
On Relating Functional Specifications
to Architectural Specifications:

A Case Study

Flavio Corradini,† Paola Inverardi,† and Alexander L. Wolf ‡

†Dept. di Informatica
Universita’ dell’ Aquila
I-67010 L’Aquila, Italy

{flavio,inverard}@univaq.it

‡Dept. of Computer Science
University of Colorado

Boulder, CO 80309-0430 USA
alw@cs.colorado.edu

University of Colorado
Department of Computer Science

Technical Report CU-CS-933-02 June 2002

c© 2002 Flavio Corradini, Paola Inverardi, and Alexander L. Wolf

ABSTRACT

Software architecture specifications are predominantly concerned with describing the
component structure of systems and how the components interact behaviorally. Little
attention has been paid to formally relating those specifications to higher levels of speci-
fication, such as the system requirements. In this paper we present our progress toward
addressing an instance of this problem, namely relating state-based software architecture
specifications to high-level functional specifications. Our approach is to use an interme-
diate specification given in terms of a set of temporal logic properties to bridge the gap
between the two levels of specifications. We describe our approach in the context of a
particular case study, the AEGIS GeoServer Simulation Testbed system, showing how
a compact functional specification of a critical behavioral property of the system can be
used to validate three alternative architectural specifications of that system.

1 Introduction

A software architecture specification describes the high-level design of a system in terms of the
structural and communication relationships of its components. At this level of description, the
specification focuses on the interaction behaviors exhibited by the components, not the algorithms
used internally by components to carry out their functional roles.

It is believed that having such design specifications for complex systems can improve the effec-
tiveness of the development process and the quality of the final product by permitting analyses to be
performed early in the life cycle [5, 13, 23]. Consequently, much effort has been devoted to research-
ing, experimenting with, and categorizing the kinds of analyses that can be performed and the prod-
uct quality attributes that can be improved through them [1, 3, 4, 7, 8, 9, 14, 15, 17, 18, 19, 21, 22].

Despite the significant amount of research in architectural specification, there has been little
attempt to formally relate it to higher levels of specification, such as the system requirements [24].
Only recently has interest begun to emerge in this regard [16, 20]. In this paper we present
our progress toward addressing an instance of this problem, namely relating high-level functional
specifications to software architecture specifications. We describe our approach in the context of a
particular case study, the AEGIS GeoServer Simulation Testbed (AGST) system [2, 12], showing
how a compact functional specification of a critical behavioral property of the system can be used
to validate three alternative architectural specifications of that system.

The basis for the method is the construction of a set of temporal logic properties that bridge the
gap between the functional specification and the architectural specification. In essence, the temporal
logic properties make explicit and visible the relevant behavioral dependencies that are inherent
in the functional specification and that are deeply buried within the complex state descriptions of
the architectural specification. Of course, both the functional and architectural specifications are
abstractions, and as such they embody simplifying assumptions. These assumptions appear both
at the level of individual components (i.e., so-called “black-box” assumptions) and at the level of
the global architecture. The process of relating the functional and architectural specifications helps
the analyst understand the interplay of the assumptions operating at these two levels.

The temporal logic properties developed here are given using the CTL formalism [10, 11].
This is a well-known branching logic for which model checkers are available. To specify software
architectures, we use the CHAM (CHemical Abstract Machine) formalism [6]. This formalism
has been used extensively by us and others in previous work on architectural specification and
analysis [9, 14, 15, 25]. Note, however, that the general approach we describe in this paper is not
tied to the CHAM formalism. For those unfamiliar with CHAM or its use in specifying software
architectures, Appendix A provides a brief review. Appendix A also provides a brief review of CTL.

In the next section of the paper we introduce the subject of our case study, AGST. We also
provide the functional specification that captures the property of concern. In Section 3 we give the
CHAM specifications of three architectural variants of AGST. The CTL specifications that relate
the architectural variants to the functional specification are presented in Section 4. We conclude
in Section 5 with a discussion of future work.

2 The AEGIS GeoServer Simulation Testbed

The AEGIS GeoServer Simulation Testbed (AGST) was presented as a challenge problem for soft-
ware architecture research. The problem was first described by Balzer [12] and later investigated
by Allen and Garlan [2].

The problem derives from the U.S. Navy’s AEGIS radar and missile defense system. AEGIS is

1

Doctrine
Reasoning

Display
ServerServer

Geometry Doctrine
Validation

doctrine

intersection action map

track track track track

doctrine doctrine doctrine

Figure 1: Data Flow in AGST.

a shipboard semi-automatic weapon designed to monitor potential threats, such as hostile aircraft
movements, to propose an appropriate response, such as firing a missile, and to carry out that
response. The purpose of the next-generation GeoServer system is to combine data from several
AEGIS-equipped ships in order to better determine which targets are in which regions, how those
targets are moving among regions, and which ship will provide a response.

AGST consists of four primary functional elements,1 as depicted in the data-flow diagram of
Figure 1. The primary parameters to these computations are doctrines, which are conditions used
to classify a threat as real (e.g., an unidentified moving object descending rapidly toward an aircraft
carrier), and tracks of moving objects. Geometry Server (GS) computes the intersections between
tracks and (stored) geometric regions by making use of doctrines. Doctrine Reasoning (DR) uses
the intersections, doctrines, and tracks to compute actions to be carried out as responses to threats.
Doctrine Validation (DV), given a doctrine and a track, computes maps of relevant regions. Finally,
Display Server (DS) is responsible for dynamic graphical depictions of the simulated situation based
on actions, maps, doctrines, and tracks.

A critical aspect of the AGST system, as described by Balzer, has to do with a particular
relationship among the computations: It should be the case that the doctrine and track used to
compute an action from an intersection should be the same pair used to compute the intersection
itself. In turn, that same pair should be used to compute the associated map and the associated
display. Thus, we have a global invariant that must be satisfied by any architecture correctly
realizing the system.

2.1 Specifying the Requirement

To formally describe the invariant, we use a simple functional specification that clearly captures
the relevant dependencies among the computations. Let us assume the following notation.

• D = {doctrine1, . . . , doctrinem}, a set of doctrines.

• T = {track1, . . . , trackn}, a set of tracks.

• I = {intersection1, . . . , intersectionp}, a set of intersections.

• A = {action1, . . . , actionq}, a set of actions.

1Unfortunately, the names that we were given for the elements are not particularly consistent with the functional
roles that those elements play within the system. Nevertheless, we retain these names to avoid confusion with any
other published descriptions of the system.

2

• M = {map1, . . . ,mapr}, a set of maps.

• S = {scene1, . . . , scenet}, a set of displayed scenes.

We can now define the main computational functions, as follows.

• GS : D × T → I

• DR : D × T × I → A

• DV : D × T → M

• DS : D × T ×A×M → S

Then the correct behavior of the system with respect to the global invariant can be simply specified
as follows.

DS(DR(GS(doctrinei, track j), doctrinei, track j),DV(doctrinei, track j), doctrinei, track j)

Clearly, this functional specification would form only one part of a larger specification that captured
all the desired properties of the system relevant at this level of abstraction. Nevertheless, this
functional specification is useful in analyzing the system. In fact, we can see that it embodies a
significant amount of information.

One bit of information derives from the use of function application, which implicitly puts a
partial ordering on the way data are processed. So, for example, the computation performed by GS
must strictly precede that of DR, and DR before that of DS. But the computation performed by
DV may occur before, during, or after DR. Moreover, the computations of DV and DR are logically
independent.

Another bit of information derives from the use of explicit parameter naming, which allows one
to keep track of the identity of data throughout the computation. In this case, within the context
of a single computation performed by DS, the four computations represented by GS, DR, DV, and
DS must all use the same instances, i and j, of doctrine and track data, respectively.

Considering together the partial order of computations and the constraint on the data used
in those computations, the design problem we face is one of coordination. In particular, there
are four distinct occurrences of doctrine/track pairs appearing in the expression of the functional
requirements, and it becomes the responsibility of the designer to ensure, as noted above, that
the global invariant on the data is maintained. Therefore, what we need in the design is a policy
for guaranteeing the coherency of the data under these circumstances. Each of the architectures
described in Section 3 embodies a different such coordination policy.

2.2 Bridging the Gap to Architectural Specification

The functional specification presented above is actually quite expressive. It gives information about
the system behavior, as well as the relationships among the various system components. On the one
hand, it assumes that the components behave as functions that take inputs and produce (unique)
outputs, while on the other hand, through function application, the specification describes how the
components are causally related, both sequentially (e.g., DR computes actions from intersections
provided by GS) and concurrently (e.g., the outputs of DR and DV are computed independently).

3

Let us examine a simple portion of the functional specification in order to illustrate the steps
needed to obtain the same amount of information in a state-based operational model. Con-
sider DR(GS(doctrinei, track j), doctrinei, track j). At a macro level, it expresses that DR and GS
are causally related, since GS is supposed to provide an input to DR. Moreover, the notation
GS(doctrinei, track j) in the context of the formula plays two distinct behavioral roles. For one it
represents GS when it is getting the inputs, namely doctrinei and track j . For another it stands
for the produced output. In an operational context these two situations are clearly distinct, and
are represented as the state in which GS is ready to take its inputs and the state in which GS has
produced an output. In between these two states, in terms of the global system behavior, other
global states can be observed.

In order to formally relate the functional and architectural specifications we need to identify
those states that are relevant for validating the functional properties. We must also describe the
way the states should be causally related in order to satisfy the properties. Finally, we must prove
that, in all possible computations of the architectural model, the states are reached in an order
that guarantees the constraints to be satisfied. What we describe in this paper is a method for
carrying out this process.

The method is based on two levels of specification. The first level consists of a set of CTL
temporal logic scheme formulae that allow the expression of functional properties in terms of the
behavioral properties of the global system. In fact, in this operational setting, we are observing
the global system states and the way they are obtained along a computation. Computations are
the result of concurrent activities of the system components and of their explicit synchronization
through suitable synchronization primitives. The second level is formed by instantiating the scheme
formulae in terms of concrete state properties. The instantiated scheme formulae are assembled
together, using conjunction and disjunction operators, to reflect the behavior of the architecture.
Note that the first level is driven by the generic semantics of functional specification and, therefore,
is reusable. The second level, on the other hand, is tied to the details of the architecture being
specified.

Let us now introduce the CTL scheme formula I(f1, f2), where f1 and f2 are CTL formulae
expressing specific state properties. It expresses the ordering among significant states and their
behavioral properties. I(f1, f2) is read as follows.

For every state si, if si satisfies f1, then every path starting from si holds f1 until a
state sk that does not satisfy f1 is reached, such that every path starting from sk holds
¬f1 until a state that satisfies f2 is reached.

We use the formula to model two different situations:

1. a component is in a state in which it can input data from another component (this is encoded
in f1) and then eventually consumes the data (this is encoded in f2); and

2. a component is in a state in which it can input data from another component (this is encoded
in f1), and then it eventually consumes the data and produces an output (this is encoded in
f2).

In other words, the difference between the two situations above is that in one case we use f2 to
model the state of a component in which it has taken the input but not yet produced the output,
whereas in the other case we use f2 to model the fact that the component has actually produced

4

the output after having consumed the input. These two situations are different, since they occur at
different states in the component’s lifetime and, therefore, at different points in the computation.

This is sufficient to express the conditions/constraints imposed by the functional specification
in terms of the actual computations of the architectures. Again, the final formula that expresses
the correctness of the whole architecture will be a suitable combination, by means of conjunctions
or disjunctions, of scheme formulae.

Causal dependencies are expressed as a conjunction of scheme formulae. They are of the form
I(f1, f2) ∧ I(f2, f3). Note that the two formulae share the atomic proposition f2. Depending on
whether we are modeling case 1 or case 2 above, we can use the scheme formula in two different
ways: Either it expresses a dependency relative to the same component, in which the conjunction
implies that the component receives data in two different steps (one encoded in f1 the other in
f2), or it expresses a dependency between two different components, in which the conjunction
implies that the component associated with I(f1, f2) passes data to the component associated with
I(f2, f3).

Concurrency is expressed as a disjunction of scheme formulae. This is because parallelism in
the architectural specifications is modeled via interleaving. Thus, the possible parallel execution
between two events e1 and e2 will be modeled by saying that e1 is followed by e2, or e2 is followed
by e1.

We thus have a formal framework in which to relate the functional and architectural specifica-
tions. In the next section we introduce the architectural variants that are the object of our study
and then show how to validate those specifications with respect to the desired coherency property.

3 Architectural Specifications of AGST

The AEGIS GeoServer Simulation Testbed lends itself to a variety of applications of software
architecture technology, including specification, analysis, and simulation. For example, Allen and
Garlan give two architectural specifications for the system using their language Wright [2]. They
show how an analysis of the first specification can reveal the potential deadlock previously discovered
by the designers of the system. They then specify the designers’ revision of the architecture that
avoids the deadlock.

Here we are concerned with the global invariant described in the previous section. We provide
a specification of the basic architecture of AGST informally described by Balzer, followed by speci-
fications of three variants of that architecture intended to satisfy the coherency constraint in three
quite different ways. The challenge is to prove that they indeed satisfy the invariant, showing how
they accomplish this under their particular design choices.

3.1 Base Architecture

The three variants of the AGST architecture can best be understood in terms of how they differ
from a common base architecture specification. This specification can be given at a level of ab-
straction that captures the essential elements and interconnections described by Balzer. In a sense,
it represents the obvious interpretation of his informal description, but without considering the
constraints necessary for correct operation.

Figure 2 depicts the base architecture. The four functional elements described in the previous
section are realized as separate architectural components. To these are added three other compo-
nents: Doctrine Authoring (DA), Track Server (TS), and Experiment Control (EC).2 DA maintains

2Again, the names that we were given are not particularly consistent with the roles that those elements play within

5

Experimental
Control

Doctrine
Reasoning

Display
Server

Server
Geometry

Server

Client

Synchronous Communication

Buffered Communication

Doctrine
Authoring

Doctrine
Validation

Track
Server

Figure 2: Basic Architecture of AGST.

a database of doctrines, while TS maintains a database of tracks. EC supplies initialization data
in a single communication to DA, DV, and TS, giving rules of engagement to DA (from which
it computes doctrines), region responsibility commands to DV, and the tracks of moving objects
to TS. Once initialized, DA, DV, and TS act as servers for the clients of their information. DV,
because it requires information from DA and TS, acts as both a server and a client. GS operates
asynchronously with respect to DR and so uses a buffer to store intersections provided to DR. DR,
in turn, “pushes” actions toward DS, which causes a ripple effect of requests from DA, DV, and TS.
The simulation is in some sense driven by GS, with its asynchronous production of intersections
based on the available doctrine and track information.

Although there are only seven architectural components in this system, there are several different
kinds of communication and synchronization relationships among the elements, which makes this
an interesting example.

We develop the base architecture specification in CHAM (see appendix section A.1) using a
three-step process. First, we define an algebra of molecules that gives the syntax by which molecules
can be built. Second, we define an initial solution, which is a subset of all possible molecules that
can be constructed using the syntax and which corresponds to the initial, static configuration of a
system conforming to the architecture. Finally, we define the transformation rules that represent
how the system can dynamically evolve.

the system. The shading used in Figure 2 is a more accurate indication of roles.

6

3.1.1 Syntax

The syntax for the base architecture consists of a set of constants P representing the processing
elements and a set of constants D representing the data elements. The connecting elements are
given by a third set C consisting of communication, synchronization, and concurrency operations.
The syntax Σbase of molecules M is given by the following.

M ::= P | C | M �M | M? | M ‖ M

P ::= EC | DV | DS | DA | TS | GS | DR

D ::= intersection | track | action | map | rule |
command | doctrine | signal | {D′}

D′ ::= D | D,D′

C ::= input(P ,D,P) | output(P ,D,P) | connect(P ,P) | disconnect(P ,P) |
open(P) | join | closed | request(P ,D,P) | serve(P) |
buffer(P ,D,P) | P.P.Buffer | C + C

The construct {D′} allows the formation of sets of data elements. We use this below to create both
homogeneous and heterogeneous sets.

3.1.2 Initial Solution

The initial solution for the base architecture is as follows.

S1 = (output(DA,{rule,. . . },EC) + output(DV,{command ,. . . },EC)
+ output(TS,{track,. . . },EC)) � EC,

input(EC,{rule,. . . },DA) � open(DA) � closed � DA,
input(EC,{track,. . . },TS) � open(TS) � closed � TS,
input(EC,{command ,. . . },DV) � (connect(DA,DV) + connect(TS,DV))

� open(DV) � closed � (disconnect(DA,DV) + disconnect(TS,DV)) � DV,
(connect(DA,GS) + connect(TS,GS))

� ((request(DA,doctrine,GS) + request(TS,track,GS)) � buffer(DR,intersection,GS))?

� (disconnect(DA,GS) + disconnect(TS,GS)) � GS,
(connect(DA,DR) + connect(TS,DR))

� (input(GS,intersection,DR) � (request(DA,doctrine,DR) + request(TS,track,DR))
� output(DS,action,DR))?

� (disconnect(DA,DR) + disconnect(TS,DR)) � DR,
(connect(DA,DS) + connect(TS,DS) + connect(DV,DS))

� (input(DR,action,DS)
� (request(DV,map,DS) + request(DA,doctrine,DS) + request(TS,track,DS)))?

� (disconnect(DA,DS) + disconnect(TS,DS) + disconnect(DV,DS)) � DS,
GS.DR.Buffer

This solution consists of eight molecules, one for the initial states of each of the seven major
processing elements in the architecture plus one for the initial state of the buffer.

The notation {D,. . . } is used to indicate a finite, arbitrary length, homogeneous set of instances
of D. The infix operator “�” is used to express the state of a molecule with respect to its commu-

7

nication behavior. The state is understood by reading the molecule from left to right, with the left
operand of the left-most “�” operator representing the next action that the molecule is prepared
to take. For convenience, we also use the operator “�” to mark a molecule by the processing ele-
ment it represents. Thus, for example, the molecules appearing in the initial solution all have the
corresponding element of P as the right operand of their right-most “�” operator.

Before describing the operators and operations in detail, let us look at an example, the molecule
representing the initial state of DV. Note that the interpretation of all symbols, including the opera-
tors and operations, comes only from the transformation rules. Here we are informally anticipating
their meaning.

input(EC,{command ,. . . },DV) � (connect(DA,DV) + connect(TS,DV))
� open(DV) � closed � (disconnect(DA,DV) + disconnect(TS,DV)) � DV

This molecule represents the fact that DV must first receive initialization data from EC, then
establish connections to servers DA and TS, and then make itself available for connection as a
server. Eventually, DV must close its service and disconnect from DA and TS.

Notice that the operator “�” is being used to represent sequential behavior within a molecule.
This contrasts with the situation among molecules within the larger solution, which is inherently a
concurrent behavior, as discussed further below.

3.1.3 Transformation Rules

The semantics for the operators and operations are given by the transformation rules, where
m,m1, . . . ∈ M , p, p1, . . . ∈ P , c, c1, . . . ∈ C, and d ∈ D.

8

T1 ≡ m1 ‖ m2 −→ m1, m2

T2 ≡ (c1 + c2) �m −→ c1 � c2 �m
T3 ≡ (c1 + c2) �m −→ c2 � c1 �m
T4 ≡ (m1)? �m2 � GS −→ m1 � (m1)? �m2 � GS
T5 ≡ (m1)? �m2 � GS −→ m2 � GS
T6 ≡ (m1)? �m2 � DR, m3 � GS.DR.Buffer −→

m1 � (m1)? �m2 � DR, m3 � GS.DR.Buffer
T7 ≡ (m1)? �m2 � DS, output(DS,d,DR) �m3 −→

m1 � (m1)? �m2 � DS, output(DS,d,DR) �m3

T8 ≡ input(p2,d,p1) �m1, output(p1,d,p2) �m2 −→ m1, m2

T9 ≡ buffer(p2,d,p1) �m1, p1.p2.Buffer −→
m1, output(p2,d,p1) � p1.p2.Buffer

T10 ≡ buffer(p2,d,p1) �m1, m2 � p1.p2.Buffer −→
m1, m2 � output(p2,d,p1) � p1.p2.Buffer

T11 ≡ connect(p2,p1) �m1, open(p2) �m2 −→
m1, open(p2) � join �m2 ‖ (serve(p1))? � p2

T12 ≡ disconnect(p2,p1) �m1, (serve(p1))? � p2, open(p2) � join �m2 −→
m1, open(p2) �m2

T13 ≡ request(p2,d,p1) �m, (serve(p1))? � p2 −→
output(p2,signal,p1) � input(p2,d,p1) �m, serve(p1) � (serve(p1))? � p2

T14 ≡ serve(p) �m � DA −→ input(p,signal,DA) � output(p,doctrine,DA) �m � DA
T15 ≡ serve(p) �m � TS −→ input(p,signal,TS) � output(p,track,TS) �m � TS
T16 ≡ serve(p) �m � DV −→

input(p,signal,DV)
� (request(DA,doctrine,DV) + request(TS,track,DV))
� output(p,map,DV) �m � DV

T17 ≡ GS, GS.DR.Buffer, (m1)? �m2 � DR, (m3)? �m4 � DS −→
GS, GS.DR.Buffer, m2 � DR, m4 � DS

T18 ≡ DS, open(DV) � closed �m � DV −→ DS, m � DV
T19 ≡ DV, open(DA) � closed � DA, open(TS) � closed � TS −→ DV, DA, TS

The rules are of two kinds. The first kind defines the basic language of the abstract machine. They
effectively augment the primitive rules defined for all CHAMs, specifically targeted for the appli-
cation at hand. Their role is simply to define the syntactic properties of the given operators—such
as their translation into expressions involving other, presumably lower-level operators—without
introducing any behavior (i.e., state change) into the system. Rules of the second kind, in contrast,
define the dynamics of the system itself. Their application indicates actual changes in the state of
the modeled system. Thus, rules of the second kind represent true computational progress, while
rules of the first kind represent allowable and convenient restructurings of CHAM expressions.

Rules T1 through T3 are of the first kind. The infix operator “‖” syntactically represents a
complexly composed molecule that can be broken down into parallel subcomponents, thus allowing
multiple reactions to occur simultaneously. In more familiar terms, “‖” can be intuitively inter-
preted as a parallel operator. T1 accomplishes this by placing the constituent molecules into the
larger, inherently concurrent, solution. Rules T2 and T3 define the infix operator “+” in terms of
“�”. In particular, we can see that “+” is a nondeterministic ordering of c1 and c2; either can occur
before the other, but both must eventually occur.

9

Iterative behavior within molecules is expressed through the unary operator “?”. For example,
the molecule representing the initial state of GS

(connect(DA,GS) + connect(TS,GS))
� ((request(DA,doctrine,GS) + request(TS,track,GS)) � buffer(DR,intersection,GS))?

� (disconnect(DA,GS) + disconnect(TS,GS)) � GS

represents the fact that GS must first establish a connection to servers DA and TS, then iteratively
request data from those servers and place an intersection into the buffer for DR. Once the iterative
behavior ends, GS must disconnect from the servers. While an iterant itself represents behavior
(e.g., the GS behavior of requesting data from DA and TS, and then placing data into a buffer),
the syntactic creation of that iterant within the solution is not considered behavior. Thus, rules
T4 through T7 are of the first kind, specifying iterations of behavior within the GS, DR, and DS
molecules by making available an iterant, m1, from within the context of an iteration expression,
(m1)?.

As mentioned in Section 2, the system is driven by the behavior of GS. T4 allows arbitrarily many
iterations of the behavior m1. T5, which has the same precondition as T4, is non-deterministically
chosen to indicate that GS terminates its iterative behavior. T6 provides the context for iteration
within DR, namely if there are data waiting in the buffer between GS and DR. T7 provides the
corresponding context for DS.

The next set of rules are of the second kind, defining the dynamics of the system. We begin
with T8, the basic communication rule. This rule indicates the synchronization and transfer of
data between molecules representing two different processing elements. The operations input and
output represent communication ports, where the targets of the communication and the data to be
exchanged are explicitly named. The rule indicates that if two molecules of the form given to the
left of the arrow exist in the solution, then they can be rewritten as the two molecules of the form
given to the right of the arrow.

Buffered communication is represented by the operation buffer, which places a data element
into the buffer placed between a particular pair of processing elements. The buffer between two
processing elements is represented by the construct P.P.Buffer; the first processing element in
the construct is understood to be the producer and the second to be the consumer. The initial
solution, S1, contains such a buffer for GS, the producer, and DR, the consumer. T9 and T10 define
the semantics of buffering in terms of the addition of a basic output opportunity to an ordered list
of such opportunities maintained by the buffer molecule. T9 addresses the case of an empty buffer,
while T10 addresses the case for a non-empty buffer.

We turn now to the representation of the client-server behavior. This kind of communication
involves a two-level protocol, whereby a connection is first established, and then a series of synchro-
nized request and serve operations are performed to effect the actual data transfer. The connection
is then dismantled. This common protocol is illustrated in Figure 3, which uses a sequence chart
to show two clients interacting with a shared server over time, where time progresses from top to
bottom in the figure.

The server contains multiple threads of control, one for the server to accept connections, plus
one for each client to serve that client’s requests.3 The creation of a new thread is represented
by T11. The operator “‖” is used to indicate that the service thread operates in parallel with
the other molecules. The service thread is also given the obligation, through the presence of the
operator close, to eventually close down after an arbitrary number of requests have been served. The

3This is an answer to the deadlock problem examined by Allen and Garlan [2].

10

Connect Open (0) Connect

Serve*

Open (1)

Serve*

Close

Open (2)

Request*

Disconnect

Open (1)

Request*

Disconnect

Close

CLIENT A CLIENT BSERVER

Synchronization

Thread of Control

Closed

Open (0)

Figure 3: Client-Server Protocol.

operator join, which is added to the main server molecule, acts as a counter of the open connections.
This is shown in Figure 3 as the number to the right of open. The idea is that the thread that
is “forked” for a client must eventually “join” when the connection is closed down, and that all
such connections must be closed before the server itself can shut down. This is represented by T12,
which indicates a synchronization among three molecules to effect the dismantling of a connection.
Notice that the service molecule, and hence the thread it represents, is removed from the solution
by the application of T12.

The rule for requesting data from a server, T13, and three rules for serving data to a client, T14

through T16, are all rules of the first kind mentioned above. In particular, operations request and
serve are notational shorthands introduced solely to improve the readability of the specification.
The rules give the definition of these shorthands in terms of the behavior-exhibiting operations
input and output. In essence, they show that request and serve are a handshake protocol involving
paired input and output, first of a signal indicating the request, and then of a data transfer that is
the actual serving of data.

Why are there three server-specific rules for serving data and not just one, generic rule as there
is for a request? The reason is that, unlike DA and TS, DV is not a simple server. It must engage
in some additional communication in order to service each request. This difference can be clearly
seen in rule T16, which indicates the mixed server/client behavior of DV (c.f., Figure 2).

To anticipate the discussion of the three variants in the next section, we note that rules T13

through T16 are the critical rules that reflect the differences among the architectures. In particular,

11

the first variant modifies all four rules, the second variant modifies rules T13 and T16, and the third
variant modifies rules T14 and T15. This should not be surprising, since the essence of the variation
has to do with the treatment of servers DA and TS, but it does highlight our ability to isolate
critical aspects of an architecture using this specification technique.

The next three rules, T17 through T19, represent the orderly shutdown of the system. The
shutdown is initiated by the termination of GS, which in that state is considered “inert” because
no rules can be applied to the molecule to further change its state. In particular, it can no longer
produce data for the GS/DR buffer, and eventually this leads to the emptying of that buffer. T17

gives the context by which DR and DS can begin to shutdown, namely when GS terminates and
the buffer is empty. T18 gives the corresponding context for DV, namely that DS has terminated.
Finally, T19 indicates the condition under which the entire system completes execution, namely
that all seven processing elements individually become inert and the buffer is empty.

3.2 Three Architectural Variants

Any specification of a system will reflect the deliberate choice of a particular level of detail. The
specification of the base architecture given above captures the basic modularization and interactions
among the elements, but purposely leaves unstated many other aspects of the system. One aspect
of concern to the designers, as mentioned in Section 2, is whether and how GS, DR, DS, and
DV coordinate their computations involving doctrines and tracks. The designers proposed three
alternative architectures, which we have modeled in CHAM and describe in this section in terms
of their differences from the base architecture. The full specifications appear in Appendix B.

3.2.1 Identifiers

The first variant attempts to achieve the coherent processing of data by associating unique identifiers
with each doctrine and track. GS assigns these identifiers when it first requests them for its
computation of an intersection. The identifiers are then packaged with the computed intersection
and placed in the GS/DR buffer. DR, DS, and DV use the identifiers when retrieving doctrines and
tracks.

The only change needed to the base syntax, Σbase, for use in the specification of this architecture
is to replace the data element signal of D with the data element identifier .

The change to the initial solution, S1, involves changes to the initial molecules of GS, DR, and
DV. In essence what is required is that all requests for doctrines and tracks from DA and TS,
respectively, must be enhanced to include the use of identifiers. Moreover, the output from GS,
DR, and DV must provide the associated identifiers for the doctrines and tracks used to calculate
their functional output.

First, consider the initial molecule for GS.

(connect(DA,GS) + connect(TS,GS))
� ((request(DA,{identifier1,doctrine},GS) + request(TS,{identifier2,track},GS))

� buffer(DR,{identifier1,identifier2,intersection},GS))?

� (disconnect(DA,GS) + disconnect(TS,GS)) � GS

The requests for doctrines and tracks, in addition to requesting the data elements themselves,
assign the identifiers by which they can be subsequently referenced. (We are assuming here that
DA and TS will always provide the same data upon being presented with a request for those same
identifiers. This assumption about the correct internal behavior of components is reasonable at

12

the architectural level of concern. Of course, the validity of that assumption must be established,
but not as part of architecture-level analysis.) The output from GS, which is placed in a buffer,
is a triple consisting of an intersection and the two identifiers of the doctrine and track used to
calculate that intersection.

Next, consider the initial molecule for DR.

(connect(DA,DR) + connect(TS,DR))
� (input(GS,{identifier1,identifier2,intersection},DR)

� (request(DA,{identifier1,doctrine},DR) + request(TS,{identifier2,track},DR))
� output(DS,{identifier1,identifier2,action},DR))?

� (disconnect(DA,DR) + disconnect(TS,DR)) � DR

DR obtains an intersection and the identifiers for the doctrine and track used to calculate that
intersection. Those identifiers are subsequently used to request the corresponding data elements
from DA and TS. Like GS, the output of DR is a triple that includes the identifiers.

Finally, consider the initial molecule for DS.

(connect(DA,DS) + connect(TS,DS) + connect(DV,DS))
� (input(DR,{identifier1,identifier2,action},DS)

� (request(DV,{{identifier1,identifier2},map},DS) + request(DA,{identifier1,doctrine},DS)
+ request(TS,{identifier2,track},DS)))?

� (disconnect(DA,DS) + disconnect(TS,DS) + disconnect(DV,DS)) � DS

The changes are quite similar to those made for DR, the only substantial difference being the need
to provide the two identifiers to DV as part of the request for a map.

To accommodate the use of identifiers, rules T13 through T16 are the only transformation rules
of the base architecture specification that require modification. These four rules are the ones that
model the general request protocol for clients and the specific serve protocol for the servers DA,
TS, and DV.

T13 ≡ request(p2,{d1,d2},p1) �m, (serve(p1))? � p2 −→
output(p2,d1,p1) � input(p2,d2,p1) �m, serve(p1) � (serve(p1))? � p2

T14 ≡ serve(p) �m � DA −→ input(p,identifier ,DA) � output(p,doctrine,DA) �m � DA
T15 ≡ serve(p) �m � TS −→ input(p,identifier ,TS) � output(p,track,TS) �m � TS
T16 ≡ serve(p) �m � DV −→

input(p,{identifier1,identifier2},DV)
� (request(DA,{identifier1,doctrine},DV) + request(TS,{identifier2,track},DV))
� output(p,map,DV) �m � DV

In this variant, requests involve pairs of data elements, one of which is the identifier and the other of
which is the actual data. The servers will first input an identifier and then output the corresponding
data. In the case of DV, the data are the maps that it computes.

3.2.2 Bundles

The second variant attempts to achieve the coherent processing of data by having the doctrines
and tracks bundled together with the results of computations that use them. So, for example,
rather than packaging identifiers with intersections, as in the first variant, GS packages doctrines
and tracks with intersections and then places the packages into the GS/DR buffer. DR in turn

13

packages the doctrines and tracks it retrieves from the buffer together with the action it computes,
and passes this bundle onto DS.

No changes to the base syntax, Σbase, are required to model this variant.
The changes to the initial solution, S1, are of two kinds. The first is to remove the connections

from DV, DS, and DR to the doctrine and track servers DA and TS. These connections are not
required, since the doctrines and tracks will be provided to these processing elements through other
means. Only GS will still make requests of DA and TS. The second change is to pass doctrines
and tracks directly between the components, in essence having them flow through the system along
with the data to whose computation they contributed. The initial molecules for GS, DR, and DS
are as follows.

(connect(DA,GS) + connect(TS,GS))
� ((request(DA,doctrine,GS) + request(TS,track,GS))
� buffer(DR,{doctrine,track,intersection},GS))?

� (disconnect(DA,GS) + disconnect(TS,GS)) � GS

(input(GS,{doctrine,track,intersection},DR)
� output(DS,{doctrine,track,action},DR))? � DR

connect(DV,DS)
� (input(DR,{doctrine,track,action},DS) � request(DV,{{doctrine,track},map},DS))?

� disconnect(DV,DS) � DS

To adjust the transformation rules, we must add a new rule T ′
13 and modify rule T16.

T ′
13 ≡ request(p2,{d1,d2},p1) �m, (serve(p1))? � p2 −→

output(p2,d1,p1) � input(p2,d2,p1) �m, serve(p1) � (serve(p1))? � p2

T16 ≡ serve(p) �m � DV −→
input(p,{doctrine,track},DV) � output(p,map,DV) �m � DV

The new rule T ′
13 is the same as the modified T13 of the identifier variant. It accommodates the form

of requests made of DV, which requires a doctrine and track pair to compute a map. The original
rule T13 is used for requests made of DA and TS by GS. The change to T16 involves removing the
now unneeded interaction between DV and the servers DA and TS.

3.2.3 Lock Step

The third variant attempts to achieve the coherent processing of data in a rather different way
from the other two variants. The idea behind this variant is that the global computation should
proceed in discrete steps, enforcing the invariant through its exercise of control rather than through
its manipulation of data. At each step, DA and TS should serve the same data in response to every
request made during that step. The individual computations performed by GS, DR, DS, and DV,
which together form a given step, thereby make use of the same pair of doctrine and track. In a
coordinated manner, DA and TS are instructed to serve a new pair of doctrine and track at the
beginning of the next step in the global computation.

This lock-step scheme is reflected in the specification through two devices. First, we associate
a current data thread with each of DA and TS. Each DA and TS server thread (c.f., Figure 3) is
made to synchronize with its component’s current data thread. Second, we use two sets of tokens,
one for each of DA and TS, to regulate when to move to the next step. Each set contains tokens for

14

each of the four clients GS, DR, DS, and DV. When all the tokens from both sets are exhausted,
DA and TS can begin to serve a new doctrine and a new track, respectively, using a new set of
tokens created to correspond to the next series of requests.

In terms of the syntax, we add four connecting elements to the set C: token(P ,D), spent(P ,D),
step, and current(D).

The initial solution contains two changes. First, current data threads are added to the molecules
for DA and TS.

input(EC,{rule,. . . },DA) � (open(DA) � closed � DA ‖ step � DA)

input(EC,{track,. . . },TS) � (open(TS) � closed � TS ‖ step � TS)

Second, tokens are added to indicate that DA and TS are yet to be requested for the first pair of
data elements.

token(DA,GS), token(DA,DR), token(DA,DV), token(DA,DS)

token(TS,GS), token(TS,DR), token(TS,DV), token(TS,DS)

We also modify the transformation rules in two ways. First, we add two new rules to represent
control over the lock-step progress of the data served by DA and TS.

T20 ≡ step � DA, step � TS −→ current(doctrine) � DA, current(track) � TS
T21 ≡ spent(p,GS), spent(p,DR), spent(p,DV), spent(p,DS), current(d) � p −→

token(p,GS), token(p,DR), token(p,DV), token(p,DS), step � p

T20 models the establishment of a new current doctrine and current track. Notice that DA and TS
are made to synchronize when this is done. T21 models the synchronization required to deactivate
the current doctrine or track. Once both the current doctrine and current track have been deacti-
vated, then a new current doctrine and track can be established through T20. The second change
to the transformation rules is to modify the serve rules for DA and TS.

T14 ≡ serve(p) �m � DA, current(doctrine) � DA, token(DA,p) −→
input(p,signal,DA) � output(p,doctrine,DA) �m � DA,
current(doctrine) � DA, spent(DA,p)

T15 ≡ serve(p) �m � TS, current(track) � TS, token(TS,p) −→
input(p,signal,TS) � output(p,track,TS) �m � TS,
current(track) � TS, spent(TS,p)

These rules cause the server thread to synchronize with the current data thread and to consume a
token, where consumption is represented by the term spent(p1,p2).

4 Validating the Architectural Specifications

Our goal in this work is to understand how to validate a state-based operational architectural
specification against a functional requirement specification. We introduce our method largely by
example, describing how to formally relate the functional specification given in Section 2 to the
architectural specifications given in Section 3.

In the following we consider each of the three variants of AGST in turn. As mentioned above,
we are assuming at this level of abstraction that components exhibit locally correct behavior,

15

such as that a buffer does not corrupt buffered data. This is reasonable in the context of a
compositional design method, where reusable components are expected to be designed and validated
independently. But from a somewhat different perspective, we observe that this assumption also
can be turned around to place obligations on the validation of local behavior. In particular, the
specifications at the architectural level make explicit what is required at the component level in
order to ensure functionally correct behavior of the system. In any case, validation of component-
local behavior is not the focus of this paper.

To proceed, we first identify those system states that represent a precise system behavior, such
as the fact that GS is ready to input a doctrine and a track from DA and TS, respectively. We then
try to see if there is a causal dependency between those states induced by the transformation rules.
In general, this dependency does not produce a total ordering among states.

The next step is to identify properties of the portion of the computational path that contains
the dependent states. In our case study it turns out that computations can be characterized by a
rather regular structural pattern that is induced by the coordination policy adopted by the given
architecture. Each architecture in fact adopts different ways of both representing and modifying
data, by suitably coordinating the activities of the system components. Informally speaking, if a
transformation rule Ti in a given architecture requires a given component Cj to be in a certain
state Cs1

j , and this can only be obtained by applying rule Tk on component Cj when it is, for
example, in its initial state Cs0

j , then this forces the transformation by the rule Ti to occur only
after a transformation by rule Tk has occurred, suitably transforming the component Cj from its
initial state Cs0

j to the state Cs1
j . Obviously this situation has to happen in all the computations

that have a transformation step obtained through the application of Tk.
As mentioned in Section 2.2, this kind of behavior can be expressed through a CTL formula

that involves state-based computations, allowing for the specification of ordering among states and
their properties. In this way the CTL formula aims to characterize, in terms of computations, the
functionally correct behaviors. The proof that this formula is satisfied by the actual architectural
specification can then be performed either automatically or by algebraic reasoning.

By combining the scheme formulae introduced in Section 2.2, we obtain a general formula that
describes how the computation in the three different architectures evolves. Of course, depending
on the different design decisions of the three specifications, we will have three different general
formulae. Nevertheless, all of them aim at expressing the same functional specification, in the
sense that they specify how causal dependencies among data and components have to be satisfied
by an architectural specification. We want to make sure that along a computation the different
components use proper data to proceed in their execution. For instance, we want to make sure
not only that once GS has computed an intersection it is later used by DR to compute an action,
but also that in doing so they use the same pair of doctrine and track. The three architectures
differ mainly in the way they recover the doctrines, tracks, and maps along a computation. This
is, of course, reflected in the general formulae and is the main source of differences among the
three different formulations of our case study. In the case of the identifier variant, all pieces of
information have a unique identity and these identities are passed along the computation. In the
case of the bundle variant, all the information is bundled together. And in the lock-step variant,
it is assumed that the data servers provide the same data within the same step. The assumptions
behind these three architectures are discussed in more detail below.

In order to formally define our invariant I(f1, f2) as a CTL formulae we need further notation.
Consider two state formulae f1 and f2. Let AG(f1) abbreviate ¬(E(true U ¬f1)), let f1 −→ f2

abbreviate ¬f1 ∨ f2, and let f1 ∨ f2 abbreviate ¬(¬f1 ∧ ¬f2). Then I(f1, f2) is defined as follows.

16

I(f1, f2) ≡ AG(f1 −→ A(f1 U (¬f1 ∧ A(¬f1 U f2))))

We also need a slightly weaker version of the scheme formula that will be useful in our formulation.
Letting f1 and f2 be atomic formulae, then

J(f1, f2) ≡ AG(f1 −→ A(f1 U f2))

is read as follows.

For every state si, if si satisfies f1, then every path starting from si holds f1 until a
state satisfying f2 is reached.

Moreover, rather than saying

For every path σ starting from the initial solution s0, if a state si of the path contains
a set of molecules M , then every path starting from si has a state that contains the set
of molecules M ′

when stating basic dynamic properties of our architectures, we use the following, more concise
phrase.

Each state that contains a set of molecules M is followed by a state that contains a set
of molecules M ′.

In their current formulation, our architectural specifications are especially suitable for proving
structural properties of the architectures, such as causal dependencies among components and
properties related to distribution of components. However, to verify the coherency constraints on
data, we need more concrete formulations. In particular, they should explicitly indicate the instance
of data that DA, TS, and DS provide to their partners when queried, and should explicitly model
the actual data passing in the input/output communication protocol. The required extension is
simple and expected, which is the reason why we do not start directly from these more detailed
descriptions. For instance, in the bundle variant we assume that in rule T14 (and similarly for the
other rules, such as T15) the doctrine variable on the right-hand side of the rule is replaced with
a doctrine instance when the rule is applied. This guarantees that when an output is enabled it
contains actual instances of data. Thus, the data exchange in the input/output communication
protocol of rule T8 is the expected one: the output molecule communicates the (instance of) data
to the input molecule, and the latter replaces the involved variable with the received information.

4.1 Validating Bundle

We start our presentation with the bundle architecture. Let us recall the functional specification
we have to express.

DS(DR(GS(doctrinei, track j), doctrinei, track j),DV(doctrinei, track j), doctrinei, track j)

17

In the bundle architecture, the data coherency problem is solved by packaging the data and carrying
them along through the computation. The local functioning of DR, for instance, is assumed to be
correct by definition; DR will compute an action by using the same doctrine and track that was
used by GS to produce the intersection because the data are packaged together. What we do not
know, however, is the coordination of potentially concurrent activities: is the coherency preserved
when it comes time for the DS computation? In this case, DS gets data from different sources,
namely DR and DV, and the fact that the data are bundled in the two respective components
does not guarantee that there is consistency between the two different sets of parameters. More
precisely, DR and DV can compute their result starting from different pairs of doctrine and track.
This is exactly what we must be able to control and check in terms of component interactions. In
order to be able to express this property in terms of a property on system computations, we follow
the methodology sketched at the beginning of the section. Starting from the functional property
and considering the way the bundle architecture actually computes the various pieces of data, we
identify the relevant system states represented as CHAM solutions.

We start from the innermost part of the functional formula, GS(doctrinei, track j), where GS asks
for a doctrine and a track from DA and TS, respectively. This is done in two possible orderings:
GS asks for a doctrine from DA and then asks for a track from TS, or vice versa.

Under the first ordering, GS asks for a doctrine from DA when GS is ready to input a doctrine
from DA and when DA is ready to output the doctrine to GS. This situation is possible when a
solution contains both molecules µ1 and µ2 defined as follows.

µ1 = input(DA,doctrine,GS) � request(TS,track,GS)
� buffer(DR,{doctrine,track,intersection},GS) � (m1)? �m2 � GS

µ2 = output(GS,d i,DA) �m3 � DA

Once GS has obtained the doctrine, it then tries to get the track from TS. GS asks for a track from
TS when GS is ready to input a track from TS and TS is ready to output the track to GS. This
situation is possible when a solution contains both molecules µ3 and µ4 defined as follows.

µ3 = input(TS,track,GS)
� buffer(DR,{doctrine,track,intersection},GS) � (m1)? �m2 � GS

µ4 = output(GS,tj ,TS) �m4 � TS

The symmetric situation happens, nondeterministically, in the other possible ordering, where GS
asks first for a track and then for a doctrine. The four molecules corresponding to those above are
defined as follows.

µ5 = input(TS,track,GS) � request(DA,doctrine,GS)
� buffer(DR,{doctrine,track,intersection},GS) � (m1)? �m2 � GS

µ6 = output(GS,tj ,TS) �m4 � TS
µ7 = input(DA,doctrine,GS)

� buffer(DR,{doctrine,track,intersection},GS) � (m1)? �m2 � GS
µ8 = output(GS,d i,DA) �m3 � DA

Property 1 Each solution that contains µ1 and µ2 is followed by a solution that contains µ3 and
µ4. Each solution that contains µ5 and µ6 is followed by a solution that contains µ7 and µ8.

Once GS has obtained a doctrine and track pair, namely a solution that contains either both
µ3 and µ4 or both µ7 and µ8, it computes an intersection. This is the state of the system in which
GS is ready to buffer an intersection computed from the doctrine and track.

18

µ9 = buffer(DR,{d i,tj ,ik},GS) � (m1)? �m2 � GS

As we mention in Section 1, we are making a black-box assumption that the intersection to be
buffered in molecule µ9 is computed from the specific doctrine and track received, namely ik =
GS(d i, t j). In other words, we are assuming at this level of analysis that the components behave
correctly according to their functional specification.

Property 2 Each solution that contains either µ3 and µ4 or µ7 and µ8 is followed by a solution
that contains µ9.

The state in which GS buffers a doctrine, a track, and an intersection is then followed by a state
in which the buffer actually contains such a triple.

µ10 = output(DR,{d i,tj ,ik},GS) � . . . � GS.DR.Buffer
µ11 = (m1)? �m2 � GS

Molecule µ10 denotes the disjunction of all possible molecules obtained by replacing “. . . ” with
sequences of outputs of the form output(DR,{d i,tj ,ik},GS). We note that µ10 is actually a CTL
formula when there are a finite number of doctrines and tracks, and when the buffer is bounded.
This allows us to cope with any buffer content.

Property 3 Each solution that contains µ9 is followed by a solution that contains µ10 and mu11.

Intersections buffered by GS are used by DR to compute actions. DR removes such intersections
from the buffer together with their corresponding doctrines and tracks. The molecules representing
a state in which DR can remove data from the buffer (i.e., the solution contains µ12) and the buffer
is not empty (i.e., the solution contains µ13) are as follows.

µ12 = input(GS,{doctrine,track,intersection},DR)
� output(DS,{doctrine,track,action},DR) � (m6)? � DR

µ13 = output(DR,{d i,tj ,ik},GS) � . . . � GS.DR.Buffer

Property 4 Each solution that contains µ10 and µ11 is followed by a solution that contains µ12

and µ13.

A solution that contains µ12 and µ13 is then followed by a solution in which DR provides to DS
an action with the corresponding doctrine and track.

µ14 = input(DR,{doctrine,track,action},DS)
� request(DV,{{doctrine,track},map},DS) � (m8)? � DS

µ15 = output(DS,{d i,tj ,al},DR) � (m6)? � DR

Property 5 Each solution that contains µ12 and µ13 is followed by a solution that contains µ14

and µ15.

This last state is followed by a graphical depiction of a map computed by DS, which we do not
bother to model explicitly.

19

Let us now express the properties above by means of CTL. The bundle architecture must satisfy
the following formula.

I(µ1 ∧ µ2, µ3 ∧ µ4) ∧
I(µ5 ∧ µ6, µ7 ∧ µ8) ∧
I((µ3 ∧ µ4) ∨ (µ7 ∧ µ8), µ9) ∧
I(µ9, µ10 ∧ µ11) ∧
J(µ10 ∧ µ11, µ12 ∧ µ13) ∧
I(µ12 ∧ µ13, µ14 ∧ µ15)

This formula explains how the computation evolves from the moment GS asks for a doctrine and
a track in order to compute an intersection, to the moment DS depicts the corresponding scene.
Indeed, the first two I formulae deal with the initial communications among DA, TS, and GS. The
third one deals with the output of the computed intersection by GS. The fourth I formula models
the placing of the intersection into the buffer. The buffered intersection constitutes the input to
DR (the J formula) that is used to compute an action that is eventually sent to DS (the last I
formula).

Indeed, our architecture satisfies the formula. The proof can be done either algebraically or
automatically. The way we have derived properties actually provides a sketch of the proof. Only a
few details on the application of the rules have been omitted. In addition, we could prove that the
computation starts with a state that holds either µ1 ∧ µ2 or µ5 ∧ µ6. This can be expressed by the
formula A(f1 U f2), where f1 = ¬(µ3 ∧ µ4)∨ (µ7 ∧ µ8) and f2 = (µ1 ∧ µ2)∨ (µ5 ∧ µ6). It says that
in each path starting from the initial solution it cannot be the case that a state contains molecule
µ3 ∧ µ4 (µ7 ∧ µ8) before µ1 ∧ µ2 (µ5 ∧ µ6).

4.2 Validating Lock Step

We start with an assumption appropriate to the lock-step architecture. It is related to the data
that DA, TS, and DS provide to their partners when queried.

Assumption 1 Within the same step, DA, TS, and DS each provide the same data to their clients.

As in the bundle architecture, GS has two ways to ask for a doctrine and for a track from DA and
TS, respectively: It can first ask for a doctrine from DA and then for a track from TS, or vice versa.
GS asks for a doctrine from DA when GS is ready to input a doctrine from DA, when DA is ready
to output the doctrine from GS, when the token from GS to DA is available, and when the current
doctrine is a given d . This situation is possible when a solution contains the four molecules µ1, µ2,
µ3, and µ4 defined as follows.

µ1 = input(DA,doctrine,GS) � request(TS,track,GS)
� buffer(DR,intersection,GS) � (m1)? �m2 � GS

µ2 = output(GS,d i,DA) �m3 � DA
µ3 = token(DA,GS)
µ4 = current(d i) � DA

A solution that contains those four molecules is followed by a state in which GS asks for a track.
This situation is similar to the previous one. GS asks for a track from TS when GS is ready to
input a track from TS, TS is ready to output the track to GS, the token from GS to TS is available,
and the current track is a given t . In addition, we require that the token from GS to DA is spent

20

in order to make sure that in this state GS has already obtained a doctrine. This is captured with
the following molecules.

µ5 = input(TS,track,GS)
� buffer(DR,intersection,GS) � (m1)? �m2 � GS

µ6 = output(GS,tj ,TS) �m4 � TS
µ7 = token(TS,GS)
µ8 = current(tj) � TS
µ9 = spent(DA,GS)

Similar reasoning holds for the symmetric case when GS first asks for a track from TS and then for
a doctrine from DA. This is followed by a solution in which GS asks for a doctrine from DA and
the token from TS to GS is spent. The corresponding molecules are as follows.

µ10 = input(TS,track,GS) � request(DA,doctrine,GS)
� buffer(DR,intersection,GS) � (m1)? �m2 � GS

µ11 = output(GS,tj ,TS) �m4 � TS
µ12 = token(TS,GS)
µ13 = current(tj) � TS
µ14 = input(DA,doctrine,GS)

� buffer(DR,intersection,GS) � (m1)? �m2 � GS
µ15 = output(GS,d i,DA) �m3 � DA
µ16 = token(DA,GS)
µ17 = current(d i) � DA
µ18 = spent(TS,GS)

Property 6 Each solution that contains µ1, µ2, µ3, and µ4 is followed by a solution that contains
µ5, µ6, µ7, µ8 and µ9. Each solution that contains µ10, µ11, µ12, and µ13 is followed by a solution
that contains µ14, µ15, µ16, µ17, and µ18.

Once GS has obtained the current doctrine and the current track it is able to buffer an inter-
section. In such a state the buffer is certainly empty.

µ19 = buffer(DR,ik,GS) � (m1)? �m2 � GS
µ20 = GS.DR.Buffer

Assumption 2 Since the components locally behave correctly according to their functional speci-
fication, we can assume that in molecule µ19 the intersection to be buffered is computed from the
doctrine and track just received, namely ik = GS(di, tj).

Property 7 Each solution that contains either µ5, µ6, µ7, µ8, and µ9 or µ14, µ15, µ16, µ17, and
µ18 is followed by a solution that contains µ19 and µ20.

Then GS can buffer the intersection.

µ21 = output(DR,ik,GS) � GS.DR.Buffer
µ22 = (m1)? �m2 � GS

In the lock-step variant we do not have the problem of the potentially unbounded buffer, as we do
in the bundle variant. The reason is that in this variant the buffer never contains more than one
intersection.

21

Property 8 Each solution that contains µ19 and µ20 is followed by a solution that contains µ21

and µ22.

Once GS has buffered the intersection, DR is ready to remove it from the buffer.

µ23 = input(GS,intersection,DR)
� (request(DA,doctrine,DR) + request(TS,track,DR))
� output(DS,action,DR) � (m5)? �m6 � DR

µ24 = output(DR,ik,GS) � GS.DR.Buffer

Property 9 Each solution that contains µ21 and µ22 is followed by a solution that contains µ23

and µ24.

DR then consumes the buffered intersection, leading to a state in which it asks for a doctrine
and for a track. After that the buffer becomes empty again.

µ25 = (request(DA,doctrine,DR) + request(TS,track,DR))
� output(DS,action,DR) � (m5)? �m6 � DR

µ26 = GS.DR.Buffer

Property 10 Each solution that contains µ23 and µ24 is followed by a solution that contains µ25

and µ26.

In order to get a doctrine and a track from DA and TS, respectively, DR has a two choices. It
can first ask for a doctrine and then for a track, or vice versa. Let us first consider the former case,
which is expressed by the following molecules.

µ27 = input(DA,doctrine,DR) � request(TS,track,DR)
� output(DS,action,DR) � (m5)? �m6 � DR

µ28 = output(DR,d i,DA) �m7 � DA
µ29 = token(DA,DR)
µ30 = current(d i) � DA.

A solution that contains the four molecules µ27, µ28, µ29, and µ30 is followed by a state in which
DR asks for a track.

µ31 = input(TS,track,GS)
� output(DS,action,DR) � (m5)? �m6 � DR

µ32 = output(DR,tj ,TS) �m8 � TS
µ33 = token(TS,DR)
µ34 = current(tj) � TS
µ35 = spent(DA,TS)

Similar reasonings hold for the symmetric case, when DR first asks for a track from TS and then a
doctrine from DA.

µ36 = input(TS,track,DR) � request(DA,doctrine,DR)
� output(DS,action,DR) � (m5)? �m6 � DR

µ37 = output(DR,tj ,TS) �m8 � TS
µ38 = token(TS,DR)
µ39 = current(tj) � TS

22

This is followed by a state in which DR asks for a doctrine from DA.

µ40 = input(DA,doctrine,DR)
� output(DS,action,DR) � (m5)? �m6 � DR

µ41 = output(DR,d i,DA) �m3 � DA
µ42 = token(DA,DR),
µ43 = current(d i) � DA
µ44 = spent(TS,DR)

Property 11 Each solution that contains µ25 and µ26 is followed by either a solution that contains
µ27, µ28, µ29, and µ30 or by a solution that contains µ36, µ37, µ38, and µ39. Each solution that
contains µ27, µ28, µ29, and µ30 is followed by a solution that contains µ31, µ32, µ33, µ34, and µ35.
Each solution that contains µ36, µ37, µ38, and µ39 is followed by a solution that contains µ40, µ41,
µ42, µ43, and µ44.

Then there is a state in which DR is ready to output an action and DS is ready to input that
action.

µ45 = output(DS,al,DR) � (m5)? �m6 � DR
µ46 = input(DR,action,DS)

� (request(DV,map,DS) + request(DA,doctrine,DS) + request(TS,track,DS))
� (m9)? �m10 � DS

Assumption 3 Again we can assume that the action computed by DR in molecule µ45 is computed
from the intersection, doctrine, and track just received, namely al = DR(di, tj , ik).

Property 12 Each solution that contains µ31, µ32, µ33, µ34, and µ35 or µ40, µ41, µ42, µ43, and
µ44 is followed by a solution that contains µ45 and µ46.

The action is then actually received by DS.

µ47 = (m5)? �m6 � DR
µ48 = (request(DV,map,DS) + request(DA,doctrine,DS) + request(TS,track,DS))

�(m9)? �m10 � DS

Property 13 Each solution that contains µ45 and µ46 is followed by a solution that contains µ47

and µ48.

At this point DS is ready to ask for a map from DV, a doctrine from DA, and a track from
TS. The choice is nondeterministic. We could go further to show that the map computed by DV
uses the same doctrine and track used by DR to compute the action. This, however, follows similar
reasonings as above.

Finally, we have that the lock-step architecture must satisfy the following formula.

23

I(µ1 ∧ µ2 ∧ µ3 ∧ µ4, µ5 ∧ µ6 ∧ µ7 ∧ µ8 ∧ µ9) ∧
I(µ10 ∧ µ11 ∧ µ12 ∧ µ13, µ14 ∧ µ15 ∧ µ16 ∧ µ17 ∧ µ18) ∧
I((µ5 ∧ µ6 ∧ µ7 ∧ µ8 ∧ µ9) ∨ (µ14 ∧ µ15 ∧ µ16 ∧ µ17 ∧ µ18), µ19 ∧ µ20) ∧
I(µ19 ∧ µ20, µ21 ∧ µ22) ∧
I(µ21 ∧ µ22, µ22 ∧ µ23) ∧
I(µ23 ∧ µ24, µ25 ∧ µ26) ∧
I(µ25 ∧ µ26, (µ27 ∧ µ28 ∧ µ29 ∧ µ30) ∨ (µ36 ∧ µ37 ∧ µ38 ∧ µ39)) ∧
I(µ27 ∧ µ28 ∧ µ29 ∧ µ30, µ31 ∧ µ32 ∧ µ33 ∧ µ34 ∧ µ35) ∧
I(µ36 ∧ µ37 ∧ µ38 ∧ µ39, µ40 ∧ µ41 ∧ µ42 ∧ µ43 ∧ µ44)) ∧
I((µ31 ∧ µ32 ∧ µ33 ∧ µ34 ∧ µ35) ∨ (µ40 ∧ µ41 ∧ µ42 ∧ µ43 ∧ µ44), µ45 ∧ µ46)) ∧
I(µ45 ∧ µ46, µ47 ∧ µ48)

4.3 Validating Identifiers

GS asks for a doctrine and a track from DA and TS, respectively. Since the computation is driven
by GS, this latter process fixes two identifiers when rule T4 is applied: one for the doctrine and
another for the track. We make the following assumption for this architecture.

Assumption 4 Components DA and TS provide the same data given the same identifiers.

Once GS has fixed the identifiers for the doctrine and for the track it can ask for a doctrine
and track from DA and TS, respectively. As above, this is done in two possible ways: GS asks for
a doctrine from DA and then asks for a track from TS, or vice versa.

GS asks for a doctrine from DA when it is ready to output a doctrine identifier to DA and then
it can input the associated doctrine from DA, and DA is ready to input the doctrine identifier from
GS and then it can output the associated doctrine to DA.

µ1 = output(DA,id i,GS) � input(DA,doctrine,GS) � request(TS,{id j ,track},GS)
� buffer(DR,{id i,id j ,intersection},GS) � (m1)? �m2 � GS

µ2 = input(GS,identifier1,DA) � output(GS,doctrine,DA) �m3 � DA

A solution that contains molecules µ1 and µ2 is followed by a solution in which the doctrine
associated with the identifier id i is actually received by GS. This involves the application of rule
T8 twice. In the first application, GS communicates to DA the doctrine identifier and in the second
application DA communicates to GS the doctrine associated with that identifier.

Once GS has obtained a doctrine from DA it can ask for a track from TS. The protocol is the
same. First GS communicates to TS a track identifier and then it waits for the track itself.

µ3 =output(TS,id j ,GS) � input(TS,track,GS)
� buffer(DR,{id i,id j ,intersection},GS) � (m1)? �m2 � GS

µ4 = input(GS,identifier2,TS) � output(GS,track,TS) �m4 � TS

If GS first asks for a track and then for a doctrine, the situation is symmetric.

µ5 = output(TS,id j ,GS) � input(TS,track,GS) � request(DA,{id i,doctrine},GS)
� buffer(DR,{id i,id j ,intersection},GS) � (m1)? �m2 � GS

µ6 = input(GS,identifier2,TS) � output(GS,track,TS) �m4 � TS

24

This is followed by a state in which the track is actually received and GS is ready to input a doctrine.

µ7 =output(DA,id i,GS) � input(DA,doctrine,GS)
� buffer(DR,{id i,id j ,intersection},GS) � (m1)? �m2 � GS

µ8 = input(GS,identifier1,DA) � output(GS,doctrine,DA) �m3 � DA

Property 14 Each solution that contains µ1 and µ2 is followed by a solution that contains µ3 and
µ4. Each solution that contains µ5 and µ6 is followed by a solution that contains µ7 and µ8.

Once GS has obtained both a doctrine and a track using their identifiers, it is ready to buffer
an intersection. This is expressed by a solution that contains molecule µ9.

µ9 = buffer(DR,{id i,id j ,ik},GS) � (m1)? �m2 � GS

Property 15 Each solution contains µ3 and µ4 or µ7 and µ8 is followed by a solution that contains
µ9.

Then the intersection is actually buffered. This is expressed by a solution that contains molecules
µ10 and µ11.

µ10 = output(DR,{id i,id j ,ik},GS) � . . . � GS.DR.Buffer
µ11 = (m1)? �m2 � GS

Property 16 Each solution that contains µ9 is followed by a solution that contains µ10 and µ11.

The intersection buffered by GS will be used by DR to compute an action. This is possible when
DR is ready to remove an intersection from the buffer and the buffer is not empty.

µ12 = output(DR,{id i,id j ,ik},GS) � . . . � GS.DR.Buffer
µ13 = input(GS,{identifier1,identifier2,intersection},DR)

� (request(DA,{identifier1,doctrine},DR) + request(TS,{identifier2,track},DR))
� output(DS,{identifier1,identifier2,action},DR) � (m5)? �m6 � DR

Property 17 Each solution that contains µ10 and µ11 is followed by a solution that contains µ12

and µ13.

From the doctrine and track identifiers, DR tries to get the associated doctrine and track in
order to compute an action. As usual it can first receive the doctrine and then the track, or vice
versa. Assume that DR first asks for the doctrine and then for the track.

µ14 = output(DA,id i,DR) � input(DA,doctrine,DR) � request(TS,{id j ,track},DR)
� output(DS,{id i,id j ,action},DR) � (m7)? �m8 � DR

µ15 = input(DR,identifier1,DA) � output(DR,doctrine,DA) �m9 � DA

A solution that contains molecules µ14 and µ15 is followed by a solution in which DR asks for the
track associated with a given identifier.

µ16 = output(TS,id j ,DR) � input(TS,track,DR)
� output(DS,{id i,id j ,action},DR) � (m7)? �m8 � DR

µ17 = input(DR,identifier2,TS) � output(DR,track,TS) �m10 � TS

25

Symmetrically, DR can first ask for a track and then a doctrine.

µ18 = output(TS,id j ,DR) � input(TS,track,DR) � request(DA,{id i,doctrine},DR)
� output(DS,{id i,id j ,action},DR) � (m7)? �m8 � DR

µ19 = input(DR,identifier2,TS) � output(DR,track,TS) �m10 � TS

A solution that contains molecules µ18 and µ19 is followed by a solution in which DR asks for the
doctrine associated with a given identifier.

µ20= output(DA,id i,DR) � input(DA,doctrine,DR)
� output(DS,{id i,id j ,action},DR) � (m7)? �m8 � DR

µ21 = input(DR,identifier1,DA) � output(DR,doctrine,DA) �m9 � DA

Property 18 Each solution that contains µ14 and µ15 is followed by a solution that contains µ16

and µ17. Each solution that contains µ18 and µ19 is followed by a solution that contains µ20 and
µ21.

Then DR computes an action and sends it to DS.

µ22 = output(DS,{id i,id j ,al},DR) � (m7)? �m8 � DR
µ23 = input(DR,{identifier1,identifier2,action},DS)

� (request(DV,{{identifier1,identifier2},map},DS)
+ request(DA,{identifier1,doctrine},DS) + request(TS,{identifier2,track},DS))

� (m11)? �m12 � DA

Property 19 Each solution that contains µ16 and µ17 or µ20 and µ21 is followed by a solution that
contains µ22 and µ23.

The action is then sent to DS.

µ24 = (m7)? �m8 � DR
µ25 = (request(DV,{{id i,id j},map},DS)

+ request(DA,{id i,doctrine},DS) + request(TS,{id j ,track},DS))
� (m11)? �m12 � DA

Property 20 Each solution that contains µ22 and µ23 is followed by a solution that contains µ24

and µ25.

According to the received doctrine identifier and track identifier, DS asks for a map, a doctrine,
and a track. This is enough to depict the map. Again, this is omitted because it follows similar
reasoning as above.

The identifier architecture must satisfy the following formula.

26

I(µ1 ∧ µ2, µ3 ∧ µ4) ∧
I(µ5 ∧ µ6, µ7 ∧ µ8) ∧
I((µ3 ∧ µ4) ∨ (µ7 ∧ µ8), µ9) ∧
I(µ9, µ10 ∧ µ11) ∧
J(µ10 ∧ µ11, µ12 ∧ µ13) ∧
I(µ12 ∧ µ13, (µ14 ∧ µ15) ∨ (µ18 ∧ µ19))
I(µ14 ∧ µ15, µ16 ∧ µ17)
I(µ18 ∧ µ19, µ20 ∧ µ21)
I((µ16 ∧ µ17) ∨ (µ20 ∧ µ21), µ22 ∧ µ23)
I(µ22 ∧ µ23, µ24 ∧ µ25)

5 Conclusion

The relationship between architecture and design has been a long-standing subject of discussion.
What has emerged is an understanding that “architecture” should refer to high levels of design that
can be related to lower levels of design through suitable refinement steps. This seems reasonable,
since software architectures represent the first system abstraction in which a (high level) description
of the system implementation is provided, and that its structure and behavior should be prescriptive
with respect to the implementation.

The relationship between architecture and requirements is, by contrast, less clear. On one side
there is the awareness that requirements and architectures should be related [24]. On the other
there is the difficulty of relating very different concerns, modeled in different ways.

In this paper we tackled an instance of this problem by showing how a requirement on the data
coherency of a system, modeled in a functional way, can be related to three variants of a software
architecture, modeled in an operational, state-based style. At a very basic level, our approach is
a kind of model checking, since it considers the requirement as a property that has to be related
to a model of the implementation. This is a straightforward approach and there is no new insight
in and of itself. What is novel in our approach is the way we build the formula that represents
the relationship between the requirement and the architecture. In particular, we translate the
requirement into a form that constraints the states of the architectural model. This is the most
difficult part of our work, and the way we carried it out follows a logical path that allows us to
easily prove that the formula is satisfied by the model. In other words, in building the formula we
also performed the bulk of the proof. In more formal terms, we performed a proof by construction.

This suggests a future line of research in the direction of (semi-)automating the approach pre-
sented here. The idea is to formalize our methodology so that, starting from a functional require-
ment and from a basic set of mappings (e.g., basic functionalities on components, inputs/outputs
on states, etc.) it can be possible to automatically build sub-formulae by model checking. Then
the formulae can be composed together as suggested in our approach by using suitable logical and
temporal operators. This would ease the task of relating very different models and, thus, allow
early validation of software architectures with respect to complex functional constraints.

27

References

[1] G.D. Abowd, R. Allen, and D. Garlan. Formalizing Style to Understand Descriptions of Soft-
ware Architecture. ACM Transactions on Software Engineering and Methodology, 4(4):319–
364, October 1995.

[2] R. Allen and D. Garlan. A Case Study in Architectural Modeling: The AEGIS System. In
Proceedings of the 8th International Workshop on Software Specification and Design, pages
6–15. IEEE Computer Society, March 1996.

[3] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM Transactions on
Software Engineering and Methodology, 6(3):213–249, July 1997.

[4] F. Aquilani, S. Balsamo, and P. Inverardi. Performance Analysis at the Software Architectural
Design Level. Performance Evaluation, July 2001.

[5] L. Bass, P. Clements, and R. Kazman, editors. Software Architecture in Practice. Addison-
Wesley, Reading, Massachusetts, 1998.

[6] G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical Computer Science,
96:217–248, 1992.

[7] A. Bertolino, F. Corradini, P. Inverardi, and H. Muccini. Deriving Test Plans from Architec-
tural Descriptions. In Proceedings of the 2000 International Conference on Software Engineer-
ing, pages 220–229. Association for Computer Machinery, June 2000.

[8] A. Bertolino, P. Inverardi, and H. Muccini. An Explorative Journey from Architectural Tests
Definition Down to Code Test Execution. In Proceedings of the 2001 International Conference
on Software Engineering, pages 211–220. Association for Computer Machinery, May 2001.

[9] D. Compare, P. Inverardi, and A.L. Wolf. Uncovering Architectural Mismatch in Component
Behavior. Science of Computer Programming, 33(2):101–131, February 1999.

[10] E.A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Vol. B: Formal Models and Semantics, pages 996–1072. Elsevier, 1990.

[11] E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On Branching
versus Linear Time Temporal Logic. Journal of the ACM, 33(1):151–178, January 1986.

[12] D. Garlan, W. Tichy, and F. Paulisch. Summary of the Dagstuhl Workshop on Software
Architecture. SIGSOFT Software Engineering Notes, 20(3):63–83, July 1995.

[13] C. Hofmeister, R.L. Nord, and D. Soni. Applied Software Architecture. Addison-Wesley,
Reading, Massachusetts, 2000.

[14] P. Inverardi and A.L. Wolf. Formal Specification and Analysis of Software Architectures
using the Chemical Abstract Machine Model. IEEE Transactions on Software Engineering,
21(4):373–386, April 1995.

[15] P. Inverardi, A.L. Wolf, and D. Yankelevich. Static Checking of System Behaviors Using De-
rived Component Assumptions. ACM Transactions on Software Engineering and Methodology,
9(3):239–272, July 2000.

28

[16] J. Kramer and J. Castro, editors. Proceedings of the First International Workshop from Soft-
ware Requirements to Architectures (STRAW ’01). IEEE Computer Society, May 2001.

[17] D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, and W. Mann. Specification
and Analysis of System Architecture Using Rapide. IEEE Transactions on Software Engineer-
ing, 21(4):336–355, April 1995.

[18] D. Le Métayer. Describing Software Architecture Styles Using Graph Grammars. IEEE Trans-
actions on Software Engineering, 24(7):521–533, July 1998.

[19] G. Naumovich, G.S. Avrunin, L.A. Clarke, and L.J. Osterweil. Applying Static Analysis to
Software Architectures. In Proceedings of the Sixth European Software Engineering Conference
Held Jointly with the 5th ACM SIGSOFT Symposium on Foundations of Software Engineering,
number 1301 in Lecture Notes in Computer Science, pages 77–93. Springer-Verlag, 1997.

[20] B. Nuseibeh. Weaving Together Requirements and Architecture. Computer, 34(3):115–117,
March 2001.

[21] J.A. Stafford and A.L. Wolf. Annotating Components to Support Component-Based Static
Analyses of Software Systems. In Proceedings Grace Hopper Celebration of Women in Com-
puting 2000, September 2000.

[22] J.A. Stafford and A.L. Wolf. Architecture-Level Dependence Analysis for Software Systems.
International Journal of Software Engineering and Knowledge Engineering, 11(4):431–452,
August 2001.

[23] J.A. Stafford and A.L. Wolf. Software Architecture. In G.T. Heineman and W.T. Councill,
editors, Component-Based Software Engineering: Putting the Pieces Together, pages 371–387.
Addison-Wesley, Reading, Massachusetts, 2001.

[24] A. van Lamsweerde. Requirements Engineering in the Year 00: A Research Perspective.
In Proceedings of the 2000 International Conference on Software Engineering, pages 5–19.
Association for Computer Machinery, June 2000.

[25] M. Wermelinger. Towards a Chemical Model for Software Architecture Reconfiguration. In
Proceedings of the 4th International Conference on Configurable Distributed Systems, pages
111–118. IEEE Computer Society, May 1998.

29

A Background

This appendix provides a brief review of the CHAM formalism [6], Kripke structures, and the CTL
logic [10, 11].

A.1 The CHAM Model

A CHAM is specified by defining molecules m1,m2, . . . defined as terms of a syntactic algebra
that derive from a set of constants and a set of operations, and solutions S0, S1, . . . of molecules.
Molecules constitute the basic elements of a CHAM, while solutions are multisets of molecules
interpreted as defining the states of a CHAM. One of these solutions is identified as the initial
solution, which is used to represent the initial state of the CHAM. A CHAM specification contains
transformation rules T1, T2, . . . (of the form m1,m2, . . . ,mi −→ mi+1,mi+2, . . . ,mi+j) that define
a transformation relation from solutions to solutions, Sk −→ Sl, dictating the way solutions can
evolve (i.e., states can change) in the CHAM. The transformation relation is given via an inference
rule of the form S1 −→ S2 implies S1] S3 −→ S2] S3.

For a given solution, a CHAM can apply as many rules as possible, provided that their premises
do not conflict (that is, no molecule is involved in more than one rule). This permits the modeling
of parallel behaviors by performing parallel transformations. When more than one rule can apply
to the same (set of) molecules, then a nondeterministic choice is made as to which transformation
to apply.

As mentioned in Section 3, the CHAM description of a software architecture [14, 15] consists
of a syntactic description of the static components of the architecture (the molecules), a solution
representing the initial state of the system in terms of the initial states of its architectural com-
ponents (the initial solution), and of a set of transformation rules that describe how the system
dynamically evolves.

A.2 Kripke Structures

The CHAM formalism accommodates a variety of architectural analysis techniques [9, 14]. Thus,
depending on the property of interest, one can choose the most adequate technique. In particular,
one can either exploit the algebraic and equational nature of CHAM, or one can take advantage of
its operational flavor to derive a transition system or a Kripke structure and then reason at this
level of abstraction.

Let us show how to derive a Kripke structure from a CHAM specification. In essence, we
derive the Kripke structure from the transformation rules, which are the basis for the operational
description of the CHAM.

Definition 1 (Operational semantics induced by T) Let T be the set of transformation rules of a
CHAM C. Then T defines a relation →T ⊆ S × S, where S is the set of solutions. The relation is
the least relation satisfying the rules.

Definition 2 (Derivative) Given a set of transformation rules T , a T -derivation from a solution
S to a solution Sn is a sequence {Si, 1 ≤ i ≤ n, n > 1} such that S = S1 and for any 1 ≤ i ≤ n−1,
Si →T Si+1. A solution S is called a T -derivative of S′ if a T -derivation exists from S′ to S.
The set of derivatives of S is denoted by DT (S), while MT (S) denotes the set of molecules within
solutions in DT (S).

30

Definition 3 (Kripke Structure) A Kripke structure (or KS) is a 5-tuple K = (S,AP,L,→, s0),
where

• S is a set of states;

• AP is a non-empty set of atomic proposition names ranged over by p, p1, . . .;

• L : S → 2AP is a function that assigns to each state a set of atomic propositions true in that
state;

• →⊆ S × S is the transition relation; and

• s0 is the initial state.

We can now state how, given a CHAM and a solution, we can derive a Kripke structure that
represents the whole set of possible derivations. If the number of derivable solutions is finite, then
the Kripke structure is also finite.

Definition 4 (Kripke Structure corresponding to a solution) Given a solution S and a set of trans-
formation rules T , T (S) is the Kripke structure (DT (S)∪ {S},MT (S),L,→T , S), where for every
S′ ∈ DT (S) ∪ {S}, L(S′) is the set of molecules in S′ and →T is the relation defined by T .

A.3 The CTL Logic

The CTL logic is suitable to express properties of reactive systems defined by means of transition
systems or Kripke structures. Before defining the syntax and semantics of CTL operators, let us
introduce some notation and definitions.

Let K = (S,AP,L,→, s0) be a Kripke structure. A path is defined as follows.

• σ is a path from r0 ∈ S if either σ = r0 (the empty path from r0) or σ is a (possibly infinite)
sequence (r0, r1)(r1, r2) . . . such that (ri, ri+1) ∈→ for each i ≥ 0.

• A path σ is called maximal if either it is infinite or it is finite and its last state r has no
successor states. The set of maximal paths from r0 is denoted Π(r0).

• When σ = ρη, we say that ρ is a prefix of σ.

• If σ is infinite, then |σ| = ω.
If σ = r0, then |σ| = 0.
If σ = (r0, r1)(r1, r2) . . . (rn, rn+1), n ≥ 0, then |σ| = n + 1. Moreover, we denote the ith state
in the sequence, ri, by σ(i).

The syntax of CTL is defined by the state and path formulae generated by the following gram-
mar.

φ ::= p | φ ∧ φ | ¬φ | Eγ | Aγ
γ ::= Xφ | Fφ | φUφ

where φ ranges over state formulae, γ ranges over path formulae, p ranges over AP, E (for some
path) and A (for all paths) are path quantifiers, and X, U and F are next, until, and sometimes
operators, respectively.

31

Intuitively, the next modality Xφ says that the next state of the path holds formula φ. The
until modality φUφ′ says that along the path, all states satisfy φ, until a state that satisfies φ′ is
reached. The sometime modality Fφ says that along the path there exists a state that satisfies φ.

Satisfaction of a state formula φ (path formula γ) by a state s (path σ), which is denoted s |=K φ
(σ |=K γ), is given inductively by the following.

s |=K p iff p ∈ L(s)
s |=K φ ∧ φ′ iff s |=K φ and s |=K φ′

s |=K ¬φ iff not s |=K φ
s |=K Eγ iff there exists a path σ ∈ Π(s) such that σ |=K γ
s |=K Aγ iff for all paths σ ∈ Π(s), σ |=K γ
σ |=K Fφ iff there exists i ≥ 0 and σ(i) |=K φ
σ |=K Xφ iff |σ| ≥ 1 and σ(1) |=K φ
σ |=K φUφ′ iff there exists i ≥ 0 such that σ(i) |=K φ′, and for all

1 ≤ j ≤ i− 1, σ(j) |=K φ

32

B Full Specification of Variants

This appendix provides the full specifications for each of the variants described in Section 3.2.

B.1 First Variant: Identifiers

M ::= P | C | M �M | M? | M ‖ M

P ::= EC | DV | DS | DA | TS | GS | DR

D ::= intersection | track | action | map | rule |
command | doctrine | identifier | {D′}

D′ ::= D | D,D′

C ::= input(P ,D,P) | output(P ,D,P) | connect(P ,P) | disconnect(P ,P) |
open(P) | join | closed | request(P ,D,P) | serve(P) |
buffer(P ,D,P) | P.P.Buffer | C + C

S1 = (output(DA,{rule,. . . },EC) + output(DV,{command ,. . . },EC)
+ output(TS,{track,. . . },EC)) � EC,

input(EC,{rule,. . . },DA) � open(DA) � closed � DA,
input(EC,{track,. . . },TS) � open(TS) � closed � TS,
input(EC,{command ,. . . },DV) � (connect(DA,DV) + connect(TS,DV))

� open(DV) � closed � (disconnect(DA,DV) + disconnect(TS,DV)) � DV,
(connect(DA,GS) + connect(TS,GS))

� ((request(DA,{identifier1,doctrine},GS) + request(TS,{identifier2,track},GS))
� buffer(DR,{identifier1,identifier2,intersection},GS))?

� (disconnect(DA,GS) + disconnect(TS,GS)) � GS,
(connect(DA,DR) + connect(TS,DR))

� (input(GS,{identifier1,identifier2,intersection},DR)
� (request(DA,{identifier1,doctrine},DR) + request(TS,{identifier2,track},DR))
� output(DS,{identifier1,identifier2,action},DR))?

� (disconnect(DA,DR) + disconnect(TS,DR)) � DR,
(connect(DA,DS) + connect(TS,DS) + connect(DV,DS))

� (input(DR,{identifier1,identifier2,action},DS)
� (request(DV,{{identifier1,identifier2},map},DS)

+ request(DA,{identifier1,doctrine},DS)
+ request(TS,{identifier2,track},DS)))?

� (disconnect(DA,DS) + disconnect(TS,DS) + disconnect(DV,DS)) � DS,
GS.DR.Buffer

33

T1 ≡ m1 ‖ m2 −→ m1, m2

T2 ≡ (c1 + c2) �m −→ c1 � c2 �m
T3 ≡ (c1 + c2) �m −→ c2 � c1 �m
T4 ≡ (m1)? �m2 � GS −→ m1 � (m1)? �m2 � GS
T5 ≡ (m1)? �m2 � GS −→ m2 � GS
T6 ≡ (m1)? �m2 � DR, m3 � GS.DR.Buffer −→

m1 � (m1)? �m2 � DR, m3 � GS.DR.Buffer
T7 ≡ (m1)? �m2 � DS, output(DS,d,DR) �m3 −→

m1 � (m1)? �m2 � DS, output(DS,d,DR) �m3

T8 ≡ input(p2,d,p1) �m1, output(p1,d,p2) �m2 −→ m1, m2

T9 ≡ buffer(p2,d,p1) �m1, p1.p2.Buffer −→
m1, output(p2,d,p1) � p1.p2.Buffer

T10 ≡ buffer(p2,d,p1) �m1, m2 � p1.p2.Buffer −→
m1, m2 � output(p2,d,p1) � p1.p2.Buffer

T11 ≡ connect(p2,p1) �m1, open(p2) �m2 −→
m1, open(p2) � join �m2 ‖ (serve(p1))? � p2

T12 ≡ disconnect(p2,p1) �m1, (serve(p1))? � p2, open(p2) � join �m2 −→
m1, open(p2) �m2

T13 ≡ request(p2,{d1,d2},p1) �m, (serve(p1))? � p2 −→
output(p2,d1,p1) � input(p2,d2,p1) �m, serve(p1) � (serve(p1))? � p2

T14 ≡ serve(p) �m � DA −→ input(p,identifier ,DA) � output(p,doctrine,DA) �m � DA
T15 ≡ serve(p) �m � TS −→ input(p,identifier ,TS) � output(p,track,TS) �m � TS
T16 ≡ serve(p) �m � DV −→

input(p,{identifier1,identifier2},DV)
� (request(DA,{identifier1,doctrine},DV) + request(TS,{identifier2,track},DV))
� output(p,map,DV) �m � DV

T17 ≡ GS, GS.DR.Buffer, (m1)? �m2 � DR, (m3)? �m4 � DS −→
GS, GS.DR.Buffer, m2 � DR, m4 � DS

T18 ≡ DS, open(DV) � closed �m � DV −→ DS, m � DV
T19 ≡ DV, open(DA) � closed � DA, open(TS) � closed � TS −→ DV, DA, TS

34

B.2 Second Variant: Bundles

M ::= P | C | M �M | M? | M ‖ M

P ::= EC | DV | DS | DA | TS | GS | DR

D ::= intersection | track | action | map | rule |
command | doctrine | signal | {D′}

D′ ::= D | D,D′

C ::= input(P ,D,P) | output(P ,D,P) | connect(P ,P) | disconnect(P ,P) |
open(P) | join | closed | request(P ,D,P) | serve(P) |
buffer(P ,D,P) | P.P.Buffer | C + C

S1 = (output(DA,{rule,. . . },EC) + output(DV,{command ,. . . },EC)
+ output(TS,{track,. . . },EC)) � EC,

input(EC,{rule,. . . },DA) � open(DA) � closed � DA,
input(EC,{track,. . . },TS) � open(TS) � closed � TS,
input(EC,{command ,. . . },DV) � open(DV) � closed � DV,
(connect(DA,GS) + connect(TS,GS))

� ((request(DA,doctrine,GS) + request(TS,track,GS))
� buffer(DR,{doctrine,track,intersection},GS))?

� (disconnect(DA,GS) + disconnect(TS,GS)) � GS,
(input(GS,{doctrine,track,intersection},DR) � output(DS,{doctrine,track,action},DR))? � DR,
connect(DV,DS)

� (input(DR,{doctrine,track,action},DS) � request(DV,{{doctrine,track},map},DS))?

� disconnect(DV,DS) � DS,
GS.DR.Buffer

35

T1 ≡ m1 ‖ m2 −→ m1, m2

T2 ≡ (c1 + c2) �m −→ c1 � c2 �m
T3 ≡ (c1 + c2) �m −→ c2 � c1 �m
T4 ≡ (m1)? �m2 � GS −→ m1 � (m1)? �m2 � GS
T5 ≡ (m1)? �m2 � GS −→ m2 � GS
T6 ≡ (m1)? � DR, m2 � GS.DR.Buffer −→

m1 � (m1)? � DR, m2 � GS.DR.Buffer
T7 ≡ (m1)? �m2 � DS, output(DS,d,DR) �m3 −→

m1 � (m1)? �m2 � DS, output(DS,d,DR) �m3

T8 ≡ input(p2,d,p1) �m1, output(p1,d,p2) �m2 −→ m1, m2

T9 ≡ buffer(p2,d,p1) �m1, p1.p2.Buffer −→
m1, output(p2,d,p1) � p1.p2.Buffer

T10 ≡ buffer(p2,d,p1) �m1, m2 � p1.p2.Buffer −→
m1, m2 � output(p2,d,p1) � p1.p2.Buffer

T11 ≡ connect(p2,p1) �m1, open(p2) �m2 −→
m1, open(p2) � join �m2 ‖ (serve(p1))? � p2

T12 ≡ disconnect(p2,p1) �m1, (serve(p1))? � p2, open(p2) � join �m2 −→
m1, open(p2) �m2

T13 ≡ request(p2,d,p1) �m, (serve(p1))? � p2 −→
output(p2,signal,p1) � input(p2,d,p1) �m, serve(p1) � (serve(p1))? � p2

T ′
13 ≡ request(p2,{d1,d2},p1) �m, (serve(p1))? � p2 −→

output(p2,d1,p1) � input(p2,d2,p1) �m, serve(p1) � (serve(p1))? � p2

T14 ≡ serve(p) �m � DA −→ input(p,signal,DA) � output(p,doctrine,DA) �m � DA
T15 ≡ serve(p) �m � TS −→ input(p,signal,TS) � output(p,track,TS) �m � TS
T16 ≡ serve(p) �m � DV −→

input(p,{doctrine,track},DV) � output(p,map,DV) �m � DV
T17 ≡ GS, GS.DR.Buffer, (m1)? � DR, (m2)? �m3 � DS −→

GS, GS.DR.Buffer, DR, m3 � DS
T18 ≡ DS, open(DV) � closed � DV −→ DS, DV
T19 ≡ DV, open(DA) � closed � DA, open(TS) � closed � TS −→ DV, DA, TS

36

B.3 Third Variant: Lockstep

M ::= P | C | M �M | M? | M ‖ M

P ::= EC | DV | DS | DA | TS | GS | DR

D ::= intersection | track | action | map | rule |
command | doctrine | signal | {D′}

D′ ::= D | D,D′

C ::= input(P ,D,P) | output(P ,D,P) | connect(P ,P) | disconnect(P ,P) |
open(P) | join | closed | request(P ,D,P) | serve(P) |
buffer(P ,D,P) | P.P.Buffer | C + C
token(P ,D) | spent(P ,D) | step | current(D)

S1 = (output(DA,{rule,. . . },EC) + output(DV,{command ,. . . },EC)
+ output(TS,{track,. . . },EC)) � EC,

input(EC,{rule,. . . },DA) � (open(DA) � closed � DA ‖ step � DA),
input(EC,{track,. . . },TS) � (open(TS) � closed � TS ‖ step � TS),
input(EC,{command ,. . . },DV) � (connect(DA,DV) + connect(TS,DV))

� open(DV) � closed � (disconnect(DA,DV) + disconnect(TS,DV)) � DV,
(connect(DA,GS) + connect(TS,GS))

� ((request(DA,doctrine,GS) + request(TS,track,GS)) � buffer(DR,intersection,GS))?

� (disconnect(DA,GS) + disconnect(TS,GS)) � GS,
(connect(DA,DR) + connect(TS,DR))

� (input(GS,intersection,DR) � (request(DA,doctrine,DR) + request(TS,track,DR))
� output(DS,action,DR))?

� (disconnect(DA,DR) + disconnect(TS,DR)) � DR,
(connect(DA,DS) + connect(TS,DS) + connect(DV,DS))

� (input(DR,action,DS)
� (request(DV,map,DS) + request(DA,doctrine,DS) + request(TS,track,DS)))?

� (disconnect(DA,DS) + disconnect(TS,DS) + disconnect(DV,DS)) � DS,
token(DA,GS), token(DA,DR), token(DA,DV), token(DA,DS),

token(TS,GS), token(TS,DR), token(TS,DV), token(TS,DS),
GS.DR.Buffer

37

T1 ≡ m1 ‖ m2 −→ m1, m2

T2 ≡ (c1 + c2) �m −→ c1 � c2 �m
T3 ≡ (c1 + c2) �m −→ c2 � c1 �m
T4 ≡ (m1)? �m2 � GS −→ m1 � (m1)? �m2 � GS
T5 ≡ (m1)? �m2 � GS −→ m2 � GS
T6 ≡ (m1)? �m2 � DR, m3 � GS.DR.Buffer −→

m1 � (m1)? �m2 � DR, m3 � GS.DR.Buffer
T7 ≡ (m1)? �m2 � DS, output(DS,d,DR) �m3 −→

m1 � (m1)? �m2 � DS, output(DS,d,DR) �m3

T8 ≡ input(p2,d,p1) �m1, output(p1,d,p2) �m2 −→ m1, m2

T9 ≡ buffer(p2,d,p1) �m1, p1.p2.Buffer −→
m1, output(p2,d,p1) � p1.p2.Buffer

T10 ≡ buffer(p2,d,p1) �m1, m2 � p1.p2.Buffer −→
m1, m2 � output(p2,d,p1) � p1.p2.Buffer

T11 ≡ connect(p2,p1) �m1, open(p2) �m2 −→
m1, open(p2) � join �m2 ‖ (serve(p1))? � p2

T12 ≡ disconnect(p2,p1) �m1, (serve(p1))? � p2, open(p2) � join �m2 −→
m1, open(p2) �m2

T13 ≡ request(p2,d,p1) �m, (serve(p1))? � p2 −→
output(p2,signal,p1) � input(p2,d,p1) �m, serve(p1) � (serve(p1))? � p2

T14 ≡ serve(p) �m � DA, current(doctrine) � DA, token(DA,p) −→
input(p,signal,DA) � output(p,doctrine,DA) �m � DA,
current(doctrine) � DA, spent(DA,p)

T15 ≡ serve(p) �m � TS, current(track) � TS, token(TS,p) −→
input(p,signal,TS) � output(p,track,TS) �m � TS,
current(track) � TS, spent(TS,p)

T16 ≡ serve(p) �m � DV −→
input(p,signal,DV)
� (request(DA,doctrine,DV) + request(TS,track,DV))
� output(p,map,DV) �m � DV

T17 ≡ GS, GS.DR.Buffer, (m1)? �m2 � DR, (m3)? �m4 � DS −→
GS, GS.DR.Buffer, m2 � DR, m4 � DS

T18 ≡ DS, open(DV) � closed �m � DV −→ DS, m � DV
T19 ≡ DV, open(DA) � closed � DA, open(TS) � closed � TS −→ DV, DA, TS
T20 ≡ step � DA, step � TS −→ current(doctrine) � DA, current(track) � TS
T21 ≡ spent(p,GS), spent(p,DR), spent(p,DV), spent(p,DS), current(d) � p −→

token(p,GS), token(p,DR), token(p,DV), token(p,DS), step � p

38

