disco and Harvest. The
software deployment processes of release, install, reconfig-
ure, update, adapt, and remove have all been initially dem-
onstrated using the generic agents described in this paper
along with the DSD description of all three software sys-
tems.

9 FUTURE WORK
The current implementation of the Software Dock concen-
trates on the one-to-one aspects of the software pro-
ducer/consumer relationship. There is no inherent limita-
tion in the Software Dock framework for supporting other
aspects of the software producer/consumer relationship.
The most obvious scenario is that of the administrator role
at a consumer site.

In order to support an administrator role, a new collection
of “remote” agents will be created. These remote agents
will behave much like the current agents, except that they
will also be parameterized by consumer site names. With
such a capability, an administrator will be able to specify
that an activity, such as install or update, should occur on a
specific site or a specific set of sites.

To further support the administrator role, a new server,
called the interdock, will be introduced. An interdock
server will contain more global information about the con-
sumer organization, such as site domains and global ser-
vices. With the interdock, some administration tasks will
be simplified and it will also be possible to start to address
more complicated deployment scenarios, such as those of
distributed, coordinated software systems.

In addition, the DSD will continue to be extended and ex-
panded. Support for administration policies will be en-
hanced. Arbitrary dependency specification, rather than
just subsystem dependencies, will also be researched.
Lastly, better support for specialized deployment activities
will be investigated further.

10 CONCLUSIONS
Software deployment is not a single process, such as install,
rather it is a collection of interrelated processes that must
be performed after a software system has been developed
and made available to consumers. Support for software
deployment by software producers has been neglected until
recently. Large network environments, such as the Inter-
net, offer connectivity that can be used as an enabling tech-
nology for software producers to offer high-level software
deployment services to their customers, services that were
previously not possible. Combining the connectivity pro-
vided by large networks with other pieces of software de-
ployment technology, a cooperative framework for support-

ing software deployment can be created. The Software
Dock is creating such a framework.

The Software Dock supports software deployment proc-
esses by introducing components that represent software
producers and consumers, release docks and field docks,
respectively. The definition and use of a standard semantic
schema for describing software systems is central to the
Software Dock framework, and it provides, in a declarative
form, all of the knowledge necessary to perform software
deployment processes. Finally, agents are employed to
embody the actual functionality of the deployment proc-
esses. The agents realize the deployment process function-
ality in a generic fashion by interpreting the declarative
schema description of the software system.

ACKNOWLEDGMENTS
This material is based upon work sponsored by the Air
Force Materiel Command, Rome Laboratory, and the De-
fense Advanced Research Projects Agency under Contract
Numbers F30602-94-C-0253 and F30602-98-2-0163. The
content of the information does not necessarily reflect the
position or the policy of the Government and no official
endorsement should be inferred.

REFERENCES
1. E. C. Bailey. “Maximum RPM,” Red Hat Software,

Inc., ISBN: 1-888172-78-9, Feb. 1997.

2. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. “De-
sign of a Scalable Event Notification Service: Interface
and Architecture,” Technical Report, Dept. of Com-
puter Science, University of Colorado, 1998.

3. A. Carzaniga, A. Fuggetta, R.S. Hall, A. van der Hoek,
D. Heimbigner, A.L. Wolf. “A Characterization
Framework for Software Deployment Technologies,”
Technical Report CU-CS-857-98, Dept. of Computer
Science, University of Colorado, April 1998.

4. Desktop Management Task Force, “Software Standard
Groups Definition, Version 2.0,” Mar. 27, 1996.
http://www.dmtf.org/tech/apps.html.

5. J. Estublier and R. Casallas. “The Adele Configuration
Manager,” Configuration Management, Wiley, 1994,
pp. 99-134.

6. R. S. Hall, D. Heimbigner, and A. L. Wolf. “Require-
ments for Software Deployment Languages and
Schema,” Proceedings of the 1998 International Work-
shop on Software Configuration Management, July
1998.

7. R. S. Hall, D. Heimbigner, and A. L. Wolf. “Evaluat-
ing Software Deployment Languages and Schema,”
Proceedings of the 1998 International Conference on
Software Maintenance, IEEE Computing Society, Nov.
1998.

8. R. S. Hall, D. Heimbigner, A. van der Hoek, A. L.

 10

Wolf. “An architecture for Post-Development Con-
figuration Management in a Wide-Area Network,”
Proceedings of the 1997 International Conference on
Distributed Configurable Systems, IEEE Computing
Society, May 1997, pp. 269-278.

9. A. van Hoff, H. Partovi, T. Thai. “The Open Software
Description Format (OSD),” Microsoft Corp. and Ma-
rimba, Inc., 1997. http://www.w3.org/TR/NOTE-
OSD.html.

10. Jerry Honeycutt. “Using the Windows 95 Registry,”
Que Publishing, Indianapolis, IN, 1996.

11. InstallShield Corp. InstallShield, 1998.
http://www.installshield.com.

12. Joint Interoperability and Engineering Organization.
“Defense Information Infrastructure Common Operat-
ing Environment Baseline Specificiations,” Version
3.0, Defense Information Systems Agency, CM-400-
25-05, Oct. 31 1996.
http://spider.osfl.disa.mil/cm/baseline/base_line3/basel
in3.pdf

13. Joint Interoperability and Engineering Organization.
“How to Segment Guide,” Version 4.0, Defense In-
formation Systems Agency, Dec. 30 1996.
http://spider.osfl.disa.mil/cm/how_to/howtoseg.pdf.

14. Lucent Technologies. Not So Bad Distribution
(NSBD), 1998. http://www.bell-
labs.com/project/nsbd/.

15. D. Mackenzie, R. McGrath, and N. Friedman. “Auto-
conf: Generating Automatic Configuration Scripts,”
Free Software Foundation, Inc, April 1994.

16. Marimba, Inc. “Castanet Product Family,” 1998.
http://www.marimba.com/datasheets/castanet-3_0-
ds.html.

17. ObjectSpace, Inc. Voyager, 1998.
http://www.objectspace.com.

18. Open Software Associates. OpenWEB netDeploy,
1998. http://www.osa.com.

19. Tivoli Systems. “Applications Management Specifica-
tion,” Version 2.0, Nov. 5 1997.
http://www.tivoli.com/o_products/html/body_ams_spe
c.html.

20. Andrew Tridgell and Paul Mackerras. “The rsync al-
gorithm,” Technical Report TR-CS-96-05, June 1996.
http://cs.anu.edu.au/techreports/1996/index.html.

21. E. Tryggeseth, B. Gulla, R. Conradi. “Modeling Sys-
tems with Variability using the PROTEUS Configura-
tion Language,” Proceedings of the 1995 International
Symposium on System Configuration Management,
Springer, 1995, pp. 216-240.

22. Twenty Twenty Software. PC-Install with Internet
Extensions, 1998. http://www.twenty.com.

