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ABSTRACT

This paper provides an overview of the major issues and trends in architecture-based
software engineering. While all software systems can be described in terms of com-
ponents and interconnections, such descriptions are not always documented. FExplicit
description of software architecture provides o foundation for understanding and rea-
soning about both the functionality and quality of software systems very early in the
development process as well as at a high level of abstraction. In this paper, we discuss
the formalization of architectural specification, including a review of several languages
developed especially for architectural description, and follow this with a discussion of
architectural analysis techniques that can be applied to architectures described in these
languages. Additionally, we discuss several other emerging concepts in software archi-
tecture that are having an influence on the general utility of the field.






1 Introduction

All systems built from components exhibit structures that binds those components together. Con-
sider, for example, the domain of civil engineering and, in particular, the structure that binds
building materials into domestic dwellings. Civil architects are trained to apply their general
knowledge of building materials, building codes, and aesthetic laws to a set of specific customer
needs and budgetary constraints, such that the resulting dwellings are safe, functional, and afford-
able. Moreover, civil architects must be able to succinctly communicate their designs to a wide
audience that includes customers, builders, and inspectors.

To make the task tractable, civil architects work by assembling their designs from familiar
components that are well understood by architects, customers, builders, and inspectors. Rooms
are defined by walls and interconnected by doorways; floors of rooms are interconnected by stairways
leading to and from hallways; bathrooms on the same floor are placed near to each other and those
on different floors are placed above each other. In essence, the design of a domestic dwelling is
defined by its particular combination and interconnection of rooms.

But the arrangement of rooms in a domestic dwelling is only one structure of interest. Another
is the plumbing structure and yet another is the electrical structure. The details of these structures,
which involve different kinds of components and interconnections, are probably of little interest to
the occupant, except to the extent that they affect the arrangement of rooms, such as the location
of bathrooms. On the other hand, these structures are critical to plumbers and electricians. In
fact, their interplay is also important and can affect the overall design.

The notion of software architecture can be understood by analogy to civil architecture. In the
domain of software engineering, the structure of components is also the means by which a system is
understood and evaluated. And here, too, there are several structures that are of interest and that
involve different kinds of components and interconnections. For example, there are the procedure
components and their interconnection through invocation, there are the subsystem modules and
their interconnection through data and control communication, and there are the source files and
their interconnection through compilation dependencies.

A software system’s architecture is the arrangement of its components into one or more struc-
tures defined by the functional role played by each component and the interaction relationships
exhibited by the components. The software architect is responsible for designing, modifying, doc-
umenting, evaluating, and enforcing a software system’s architecture.

To make the software design task tractable, skilled software architects will make use of well-
understood components and interconnections arranged into familiar and reliable structures. An
extremely simple example is the compiler architecture known as the multi-phase translator. In this
architecture, compilation is structured into the phases of lexical, syntactic, and semantic analyses,
followed by optimization and target-code generation. Each phase is a translation of the abstract
program from one form to another, such as the lexical analysis that causes characters to become
tokens. Around this architecture has developed a formal theory and a toolset for each individual
phase. In fact, it is the adoption of this common architecture for compilation that has allowed
advances in individual phases, such as the invention of generator tools like LEX and YACC.

All software systems, just as all domestic dwellings, have an architecture. Moreover, software
architectures are present at many levels within a system, just as a room can have an architecture
separate from the house in which it is situated. To understand a software architecture we have
to understand the context in which it is being described. For example, the multi-phase translator
architecture is described above in terms of the role of functional components. A somewhat different
architectural view is to say how the functional components are arranged in terms of their commu-
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Figure 1: A Compiler Structured as a Pipe and Filter Architecture.
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Figure 2: A Compiler Structured as a Shared Repository Architecture.

nication interconnection. One possibility is to say that they form a pipe and filter architecture,
similar to the way commands can be strung together in the UNIX operating system (Figure 1).
Another is to say that the components communicate and synchronize through a shared repository
(Figure 2). The choice has a significant impact on the deepest design of the system.

There are many software architectures, at a variety of levels, that have been recognized as being
commonly useful. They range from general-purpose architectures, such as the pipe and filter and
client/server, to domain-specific architectures, such as telephone call processing and flight dynamics.
The choice of an architecture depends on many factors, both functional and extra-functional. The
functional criteria are almost obvious; the architecture must satisfy the functional requirements for
the system. The extra-functional criteria are less obvious, but are in some sense more critical to
the choice. These include the likely reliability, performance, and security of an implementation,
the extensibility of the architecture, the availability of ready-made components, and the collective
experience with the architecture.



Software architecture specifications are used for several different purposes, and these different
purposes lead to rather different forms of description. For example, pictures are a convenient way
of expressing the essence of the component and interconnection structure of a system, but are poor
at expressing intended dynamic behavior. Prose descriptions are easy to write, but their ambiguity
makes them useless for performing any kind of serious analysis.

One important reason for being explicit and precise about a system’s architecture is to avoid
a phenomenon known as drift [41]. Consider a domestic dwelling where a shaft is found to run
between floors and so act as a convenient conduit for adding a new electrical line. If it is not clear
in the architecture that the shaft was designed to be used solely as a chimney, then an unintended
violation of the architecture (in this case, the interconnection structure between floors) could have
disastrous results. It is not hard to think of analogous situations in software architectures where
communication channels are similarly abused.

Whether an architecture is an instance of some commonly adopted architecture, has been made
explicit, continues to be adhered to, and is of high quality, are all important questions. The emerging
area of software architecture research is attempting to make the process of architecting software
systems more rigorous, and the result of architecting more reliable and reusable, by bringing to
bear powerful specification and analysis techniques.

This paper provides an overview of the major issues and trends in architecture-based software
engineering. We begin by further discussing the importance to the development process of an
architectural perspective. We then discuss the formalization of architectural specification, including
a review of several languages developed especially for architectural description, and follow this with
a discussion of architectural analysis techniques that can be applied to architectures described in
these languages. Next, we briefly discuss several other emerging concepts in software architecture
that are having an influence on the general utility of the area. We conclude with some thoughts
about future directions.

2 Importance to the Development Process

There are basically two ways to attack any problem. One is to begin by considering various low-
level details, and then, when convinced that those details can all be dealt with, proceed to higher
levels of the solution. The other is to begin by exploring highest-level solutions, and then, after
selecting a promising candidate, attempt to find a means for lower-level realization.

Many of the world’s greatest design achievements begin with a high-level vision that has no
obvious support in low-level engineering practice. When this is the case, realization of the vision
is dependent on the development of new technologies. In some cases, these dependencies drive ad-
vances in the state of practice. In others, the advances are deemed to be impossible or unreasonably
costly, in which case the vision must be altered. Vision and engineering are thus tightly coupled,
each guiding and shaping the other.

Likewise, approaching the design of a software system at a highly abstract level allows the great-
est amount of creativity, but incurs the greatest amount of risk. Software design based on abstract
thinking must therefore be supported by experience-proven architectural styles and solid analytical
techniques. Architecting is the central activity in the planning stage of software development, as
depicted in Figure 3. The resultant architecture is important, but in the end, its utility depends
on the quality of the planning that went into its creation.

The goal of software system development is to produce the best system that provides the
functionality required by the commissioners of the system. There are many ways to define “best”,
depending on the system being built. For a missile guidance system, a higher value will likely
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Figure 3: Architecting is the Central Planning Activity.

be placed on reliability than on time to market. On the other hand, the producer of shrink-
wrapped commodity software, such as a word processor, often values time to market and feature
differentiation over quality, until such time that the product has captured sufficient market share.
Determining what constitutes the appropriate evaluation criteria for a system design is of prime
concern during requirements analysis. This understanding influences the designer in the choice of
an architecture. Decisions at this level are critical to the success of the development process, since
these decisions directly affect all other aspects of the development process.

Traditionally, the software development process has been modeled as incremental steps involving
refinement, beginning with an assessment of the problem to be solved and concluding with system
maintenance (Figure 4). Iteration between steps is expected. For instance, during the testing
stage, it might be discovered that an error exists that requires a major change in the design of the
system. This will necessitate a cycling back to the design stage and repetition of all later stages.
An explicitly and formally captured software architecture provides a medium for early analysis of
the correctness and completeness of a design’s satisfaction of system requirements, thus reducing
the numbers and costs of problems encountered in later stages of development and reducing the
time spent revisiting prior stages to correct those problems. In fact, the system view provided by
an architectural description is useful throughout the life of a system as a high-level reference point
for evaluation and change.

Below, we discuss two primary benefits of the inclusion of an explicit architecting stage in
the software life cycle: first, increased abstraction for understanding large, complex systems and,
second, the ability to perform high-level analysis.
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Figure 4: The System Development Process Proceeds in Stages.

2.1 Abstraction

Abstraction is a modeling activity that, in essence, amounts to the selective highlighting (and, cor-
respondingly, selective hiding) of particular characteristics of a system. If one considers a software
architecture to be an abstract model of a system, then what are those highlighted characteristics?
In general, they are components, connections, and the behaviors that regulate the interaction of
components through connections. Viewing a system from an architectural perspective encourages
this abstract way of thinking about system development, which results in benefits that include im-
proved communication among the stakeholders of the system and improved software understanding
of the system and its development process.

2.1.1 Improved Communication Among Stakeholders

Communication among stakeholders during the development of a system is crucial to success. It
is also very difficult. Stakeholders, such as funding agencies, inspectors, system commissions, and
system developers, must be able to communicate about their needs and ability to meet the needs
of others. The differences in views and backgrounds is greatest among the stakeholders involved
in the high-level design of a system [18]. For instance, at that critical point in development, it is
important for the system commissioners with knowledge of the desired system functionality but,
perhaps, no knowledge of system development, to be able to communicate with system developers
who know how to build systems but may know little about the application domain where it is
intended to be used.

Architectural description provides a vehicle for such communication. At the simplest level, a
picture of the system can be drawn that is comprised of boxes and arrows representing the function-
alities of the system and how they would be expected to interconnect. This level of architectural
description allows the commissioners of the system to see that their needs have been recorded and it
allows the developers to consider different ways in which that functionality might be implemented.
At a more detailed level, a formal description of components, connections, and behaviors provides



an object of shared introspection that can be formally analyzed, and perhaps even simulated.

2.1.2 Software Understanding

Code-based system understanding becomes difficult in moderately sized systems and impossible in
large systems. The ability to reason about the implementation of a system based instead on the
architectural description can greatly improve system understanding. Successful use of architecture
for these purposes requires the ability to map between levels of abstraction of the system. But
because of the phenomenon of architectural drift, it is critical that the mapping somehow be kept
legitimate. Three proposed solutions to this problem are architecture recovery, forced consistency,
and system generation. Forced consistency and system generation are useful when building new
systems, while architecture recovery is an alternative for use with systems for which an architectural
description does not exist or for systems whose architectures are known to have freely drifted over
time.

Architecture Recovery

Architecture recovery methods use a combined top-down and bottom-up approach to discover the
architecture hidden within an implementation. They are concerned with helping system engineers
increase their understanding of very large, implemented systems for the purposes of change analy-
sis. As examples, Gall et al. [62] use domain knowledge combined with existing reverse engineering
techniques to discover the current architecture in the ARES project. Murphy, Notkin, and Sulli-
van [36] create a mapping from the actual source onto an architectural description that was drawn
up by a person familiar with the overall functionality of the system.

Weide et al. [63] make the argument that reverse engineering based on architecture recovery
is intractable. They do not claim that this intractability should imply that all work in the area
should cease, but rather that software engineers must concentrate on building new systems better
since most software systems have yet to be built. Of course, this view is not helpful to long-lived
systems that are too expensive to replace, such as the air traffic control system or the global
telecommunications and banking infrastructures, which must continue to evolve for decades to
come.

Forced Consistency

Consistency can be accomplished when a change in one system artifact is propagated to all related
artifacts. Forced consistency is a primary goal of Gestalt [47]. The authors of that language
consider inconsistency between architecture and code to be the prime concern for improving the
usefulness of software architectures. The actual structure of a C program is captured and revised
into a Gestalt architecture based on preprocessor directives (e.g., #include) found in the source
code files. After the architecture is constructed, changes in one are propagated to the other.
van der Hoek et al. [59] are studying the use of versioned software architecture as a possible forced
mapping solution to the architecture/implementation mapping problem. With the goal of achieving
run-time change for systems, the C2 architectural style [39] requires an inter-level mapping. In the
case of C2, changes at the architectural level should naturally be propagated to the implementation
level. They assume that implementation-level changes will be restricted by a “preconceived set of
application invariants”.



System Generation

System generation is the automatic creation of an implementation given a high-level system descrip-
tion. Methods of system generation vary but are generally based on the selection and composition
of predefined, coarse-grained components. The generation of systems is raised to an even higher
level by GenVoca [4], which is a system for generating application-specific system generators. Any
system that is built via the selection of components rather than implementation coding should
provide increased reliability of the mapping between source code and architecture.

It would seem that there should never be a reason to access automatically generated source
code. However, engineers (even hardware engineers) are continuely haunted by undocumented
implementation-level changes to their implemented systems. Thus, software generation will need
to provide a means for assuring that the system can only be modified through architecture-level
changes.

System generation techniques are discussed further in Section 5.3.

2.2 Architecture-Level Analysis

The goal of software analysis is to determine the degree to which a system satisfies its requirements.!
There are many ways of distinguishing analysis techniques. The distinctions generally center around
tradeoffs between the accuracy of the method and the effort required to perform the analysis [65]
because, in general, proving the correctness of systems is intractable. An additional distinction
can be made between techniques for detecting the presence of incorrectness and techniques for
locating the cause of incorrectness. Most automated architectural analysis techniques that have
been developed or suggested to date are of the former kind [2, 22, 31, 37, 44]. Recently, dependence
analysis has been suggested as a basis for architecture-level fault localization and impact analysis
of the latter kind [54]. Finally, there is an important distinction to be drawn between analysis of
functional and extra-functional properties. Again, most existing techniques are of the former kind.

Many system properties can be analyzed for faults during the early stages in development.
For example, Inverardi et al. [22] demonstrate the advantage of early analysis in the discovery
of functional component mismatch, where the methods of data exchange expected between two
architectural components were incompatible. Magee et al. [32] reveal the potential for deadlock in
an architectural specification of the Olivetti Active Badge System. Naumovich et al. [37] apply an
analysis tool to an architectural description of the classical gas station example to detect a potential
race condition between customers trying to pump gas. Stafford et al. [54] apply a dependence
analysis technique to discover a failure and locate the fault in a different architectural specification
of the same gas station example.

In general, detecting faults during the early stages, including during architecting, results in
fewer errors being propagated forward, which in turn results in increased reliability and reduced
maintenance costs, as depicted in Figure 5. It is not unusual for nearly 40% of development expenses
to be incurred in testing and maintenance of a system [43]. In a case study involving the prediction of
software quality based on the development of the JStar ground surveillance system [26], the number
of faults created during design was 32%, yet the number of faults discovered before or during design
was a mere 1%. The expectation is that a solid architectural design can reduce the propagation of
errors to late stages of development by providing a vehicle for communication between stakeholders
in the system and by providing support for early analysis. Among the properties that can benefit
from early analysis are the following.

!This form of analysis should not be confused with “requirements analysis”, which is intended to examine a
problem domain in order to elicit a set of requirements.
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Figure 5: Early Analysis for Errors Reduces Maintenance Costs.

Completeness—the entire range of functionality specified in requirement documents are met.

e Liveness—intended system behavior (e.g., computational progress) eventually occurs.

Safety—no unintended behavior (e.g., deadlock) ever occurs.
e (Component interaction—connected component interfaces and functionalities are compatible.
e Performance—system performance requirements are met.

A course-grained view of a system, which allows one to think about the system in large chunks,
provides important benefits even after system design. Many issues, when addressed at the imple-
mentation level, are intractable for anything more than small (less than a few thousand lines of
code), single-author systems. When dealing in the large, an architecture can provide assistance in
performing tasks such as the following.

e Fault Localization—After a failure has been identified in a system, it is necessary to investigate
the cause of the failure. This is normally done by systematically reducing the code to be
inspected until the fault is eventually isolated to a specific set of statements. In a large
system, the first approximation to this reduction is provided by the component structure of
the system’s architecture.

e Regression Testing—When a modification is made to a piece of software, it is necessary to
rerun tests to assure that no faults were introduced during the modification process. Min-
imizing the tests to just those affected by the change helps reduce the cost of regression



testing. Again, in a large system, the first approximation to this minimal set is provided by
associating the tests with the component structure inherent in the architecture.

e Detection of Software Drift—Over time the structure of a system tends to drift due to undoc-
umented enhancements and repairs. The architecture provides a touchstone against which
drift can be detected and measured.

e Reuse—When some component of a system is recognized as being usable in other applications,
then that component, as well as any other components that it requires, are extracted and used
in other settings. This requires an understanding of the architectural context and assumptions
within which the component was conceived.

e Reverse Engineering—When a system has been in service for many years, then it often be-
comes difficult to make modifications because of lost engineering information describing the
system. A typical, and tractable starting point for recovering this information is to recapture
the architecture.

Each of these tasks currently involves detailed sifting (whether manual or computer assisted)
through source code in order to achieve the particular goal. The architecture can be used to segre-
gate large chunks of code to either be included or ignored during this examination, thus enhancing
the practicality of the process.

3 Formalization and Software Architecture

Traditionally, software architectures have been described informally as natural-language documents.
Box and arrow diagrams are sometimes used to bring more precision to descriptions of software
architectures, but while they can reveal some ambiguous and missing requirements, they are not
capable of modeling all the information provided in the natural-language specification, such as
system behavior. Formalization, as applied to software development at the architectural level,
involves the application of mathematically based modeling languages to capture structural and
behavioral properties of systems. Above all, these languages provide support for rigorous analysis
of a system early in the life cycle and/or at a high level of abstraction. But additional benefits
accrue as well.

e A formally described system is a vehicle for precise and unambiguous description supporting
communication among stakeholders in system development.

e Well-understood and well-documented components and connections provide a means to ex-
ploit commonalities among architectures.

e Explicit association of features and properties of architectures can be an aid in choosing
among design alternatives.

e Increased modifiability of a system is possible due to well documented component interfaces
and the availability of reliable techniques to analyze the possible effects of modifications to a
system.

e Formal description provides a means to capture domain-specific properties, requirements, and
idiosyncrasies in ways that support domain-specific architectural generalizations.



e Increasing the granularity of descriptive elements improves scalability, and thus support for
the development of large-scale systems.

The creation of a formal architecture description naturally uncovers ambiguities and omissions.
Moriconi et al. [35] discuss the need for formality in high-level descriptions in order to support the
ability to create and use hierarchical abstractions and mappings between them. Shaw et al. [49]
discuss differences in the abstractions necessary for describing architectures and those required for
instantiation of systems. Most discussions that include the topic of architecture descriptions also
mention the need for support tools to aid in analysis. But development of automated analysis tools
depends first on the availability of formal languages that support system description.

One of the goals of the ISO 9000-3 guideline for application of the ISO 9001 standard to software
development is formalization at all stages of the software life cycle. Oskarsson and Glass provide a
practical alternative to building ISO 9000 compliant software [40]. They are supportive of formal
approaches as an aid to building quality software. However, they claim that the focus on the
use of formal methods is misdirected and raise two primary objections. The first is based on the
evolutionary nature of software development. They state that the ISO emphasis on “complete
and unambiguous” specification will best be implemented through the use of formal specification
languages. However, they equate this use with the inhibition of evolution in software. Oskarsson
and Glass’s second objection is based on the fact that formal methods are beyond the understanding
of most, if not all, customers and users as well as many developers.

An emphasis on “complete and unambiguous” specification need not imply that a system become
fixed in time. What it does mean is that all system artifacts should be kept in step throughout the
life of the system. Advances in analysis techniques, in fact, could even enhance system evolution
by isolating the effects of changes and by raising the developer’s confidence in those changes. As
to the assertion that formal methods are beyond understanding, this denies the experience of
other engineering disciplines, which regularly use more sophisticated techniques than those found
in software engineering. Indeed, the essence of most formal methods are a normal part of higher
education: set theory, graph theory, and logic. What is true is that the community has not yet
settled on which specific techniques should be taught, and so most software engineers currently
leave their studies ill prepared to learn advanced formal methods.

3.1 Architecture Description Languages

Languages for describing high-level designs have been in development and use for over two decades.
The recent interest in software architectures has spawned the development of a new generation
of such languages, which are now referred to as ADLs (architecture description languages). Most
are intended to support some sort of formal analysis. Most are also still rather immature and few
descriptions of actual system architectures have been written using them. However, this is an active
area of research focused on providing languages and tools that are practical and useful.

Table 1 provides a list of several representative ADLs. These ADLs vary widely in their level of
expressiveness. They also vary widely in maturity, as well as in the degree to which the structure
and behavior of the system can be modeled. For instance, Darwin [31] concentrates its modeling
on the structure of a system, providing support for behavioral specification and analysis through
separate tools, while CHAM [21] concentrates more on directly capturing system behavior than on
system structure. Rapide [56] and Wright [2] are particularly rich in describing both structure and
behavior. In the case of Rapide, the goal is early system simulation, while in the case of Wright,
the goal is to study the formal specification and analysis of architectural connection.

10



ADL

Organization

| Ref. |

Design Goals

Acme

Carnegie Mellon University

[14]

Provide an interchange language to facilitate sharing of
architectural components and analysis tools.

ArTek

Teknowledge Corporation

[58]

Describe the architecture of evolving large-scale compo-
nents as a communication and coordination device within
multi-contractor projects, to capture the architecture of a
delivered system for documentation purposes, and to pro-
vide support comparing and contrasting existing architec-
tures.

CAPS

Naval Postgraduate School

[51]

Provide a software development environment for graphical
specification and prototyping of real-time systems.

CHAM

University of L’Aquila
University of Colorado

[21]

Investigate a formalism for description of architectural
components and the interaction among them for the pur-
poses of system analysis.

Gestalt

Siemens Corporate Research

[47]

Provide support for describing the structure systems, ab-
stractions needed by developers, and communication mech-
anisms used in industrial software, as well as automatically
checking of consistency with source code.

MetaH

Honeywell Technology Center

Specify real-time and concurrent aspects of the software
and hardware of a system, and provide support for analysis
of functional and extra-functional system properties.

Modechart

University of Texas at Austin

Provide a formalism for the specification, analysis and sim-
ulation of real-time systems

Rapide

Stanford University

Provide an executable ADL based on a rule-event execu-
tion model for prototyping, simulating, and analyzing of
software systems.

RESOLVE

Ohio State University

Provide a framework, discipline, and language for specify-
ing, developing, and composing reusable software compo-
nents.

SADL

SRI

Provide support for specifying the structure and the se-
mantics of an architecture through explicit mappings
among architectures, architectural styles, and architecture
refinement patterns.

UniCon

Carnegie Mellon University

Support style-based architectural construction by inter-
connecting predefined or user-defined architectural com-
ponents.

Wright

Carnegie Mellon University

Provide a formalism that focuses on explicit connector
types and analyses associated with architectural connec-
tion.

Table 1: Comparison of Several Representative Architecture Description Languages.
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3.2 Classification of ADLs

As is true for implementation languages, no one ADL is the best choice for all systems. Several
classification schemes have been suggested based on different aspects of the decision process [33, 34,
41]. One primary difference among ADLs is the model they support in a representation. Shaw and
Garlan [50] review a set of model types that appear regularly in software: structural, framework,
dynamic, process, and functional. They describe how each model is more or less well supported by
various ADLs. Vessey and Glass discuss the notion of “strong” versus “weak” approaches to system
development [60]. Strong systems development implies a tight fit between the methods being used
and the problem being solved. Weak development methods are applicable to many problems but
not particularly good for any specific problem domain. Vessey and Glass feel that there needs to
be more work done in the area of determining what models are best suited to solving problems in
particular domains. Association of ADLs with application domains should improve selection of an
ADL for describing the architecture of a particular system.

One can imagine classifications based on the formality of the description, the types of archi-
tectural entities emphasized, the support for various types of analyses, the intended specifier, and
intended audience of specifications captured in the ADL. The most complete attempt to classify
ADLs to date is presented by Medvidovic [33]. He offers a definition of an ADL and then proceeds
to classify and compare the languages that fall within the bounds of that definition. The basis
for his classification is the support provided for various aspects of components, connections, and
configurations as well as the types of tool support provided with the language. The classification
is not intended to suggest certain languages for specific tasks but rather to provide an overview
of what the various languages provide and how they compare in support for various features he
considers essential to an ADL.

3.3 Overview of Several ADLs

We now present an overview of several ADLs that support different aspects of high-level software
description.? CHAM [21] provides support for analysis of system behavior. Darwin [31] is based
on the premise that simple is better, and directly provides support for only the structural aspects
of a system. Rapide [55] is intended as a simulation language for event-driven systems. MetaH [61]
provides support for specifying both the hardware and software components of a system along
with the relationships among them. Unicon [66] supports composition of systems from predefined
components. Wright [2] explores formal aspects of architectural connection. Acme [14] attempts
to model the constructs generally considered to be essential to all ADLs.

For each of the languages, we reproduce an example drawn from the published literature de-
scribing the language. Space does not permit us to discuss the examples in detail. Our intent is
simply to give a flavor of each language; the reader is referred to the literature for more specific
information.

3.3.1 CHAM

The Chemical Abstract Machine (CHAM) is an operational model based on the theory of term
rewriting. It uses the metaphors of molecules to model components, chemical solutions to model
system states, and chemical reactions to model system state changes [5]. Structured in a particular
way, a CHAM provides a means for concisely describing the components and behavior of a software
system at the architectural level [7, 21, 22]. Using its associated analysis techniques of structural

2Exclusion of other ADLs from this overview does not indicate a lack of importance, merely a lack of space.

12



.....

4 ) process

------

I function—call interface

: component

. UNIX pipe interface

=P channel

Conpr essi ng Proxy

A 1
. 1 Pseudo Filter )
- <
Filter (Adapt or) Filter

Figure 6: The Compressing Proxy [7].

induction and transition system construction, CHAMs can reveal incorrect global system behaviors
as well as component behavioral mismatches.

Figure 6 depicts a system modeled using a CHAM, a portion of a CERN HTTP (Hyper Text
Transfer Protocol) server that uses the gzip compression/decompression program to increase trans-
fer rates [13]. A CERN HTTP server is structured as a series of filters to allow easy extension, as
in the case of the gzip addition. A CHAM description for the compressing proxy architecture [7] is
shown in Figure 7 and includes molecules, solutions, and reaction rules (also called transformation
rules). Transitions in the state of the system are described through rewriting of terms, where the
terms of an expression are transformed into a new expression based on the rules defined for the
system.

A software architecture described as a CHAM is structured into three parts:

e a syntax for representing the system components;
e a set of reaction rules for describing the system behavior; and

e an initial solution for representing the original, static configuration of the system.

Following Perry and Wolf [41], CHAM descriptions distinguish three types of design elements:
data, processing, and connecting. The data elements contain information, the processing elements
transform the information, and the connecting elements glue the components of an architecture
together.

The syntax shown in Figure 7 consists of the set P representing three kinds of processing
elements. The connecting elements for the architecture are given by a second set C consisting of
two operations, 4 (for input) and o (for output), that act on the elements of a third set N. This third
set is used to define the topology of the system in terms of the communication channels connecting
the components, and correspond to the numbers given in Figure 6. A fourth set F introduces the
control signals used in the communication between gzip and its adaptor. The set F' contains the
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/* Molecule Syntax Definition */

M::=P|C|E|MoM
P ::=F | AD | GZ

C ::=i(N) | o(N)

N ::=1]2]3]|4

E ::=end; | end,

F ::=CF, | CFy

/* Initial Solution Definition */

S() = CFu < 0(1) s
CFy0i(4),
i(2) o end; ¢ 0(3) o end, ¢ GZ,
i(1) 0 0(2) o end, © AD

/* Transformation Rules */

Ty =i(x) omy, o(x)oms — my oi(x), me oo(x)

Th=eomoc — coeom

T3 =end, om; ¢o(z), end; oms oi(x) — my oo(z) oend,, myoi(z)oend;
Ti=end; om0 GZoms — mq ©GZ oms oend;

Ts=end,cGZom — GZomoend,

Te=GZom — moGZ
Tr=foc — cof

Ts=ADoi(l)om — i(3) oend; ¢0(4) o AD
To=ADoi(3)om — i(l)¢0(2) oend, o AD

Figure 7: CHAM Description of the Compressing Proxy [7].
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representation of the “upstream” and the “downstream” CERN filters between which is placed the
adaptor for gzip. By convention, the infix operator “o” is used to express the status of a processing
element in terms of its possible sequence of behaviors.

Notice that at the level of abstraction used in this particular description, the concern is not
with the actual data transferred between the components, but simply the protocol by which the
components communicate. In general, CHAM descriptions can be used to specify data aspects as
well.

The next step in specifying an architecture is to define an initial solution Sy. This solution
is a subset of all possible molecules that can be constructed under X, and corresponds to the
initial configuration of a system conforming to the architecture. The solution establishes the basic
connectivity of the components and their initial status. For example, Sy establishes that GZ is
initially in the state of accepting data along channel 2 (from AD). It can then end its input and
enter a state of offering data along channel 3 (to AD), after which it can end that output. AD
is initially in the state of accepting data along channel 1 (from an upstream filter) and must wait
until it has stopped accepting the data before it can offer data on channel 2 (to GZ). It can then
end its output. The full meaning of the initial state becomes apparent when combined with the
transformation rules.

There are eight transformation rules that define the complete behavior of the compressing proxy
at this level of architectural modeling, where m, m;,mo € M,z € N,c€ C,e € E,and f € F. Rule
T is a general inter-element communication rule, rules 75 through 75 capture the communication
protocol between gzip and its adaptor, rule Ty enables the iteration of GZ, and rule T%7 describes
the activation of the upstream and downstream filters. Rules Tg and Ty describe the behavior of
the adaptor.

We now trace through just a few applications of the transformation rules to illustrate how the
formulation captures the essence of the architecture. First, data to be compressed must be available,
and therefore the solution must be “heated” by rule 77 acting on the molecule CF,, ¢ o(1).

So Tz, S1, where
S1 = o(1) ¢ CF,,
CF0i(4),
i(1) ¢0(2) o end, ¢ AD,
i(2) o end; ¢ 0(3) ¢ end, © GZ

Now a reaction can occur within the subsolution consisting of molecules o(1) ¢ CF, and
i(1) ©0(2) oend, © AD. This reaction is governed by 77 and represents the initial transfer of
data from CF, to AD.

Sy IR S9, where
82 = CFu 00(1),
CF ¢ i(4),
0(2) oend, ¢ AD ¢ i(1),
i(2) o end; ¢ 0(3) o end, © GZ
The data transfer has occurred through a single reaction, and CF,, is now in a state in which T%
is required to activate it once again for a further data transfer. Although T7 can be applied, for

brevity we do not consider this possibility.
At this point, reaction T} can occur again, modeling the passing of data from AD to GZ for com-
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pression. 77, in this case, acts upon the subsolution consisting of molecules 0(2) ¢ end, ¢ AD ¢ i(1)
and i(2) ¢ end; ¢ 0(3) © end, © GZ.

So n, S3, where
53 = CFu 00(1),
CF,0i(4),
end, c AD ¢ i(1) ¢ 0(2),
end; ¢ 0(3) o end, ¢ GZ ¢ i(2)

From this state, any one of the three reactions 15, T3, T4, or T7 can occur nondeterministically.

In summary, this CHAM models an abstract machine that evolves dynamically from one ad-
missible state to another, starting from the initial solution Sy representing the initial configuration
of the system and using the transformation rules 77 through Ty to model the possible behaviors of
the system. This kind of architectural description lends itself naturally to formal examinations of
behavioral properties.

3.3.2 Darwin

Darwin is intended to be used for the specification, construction, and management of software
systems, with emphasis on the description of concurrent, distributed, and dynamic systems. Studies
have been conducted involving configuration of distributed user programs, multiservice networks,
and embedded systems.

Darwin describes a system topology as a hierarchical structure comprised of composite com-
ponents. At the lowest level, a composite component will be composed of primitive components.
Darwin does not directly provide a means for modeling component interaction or overall system
behavior. In addition to the basic structural view described in Darwin, behavioral, service, and per-
formance views are suggested for analysis and as aids during the implementation decision-making
process.

e The structural view describes components and their interconnections. Components are spec-
ified as sets of portals (the Darwin term for “ports”), instantiations of components, and
bindings between the portals of the instantiated components.

e The behavioral view is specified in FSP notation and analyzed for safety and liveness prop-
erties using the TRACTA [17] compositional reachability analysis technique. The Labelled
Transition System Analyzer (LTSA) is used to perform the TRACTA analysis. LTSA is
further discussed in Section 4.1.2.

e The service view is a refined view of the architecture aimed toward implementation. It
includes information about the portals, such as binding patterns and whether a portal provides
or requires a service.

e The performance view is suggested as an important area for future work.

Darwin specifications can be given as simple box and arrow diagrams or can be more elaborately
described in the Darwin textual notation, which provides conditionals and iterators. Examples of
both types of description are shown in figures 8 and 9.

Kramer and Magee [28] used Darwin to study the the Ring Database problem [45]. In this
problem it is possible for inconsistent data to result from timing issues. Figure 9 contains a Darwin
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NODE[0]

CHANNELI0]
D in out——0 in out
out n
CHANNEL[2] NODE[1]
irl;] out
out inQ—9 out in P
NODE[2] CHANNEL[1]

Figure 8: The Ring Database.

specification for a ring database. A graphical version is shown in Figure 8 and a behavioral descrip-
tion is given in Figure 10. The system RING is described as a composite component that binds
together an unspecified number of primitive components CHANNEL and NODE. Communication
between the components is defined in the interface UPDATE. The inter-component connections
are described as a sequence of bindings between interface portals named “in” and “out” of the two
types of components. The interface passes the name of the originating node and a value through
the portals.

The LTS behavioral description for an instance of RING consisting of three nodes and three
channels is given in Figure 10. As noted above, an LTS is described in the FSP notation. In order
to provide a basic understanding of the FSP notation, we describe the semantics of the following
symbols used in the example.

e z — P indicates that when a process engages in action z it will then behave as process P.

e z — Ply — @ indicates that a process may either engage in z or y and the resultant behavior
will be P in the former case and () in the latter case.

e In the behavioral description of NODE, the quietl, quiet?2, and display actions are used to
define when the values of local variables can be read and used.

e The last action of component NODE is a guarded command. The operator “|” indicates that

if one of the five conditions listed becomes true, the resultant behavior will be that described
to the right of the —.
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component RING {
forall i = 0 to N-1 {
inst node[i] :NODE; channel[i] :CHANNEL;
bind node[i].out--channel[i].in;
node[i] .in--channel [((i-1)+N)%N].out

}
}

interface
UPDATE{Nodes; Value;}

component CHANNEL
portal in:UPDATE;
portal out:UPDATE;

}

component NODE
portal in:UPDATE;
portal out:UPDATE;

}

Figure 9: Darwin Description of the Ring Database Structure [28].

e The notation “||” used before the behavioral description of RING indicates that this is to be
a parallel composition of its components NODE and CHANNEL.

e The symbol “/” denotes a relabeling that is sometimes necessary, since bindings in Darwin
are modeled as shared actions in an LTS.

The Software Architect’s Assistant (SAA) [38] is a tool that provides support for both a textual
and a graphical description of components and connections. As noted above, textual descriptions
can include the use of conditionals and iteration in order to vary the topology of a system during

run time. Work is in progress to provide support for behavioral analysis through integration of
LTSA into SAA.

3.3.3 Rapide

Rapide is a high-level, event-based simulation language that provides support for the dynamic
addition and deletion of predeclared components. Rapide descriptions are composed of type speci-
fications for component interfaces and architecture specifications for permissible connections among
the components of a system.

System behavior is described through architectural connection rules, state transition rules, and
patterns of events required to generate events that activate the rules. System behavior can be
simulated through execution of the Rapide description. The results of a simulation of system
behavior can be studied using a representation called a poset. A poset is a partially ordered set of
events captured during a single simulation of a system.

Components are defined in terms of their interfaces. Three types of components are described
in Figure 11, which is the Rapide description of the familiar gas station problem. The component
types are a pump, a customer, and an operator. In this simple example we see that interfaces
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const N 3 \\ number of nodes
range Nodes = 0..N-1

const Max 2 \\ Update values

range Value = 0..Max-1
const False =0

const True =1

range Bool = False..True

CHANNEL

(in[j:Nodes] [x:Valuel
— out[j][x] — CHANNEL).

NODE(I=0) = NODE[0][FALSE],
NODE[v:Value] [updt:Bool] =
/* one local update at time - set value to u */
(when (!updt) locall[u:Value] — out[I][u] — NODE[u] [Truel

/* locally passive - display consistent value */
|[when (!updt) quietl — display[v] — quiet2 — NODE[v] [updt]

/* receive update from originator j and value x */
| in[j:Nodes][x:Value] —
( when (I==j && updt) complete — NODE[v] [False]

when (I==j && 'updt) oops — ERROR
when (I<j && updt) discard — NODE[v] [updt]
when (I>j && updt) out[j][x] — NODE[x][Falsel

|
|
|
| when (!(I==j) && 'updt) out[j]l[x] — NODE[x][Falsel
)

|| RING = ( node[i:Nodes]:NODE(i)
| | channel[Nodes] :CHANNEL)
/{forall[i:Nodes] {
node[i].out/channel[i].in,
node[i].in/channel [((i-1)+N)%N].out,
quietl/nodel[i] .quietl,
quiet2/nodel[i] .quiet2

}
).

Figure 10: FSP LTS Description of the Ring Database Behavior [28].
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type Dollars is integer; -- enum O, 1, 2, 3 end enum;
type Gallons is integer; -- enum O, 1, 2, 3 end enum;

type Pump is interface
action in 0(), 0ff(), Activate(Cost : Dollars);
out Report(Amount : Gallons, Cost : Dollars);

behavior
Free : var Boolean := True;
Reading, Limit : var Dollars := O;
action In_Use(), Done();
begin
(?X : Dollars) (On ~ Activate(?X)) where
$Free ||> Free := False; Limit := 7X; In_Use;;
In Use ||> Reading := $Limit; Domne;;
0ff or Dome ||> Free := True; Report($Reading);;
end Pump;

type Customer is interface
action in Okay(), Change(Cost : Dollars);
out Pre Pay(Cost : Dollars)Okay(), Turn On(), Walk(), Turn Off();
behavior
D : Dollars is 10;
begin
start ||> Pre Pay(D);;
Okay ||> Walk;;
Walk ||> Turn.On;;
end Customer;

type Operator is interface

action in Request(Cost : Dollars), Result(Cost : Dollars);
out Schedule(Cost : Dollars), Remit(Change : Dollars);

behavior

Payment : var Dollars := 0;

begin
(7X : Dollars)Request(?X) ||> Payment := 7X; Schedule(7X);;
(?X : Dollars)Result(?X) ||> Remit($Payment - 7X);;

end;

architecture gas_station() return root is
0 : Operator;

P : Pump;
C1, C2 : Customer;
connect

(?C : Customer; 7X : Dollars) ?C.Pre Pay(?7X) |[> 0.Request(?X);

(?X : Dollars) 0.Schedule(?X) ||> P.Activate(?X);

(?X : Dollars) 0.Schedule(?X) ||> Cl.0kay;

(?C : Customer) ?C.TurnOn ||> P.On;

(?C : Customer) 7C.Turn 0ff ||> P.0ff;

(?X : Gallomns; ?Y : Dollars)P.Report(?X, ?7Y) ||> 0.Result(?Y);
end gas_station;

Figure 11: Rapide Description of the Gas Station Example [56].
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specify several aspects of the component’s interactions with other components. The declaration of
in and out actions specify the component’s ability to observe or emit particular events. Implicitly
declared actions represent events generated in the environment of the system that are emitted by
or watched for in an interface; the event start in the first transition rule of the customer interface
in Figure 11 is an example. Behaviors, which may involve local variables, describe the computation
performed by the component, including how the component reacts to in actions and generates out
actions. Computations are defined in an event pattern language [57], where a pattern is a set of
events together with their partial ordering. The partial order of events is represented as a poset.

In addition to the concepts of actions and behaviors, interfaces can be described using several
other constructs, including functions and constraints. Functions describe normal synchronous be-
havior. Constraints provide an opportunity to describe the patterns of events that either must or
must not have occurred prior to the triggering of some event.

Posets are a critical element of Rapide. The poset is used both to specify in an interface an
allowable pattern of events and to record the actual events occurring in a particular simulation.
Posets represent causal and timing dependencies and are the basis for the dynamic behavioral
analysis performed by the Rapide tools. A Rapide poset representing a simulation of the gas
station example is shown in Figure 13. Support for static dependence analysis is provided for
Rapide specifications by Aladdin [54].

In Rapide, component types are instantiated and then connected to form architectures. The
architecture declaration at the bottom of Figure 11 instantiates the gas station components shown
graphically in Figure 12. In this graphical view, the dotted arrows within the components portray
the summarization of intra-component behavior that is described in the behavior section of the
interface definition.

The semantics of connections between architectural elements are specified through rules. Con-
nection rules have a trigger, an operator, and a body. Rapide provides four kinds of connections in
connection rules. The example shown here uses only the agent connection (written syntactically as
“I'1>”). In an agent connection, the observation of the pattern described in the trigger stimulates
the events in the body.

3.3.4 MetaH

MetaH is tailored to the development of real-time, fault tolerant systems with primary emphasis
on avionics applications. MetaH provides support for the specification of entire systems, including
software modules, hardware components, and the bindings and interactions among them. The
style of specification is iterative, beginning with partial specifications based on system require-
ments and continuing to lower levels of refinement in the form of source objects. While MetaH is
similar to other structured design and object-oriented notations, significant additional capabilities
are supported, such as hierarchical specification of both software and hardware components, and
automatic generation of the glue code to combine predefined software and hardware components
into a complete application.

A key aspect of the MetaH language is its support for analysis at the earliest stages of applica-
tion development based on information supplied by system architects about expected or required
properties, both functional and extra-functional. These properties are supplied in the form of
attributes, and concern schedulability, reliability, safety, and security.

Each MetaH object is defined in terms of its interface and an implementation of that interface.
Object implementations can be hierarchical, containing other objects and connections among them.
Three basic MetaH language constructs include packages, processes, and applications. An example
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Figure 12: Rapide Graphical View of the Gas Station Example.

application description is shown in Figure 14. A type package, two processes, and an application
are specified. The graphical description is shown in Figure 15. The application is specified after all
of its components have been specified or have been predefined and included in the set of available
components. An application is described in terms of the software that is to be deployed on a specific
type of hardware. In this case the software is a macro, a set of processes, called M.SIMPLE, and
the hardware is an I80960MC.CVME_TIMED processor. M.SIMPLE is an implementation of the M
macro interface. It is composed of two periodic processes, P1 and P2. A periodic process is one
that is dispatched on a regular basis. In contrast, an aperiodic process is one that is dispatched
upon receiving an event from another process or a hardware component.

Components describe processes, hardware, in/out ports, in/out events, and types. Implemen-
tation specifications and application specifications are defined as precisely as desired in terms of
connections among the ports and events of components, execution pathways, and attributes. In
SIMPLE each process defines three attributes, the macro defines the connections between the two
processes, and the application defines an additional application-level attribute for the processor
clock period. Over 100 predeclared attributes have been defined in the language for describing the
allowed behavior of software and hardware components. These attributes are the primary source
of information for analyses supported by MetaH.

3.3.5 Unicon

Unicon provides support for the composition of systems from components and connectors in a “plug
and play” style of architecting. Like Darwin, Unicon places emphasis on the structural aspects of
system description. The overall objectives for the development of Unicon are to provide a basis
for studying a linguistic approach to architecture description and to gain knowledge of the design
trade offs in various system properties.

The language contains four basic elements: components, connectors, players, and roles. Compo-
nents are specified through interfaces and connectors are specified through protocols. Component
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Figure 13: Rapide Poset for a Simulation of the Gas Station Example.
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type package DOMAIN_TYPES is
INTEGER_TYPE: type;
end DOMAIN_TYPES;

with type package DOMAIN_TYPES;
process Pl is
FROM_P2 : in port DOMAIN_TYPES.INTEGER_TYPE;
TO_P2 : out port DOMAIN_TYPES.INTEGER_-TYPE;
end P1;

periodic process implementation P1.SIMPLE is attributes

self’SourceTime := 100 us;
self’Period := 1 sec;
self’SourceFile := "pl.a";

end P1.SIMPLE;

with type package DOMAIN_TYPES;
process P2 is
FROM_P1 : in port DOMAIN_TYPES.INTEGER_TYPE;
TO_P1 : out port DOMAIN_TYPES.INTEGER_TYPE;
end P2;

periodic process implementation P2.SIMPLE is attributes

self’SourceTime := 50 us;
self’Period := 1 sec;
self’SourceFile := "p2.a";

end P2.SIMPLE;
macro M is end M;

macro implementation M.SIMPLE is
P1 : periodic process P1.SIMPLE;
P2 : periodic process P2.SIMPLE;

connections
P1.FROM_P2 <- P2.TO_P1;
P2.FROM_P1 <- P1.TO_P2;

end M.SIMPLE;

application SIMPLE is

macro M.SIMPLE on processor I80960MC.CVME_TIMED;
attributes

I80960MC’ClockPeriod := 500 ms;
end SIMPLE;

Figure 14: MetaH Description for SIMPLE [61].
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interfaces and connector protocols contain their type, their means of interaction with other architec-
tural elements, and sets of properties. They are also associated with C language implementations.
Components may be primitive or may be composite instantiations of systems. Components inter-
act through their players and connectors interact through roles. Thus, the players and roles are
the source of interaction among the components and connectors of the system. Properties specify
attributes, assertions, or constraints related to the language elements.

Components (but not connectors) can be defined by the designer, thus supporting flexibility in
design. Unicon provides both graphical and textual interfaces for describing architectures, and these
interfaces are inter-convertible. The graphical interface allows a designer to select components and
connectors from predefined menus. Some support is provided for interface compatibility checking.

The example shown in Figure 16 describes a Stack component [66]. A Stack is a component of
type Computation. Other predefined component types include Filter, SharedData, SeqFile, Process,
SchedProcess, and General. The component types describe behavior, functionality, performance
characteristics, and expected interaction style. The interface section of a component description
may contain a list of properties and a list of players. Stack has no properties but has four players.
Stack is evidently implemented through the use of the “stack.c” Source file. Other implementation
types available are Object, Executable, ObjectLibrary, Include, and Data.

The definition of Stack is a subcomponent for the Reverser component that is described in
Figure 17 as a filter whose interface has three players. Its implementation is a composite imple-
mentation that describes the use of three components (reverse, stack, and libc) and one connector
(datause). The implementation also contains a list of connections, role-player associations, and
bindings.

3.3.6 Wright

Wright is intended to provide a formal basis for describing and analyzing software architectures. The
primary objectives of the language are to provide a practical language that is usable to describe real
systems by real system designers, to be solidly founded on a theoretic basis, to include abstraction
for system behavior as well as structure, and to provide a basis for describing families of systems.

A Wright description provides for the specification of both the structure and the behavior of
a system. The structural specification is comprised of a set of components, a set of connectors,
and the system configuration. Components describe computations, connectors describe means
of component interaction, and configurations describe how the components and connectors are
attached. Each component has one or more ports that represent points of interaction with other
components. Connectors have special ports called roles. Interaction occurs between two or more
components by placing a connector between them and by associating each port in a component
with a role in the connector.

The high-level structure of a simple client-server relationship is depicted in Figure 18. The
Wright description of the client-server is shown in Figure 19. This example is adapted from an
example given by Allen and Garlan [1]. The client-server example describes two components, one
connector, and a configuration. Only the behavior of C-S-connector is shown in the figure.

Wright behavioral descriptions are given in a subset of CSP. CSP is an event-based specification
language for describing concurrent processes [20]. The symbols used in this simple example describe
communication entities basic to the description of software systems. The meaning of these symbols
is as follows.

e e’z (input operator)—z is an input value for event e, where e can be interpreted as a com-
munication channel.
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COMPONENT Stack {
INTERFACE IS
TYPE Computation

PLAYER stack_init IS RoutineDef
SIGNATURE (;‘‘void’’)

END stack_init

PLAYER stack_is_empty IS RoutineDef
SIGNATURE (; ‘‘int’?)

END stack_is_empty

PLAYER push IS RoutineDef

SIGNATURE (‘‘char *’’; ‘‘void’’)
END push
PLAYER pop IS RoutineDef

SIGNATURE (‘‘char * *’7; ‘‘void’’)
END pop

END INTERFACE

IMPLEMENTATION IS
VARIANT stack IN ‘‘stack.c’’
IMPLTYPE (Source)
END stack
END IMPLEMENTATION
END Stack

Figure 16: Unicon Description of Stack [66].
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COMPONENT Reverser {
INTERFACE IS
TYPE Filter

PLAYER input IS StreamlIn
SIGNATURE (‘‘line’’)
PORTBINDING (stdin)

END input

PLAYER output IS StreamOut
SIGNATURE (‘‘line’’)
PORTBINDING (stdout)

END output

PLAYER error IS StreamOut
SIGNATURE (‘‘line’’)
PORTBINDING (stderr)

END error

END INTERFACE

IMPLEMENTATION IS
USES stack INTERFACE Stack
CONNECT reverse._iob TO datause.use

ESTABLISH C-proc-call WITH
reverse.stack_init AS caller
stack.stack_init AS definer

END C-proc-call

BIND output TO ABSTRACTION
MAPSTO (reverse.fprintf)
END output
END IMPLEMENTATION
END Reverser

Figure 17: Unicon Description of Reverser [66].

Client

r

C-S-connector
request Client Server provide

Server

Figure 18: A Simple Client-Server Relationship.
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System Simple Example
Component Server
Port provide {provide protocol}
Spec {Server specification}
Component Client
Port request {request protocol}
Spec {Client specification}
Connector C-S-connector
role Client = request!z — result?y — Client §
role Server = invoke?r — returnly — Server{]§
glue = Client.request?r — Server.invokelz
— Server.return?y — Client.resultly — glue[]§
Instances
s: Server
c: Client
cs: C-S-connector
Attachments
s.provide as cs.server;
c.request as cs.client;
end SimpleExample.

Figure 19: Wright Description of Simple Client-Server [1].

ely (output operator)—y is an output value for event e, where e can be interpreted as a
communication channel.

e — P (prefixing operator)—a process engages in event e and becomes process P.

P @ (decision operator)—a process nondeterministically behaves like process P or process

Q.

P[]Q (alternative operator)—a process behaves like process P or process ) with the choice
made by other processes that interact with the process.

e § (termination operator) a process is able to terminate.

A notion of consistency is introduced via a behavioral equivalence between the CSP agents describ-
ing the semantics of corresponding ports and roles.

In the client-server example, the client sends a request with data element = that produces a result
with data element y. Because the operator M is used, the client itself chooses, nondeterministically,
whether to repeat the process or to terminate. On the other hand, the operator [| appearing
in the declaration of Server states that the determination of whether it is repeatedly invoked or
terminated is made by other processes in its environment, namely Client. The glue describes the
allowed sequence of events between Client and Server. If the client makes a request of the server
it expects a result to be returned. After the client receives the result it decides whether to make
another request or to terminate the session. The server will provide results as long as the client
makes requests.
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Figure 20: Seven Elements of an Acme Architecture.

3.3.7 Acme

The development of ADLs is still at a point where there is a general lack of agreement on the
full set of linguistic concepts required to describe software architectures. Nevertheless, there is an
emerging consensus on a core set of concepts that primarily have to do with the structural aspects
of software architectures. This is quite evident even from the brief review of the five ADLs given
above.

Recognizing this emerging consensus, the designers of the Acme language are attempting to rep-
resent a useful intersection of existing ADLs as a means to support some degree of interoperability
among their associated tools [14]. Additional goals for the language include providing a descriptive
standard for architectural tools, assistance in the development of new ADLs, and a language that
is accessible to most system developers.

The language provides seven basic constructs for describing software architectures (Figure 20).

e System—describes the configuration of the components and connectors.

e Component—represents the primary computational elements and data stores of a system.

e Component port—identifies a point of interaction between a component and its environment.
e (Connector—represents the means of interaction among components.

e (Connector role—defines a participant of the interaction represented by a connector.

e Representation—represents hierarchical architectural descriptions.

e Representation map—a mapping from a representation’s interface to that of the system com-
ponent or connector that it represents.
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To some extent, the seven basic Acme constructs serve as a “least-common denominator” and,
therefore, some important language-specific concepts cannot be directly represented. As men-
tioned above, the orientation of the constructs is toward structure, so the missing concepts center
on behavior. An additional Acme construct, Properties, allows an architect (or developer of an
ADL-to-Acme translator) to describe properties that may be useful for analysis purposes, but not
representable using the other constructs. As an example, if one wishes to use Aladdin [54] to reason
about the dependencies in a system, a path property can be specified to indicate the ability of an
input to contribute to the stimulation of an output in some way.

Garlan and Wang investigated the use of Acme as an architecture interchange language [16].
The purpose of their case study was to investigate the feasibility of combining the individual ana-
lytical strengths of Aesop, Wright, and Rapide in order to provide a variety of analysis capabilities
in one environment. Aesop provides analysis of architectural styles, Wright provides static analysis
techniques for proving properties, and Rapide provides for simulation and dynamic analysis. Dif-
ficulties were encountered involving differences in structural representation as well as semantics of
the languages. While Acme, Aesop, and Wright share similar semantics, difficulties arose between
these languages and Rapide. Among these difference is lack of support for defining connector types
in Rapide and the lack of support for dynamic addition and deletion of components in Wright. The
authors concluded that it would not be possible to achieve total interchange between Wright and
Rapide. They chose to concentrate their efforts on including as large a subset of the features of all
three languages as possible. To do this they limited the types of systems that would be appropriate
for interchange, created a semantic-based translator to map Wright specifications into Rapide, but
did not attempt to create a Rapide to Wright translation. The authors conclude that while there
remain many challenges in this area of research, architecture interchange based on Acme shows
promise.

4 Formal Analysis of Software Architectures

Formal software architecture description languages allow one to reason about functional and extra-
functional properties of software systems early in the software life cycle as well as at high levels
of abstraction. Research in architectural analysis centers on determining which specific properties
are appropriate for this level of analysis, and on developing techniques to carry out those analyses.
The premise underlying this work is that the confidence gained through analysis at an architectural
level will translate into confidence in other levels of the system.

Many techniques for analyzing software systems have been developed over the past decades.
Most, however, are ineffective for analyzing large systems. This is particularly true for techniques
aimed at analyzing concurrent systems, where state explosion problems are especially acute. To
make them more tractable, traditional specification and analysis techniques have been enhanced in
a variety of ways. Software architecture can be seen as another approach to attacking the problem
by providing a particular method for abstraction and modularization.

Automated analysis techniques can differ in the levels of assurance they provide. In general, the
techniques trade off efficiency and tractability against precision and completeness. For instance,
it may be possible to guarantee some properties only under certain assumptions or conditions.
Carefully chosen, those assumptions and conditions can match well with the context in which the
system is anticipated to operate, and thus the analysis can provide useful information.

A desirable characteristic of any imprecise or incomplete analysis technique used to examine
a property is that it give no false positive results concerning that property. In other words, it
should never indicate the absence of a problem when, in fact, there is a problem. On the other
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hand, it is reasonable to allow a technique to indicate the possible presence of a problem, even if
none truly exists, and defer further analysis to some other automated analysis technique or to the
human. This characteristic is commonly referred to as conservatism. Clearly, the most conservative
analysis technique is one that indicates the possible presence of an error in all situations. Such an
absurd technique, while highly efficient (it can be implemented using a constant function), is not of
use. One goal of analysis research is to increase the precision of conservative techniques such that
they are both efficient and useful.

Techniques to analyze the structural properties of a system, such as the proper connection
of “out” ports to “in” ports, are well known and understood. In this section we concentrate on
behavioral properties, such as deadlock freedom in communication protocols, by briefly reviewing
recent research in three categories of analysis techniques: proofs, sampling, and reduction. We also
briefly review recent work in analyzing extra-functional properties, such as performance.

As in our discussion of languages in Section 3, we present information about architectural
analysis in breadth rather than at depth. The techniques are rather complex, making it impossible
for us to convey more than just a sense of what the techniques can do, how they are used, and why
they are applicable to software architectures. Our goal is to provide a basic survey of recent trends
in research on architectural analysis as a starting point for a further examination of the topic. In
presenting the analysis techniques, we mainly base the discussion on the languages of Section 3.
Note that although we discuss the techniques in terms of their application to specific languages,
they are generally applicable to whole classes of languages.

4.1 Proof Techniques

Proof techniques are typically used to examine properties having to do with system safety and
liveness. Safety properties say that “nothing bad will ever happen”,® whereas liveness properties
say that “eventually something good will happen”. The standard safety property of interest in
concurrent systems is freedom from deadlock. Given a compositional approach to system construc-
tion, deadlock freedom becomes a serious challenge at the architectural level. The standard liveness
property is continued computational progress of all, not just some, processing elements.

There are two main approaches to proving safety and liveness properties: algebraic techniques

and transition-system techniques.

4.1.1 Algebraic Analysis

Algebraic analysis involves the application of structural induction techniques to an algebraic de-
scription a system.

CHAM

Compare et al. [7] used algebraic analysis to prove the presence of deadlock in the CHAM description
of the compressing proxy shown in Figure 7. The deadlock in the system arises because of a
mismatch in the protocol between gzip and its adaptor. In particular, gzip uses a one-pass
compression algorithm and may attempt to write a portion of the compressed data (perhaps because
an internal buffer is full) before the adaptor is ready, thus blocking. With gzip blocked, the adaptor

3Safety properties in this context should not be confused with properties associated with so-called “safety-critical
systems”. While safety-critical systems and their properties are important, very little work in software architecture
has been targeted toward addressing their specific needs.
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also becomes blocked when it attempts to pass on more of the data to gzip, leaving the system in
deadlock.

The proof of the deadlock proceeds by reasoning about the algebraic structure of the specifica-
tion. For example the first step is to observe that the application of any rule other than Ty does not
change the number of molecules or kind of processing elements in a solution but only transforms
the state of the processing elements mentioned in the left-hand side of the applied rule. This fact
is used to show that every derived solution will have exactly the same number of molecules as
the initial solution, namely four, one for each of the four processing elements of the specification.
The argument continues by reasoning about what it means for a derivation to terminate and that
every derivation that terminates involves the application of rule Ty or T5. These rules model the
situations in which gzip autonomously decides to end its input or output, thus eventually leading
to a deadlock.

Of course, as general experience has shown, algebraic analyses can be tedious and complicated.
But they are also highly informative, since they maintain information about the structure of the
system, which can be useful in actually discovering the source of a problem. Moreover, when
the system under specification leads to an explosion in the state space, then the use of algebraic
techniques is the only practical approach to use.

4.1.2 Transition-System Analysis

Transition-system analysis is performed as a search over a graph-based model of a system’s state
space. As mentioned above, such an approach can be expensive due to the large numbers of states
and possible state transitions that are characteristic of any reasonably sized system. Generally,
an abstraction method is used to reduce the size of the model. After the model is constructed,
properties, generally expressed as some type of automaton or in some form of temporal logic, are
proved about the modeled system.

CHAM

One of the strengths of the CHAM formalism is that it admits, not only to algebraic analysis,
but also to transition-system analysis [7]. In particular, the operational semantics of the CHAM
can be used to automatically derive a transition system, where a node in the graph represents a
unique solution (i.e., a state) and the arcs in the graph represent the application of a rule (i.e.,
a transition). A portion of the transition system for the compressing proxy system described in
Figure 7 is depicted in Figure 21. The graph was produced by a tool developed to generate transition
systems from CHAM architectural specifications [46].

Notice the node labeled S7g, which has no outgoing arcs and so represents a solution that
from which no further progress can be made. This node represents a deadlock in the system.
Examination of the full graph reveals the fact that all paths leading from Sy, the initial solution,
to S7g involve an arc labeled Ty or T5. This confirms the result achieved using algebraic analysis
that the application of Ty or of Tj leads to deadlock.

Darwin

As discussed in Section 3.3, the Darwin ADL directly provides only for the specification of structural
aspects of an architecture. The system’s behavioral aspects can be described using a labeled
transition system (LTS) in the FSP notation and analyzed using LTSA. An LTS is a graph whose
nodes represent system states and whose arcs represent the ability to transition from one state to
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Figure 21: Excerpt from the Compressing Proxy Transition System [7].
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Figure 22: Results of LTSA Analysis for an Active Badge System [32].

another. The states are numbered beginning at zero, with the special state “-1” indicating an error
state. Arcs are labeled by the name of the action that allows the transition between the states.

LTSA employs compositional reachability analysis (CRA) [64] as a means of managing state-
space explosion. In CRA, components of a system are analyzed one at a time. Global analysis is
performed by combining the results of the individual component analyses. For example, consider
the description of a system that could include a word processor as a component. The interface
of the word processor describes its allowable interactions with other components, such as the file
system, invocation of a spell checker, and the like. The internal behavior of the word processor
consists of various responses to inputs and internal actions. This internal behavior can be verified
independently of the rest of the system, promising that if required inputs are available, the text
processor will respond as in the outputs of its interface.

LTSA provides support for proving safety and liveness properties about a specification. Safety
properties may be proved either explicitly by defining properties or by checking for error conditions.
Liveness properties are specified in terms of Buchi automata and traces are checked for cycles that
indicate the potential for liveness violations. Darwin and associated tools have been used to study
the properties of several distributed systems [27, 28, 32]. Figure 22 shows the analyzed LTS for
a portion of the Active Badge System [32]. In this system, it is an error if two commands may
be processed at the same time. Notice that it is possible for command 2 to be received before
command 1 is acknowledged or canceled, as indicated by the transitions from states 1 and 2 to the
error state -1.

LTSA also provides another, less expensive global analysis technique. This alternative performs
a depth-first search at the component level of the system description. The analysis can identify
property violations and potential for deadlock, but does not provide information about the cause
of the violation.

Wright

An important aspect of the Wright language is the use of CSP in connector specifications to provide
a mathematically sound basis for reasoning about the correctness of communication protocols. In
particular, Wright provides a method for specifying and proving properties of individual connectors,
and defining compatibility relationships through refinement. Provided that a connector is deadlock
free, the compatibility relationship between roles and ports guarantees the preservation of deadlock
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Figure 23: The HLA Integration Standard [3].

Connector RTI(nfeds:1..)
Role Fed;. ,tc4s = Federatelnterface
Glue = RTIBehavior

Federatelnterface =
FedMgmt || DeclMgmt || ObjMgmt || OwnMgmt || TimeMgmt
|| DataMgmt || FedJoined || ControlPause
where

FedMgmt = ...
DeclMgmt = ...

Figure 24: Extract from Wright Specification of RTI Connector [3].

freedom for that individual connector. To prove global deadlock freedom, the strategy followed in
Wright is to first translate a Wright system configuration into a single CSP specification of the entire
system and then to build the automata model from the CSP specification. Wright specifications
can be analyzed for behavioral correctness using the FDR [10] model checker. FDR is a commercial
tool that supports verification of specific properties in CSP process specifications.

The utility of connector types as an aid to high-level analysis and design is highlighted by
Allen, Garlan, and Ivers [3] in a study involving the High Level Architecture (HLA), which was
developed by the Defense Modeling and Simulation Office (DMSO) for building distributed sim-
ulation systems. A graphical depiction of the HLA is shown in Figure 23. Structurally, this is a
very simple architecture that involves some number of federates (simulations) communicating in
restricted ways over a so-called simulation bus. The Run Time Interface (RTI) defines the allowed
interactions among federates. An extract from the Wright description of the RTI connector is
shown in Figure 24, where Federatelnterface defines how an individual federate can communicate and
RTIBehavior defines the inter-federate interactions. An excerpt of the behavioral description of the
RTT is shown in Figure 25.

An analysis of the Wright specification identified several faults in the architecture, including
race conditions and the potential for deadlock. A graphical depiction of a trace of events found
during FDR analysis is shown in Figure 26. This trace represents the cause of a race condition
involving PauseProtocol and HandlePauseResume, defined in Figure 25. The numbers in parenthesis
indicate the event order for the trace. The problem, in this particular situation, is that event 4,
a federate resignation (i.e., the removal of a federate from the simulation) occurred after event 2,
which determines the federates currently joined, and before event 5, the actual call for a pause.
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RTIBehavior = HandleMembership || JoinedFedsg; ||MiniProtocols
where
HandleMembership = ...
JoinedFedsg = (wholsJoined!S — JoinedFedsg)
[ I i:(l.nfeds)@ Fed; joinFedExecution — JoinedFedsgy ;1)
[ I i:(l.nfeds)@ Fed;.resignFedExecution — JoinedFedsg\ 1;})

08

MiniProtocols =
FederationProtocols || DeclarationProtocols || ObjectProtocols
|| OwnershipProtocols || TimeProtocols || DataDistributionProtocols

FederationProtocols = PauseProtocol || ...
PauseProtocol = HandlePauseResume || PausedFedsy,
HandlePauseResume =
(@ i:(1..nfeds)@ Fed;.requestPause —wholsJoined?S — wholsPaused?T —
G j:(S\T)Q Fedj.initiatePause — §) ; HandlePauseResume)
0 Ji:(1..nfeds)@ Fed;.requestResume — wholsJoined?S —
wholsPaused?T — ResumeResponses——r, 1)

08

ResumeResponset e, s =

(; i:5@ Fed;.initiateResume — §) ; HandlePauseResume
ResumeResponses,se,s = HandlePauseResume
PausedFedss = ...

ObjectProtocols = HandleRegistrations || HandleRemoves |[HandleAttrOutOfScopes || ...

HandleRegistrations = ...
HandleRemoves =
(] i:(1.nfeds)@ Fed;.deleteObject — wholsJoined?S —
G 7:(S\{i})@ DecidelfRemoveNeeded;) ; HandleRemoves)
[0 (F: (l.nfeds)@ Fed;.attrsOutOfScope —
DecidelfRemoveNeeded; ; HandleRemoves)
[] CimplicitOutOfScope?i — DecidelfRemoveNeeded; ; HandleRemoves)

08

DecidelfRemoveNeeded; = § M Fed;.removeObject — §

HandleAttrOutOfScopes =
(] i:(1..nfeds)@ Fed;.subscribeObjClassAttr —
DecidelmplOutOfScope; ; HandleAttrOutOfScopes)

DecidelmplOutOfScope; ; HandleAttrOutOfScopes)

[ ]i:(1..nfeds)@ Fed;.publishObjClass —wholsJoined?S —
G j:(S\{i})@ DecideOutOfScope;) ;
HandleAttrOutOfScopes)

Figure 25: Extract from Wright Specification of RTIBehavior [3].
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federate federate

(1) requestPause
(2) wholsJoined.{ 1,2}
(3) wholsPaused {}

(4) resignFedExecution

(5) initiatePause !!

RTI internal events

Figure 26: Race Condition with Resigning Federates [3].

This situation would create an attempt to communicate with the federate that is no longer joined.
Potential deadlock was identified in two situations, one involved giving federates the right to refuse
to pause and the other related to the right of a paused federate to decide whether it wishes to
resume or not.

4.2 Sampling Techniques

When one wishes to gain confidence in the correctness of a system, but a full proof is too costly,
or when one wishes to understand how a system will react under specific conditions, then sam-
pling techniques provide an attractive alternative to the more general proving techniques discussed
above. There are two main sampling techniques that have been applied to the analysis of software
architectures: simulation and testing.

4.2.1 Simulation

Simulation allows one to directly observe the abstract behavior of a system without incurring the
cost of a full implementation. Of course, because it is a simulation and not a real behavior, certain
assumptions are being made to support the execution. The quality of the results of a simulation
analysis are therefore heavily dependent on the quality of those assumptions.

Darwin

In addition to the proof analysis described in Section 4.1.2, LTSA supports a less expensive,
scenario-based analysis. We use the simple example of a coin-toss system, taken from LTSA’s
user manual, to provide a flavor of this type of analysis. The FSP notation for the coin toss is
entered into the editor window of LTSA. This is shown as the window to the back in Figure 27.
The coin-toss system exhibits nondeterministic choice using the operator “|”. We see from the
specification that a toss of a coin will nondeterministically result in heads or tails, after which
another toss of the coin can be made.

After the code is entered into the editor, the build menu can be used to create a transi-
tion system. The analyst can then use the check menu to run different analyses. The line “No
deadlocks/errors” appearing in another of the windows shown in Figure 27 is the result of choos-
ing “Safety” from the menu (see Section 4.1.2). The window “LTS Draw” shows a graphical version
of the LTS.
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Figure 27: LTSA Simulation Analysis of a Coin-Toss System.

To simulate the coin-toss system, the analyst chooses “Run” from the check menu. This causes a
tool called Animator to execute in its own window. Animator allows the user to step through a sim-
ulated execution, with nondeterminism controlled internally through a random-number generator.
The list appearing on the left side of the animation window indicates the sequence of transitions
taken to a given point during a particular simulation run. The choices on the right side of the
animation window show the possible inputs to the system. A check mark indicates a valid input
at that point in the simulation. Clicking on a checked item causes the input to be generated. The
result of clicking on “tails” in the scenario shown will lead to the appearance of the word tails at
the end of the list on the left side of the animator window. The check mark will then appear next
to “toss”, indicating that the coin is ready to be tossed again.

Rapide

Rapide allows a designer to specify the behavior of a system either in the behavior section within
an interface or, more elaborately, as a separate module that implements an interface. In either case,
the Rapide description can be compiled and executed, which provides a simulation of the system’s
behavior under specific conditions. The resultant computation is captured as a partially ordered
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Figure 28: Rapide POV Tool Displaying the Poset for a Simulated Run of the Gas Station System.

set of events, the poset (see Section 3.3.3).

The poset is used to support simulation review, either as an animation over the structural view
of the system in the tool Raptor, or as graphical representation in the tool POV. Figure 28 shows
the use of POV to analyze an architectural description of a version of the gas station example. The
file menu is used to select a log file that contains the poset resulting from a simulation run. Several
different layouts are available for viewing, and other Rapide tools are accessible via the layout and
tools menus. Once a file and a layout are chosen, a node can be selected and then the analyst can
request to view the causal past or the causal future of the selected event. In the case shown in
Figure 28, the causal past of event “OKAY” is highlighted, appearing as the darkened nodes in the
poset.

4.2.2 Testing

The target artifact of traditional testing techniques is, of course, the implementation of a system. An
architectural description can also be a suitable target if it contains enough behavioral information to
permit simulated executions. The primary difference between simulation analysis, discussed above,
and testing, discussed below, is essentially a matter of how the simulated executions are used.
In particular, simulation analysis focuses on broadly illustrating or exemplifying system behavior,
whereas testing analysis is aimed at carefully exercising the system behavior.
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Testing techniques are typically applied at a variety of levels. Unit testing is performed on
individual components to check their internal correctness. System testing is performed on a whole
system to check its adherence to requirements. Between these two levels is integration testing,
which checks for errors in the interworking of components in terms of design correctness, rather
than requirements correctness. This is the level that appears to be most appropriate for use with
architectural descriptions.

Because exhaustive testing is, in general, impractical, the analyst needs some way to objectively
decide when testing should be terminated. Thus, the concern in testing is to achieve a coverage
goal that can indicate the degree to which the system has been exercised. A critical challenge in
developing testing analyses for software architecture descriptions is therefore the formulation of
coverage criteria appropriate to that level of description [44].

CHAM

Bertolino et al. [6] devised a technique for using architectural descriptions as the basis for integration
testing. The technique is applicable to any model from which a transition system can be derived.
For their purposes, they found it convenient to present the technique in terms of the CHAM
formalism.

The basic approach is to form subgraphs of the transition system graph that represent different
views of the system behavior of interest to the analyst. Not coincidentally, the subgraphs represent
different coverage criteria applied to the transition system graph. A completely covered subgraph
indicates a satisfied criterion. Three of the subgraphs are the following.

e Concurrent-reduced graph. The CHAM model can lead to reaction rules being applicable
to multiple, independent subsolutions of a given solution, which means that the behavior
represented by the rules can occur either concurrently or in an arbitrarily interleaved fashion.
The concurrent-reduced graph removes the interleaved transitions in favor of the concurrent
one.

o Input-reduced graph. The behavior of a CHAM is typically regulated by one or more rules
representing input to the system. Iteration of these rules govern the “amount” of input and,
in many cases, the degree of concurrency in the system. Consider a pipeline architecture
that is given only one portion of input to process versus two or more portions. The more
portions of input fed to the system, the more potential for concurrency, up to some intrinsic
maximum. The full transition system graph represents this maximum, while anything less
than the maximum is a so-called input-reduced graph.

e Regression-reduced graph. This subgraph of the transition system graph is simply formed by
considering only those states and transitions relevant to some particular component.

Bertolino et al. note that the input-reduced graph is a basis for a form of stress testing, while the
regression-reduced graph is a basis for regression testing of components (hence its name).

4.3 Reduction Techniques

One way to reduce the cost of analyzing a large system is to simply reduce the amount of the
system that needs to be analyzed. The reduction process is itself a form of analysis, but one that
is more appropriately characterized as a “meta-analysis”, since its result is intended to be input to
another analysis technique, rather than a result in its own right. For example, at the heart of the
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testing technique of Bertolino et al., mentioned above, is a reduction meta-analysis. Of importance,
however, is the fact that their technique is not intended to be conservative, but simply practical;
it is possible that one of their reductions could hide an error that would otherwise be found. Here
we are concerned with conservative reduction techniques.

The test of any conservative reduction technique is then a question simply stated and simply
answered, but difficult to predict: will the cost of performing the meta-analysis be paid back by a
commensurate reduction in the cost of the basic analysis? Often there is no general answer to this
question, and answering the question on a case-by-case basis defeats its purpose. The uncertainty
arises from the fact that the benefits of a reduction technique depend on the characteristics of the
particular system being analyzed. What this leads to is a “meta-meta-analysis” that judges the
suitability of a given system for reduction. In the end, to avoid an infinite and clearly unproductive
recursion, the decision about whether to apply a reduction technique must be left to the skill and
experience of the analyst.

4.3.1 Dependence Analysis

Dependence analysis involves the identification of interdependent elements of a system. It is a
reduction technique in the sense that the interdependent elements induced by a given inter-element
relationship forms a subset of the system. It has been widely studied for purposes such as code
restructuring during optimization, automatic program parallelization, test-case generation, and
debugging. Dependencies can be identified based on syntactic information readily available in a
formal specification. This type of analysis generally ignores state information, but may incorporate
some knowledge of the semantics of a language to improve the precision of the results [42].

Dependence analysis as applied to program code is based on the relationships among statements
and variables in a program. Techniques for identifying and exploiting dependence relations at the
architectural level have also been developed [53, 61, 67]. Dependence relationships at the architec-
tural level arise from the connections among components and the constraints on their interactions.
These relationships may involve some form of control or data flow, but more generally involve
source structure and behavior. Source structure (or structure, for short) has to do with system
dependencies such as “imports”, while behavior has to do with dynamic interaction dependencies
such as “causes”. Structural dependencies allow one to locate source specifications that contribute
to the description of some state or interaction. Behavioral dependencies allow one to relate states
or interactions to other states or interactions. Both structural and behavioral dependencies are
important to capture and understand when analyzing an architecture.

Aladdin [54] is a tool developed at the University of Colorado that identifies dependencies in
software architectures. It can be used as a stand-alone tool or in conjunction with ADLs. It was
designed to be easily integrated with ADL tool kits developed elsewhere, and is currently available
for use in analyzing Acme and Rapide architectural descriptions.

If one thinks of an architectural description as a set of boxes and arrows in a diagram, where the
arrows represent the ability for a box, or some port into or out of that box, to communicate with
another box in the diagram, then one can think about Aladdin as walking forwards or backwards
from a given box, traversing arrows either from heads to tails or vice versa. In Aladdin, the arrows
are called links and the process of walking (i.e., performing a transitive closure) over the links is
called chaining.

If there is no knowledge about how a box’s input ports behaviorally relate to it output ports,
then a forward (backward) walk must include leaps from each input (output) port that is reached to
all output (input) ports. In that case, the analysis is essentially being performed in a conservative
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Figure 29: Increasing Precision of Dependence Analysis.

manor at the component level, which can lead to a high degree of false dependencies. If, instead,
the designer makes a precise statement about how input and output ports are related, presumably
using an appropriately rich ADL, then Aladdin can take advantage of this information to produce
a more precise reduction set.

The behavioral relationship among the input and output ports of a component define the in-
teraction behavior of that component. It is important to note that the interaction behavior is not
intended to capture the functional behavior of the component. For example, the description of
how a server interacts with its clients is independent of the computation carried out by the server
on behalf of its clients. Aladdin uses a summarization algorithm operating on the description of
a component’s interaction behavior to identify possible relationships between pairs of input and
output ports. The resulting connections are called transitional connections.

Figure 29 illustrates the improvement in precision that can be gained when transitional con-
nections are included in the information used to determine possible dependencies. The solid arcs
in this figure denote arcs that must be traversed in order to identify a conservative set of depen-
dencies. In the view of the system shown on the left, the transitional connections are unknown.
Therefore, when tracing back from the circled port, one must assume that any stimulus applied to
input port could have contributed to a response on any output port. The lack of information on the
interaction behavior of the component forces the analysis to include all components of the system
in the dependency set. The existence of the transitional connections in the view of the system on
the right provides information that allows the analysis to eliminate the component connected only
by the dashed arcs.

Rather than constructing a complete dependence graph, Aladdin’s analysis is performed on
demand in response to an analysts query. The query might request information about the existence
of certain specific kinds of anomalous dependence relationships, or might request information about
the parts of the system that could affect or be affected by a specific port in the architecture. A view
of Aladdin’s interface is shown in Figure 30. A file containing a Rapide architectural specification
is selected using the file menu. In this figure a specification for a variant of the gas station example
was selected. The specification is displayed in the left pane of the main Aladdin window. The
right pane displays the list of component ports that have been identified from the architectural
description.

The analyst can select to perform any of several queries. The queries window shown at the top
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Figure 30: Use of Aladdin to Identify Anomalies and Perform Port-Based Queries.
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left in the figure appears when the analyst selects the “Queries” menu item. The analyst can choose
to see a list of ports with no source or those with no target, which are two kinds of port-related
anomalies. The small window to the right of the window “Queries” contains a list of all the ports
in the specification that do not have targets. Ports with no source or no target may indicate an
unspecified connection or they may indicate a function of the component that is not used in this
particular architecture.

The analyst can also choose to create a chain. If “Create chain...” is selected, then the window
“Get Query” appears. The analyst selects a query, in this case the analyst wanted to see a chain
of all the ports in the architecture that could causally affect port R.0N. Dotty [11], a graph layout
tool, is used to display the resultant chain, which appears in the window “Dotty”. The chain is
displayed as a directed graph rooted at the node representing the specified port of interest, in this
case the node R.0ON at the bottom of the graph. The arcs are labeled with a relationship type and
represent direct (or perhaps summarized) dependence relationships between pairs of ports. The
nodes of the graph represent all ports that could cause, directly or indirectly, the port of interest,
the event R.0ON, to be triggered.

This query was performed in order to help identify the cause of a failure in a Rapide simulation
of the gas station. In the simulation it was discovered that A2 was never allowed to refuel. The
cause of this is apparent from viewing the chain, and in fact could have been discovered through
running an anomaly check prior to simulation, since the event A2.0KAY has no source. Through
examination of the chain, the analyst determines that the problem occurs because 0.REQUEST must
record the source of a request so that the appropriate OKAY can be triggered.

Aladdin takes advantage of the behavior section of Rapide interface definitions. Aladdin ap-
plies a summarization algorithm to the behavioral description in order to identify the transitional
connections in the Rapide description. Aladdin can also be used in conjunction with Rapide’s
simulation tools. If a specification error is detected during a simulation, Aladdin can be used to
identify a reduced set of description elements.

As discussed in Section 3.1, Acme supports specification of language-specific properties when
used as an interchange language. The Acme version of Aladdin is based on the analyst’s use of
Acme properties to specify the links within and among the components and connectors of a system.
In this case, Aladdin takes the Acme specification as input and identifies the links automatically.

Aladdin can also be used independently of any particular ADL. The analyst can manually define
links by using, for example, an informal graphical notation. When all the connections have been
identified, the analyst can make queries about the relationship of specific ports to other ports in the
architecture, as described above. In this way it supports Jackson and Wing’s notion of “lightweight
formal methods” [24] in a manner similar to Feather’s use of a database [9].

k)

4.4 Extra-Functional Property Analysis

Analysis depends upon description. Our techniques for describing extra-functional properties are
significantly less advanced than our techniques for describing functionality. Therefore, the analysis
techniques that are available to formally analyze the extra-functional properties of software archi-
tectures are not as well developed as those described above. Nevertheless, they show promise and
are likely to be the focus of the greatest attention in the near future.

Assuming one can reasonably describe the extra-functional properties of individual components,
the key issue in performing an extra-functional analysis is to understand how to compose the
properties based on the interactions evident in the architecture. This is illustrated in the example
below.
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MetaH

An interesting form of analysis is provided with the MetaH description language developed by
Honeywell [61]. MetaH descriptions capture information about both software and hardware com-
ponents through an attribution mechanism. Analysis tools are provided for determining which
components can affect or be affected by other components in the system depending on the values
of the attributes.

o Safety/security level analysis. Safety/security attributes are assigned based on the criticality
of a component. A safety violation occurs if a defect in a component can potentially affect a
component having a higher desired safety level. A security violation occurs if a component
could potentially receive information from a more secure component.

e Schedulability analysis. Time attributes can be associated with components. These are com-
bined to compute predicted execution time for execution paths through the system. The
analyst is given a choice between computing the average path time span and the maximum
path time span, the latter being of particular interest for determining guaranteed schedula-
bility.

e Reliability analysis. Error attributes, a model of the types of errors that might occur in a
system, and the system’s expected reaction to those errors are combined to provide a form
of reliability analysis. The probabilities of error occurrences are modeled as Markov chains
that can be analyzed by any of several common tools.

While MetaH analyses are exhaustive, the are generally less expensive to perform than the types
of proof techniques discussed in Section 4.1. In particular, MetaH analyses perform a transitive
closure over the static structural relationships defined in the architecture and then examine the
attributes of only those components that are shown to possibly be affected.

5 Other Architectural Concepts

This paper has concentrated on the role of software architecture in the design process, and the
characteristics of various languages and analysis techniques intended to support the software ar-
chitect. Aside from linguistic and analytical capabilities, several other concepts have emerged to
increase the utility of software architecture. In this section we present brief reviews of four of these:
architectural styles, domain-specific software architectures, system generation and refinement, and
architectural views.

5.1 Architectural Styles

Architectural styles provide a standardized vocabulary of high-level structures for refined commu-
nication among stakeholders. In the domain of civil architecture, style names are evocative of the
building being discussed. Analogously, software architectural styles provide a succinct description
of the kinds of components in a system and the constraints on the ways that the components can
interact [15, 34, 41, 48].

An architectural style defines a family of systems in which each member of the family shares
certain properties with all other family members. Among these properties are its allowed structural
elements, constraints on the interactions of those elements, invariants, underlying computational
model, and shared experience with systems built in the style. Styles can be arbitrarily specialized
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by (further) restricting properties such as acceptable topologies and allowable methods of commu-
nication. For example, Le Métayer [34] uses graph grammars to describe constraints on styles.

The choice of a particular style has implications for both the engineering techniques used and
the resources needed to build the system. Thus, an early, high-level discussion of style can provide a
forum for decisions as to what general form is most appropriate for the system under consideration.
In general, different application domains, such as telecommunications, transaction processing, or
avionics, develop architectural styles appropriate to that domain. Figure 31 depicts several com-
mon styles found in the domain of computer systems software (e.g., compilers, operating systems,
database management systems, and the like). Their basic structures can be described quite suc-
cinctly.

e Pipe and Filter—input to one component is processed and then the resulting output is passed
to another component for processing.

e Shared Repository—a repository serves as a store house for data that may be accessed by
variable numbers of other components.

e Layered Abstract Machine—components are stratified into layers, where data produced at
one layer is available to layers above but not below.

e Buss—data are broadcast over a shared communication medium from which components can
choose to withdraw the data or ignore the data.
Style Classification
Classification techniques, such as taxonomies, are useful for improving understanding and com-

munication in scientific disciplines. In the case of architectural styles, they provide a uniform
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descriptive standard for styles, a repository for information about styles, a basis for discrimination
among styles, and ultimately assistance in the choice of styles. One effort directed at simplifying
the choice of architectural style is a classification proposed by Shaw and Clements [48] in which
component types, connector types, data communication, control and data interactions, and com-
patible reasoning types are used as the bases for discrimination among styles. It is their hope that
the existence of a classification will aid in the creation of analysis tools to augment a style-based
design environment.

Style-based Design Environment

Architectural style is being used to simplify the architecting process. Further simplification can be
achieved through automation. An example is Aesop, a system for generating design environments
for families of software systems [12]. Given an architectural style specification containing infor-
mation such as style elements and style rules, a design environment is generated. The generated
environment is specialized to support the design of architectures in the given style. The environ-
ment consists of a graphical user interface in which a system can be constructed from predefined
style-specific components and connectors. Aesop can be thought of as an environment for creating
new architectural styles.

Style-based Analysis

As described in Section 4, many analysis techniques for use at the architectural level have been
suggested. These techniques are intended for use on specific architectural instances. Nitpick [23]
is an example of an automated analysis technique for use on architectural styles. The technique
attempts to prove the absence of specific system properties for all possible instances of a style.
If the property, such as deadlock, is found to be possible in any instance, Nitpick produces an
example instance-architecture that contains the violation. The style designer can use the example
to discover the source of the violation. Information about the probability of the existence of certain
system properties can be used when making style choices.

5.2 Domain-Specific Software Architectures

Application domains tend to exhibit software-related, domain-specific characteristics. Although the
existence of domain characteristics is easy to explain and well accepted, the means for capturing
a precise understanding of the specific characteristics for a given domain is new. Domain-Specific
Software Architectures (DSSAs) are intended, at least in part, to support this process. They provide
a forum for the modeling and definition of domain-specific characteristics that are used to provide
a reference architecture from which specific applications within that domain can be created.

An early approach was the Two Life-Cycle Model for system development defined by the Soft-
ware for Adaptable, Reliable Systems (STARS) program of the U.S. Department of Defense [8].
The first life cycle is for domain engineering and the second is for application engineering. The
domain-specific architectural aspects are captured, through domain engineering, in a reference ar-
chitecture. Application-specific aspects are supported through the use of parameterization or other
specialization methods and the instantiation process is outlined for particular applications.

5.3 System Generation and Refinement

System generation has been suggested for further raising the level of abstraction for program-
ming computers. Possibly the most fully developed example is the collection of system generation
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tools supporting the development of compilers from high-level specifications of language syntax,
language semantics, and hardware architecture. Recently, system generation has been applied to
software architecture descriptions as a means to create rapid prototypes and implementations of
system families whose architectures are well understood. Not only does system generation improve
productivity when building systems, it also supports the displacement of engineering effort from
the details of implementation to higher-payoff tasks such as component design and assignment of
inter-component communication mechanisms.

The success of domain-specific system generators inspired the creation of GenVoca [4], a domain
independent generator for the creation of domain-specific system generators. The primary goals for
GenVoca are to allow automatic customization of components in order to improve productivity in
system building, and to produce systems that perform at least as well as hand-built and optimized
versions. Systems are composed by combining subsystems that are built out of parameterized
reusable component libraries. GenVoca is based on the realizations that complex systems require
reuse at a coarser granularity than traditionally available in function-level libraries, that reuse of
components depends on standardization of component interfaces, and that parameterization can
be used to automatically customize system components.

Architecture refinement, as described by Moriconi et al. [35], is similar in some respects to
system generation, but does not depend on pre-implemented components. Rather it is based
on the “faithful interpretation” of components as the architecture is gradually refined into an
implementation. Faithful interpretation means that all facts defined in an architectural description
exist in all other levels of a system’s description and that implied negative facts do not. Thus, when
useful, the highest-level system abstraction can be relied upon during system analysis at all other
levels. Faithful interpretation is achieved through the application of logic-based correct refinement
patterns to local refinements that are then combined into the next, lower level of system abstraction.
Each level of refinement is guaranteed to be correct based on the guaranteed correctness of the local
refinements.

5.4 Architectural Views

No matter what form of description is used to describe a software system’s architecture, no one
description can or should contain all the information that is important to all stakeholders in the
development process. An individual stakeholder should have access to a description that contains
only the information necessary for understanding aspects of the system relevant to their work.
Perry and Wolf [41] introduced the notion of architectural views for this purpose. Architectural
views can be thought of in the same sense as views are used in civil architecture, where a building
is described in several ways: scale-model view, floor-plan view, builder’s detailed view, and the
like. The scale-model view provides the general sense of what the structure will appear like in its
environment. This view is of interest to landscapers and zoning boards. The builder’s detailed
view, in contrast, provides information of interest to electricians and plumbers.

In software architecture, the need for different views results from the varied needs of different
stakeholders, as well as the varied types of analyses one might want to perform as development
progresses. Perry and Wolf associate the implementation view with the builder’s detailed view.
Other views suggested by Kruchten [29] include logical, process, deployment, and use-case views.
The first three views are architectural views and the use-case view is for validation. While a system
is being designed, it is good to consider how it can be represented for each of these views. Kruchten
recognizes that specific systems require different numbers and kinds of views. Simple systems may
not require all of those described in his model while others may require more [30]. He suggests
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additional views, such as safety views and security views, that would be important to specific classes
of systems such as nuclear reactor controllers. Soni et al. [52] discuss categories of architecture:
conceptual, module, execution, and code. These categories were defined after studying the structure
of a variety of industrial software systems. They feel that viewing software structure from different
perspectives is crucial as it will provide a base for formal reasoning about software development.

6 Summary

In summary, software architecting is an important phase of the software development process.
Equally important are the associated activities of architectural description and analysis. Software
architecture can be thought of in analogy to building architecture. In both cases the architecture
serves a variety of purposes over the life of the system or the building. The initial blueprint or
architectural description serves as an unambiguous base for communication among the stakeholders
of the project. The blueprint is available very early in the development process and as such can
be used to reason about the fitness of the structure to fulfill its purpose before effort is expended
on creating the actual structure. As the system ages, the architecture can be used as a reference
to detect undocumented changes to the system or as an aid to support implementation-based
maintenance activities such as regression testing and impact analysis. Recognizing the important
role of software architecture in software development has led many computer scientists to focus
their research efforts on developing languages tailored to software architecture description and
on developing associated analysis techniques. The formalization of architectural description and
analysis techniques provides a tractable means of reasoning about the construction and maintenance
of large and complex software systems.
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