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Abstract

Building a distributed publish/subscribe infrastructure amounts to defining a service model (or in-
terface) and providing an implementation for it. A typical distributed implementation is architected as
a network of dispatcher components, each one implementing appropriate protocols and algorithms, that
collectively realize the chosen service model. The service model should provide a value-added service for
a wide variety of applications, while the implementation should gracefully scale up to handle an intense
traffic of publications and subscriptions. We believe that the design of such service models and implemen-
tations must be guided by a systematic evaluation method, which in turns must be based on a carefully
chosen benchmark suite. In this paper, we lay out a set of requirements for a benchmark suite for distributed
publish/subscribe services, and we outline its primary components. The ideas proposed in this paper are
based on our own experience in building and studying publish/subscribe infrastructures, and on existing
evaluation frameworks.





1 Evaluating a Distributed Publish/Subscribe Service

Within a publish/subscribe service, information flows from publishers to subscribers according to the spe-
cific selection criteria expressed by individual subscribers. Subscribers express their interests by means of
subscriptions, while publishers simply publish information. The service accepts subscriptions and publica-
tions, and relays publications to subscribers that declared matching subscriptions. The general architecture
of a distributed publish/subscribe infrastructure is a network of dispatchers [1, 4, 5, 7]. Publishers and
subscribers are directly connected to one dispatcher, to which they send their subscriptions and publi-
cations. Every dispatcher processes subscriptions and publications according to some protocol, possibly
redistributing subscriptions to other adjacent dispatchers and publications to adjacent dispatchers and/or
subscribers.

Realizing a publish/subscribe service according to this general schema amounts to designing

• a data model for publishable information (i.e., format, structure, types, etc.)

• the selection mechanisms available to subscribers (i.e., scope, syntax, and semantics of subscriptions)

• the topology of the network of dispatchers, including the rules by which dispatchers join and leave
the network, the protocols used by dispatchers to establish a connection, and possibly to authenticate
each other, etc.

• the communication protocols used among dispatchers, and between dispatchers and clients. These pro-
tocols cover the basic exchange of publications and subscriptions as well as all the auxiliary informa-
tion flows needed to, say, compute shortest paths and other such specific functions.

• the internal architecture of dispatchers, including physical components, such as input/output modules,
switching components, and logic components, including matching algorithms, routing algorithms,
and their data structures.

Each and every one of these design aspects has been extensively studied, in various forms and combi-
nations, in different contexts, ranging from databases to programming languages, to networking research.
The ultimate challenge for the designer of a distributed publish/subscribe service is to engineer existing
and new techniques to create a publish/subscribe infrastructure capable of offering an added-value ser-
vice for the widest variety of applications, and at the same time, capable of scaling from simple localized
applications, up to complex, traffic-intensive, highly distributed applications.

Clearly, these goals demand a methodical engineering approach. Specifically, we believe that the nu-
merous degrees of freedom in the design space and the inherent complexity of each aspect of the design
emphasize the importance of serious evaluation methods. Even more to the point, we argue that not only
methodical performance evaluation and service validation are necessary steps in the design process, but
also that they should be considered as the primary guides for the development and integration of technolo-
gies for distributed publish/subscribe services.

What we propose as an initial solution to this design problem is the definition of a benchmark suite.
In the rest of the paper we lay out a set of requirements and some initial specifications for a distributed
publish/subscribe benchmark suite.

2 Requirements for a Benchmark Suite

The first requirement for a benchmark suite is in fact a meta-requirement, or rather a condition on the
process by which the benchmark is defined. It is crucial that the benchmark suite be widely accepted by
researchers and practitioners in the field, and consequently adopted as part of their design environment.
It is therefore very important that the formulation of the benchmark itself be a communal activity. In this
spirit, we intend this paper as an initial proposal, meant to generate discussion and interest, which we hope
would then translate into a cooperative benchmark definition effort.

The specific high-level requirements for the benchmark suite are directly related to the function of the
benchmark. As we said, the function of the benchmark can be broken down into two main goals:
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• validation of the service interface, and

• performance evaluation.

In order to satisfy the first goal, the benchmark suite must include tests and methods that assess the
suitability of a particular publish/subscribe service. Suitability is intended as an aggregate measure of
the added value provided by the service to a wide range of applications. Obviously, this evaluation is
characterized by qualitative parameters, and is likely to be affected by subjective interpretations. Therefore,
the benchmark should guide and disambiguate the evaluation process by establishing a detailed capability
model.

The second goal is somewhat more concrete, since it is characterized by more objective and quantitative
measurements. The benchmark should be based on the cross-product of a number of applications, executed
over series of configurations and distributions of their components, under a series of workloads. Perfor-
mance metrics should be based on time and space complexity. Typical such metrics are end-to-end latency,
end-to-end maximal throughput, and maximal footprint for individual components.

Despite its conceptual simplicity, a performance benchmark poses a fundamental obstacle, when com-
bined with a service suitability benchmark. The problem is that an ideal service suitability benchmark
should not be biased towards any specific publish/subscribe interface. By contrast, a performance bench-
mark must consist of concrete application programs, which must use specific service interfaces. One
extreme approach to resolve this conflict would be to define a specific interface, as an integral part of
the benchmark, and to focus on applications that use that interface. In this case, a designer of a pub-
lish/subscribe system with a different service interface would have to provide an adapter that would some-
how translate the benchmark service interface to his or her own service interface. The opposite approach
would be to build the benchmark out of very service-neutral applications, or better, applications capable of
adapting to different service models.

Neither of these approaches seems satisfactory. The second one is probably not feasible at all, since
arguably there is no such thing as a real service-neutral application. While the first one poses another
dilemma in choosing the type of benchmark interface: a “common denominator” interface would probably
be too simplistic, whereas a very rich interface would penalize most services. In any case, using a single
interface as a reference would create a restricted and biased benchmark. The natural compromise that we
propose is to select applications that use a number of specific publish/subscribe interfaces. The benefit of
this idea is that it would create a fair and more generic benchmark. The drawback is that, in order to execute
benchmark applications, the service designer would have to provide several adaptation layers.

The choice of applications, configurations, and workloads is clearly crucial for the formulation of the
benchmark. We see two distinct requirements for this part of the benchmark suite. On one hand, part of the
benchmark must be an expression of real, current applications, independently developed by third-party or-
ganizations. Similarly, configurations and workloads must reflect real computing environments and actual
use scenarios. Ideally, this part of the benchmark would be derived from recordings of actual application
sessions. The objective of this section of the benchmark is to directly benefit current technologies and usage
patterns. On the other hand, the benchmark should also account for future application developments and
unforeseen usage scenarios. This part of the benchmark suite must rely on synthetic scenarios. These sce-
narios need not be related to actual usage patterns, and should instead explore situations that are far from
the current realm of publish/subscribe applications.

3 Initial Benchmark Specification

Following the requirements we set in Section 2, we propose a benchmark suite composed of three sections:
an interface suitability section, an applications section, and a synthetic scenarios section. We will discuss the
details of every one of these sections in the following.

3.1 Interface Suitability

The purpose of this section of the benchmark is to establish a capability model for publish/subscribe ser-
vices. The benchmark program is a simple semi-automated self-evaluation system based on questions and

2



answers. The program guides the designer in the evaluation process by asking questions derived from the
capability model. It then annotates the designer’s answers and eventually computes aggregate evaluation
metrics based on coverage criteria expressed in the capability model.

A complete formulation of the capability model is well beyond the scope of this paper, and as we said,
it should result from a joint effort of researchers and practitioners in the field. Here we list a number of
general features that we believe should be included in the capability model. Elements of this list have been
extensively studied within other evaluation frameworks [4, 5, 2, 8].

• publication model: data model for publisheable data. This model should classify services according to
the following parameters:

– structure: characterizes the structure of notifications. Typical publications can be classified as:
unstructured, lists of strings, record-like structures with positional or name-based identification
of attributes, recursive structures, such as LISP expressions or XML documents, and composite
publications, made of digests of other publications

– types: predefined domains of values. Typical type classifications would be binary or string, sim-
ple atomic types (such as integers, dates, booleans), and typed structures, that is, structures
whose combination of fields constitute a type in itself

– limits: total byte size, number of attributes, limits for types (string length, integer sizes or ranges
of values), and number and depth of sub-structures

• subscription model: defines the selection capabilities of the publish/subscribe service:

– scope: defines what parts of a publication can be evaluated and selected within subscriptions. A
typical classification of scope may be the following: single globally known field, single subscrip-
tion-specific field, limited number of fileds, entire publications, and groups of correlated publi-
cations

– language power: characterizes the language that defines subscription in terms of its expressive
power. Typical language power classifications are: simple predicates, such as equality, inequality,
and string operators, and composite expressions

– language style: declarative, imperative
– other features: extensibility (for example, by means of plug-ins), useful special operators such as a

“certificate-based authentication” predicate that would select all the publication that a client can
successfully authenticate.

• interface access methods: support for local access, for example, with shared memory or other OS in-
memory connections such as UNIX sockets or signals, and remote access, with specific communica-
tion protocols

• portability: support for multiple platforms and language bindings

• service model: examples are reliable/unreliable for point-to-point communications, end-to-end reli-
able/unreliable, quality of service negotiation, persistent store-and-forward service

• auxiliary features: for example, security and support for mobility

3.2 Applications

This section of the benchmark suite is intended to evaluate the performances of the publish/subscribe
infrastructure, when serving current common applications, under observed traffic loads. For these bench-
marks, we propose to consider applications within the following categories:

• internet-based trading: this includes auction systems (such as eBay), airline reservation systems, and
other generic e-commerce applications. This class of applications is characterized by high volumes of
traffic, with sparse subscribers over a wide-area network. Subscribers are likely to select very specific
information out of a varied information space
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• news: network-based sportscast systems, financial news systems, emergency announcements, and
general event notification. Clearly, this is also a class of applications that span wide-area networks.
However, in contrast with internet applications, it is likely to have more dense distributions of sub-
scribers, with more generic and/or less volatile requests, with a higher traffic flow

• networked interactive games: this class of applications is interesting for its essential real-time require-
ments, as well as for the very intense, but probably localized, traffic

• software systems: this category includes workflow management systems, application management,
distributed agenda management, and mobile agents platforms. Application from this category are
likely to require the exchange of complex objects, and therefore are likely to exploit the most advanced
data modeling and selection features of the publish/subscribe service.

These benchmarks also define the precise workload and the precise component configurations, in com-
bination with each individual application. We propose to define these workloads and configurations by
recording several actual sessions for each application. We realize that this may be a considerable effort in
itself, and that the measurement process is likely to pose serious software engineering and measurement
challanges.

3.3 Synthetic Scenarios

Synthetic benchmarks are meant to test a publish/subscribe service under uncommon workloads, or under
traffic patterns and configurations not exhibited by current applications. Synthetic benchmarks should
also focus on specific features or traffic patterns, since this can not be easily done with workloads derived
from actual applications. The use of synthetic workload generators is common practice in the evaluation of
network protocols and network architectures. Synthetic scenarios have also already been used to evaluate
a number of techniques for publish/subscribe services [4, 6, 3].

Being actual programs, synthetic benchmarks too are designed to use a specific service interface. There-
fore, not every benchmark program may be applicable to each and every service interface. This section
of the benchmark suite must contain enough benchmark programs to cover the most common service in-
terfaces. In the following, we will present an example of a synthetic benhcmark that uses a specific pub-
lish/subscribe service model, nontheless the basic ideas expressed by the example are valid for other service
models as well.

The benchmark is essentially composed of two parts:

• topology: this part defines the distribution of service components and application components over a
network. The topology is expressed in terms of the connections between components, and their costs.

• application behavior: this part defines the combination of service requests, including specific values for
publications and subscriptions.

The topology may be defined directly at the application level or as an overlay of network and applica-
tion topologies. The substrate network topology can be generated using an appropriate random graph
model [9]. It is unclear to us whether the same type of models can be adapted to generate plausible
application-level topologies (we were unable to find a relevant study of application-level topologies in
the literature). If the substrate is a network-level topology, an application interconnection must be set up
on top of the substrate network. This can be done in a number of ways. What we propose is an incremental
process, which works as follows: the number of application-level nodes is given as an initial parameter.
The first “root” application-level component is allocated on a randomly chosen node of the substrate. The
remaining application-level nodes are randomly placed and randomly connected to a number of existing
components. The way these two random choices are made depends in part on the type of service architec-
ture, and in part on other benchmark topology parameters. For example, if the service requires an acyclic
architecture, then new nodes will be connected to exactly one existing node. The remaining random pa-
rameters can be adjusted by using distributions that favor locality in both placement and interconnections.
Once the service topology is defined, the benchmark must allocate application components on each host.

4



This process can follow the same schema described above, again maintaining some reasonable form of
locality in connecting applications to service endpoints.

The next step in the formulation of this sample synthetic benchmark consists in assigning behaviors to
application components. This part of the benchmark is characterized by several degrees of freedom, and
therefore lots of parameters. What we give here is a list of parameters that subsumes a generic random-
ized behavior. Specifically, we assume periodic event generators, as well as periodic subscribers. That is,
publishers that emit publications at a fixed rate, and subscribers that continuously subscribe (for some in-
formation), receive a number of publications, unsubscribe, wait some time, and then re-subscribe. These
are the essential parameters:

• publication rate: number of publications issued per time unit (poisson distribution)

• active subscription cycle duration: interval during which a subscriber has at least one active subscription.
It may be defined by the number of received publications, or by a simple timeout

• inactive subscription cycle duration: interval in which a subscriber has no active subscriptions. This is a
simple interval between unsubscriptions and subscriptions in a subscriber’s cycle

• publication model: parameters used to generate publications (remember that, in this example, publica-
tions are record-like structures):

– number of fields: this should also be randomly determined according to a Poisson distribution
(since the value can never be less than one)

– namespace for attributes: set of names used to identify attributes in notifications. We propose to
use a random selection out of a dictionary of words (e.g., a standard English dictionary)

– prevalence of attribute names: probability function for attribute names within the namespace

– prevalence of types: probability functions for attribute types

– values space: set of values, one set per type. This parameter defines ranges for numeric values,
and dictionaries for string values

– prevalence of values: probability function for values

• subscription model: parameters used to generate subscriptions, and to associate them with subscribers.
In this example, subscriptions are conjunctions of elementary predicates, each one defined over the
value of a given attribute. Predicates, like attributes, are typed, meaning that they match attributes of
a specific type:

– number of subscriptions per subscriber: a subscriber may have several active subscriptions at the
same time. This parameter determines the distribution of subscriptions over subscribers

– number of predicates per subscription: randomly distributed

– name space for subscriptions: set of attribute names used in subscription predicates. This set is
composed of words extracted randomly from a dictionary and from the namespace for publica-
tions

– percentage of shared namespace: indicates what fraction of the namespace of subscriptions is ex-
tracted from the publications namespace. This parameter roughly measures the degree of inte-
gration between publishers and subscribers

– prevalence of attribute names: probability function for names in subscription predicates

– prevalence of types: probability function for types in predicates

– prevalence of predicate operators probability function for operators (equality, greater-than, lower-
than, etc.)
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4 Conclusions

We are convinced that systematic performance evaluation and service validation are necessary, crucial steps
in the design of publish/subscribe infrastructures, especially those based on distributed architectures. With
this paper, we propose the formulation of a benchmark suite as a basis for that evaluation effort. We also
believe that the definition of the benchmark suite must be a joint effort of researchers and practitioners in
the field of publish/subscribe systems. Therefore, we intend our proposal as a stimulus for discussion, and
possibly a starting point for the formulation of a comprehensive and widely accepted benchmark.
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