
Fast Forwarding for Content-Based Networking

Antonio Carzaniga Jing Deng Alexander L. Wolf

Software Engineering Research Laboratory
Department of Computer Science

University of Colorado
Boulder, Colorado 80309-0430 USA
fcarzanig,jing,alwg@cs.colorado.edu

University of Colorado
Department of Computer Science

Technical Report CU-CS-922-01 November 2001

c
 2001 Antonio Carzaniga, Jing Deng, and Alexander L. Wolf

Abstract

This paper presents a new algorithm for content-based forwarding, an essential function in content-
based networking. Unlike in traditional address-based unicast or multicast networks, where messages are
given explicit destination addresses, the movement of messages through a content-based network is driven
by predicates applied to the content of the messages. Forwarding in such a network amounts to evaluating
the predicates stored in a router’s forwarding table in order to decide to which neighbor router the message
should be sent. We are interested in finding a forwarding algorithm that can make this decision as quickly
as possible in situations where there are large numbers of predicates and high volumes of messages. We
present such an algorithm and give the results of studies evaluating its performance.

1 Introduction

A content-based network is a novel communication infrastructure in which the flow of messages through
the network is driven by the content of the messages, rather than by explicit addresses assigned by senders
and attached to the messages [5]. In a content-based network, receivers declare their interests to the network
by means of predicates called filters, while senders simply inject messages into the network at the periphery.
The network is responsible for delivering to each receiver any and all messages matching the filter declared
by that receiver. An ideal application for a content-based network is a publish/subscribe event notification
service [1, 3, 8].

As in traditional address-based networks, the delivery function is performed incrementally by passing
messages between intermediate nodes in the network. We say that messages flow from upstream nodes to
downstream nodes until delivered. The delivery function consists of two interrelated subfunctions: routing
and forwarding. Routing amounts to establishing flow paths through the network by compiling and posi-
tioning local forwarding tables at each node. A forwarding table contains the information necessary for
a node to decide to which neighbor node or nodes a given message should be sent; the processing of a
message at a node is the forwarding subfunction. Taken together, the forwarding performed at the nodes
causes messages to be routed through the network. It is unfortunate that intermediate nodes are tradition-
ally called “routers”, when in fact they would be more appropriately called “forwarders”.

Our concern in this paper is with the design of a fast forwarding algorithm for content-based network-
ing. Clearly, the forwarding algorithm plays a critical role in the overall efficiency of the network. In the
context of a content-based network, a forwarding table contains predicates representing the conditions un-
der which a message should be forwarded to a particular neighbor. Forwarding amounts to evaluating the
predicates against the content of each message arriving at the node. The predicates in a particular router’s
forwarding table are formed from the primitive filters presented to the network by receivers associated with
nodes downstream in the message flow. We say that a message matches a filter if the predicate applied to it
is true. The algorithm we seek must be well behaved in situations where there are large numbers of filters
and high volumes of messages. We present such an algorithm and give the results of studies evaluating
its performance. Our evaluation shows that our algorithm has good absolute performances in a variety of
configurations of routers and application loads, including the extreme case of a single centralized router.
We also show that, in the context of a network of routers, with a fixed number of neighbor nodes, our algo-
rithm scales sublinearly in the number of filters, with almost no degradation of throughput over a certain
number of filters.

There are two primary foundations for the work described here. The first is our development of a wide-
area, content-based, publish/subscribe event notification service called Siena [4]. The overriding goal in the
design of Siena is scalability, by which we mean support for large numbers of publishers, subscribers, and
notifications spread across large networks. Our current implementation of Siena is structured as an overlay
network of application-level routers leveraging any one of a number of transport-level networks, such as
TCP or UDP.1 Our focus has been on defining the basic routing principles of this overlay network, such as
minimizing overall network traffic and calculating shortest paths, with little attention paid to forwarding.

The other primary foundation is the matching algorithm developed for the Le Subscribe publish/sub-
scribe service [6]. Le Subscribe is a centralized system, in that there is a single server that is the target of all
subscriptions and publications. This server is designed to efficiently match messages against subscriptions,
essentially acting as a fast switch. The forwarding algorithm presented in this paper is an enhancement
and extension of the Le Subscribe matching algorithm, tailored to the context of forwarding in a distributed
network.

In the next section we provide some necessary details concerning content-based networking and give
some examples of predicates and messages in terms of Siena subscription filters and notifications. Follow-
ing that, we present our forwarding algorithm; the routing algorithm that generates, deploys, and deter-
mines when to update forwarding tables is beyond the scope of this paper. An experimental evaluation
of the forwarding algorithm is then described. We conclude with a discussion of related work and future
development plans.

1http://www.cs.colorado.edu/serl/siena/

1

2 Content-Based Networking

A content-based network is similar to a traditional address-based network in that it consists of hosts and
routers connected by communication links. Hosts are nodes that have exactly one link, and act as senders
or receivers of messages. Routers are nodes with more than one link, and act as dispatchers for messages
that transit through them. Subsets of nodes may be directly connected to each other in subnetworks, thereby
forming complete subgraphs, that are in turn connected to each other via routers. For simplicity, we ignore
the internals of subnetworks and model them as single nodes.

As mentioned in the previous section, it is the mode of communication in content-based networking
that differs significantly from traditional (unicast or multicast) address-based networking. A content-based
network is a network in which nodes are not assigned unique network addresses, nor are messages ad-
dressed to any specific node. Instead, each node advertises a predicate that defines messages of interest for
that node and, thus, the messages that the node intends to receive.

The concept of content-based network is independent of the form of messages and predicates. Denoting
the universe of messages as M, and the universe of predicates over M as P : M ! ftrue; falseg, we say
that P and M define a content-based addressing scheme, which in turn defines the content-based network.
Consistently we say that the predicate pn advertised by n is the content-based address of the node n. We also
say that a message m is implicitly addressed by its content to a node n with content-based address pn if
pn(m) = true.

In the context of forwarding, we must refine these definitions somewhat. Notice that a router r may
be connected to several neighbor nodes in the network. The role of r is to decide, for a given message
received from an upstream neighbor, which downstream neighbors are to be forwarded a copy of that
message. (The perspective of “upstream” and “downstream” for a particular router can either be fixed for
all message traffic or it can differ for each individual message; this choice does not affect the discussion.)
In essence, r is acting to its upstream neighbors as a proxy for the collective interests of its downstream
neighbors. Following traditional networking terminology, we say that r presents an interface to its upstream
neighbors. The content-based address of this interface is a predicate that is a disjunction of the predicates of
its downstream neighbors. To distinguish the disjunction from its constituents, we refer to the constituent
predicates as filters.

In our earlier work on the Siena event notification service we have defined what amounts to a content-
based addressing scheme [5]. Because it has a convenient and concrete syntax and semantics, we use Siena
subscriptions and notifications, respectively, to illustrate the more abstract concepts of filters and messages in
this paper.

string carrier=UA
string dest =MXP
int price= 600
bool upgradeable= true

Figure 1: Example of a Siena Notification Message.

A message is a set of typed attributes (Figure 1). Each attribute is uniquely identified within the message
by a name, and has a type and value. For purposes of this paper, we consider the common types string, inte-
ger, and boolean. A filter is a conjunction of constraints on individual attributes (Figure 2). Each constraint

string dest =MXP
int price< 500

Figure 2: Example of a Siena Subscription Filter.

has a name, a type, an operator, and a value. A constraint defines an elementary condition over a message.
A message matches a constraint if it contains an attribute with the same name and type, and if the value

2

matches the condition defined by the operator and value of the constraint. For example, the second con-
straint of the filter in Figure 2 matches those messages that contain an integer attribute named “price” with
a value less than 500.

3 Forwarding Algorithm

The design of a forwarding algorithm involves the design of a forwarding table and of its processing func-
tions. A schematic architecture of forwarding in a content-based network’s router is depicted in Figure 3.
A forwarding table is conceptually a map from predicates to interfaces of neighbor nodes

interfacesinterfaces forwarding
algorithm

I1

I2

I3

I4

I5

I6

I1

I2

I3

forwarding
table

message

Figure 3: Forwarding in a Content-Based Network’s Router

FwdTable : P ! I

where a predicate is a disjunction of filters, each one being a conjunctions of elementary conditions over
the attributes of a message. An example of the logical contents of a forwarding table is shown in Figure 4,
where the first column are the interfaces In of neighbors and the second column are the disjunction of filters
fn:m mapping to interface In. Constraints on individual attributes within a filter are shown in the third
column. This example is overly simple in that it is in general possible for the same filter to map to more
than one interface. Forwarding an incoming message m amounts to computing the set of interfaces having

I1

f1:1
string dest =Milano
int price< 500

f1:2
string stock =DYS
int quantity > 1000
int price< 500

I2

f2:1
string airline=UA
string orig=Denver
string dest =Milano

f2:2
string dest =New York
int price< 200

f2:3 string orig=Denver

f2:4
string airline=UA
bool upgradeable= true

I3 f3:1
string stock =MSFT
int price< 200

Figure 4: Example Contents of a Forwarding Table

3

at least one filter matching m:

forward(m) = fi 2 I : m matches FwdTable(i)g

The forwarding algorithm is based on a data structure representing the forwarding table. Figure 5 shows

=

>

<

=

>

<

=

>

<

=

>

<

=

>

<

=

>

<

=

>

<

stock
orig
dest
airline

string

bool upgradeable

quantity

price
int

1000

UA

Denver

true

New York

Milano

500

200

DYS

f2.1

2

2

2

f1.1

f1.2

f2.2

f2.3

f2.4

f3.1

2

3

3

1

MSFT

I3

I2

I1

Figure 5: Representation of the Forwarding Table of Figure 4

a schematic view of that data structure for the example of Figure 4. Figure 6 shows a schematic view of a
generic forwarding table.

With its four-level, left-to-right structure, the forwarding table reflects and supports the strategy
adopted by the forwarding algorithm. At a high level, the algorithm works as follows: For a given message
m, it considers each attribute a1; a2; : : : ; ak in m. For each attribute ai, the algorithm starts from the left
side of the structure and attempts to move forward through the table, first by satisfying single constraints,
then by satisfying entire filters, which then lead to the choice of interfaces. The algorithm shortcuts the
evaluation of filters whose interface has already been matched by other, previously evaluated attributes in
the message.

The leftmost part of the forwarding table (see Figure 6) is a constraint index. The constraint index pro-
vides fast access to all the single constraints matching a given attribute a. The constraint index is organized

4

type operatorname value

=

>

<
string

bool

int

filtersconstraints

2

1

1

2

3

interfacesconstraint indexes

name index

value indexes

Figure 6: Generic Four-Level Representation of the Forwarding Table

as a chain of four subindexes based, respectively, on type, name, operator, and value. The type index is a
simple switch that selects constraints based on their type. The name index uses attribute names as its keys,
selecting from all the constraints having a’s type, those that have a’s name. The operator index splits the
search into a number of branches that contain type-, and operator-specific value indexes. Every one of these
operator-specific value indexes must be considered in the search. From each one of the value indexes, we
can efficiently select those constraints that are matched by a’s value.

string product = apples
int quantity = 10
int price = 2500

=

>

<

matched
constraints

name
index

10

350
20

50
3
0

200

5

quantity
int

operator−specific
value indexes

Figure 7: Example of Use of Constraint Index

The example of Figure 7 shows a selected fragment of a constraint index, processed while matching
attribute [int quantity = 10] of the given message. The search on type int and name quantity leads to the
three operator-specific value indexes. Our current implementation supports constraint operators =, <, and
>, and for each one of them uses sorted sets to index constraint values. The search process for the equality
index is a simple binary search with exact match. The search process for less-than (greater-than) constraints
performs a binary search to obtain the upper bound (lower bound) for the given value, and then returns all
the values from there to the end (beginning) of the index. In the example of Figure 7, the upper bound for
the attribute value 10 in the less-than constraint set is 20, and therefore the resulting matching constraints
are [int quantity < 20], and [int quantity < 350], while the lower bound in the greater-than constraint set
is 3, and the resulting matched constraints are [int quantity > 3], and [int quantity > 0].

5

Our current implementation supports a relatively limited set of operators, employing a simple indexing
structure and search algorithm (i.e., binary search over sorted sets). Notice, however, that the constraint
index is independent of the type- and operator-specific subindexes used to represent and search constraint
values. In other words, specific indexing structures and search algorithms for other types and operators
can be easily plugged into our constraint index. Examples of such structures are well-known indexes for
prefix, suffix, and substring matching such as tries and PATRICIA trees, as well as indexes for ranges and
multi-dimensional ranges for numeric values such as R-trees.

Processing an attribute a against the constraint index yields zero or more constraint descriptors. A con-
straint descriptor c holds a set of pointers to all the filter descriptors in which that constraint appears. Below,
we refer to this set as c.filters. A filter descriptor f holds the total number of constraints contained in that
filter (f .size), plus a pointer to the interface to which that filter is attached (f .interface).

In addition to the static data stored in the forwarding table, the forwarding algorithm uses two auxiliary
dynamic data structures: a map matched : I ! f0; 1g, implemented with a bit vector, that records which
interfaces have already been matched, and a map counters : filter ! N that counts the number of constraints
matched for each processed filter.

proc forward(message m) f
bitvector matched = ;
map<filter,int> counters = ;
set<interface> result = ;
foreach a in m f

foreach c in matching constraints(a) f
foreach f in c.filters f

if matched[f.interface] = 0 f
if f 62 counters f

counters := counters [<f,0>
g
counters[f] := counters[f] + 1
if counters[f] = f.size f

matched[f.interface] := 1
result := result [ff.interfaceg
interface count := interface count + 1
if interface count = total interface count f

return result
g

g
g

g
g

g
return result

g

Figure 8: Pseudocode of the Forwarding Algorithm

The forwarding algorithm is shown in Figure 8. The outer loop iterates through the attributes of the
input message. For each attribute a, the algorithm considers the filters partially matching a, that is those
filters containing constraints matched by a. The algorithm shortcuts the evaluation of those filters whose in-
terface has already been matched by a previous filter. The algorithm terminates as soon as the last interface
is matched or when the last attribute is processed.

6

4 Evaluation

In order to evaluate our algorithm, we implemented it and studied its performance with a series of synthetic
benchmarks, under varying combinations and types of filters, interfaces, and messages. In this section
we present the results of our evaluation. We also made our implementation available on-line for further
analysis and evaluation.2

4.1 Experiment Setup and Parameter Space

We implemented our algorithm in C++ and ran all the experiments on a 960Mhz computer with 512Mb of
main memory. In addition to the main algorithm and data structures, we created some auxiliary programs
to generate parameterized loads of filters and messages. In particular, we have identified and used the
parameters listed in Table 1.

N number of messages
I total number of interfaces
F total number of filters

AN number of attributes per message
CN number of constraints per filter
A total number of distinct attribute names in messages
C total number of distinct constraint names in filters

DT distribution function for types in both filters and messages
DO distribution function for operators in filters
SV total number of distinct string values in messages

DSV distribution of the given string values in messages
IV total number of distinct string values in messages

DIV distribution of the given string values in messages
DBV distribution of boolean values in messages

Table 1: Scenario Definition Parameters

We performed all the experiments with 1000 messages (N = 1000). The total number of filters, F , is our
primary independent variable, as well as the most important measure of scalability. Since our optimization
strategy relies on the grouping of filters trough interfaces, another fundamental variable is I . Roughly
speaking, I gives an indication of the characteristics of a router, its position, and it role in the larger content-
based network. The six functions we selected for I are: I = 2, I = 50, I = 100, I = 200, I = 500, and
I = F . I = 2 is an extreme case that represents a single sender or receiver endpoint. I = 50; 100; 200; 500
represent core routers, and in particular, lower values indicate a highly distributed network, or a router
in the periphery of the network, while higher values are characteristic of more centralized networks or
central routers. Finally the case of I = F (one interface per filter) represents the case of a single centralized
dispatcher.

For attribute names, we experimented with sets of 50, 100, and 1000 elements (A = 50, A = 100, and
A = 1000). In order to use realistic names, we composed our sample sets by selecting random words out of
a common dictionary. Then we used the same set of words for both attributes in messages and constraints
in filters (therefore setting C = A). Notice that while this may be a simplification in defining the experi-
ments, it in fact produces the most time-consuming scenarios for the forwarding algorithm. This is because
having two completely overlapping sets of names maximizes the chances of having matching attributes
and constraints. In the opposite extreme case of two completely disjoint name sets (one for attributes, and
one for constraints) there would be no matches at all, and the time complexity for the forwarding algorithm
would be O(AN logCN).

As for attribute values, we used a combination of dictionary values for strings, a range for integers, and
a simple distribution for booleans. For strings, we compiled a list of words extracting SV words from the

2http://www.cs.colorado.edu/serl/siena/forwarding/

7

dictionary. For integer values we used a sequence of consecutive values from 0 to IV , and for booleans, we
used a 50/50 distribution of values. For both integers and string values, we used a linear distribution to
select values. As for attribute names, we used the same sets of values for both messages and filters. Notice
once again that having a unified set of values and, moreover, using a nonuniform distribution for their
random selection, increases the possibilities of having positive matches between constraints and attributes,
thereby adding complexity to the matching process.

The distribution of types we used is 40% strings, 40% integers, and 20% booleans. The distribution
of operators in filters is 60% equality, 20% less-than, and 20% greater-than. Other constant parameters or
distributions are: uniform distribution in the range [1,5] for the number of constraints per filter (CN), and
uniform distribution in [3,10] for the number of attributes per message (AN).

4.2 Results and Comments

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9

m
at

ch
in

g
ti

m
e

(m
s)

total number of filters (millions)

matching time per message (A=1000)

I=2
I=50

I=100
I=200
I=500

I=F

0
50

100
150
200
250
300
350
400
450

0 1 2 3 4 5 6 7 8 9

m
at

ch
in

g
ti

m
e

(m
s)

total number of filters (millions)

matching time per message (A=100)

I=2
I=50

I=100
I=200
I=500

I=F

Figure 9: Overall Performance of the Forwarding Algorithm

Figure 9 shows a comprehensive view of the results of our experiments. The total number of filters
ranges from one thousand to over eight million. First of all, notice that the algorithm shows reasonable
performance even for the worst-case scenario, with matching time of about 400 milliseconds per message,
in the presence of over 8 million filters and 8 million interfaces. As expected, the situation with I = F ,
which represents a centralized dispatcher, shows by far the worst behavior, whereas the scenarios with a
fixed number of interfaces shows much better performance, with an almost flat cost curve. We will analyze
those cost curves in detail below.

Figure 9 also shows two remarkably different behaviors corresponding to two different values of A
(A = 1000 for the graph on the left, and A = 100 for the graph on the right), with over two orders of
magnitude difference in matching time. As we can see from the distribution of matches shown in Figure 10,
this difference is explained by the fact that the number of distinct attribute and constraint names A is a
determinant factor in the overall distribution of matches.

0
100
200
300
400
500
600
700
800
900

1000

0 5 10 15 20 25 30 35

nu
m

be
r

of
 m

es
sa

ge
s

number of matched interfaces

distribution of matches I=50, F=10000

A=50
A=100

A=1000

0
100
200
300
400
500
600
700
800
900

1000

0 5 10 15 20 25 30 35 40 45 50

nu
m

be
r

of
 m

es
sa

ge
s

number of matched interfaces

distribution of matches I=50, F=50000

A=50
A=100

A=1000

0
100
200
300
400
500
600
700
800
900

0 5 10 15 20 25 30 35 40 45 50

nu
m

be
r

of
 m

es
sa

ge
s

number of matched interfaces

distribution of matches I=50, F=100000

A=50
A=100

A=1000

Figure 10: Distribution of Matches as a Function of the Total Number of Attribute Names

8

In particular, with large sets of attribute names (e.g., A = 1000), the probability of finding an attribute
name in a constraint set is very low, which means that only a few messages will reach one or a few more
interfaces. The forwarding algorithm is much faster in this case because most attributes from the input
message will not find any corresponding constraints in the forwarding table, and therefore the forwarding
algorithm will quickly skip through them.

The opposite situation occurs with smaller sets of names (A = 100 and A = 50): the probability of an
attribute matching one or more constraints becomes much higher, thus keeping the forwarding algorithm
busy, matching filters out of constraints. Notice that, in the presence of numerous filters (e.g., when F =
100000), messages tend to go to several interfaces, and a high percentage of them ends up going to all
interfaces. As we show in detail below, this is also the situation in which our optimization becomes very
effective.

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

%
 o

f i
gn

or
ed

 m
es

sa
ge

s

total number of filters (thousands)

% of messages with no matching filters

A=50
A=100

A=1000

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

%
 o

f i
gn

or
ed

 m
es

sa
ge

s

total number of filters (thousands)

% of messages with no matching filters

A=50
A=100

A=1000

Figure 11: Percentage of Ignored Messages as a Function of the Total Number of Filters and Distinct At-
tribute Names

Figure 11 uses another reduction of the distribution data of Figure 10. This time we show the percentage
of ignored messages—that is, messages for which there is no matching filter. As we said, the forwarding
algorithm is very efficient in dropping those messages, so that percentage is a determining factor for the
performance analysis. The two graphs show the same data set at two different scales over the number of
filters. The graph on the left covers the range 1000–100000, and emphasizes the scenarios with A = 1000.
As can be seen, in those cases most messages have no matching filter (90% of messages are ignored). The
graph on the right focuses on a smaller scale of filters (1000–10000) to highlight the cases of A = 100 and
A = 50. For those values of A, most messages are forwarded (30% down to 0% are ignored). In essence we
can use A as a regulator for the percentage of matches.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9

m
at

ch
in

g
ti

m
e

(m
s)

total number of filters (millions)

matching time per message (A=1000)

I=2
I=50

I=100
I=200
I=500

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

m
at

ch
in

g
ti

m
e

(m
s)

total number of filters (millions)

matching time per message (A=100)

I=2
I=50

I=100
I=200
I=500

Figure 12: Performance of the Forwarding Algorithm with Fixed Sets of Interfaces

9

Figure 12 shows the same data sets of Figure 9, but without the extreme case of I = F . Again, notice
how the two values of A produce very different results. Notice that the worst case of A = 100, in which
all the messages are matched by one or more filters, shows a good matching time. In particular, even
in the presence of as many as 8 million filters over 500 interfaces, the matching time remains within 25
milliseconds per message. More importantly, notice that all the curves become essentially flat for high
numbers of filters, and that they level off at a value that is roughly proportional to the number of interfaces.
This trend proves the effectiveness of our optimization based on a short-circuit evaluation of filters over
interfaces.

4.3 Summary of Evaluation

Our experiments have shown that our forwarding algorithm has good absolute performance and good cost
amortization over a variety of loads. In particular, we found that

� the constraint index, which provides fast lookup for attribute names over constraints, allows quick
processing of attribute names that have no matching constraints, and

� the short-circuit evaluation of filters associated with the same interface greatly reduces processing time
in the case where a single message may match a large number of filters.

The nice property of these two techniques is that they provide complementary optimizations in two
application-dependent situations. The first one reduces processing time for messages matching a few con-
straints or no constraints at all, especially in the presence of a few filters, while the second one acts as
a cutoff valve for the forwarding algorithm for messages that match several filters, and especially under
heavy loads of filters.

5 Related Work

The idea of content-based networking is a natural evolution of our previous work on distributed event
notification [4]. In particular, the problem of forwarding messages is similar to the problem of matching
event notifications against subscriptions, which is also analogous to the problem of matching trigger rules in
an active database. Other researchers have studied this problem, and proposed solutions based on various
forms of decision trees and indexing structures for subscription predicates [1, 2, 6, 7].

The work presented in this paper is based on an algorithm and data structure proposed by Fabret et al.
with their Le Subscribe system [6]. Fabret et al. focus on streamlining the matching algorithm by mak-
ing it “cache conscious”, and clustering filters for faster constraint checking. However, similar to all other
optimized publish/subscribe matching techniques, they apply their algorithm in the context of a central-
ized server. By contrast, our general idea is to design a content-based communication network, in which
several distributed routers cooperate to achieve the end-to-end effect of a single content-based notification
dispatcher. In that context, we see and take advantage of an opportunity for further optimizations. In
particular, we exploit the additional grouping of filters (by interface) with a shortcut evaluation procedure.
Notice also that some of the clustering techniques proposed by Fabret et al. are applicable to this procedure
in our forwarding algorithm.

Based on published experimental results [2, 6] and on the experiments we performed, we found that for
the scenario with no grouping of filters (i.e., representing a centralized server) our forwarding algorithm is
on a par with the state-of-the-art matching algorithms.3 Our algorithm achieves additional cost (processing
time) amortization when used in the proper context of a content-based router, as discussed in Section 4.2.

6 Conclusions

In this paper we have presented an algorithm and an associated data structure for fast content-based for-
warding of messages. This algorithm is particularly suitable for the implementation of the forwarding

3A detailed and precise comparative analysis is beyond the scope of this paper.

10

algorithm of routers in a content-based network. Our algorithm, based on the general structure proposed
for the Le Subscribe system, is specifically designed for content-based routers, and takes advantage of their
fixed or limited number of output interfaces. In order to evaluate our algorithm, we have implemented it,
and we have tested its performance under various configurations. From these experiments we found that
the algorithm has good overall performance, even in the configuration corresponding to a single central-
ized server. The experiments also confirmed the validity of our optimization technique. We have also made
our implementation available on-line for reference and further evaluation.

In the immediate future we plan to integrate our algorithm within our Siena distributed event notifi-
cation service. As a natural progression of this work, we plan to attack the hard problem of routing in a
content-based network. With Siena we have already defined the basic concepts of content-based subnetting
and supernetting, and we have implemented what amounts to a routing table. Using that as a basis, we
plan to study and develop optimized data structures for routing, as well as efficient and robust routing
protocols for content-based networks.

Acknowledgments

The authors would like to thank David Rosenblum for his contributions to the design of Siena. The work of
the authors was supported in part by the Defense Advanced Research Projects Agency, Air Force Research
Laboratory, Space and Naval Warfare System Center, and Army Research Office under agreement numbers
F30602-01-1-0503, F30602-00-2-0608, N66001-00-1-8945, and DAAD19-01-1-0484. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency, Air Force Research Laboratory, Space and Naval Warfare
System Center, Army Research Office, or the U.S. Government.

11

References

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. Matching events in a content-
based subscription system. In Eighteenth ACM Symposium on Principles of Distributed Computing (PODC
’99), pages 53–61, Atlanta, GA, May 4–6 1999.

[2] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficient filtering in publish-subscribe systems
using binary decision diagrams. In Proceedings of the 23th International Conference on Software Engineering,
pages 443–452, Toronto, Canada, May 2001.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving scalability and expressiveness in an inter-
net-scale event notification service. In Proceedings of the Nineteenth ACM Symposium on Principles of
Distributed Computing (PODC 2000), pages 219–227, Portland, OR, July 2000.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a wide-area event notification
service. ACM Transactions on Computer Systems, 19(3):332–383, Aug. 2001.

[5] A. Carzaniga and A. L. Wolf. Content-based networking: A new communication infrastructure. In NSF
Workshop on an Infrastructure for Mobile and Wireless Systems, Scottsdale, AZ, Oct. 2001. In conjunction
with the International Conference on Computer Communications and Networks ICCCN.

[6] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Filtering algorithms and
implementation for very fast publish/subscribe systems. In ACM SIGMOD 2001, pages 115–126, Santa
Barbara, CA, May 2001.

[7] J. Gough and G. Smith. Efficient recognition of events in a distributed system. In Proceedings of the 18th
Australasian Computer Science Conference, Adelaide, Australia, Feb. 1995.

[8] D. S. Rosenblum and A. L. Wolf. A design framework for Internet-scale event observation and notifica-
tion. In Proceedings of the Sixth European Software Engineering Conference, number 1301 in Lecture Notes
in Computer Science, pages 344–360. Springer–Verlag, 1997.

12

