A Lightweight Infrastructure
for Reconfiguring Applications

Marco Castaldi,! Antonio Carzaniga,*
Paola Inverardi,’ and Alexander L. Wolf *

TDipartimento di Informatica Department of Computer Science
Universita’ dell’Aquila University of Colorado at Boulder
via Vetoio, 1 67100 L’Aquila, Italy Boulder, Colorado, 80309-0430 USA
{castaldi,inverard } @di.univaq.it {carzanig,alw }@cs.colorado.edu

University of Colorado
Department of Computer Science
Technical Report CU-CS-943-02 December 2002

© 2002 Marco Castaldi, Antonio Carzaniga, Paola Inverardi, and Alexander L. Wolf

ABSTRACT

We describe Lira, a lightweight infrastructure for managing dynamic reconfiguration that applies
and extends the concepts of network management to component-based, distributed software sys-
tems. Lira is designed to perform both component-level reconfigurations and scalable application-
level reconfigurations, the former through agents associated with individual components and the
latter through a hierarchy of managers. Agents are programmed on a component-by-component
basis to respond to reconfiguration requests appropriate for that component. Managers embody the
logic for monitoring the state of one or more components, and for determining when and how to
execute reconfiguration activities. A simple protocol based on SNMP is used for communication
among managers and agents.

1 Introduction

This paper addresses the problem of managing the dynamic reconfiguration of component-based, distributed
software systems. Reconfiguration comes in many forms, but two extreme approaches can be identified:
internal and external.

Internal reconfiguration relies on the programmer to build into a component the facilities for reconfiguring
the component. For example, a component might observe its own performance and switch from one algorithm
or data structure to another when some performance threshold has been crossed. This form of reconfiguration
is therefore sometimes called “programmed” or “self-healing” reconfiguration.

External reconfiguration, by contrast, relies on some entity external to the component to determine when
and how the component is reconfigured. For example, an external entity might monitor the performance
of a component and perform a wholesale replacement of the component when a performance threshold has
been crossed. Likewise, an external entity might determine when to upgrade a component to a newer version
and perform that upgrade by replacing the component within the application system. Of course, replacing a
component is a rather drastic reconfiguration action, but there is little that an external entity can do without
cooperation from the component itself.

One common form of cooperation is the provision by a component of reconfiguration parameters; the pa-
rameters define what internal reconfigurations a component is prepared to carry out, while an external entity
is given the ability to set parameter values and thereby to determine which of the possible reconfigurations
is to occur and when. Clearly, any particular approach to reconfiguration is likely to be some blending of
the two extreme approaches in conjunction with the use of reconfiguration parameters.

At a level above the individual components, we can consider the reconfiguration of the larger application
system, where the dominant concern is the topology of the application in terms of the number and location
of its components. What this typically introduces into the problem is the need to carry out a coordinated
set of reconfigurations against the individual components. The question then arises, how and where is this
coordination activity specified and managed?

The “easy” answer would be some centralized, external entity. However, the viability of such an entity
essentially assumes that (a) components are designed and built to cooperate with the external entity and
(b) it is possible for the entity to have global knowledge of the state of the application. These assumptions run
counter to modern development methodology: we want to build generic components having few dependencies
so that they can be reused in multiple contexts, and we want distributed systems to be built without global
knowledge so that they can scale and be resilient to failure.

In previous work, we developed the Software Dock software deployment system [11]. The Software Dock is
a comprehensive tool that addresses issues such as configuration, installation, and automated update. It also
explores the challenges of representing component dependencies and constraints arising from heterogeneous
deployment environments [10]. The Software Dock provides an extensive and sophisticated infrastructure in
which to define and execute post-development activities [12]. However, it does not provide explicit support for
dynamic reconfiguration—that is, a reconfiguration applied to a running system—although its infrastructure
was designed to accommodate the future introduction of such a capability.

In an effort to better understand the issues surrounding dynamic reconfiguration, we developed a tool
called Bark [21]. In contrast to the Software Dock, which is intended to be generic, Bark is a reconfiguration
tool that is designed specifically to work within the context of the EJB (Enterprise JavaBean) [20] component
framework. Its infrastructure leverages and extends the EJB suite of services and is therefore well integrated
into a standard platform. Of course, its strength is also its weakness, since this tight integration means
that it is useful only to application systems built on the EJB model. On the other hand, we learned
an important lesson from our experience with Bark, namely that it is both possible and advantageous to
make use of whatever native facilities are already provided by the components for the purposes of dynamic
reconfiguration. Moreover, the burden of tailoring reconfiguration activities is naturally left to and divided
among the developers of individual components, the developers of subsystems of components, and ultimately
the developers of the encompassing applications.

Reflecting back, then, on our experience with the Software Dock, we realized that it imposes rather
severe demands on component and application developers, above and beyond any necessary tailoring. In
particular, the architecture of the Software Dock requires that at least one so-called field dock reside on every

host machine. The field dock serves as the execution environment for all deployment activities, the store for
all data associated with deployment activities, and the interface to the file system on the host. The field
dock is also the mediator for all communication between individual components and external entities having
to do with deployment activities. Finally, in order to make use of the Software Dock, developers must encode
detailed information about their components and applications in a special deployment language called the
Deployable Software Description (DSD).

Thus, the Software Dock would lead to what we now consider a “heavyweight” solution to the problem
of dynamic reconfiguration, a characteristic shared by many other reconfiguration systems (e.g., DRS [1],
Lua [2], and PRISMA [3]). While such an approach may be feasible in some circumstances, we are intrigued
by the question of how to build lighter-weight solutions.

It is difficult to be precise about what one means by “lightweight”, since it is inherently a relative concept.
But for our purposes, we take lightweight to indicate intuitively an approach to dynamic reconfiguration in
which:

e the service is best effort, in that it arises from, and makes use of, the facilities already provided by
individual components, rather than some standardized set of imposed facilities;

e reconfiguration is carried out via remote control, in that the management of reconfiguration is separated
from the implementation of reconfiguration, so as to enhance the reusability of components and, in
conjunction with the best-effort nature of the service, broaden the scope of applicability; and

e communication is through a simple protocol between components and the entities managing their
reconfiguration, rather than through complex interfaces and/or data models.

In this paper we describe our attempt at a lightweight infrastructure for dynamic reconfiguration and its
implementation in a tool called Lira. The inspiration for our approach comes directly from the field of network
management and its Internet-Standard Network Management Framework, which for historical reasons is
referred to as SNMP [6]. (SNMP is the name of the protocol used within the framework.) Our hypothesis
is that this framework can serve, with appropriate extension and adaptation where necessary, as a useful
model for lightweight reconfiguration of component-based, distributed software systems.

In the next section, we provide background on network management and the Internet-Standard Network
Management Framework. Section 3 describes Lira, while Section 4 presents a brief example application of
Lira that we have implemented. Related work is discussed in Section 5, and we conclude in Section 6 with
a discussion of future work.

2 Background: Network Management

As mentioned above, the design of Lira was inspired by network management approaches. The original
challenge for network management was to devise a simple and lightweight method for managing network
devices, such as routers and printers. These goals were necessary in order to convince manufacturers to make
their devices remotely manageable without suffering undue overhead, as well as to encourage widespread
acceptance of a method that could lead to a de facto management standard. (Perhaps the same can be said
of software component manufacturers.)

The network management model consists of four basic elements: agents,! each of which is associated
with a network node (i.e., device) to be managed and which provides remote management access on behalf
of the node; managers, which embody the logic for monitoring the state of a node and for determining when
and how to execute management activities; a protocol, which is used for communication among the agent
and manager management entities; and management information, which defines the aspects of a node’s state
that can be monitored and the ways in which that state can be modified from outside the node.

Agents are typically provided by node manufacturers, while managers are typically sophisticated third-
party applications (e.g., HP’s OpenView [14]). The standard protocol is SNMP (Simple Network Manage-
ment Protocol), which provides managers with the primitive operations for getting and setting variables on

1The term “agent” as used in network management should not be confused with other uses of this term in computer science,
such as “mobile agent” or “intelligent agent”. Network management agents are not mobile, and their intelligence is debatable.

agents, and for sending asynchronous alerts from agents to managers. The management information defines
the state variables of an agent and is therefore specific to each node. These variable definitions are captured
in a MIB (Management Information Base) associated with each agent.

In our work on Lira, we are driven by the complexity of configurations inherent in today’s large-scale,
component-based, distributed software systems. Specifically, multiple components tend to execute on the
same device, and regularly come into and go out of existence (much more often than, say, a router in a
network). Further, the components, whether executing on the same or on different devices, tend to have
complex relationships and interdependencies. Finally, domains of authority over components tend to overlap
and interact, implying complex management relationships.

In theory, the Internet-Standard Network Management Framework places few constraints on how its
simple concepts are to be applied, allowing for quite advanced and sophisticated arrangements. In practice,
however, network management seems to have employed these concepts in only relatively straightforward
ways. For instance, a typical configuration for managing a network consists of a flat space of devices with
their associated agents managed by a single, centralized manager; a manager is associated with a particular
domain of authority (e.g., a business organization) and controls all the devices within that domain. It
is interesting to note that there have been efforts at defining MIBs for some of the more prominent web
applications, such as the Apache web server, IBM’s WebSphere transaction server, and BEA’s WebLogic
transaction server, and more generally a proposal for an “application management” MIB [15]. But, again,
the approach taken is to view these as independently managed applications, not a true complex of distributed
components.

3 Lira

The essence of the approach we take in Lira is to define a particular method for applying the basic facilities
of the Internet-Standard Network Management Framework to complex component-based software systems.
To summarize:

e We distinguish two kinds of agent. A reconfiguration agent is associated with a component, and
is responsible for reconfiguring the component in response to operations on variables defined by its
MIB. A host agent is associated with a computer in the network, and is responsible for installing and
activating components on that computer, again, in response to operations on variables defined by its
MIB.

e A manager can itself be a reconfiguration agent. What this means is that a manager can have a MIB
and thereby be expected to respond to other, higher-level managers. Such a manager agent would
reinterpret the reconfiguration (and status) requests it receives into management requests it should
send to the agents of the components it is managing. In this way a scalable management hierarchy can
be established, finally reaching ground on the base reconfiguration agents associated with (monolithic)
components.

e We define a basic set of “standard” MIB definitions for each kind of agent. These definitions are
generically appropriate for managing software components, but are expected to be augmented on an
agent-by-agent basis so that individual agents can be specialized to their particular unique tasks.

It is important to note that Lira does not itself provide the agents, although in our prototype implementation
we have created convenient base classes from which implementations can be derived. Rather, the principle
that we follow is that developers should be free to create agents in any programming language using any
technology they desire, as long as the agents serve their intended purpose and provide access through
at least the set of MIB definitions we have defined. For example, in our use of Lira within the Willow
survivability middleware system [16], there are agents written in C++ and Java. Furthermore, some of the
Willow manager agents are highly sophisticated workflow engines that can coordinate and adjudicate among
competing reconfiguration requests [17].
The remainder of this section describes these concepts in greater detail.

Reconfiguration Agent

A base reconfiguration agent directly controls and manages a component. Lira does not constrain how the
agent is associated with its component, only that the agent is able to act upon the component. For example,
the agent might be part of the same thread of execution, execute in a separate thread, or execute in a
completely separate process. In fact, the agent might reside on a completely different device, although this
would probably be the case only for complex agents associated with components running on capacity-limited
devices.

The logical model of communication between a base reconfiguration agent and its component is through
shared memory; the component shares a part of its state with the agent. Of course, to avoid synchronization
problems, the component must provide atomic access to the shared state.

A reconfiguration agent that is not a base reconfiguration agent is a manager. It interacts with other base
and non-base reconfiguration agents using the standard management protocol. For purposes of simplifying
the discussion below, we abuse the term “component” to refer also to the subassembly of agents with which a
non-base reconfiguration agent (i.e., a manager agent) interacts. Thus, from the perspective of a higher-level
manager, it appears as though a lower-level manager is any other reconfiguration agent. This is illustrated
in the example agent hierarchy of Figure 1.

Agent

Component

Management
Protocol

Figure 1: An Example Lira Agent Hierarchy.

In the figure, agents Aj, Ao, and As are base reconfiguration agents acting on components C;, Cy, and
Cg, respectively. Agent A4 is a manager for Aj, Ao, and Ag, but is treated as a reconfiguration agent by
the higher-level manager As. In effect, A, is responsible for carrying out reconfigurations on a subsystem
represented by Cg4, and hides the complexity of that responsibility from As.

A reconfiguration agent is essentially responsible for managing the lifecycle of its component, and exports
at least the following five management functions:?

e void START(startArgs)
e void STOP()

e void SUSPEND ()

e void RESUME()

e void SHUTDOWN ()

The function SHUTDOWN also serves to terminate the agent. Each reconfiguration agent also exports at least
the following two variables:

2Lira provides the notion of a “function”, described below, as a convenient shorthand for a combination of more primitive
concepts already present in SNMP.

e STATUS
e NOTIFYTO

The first variable contains the current status of the component, and can take on one of the following values:
starting, started, stopping, stopped, suspending, suspended, and resuming. The second variable contains the
address of the manager to which an alert notification should be sent. This is necessary because we allow
agents to have multiple managers, but we assume that at any given time only one of those managers has
responsibility for alerts. That manager can use other means, not defined by Lira, to spread the alert.

Host Agent

A host agent runs on a computer where components and reconfiguration agents are to be installed and
activated, and is responsible for carrying out those activities in response to requests from a manager. (How
a host agent is itself installed and activated, is obviously a bootstrapping process.) As part of activating
a component and its associated agent, the host agent provides an available network port, called the agent
address, to the reconfiguration agent over which that agent can receive requests from a manager.

Each host agent exports at least the following variables:

e NOTIFYTO

e INSTALLEDAGENTS

e ACTIVEAGENTS
Host agents also export the following functions:

e void INSTALL(componentPackage)

e void UNINSTALL(componentPackage)

e agentAddress GET_AGENTADDRESS (agentName)

e agentAddress ACTIVATE(componentType,componentName,componentArgs)

e void DEACTIVATE (componentName)

e void REMOVEACTIVEAGENT (agentName)
Again, we expect host agents to export additional variables and functions consistent with their particular
purposes, including variables described in the Host Resources MIB [24].
Management Protocol

The management protocol follows the SNMP paradigm. Each message in the protocol is either a request or
a response, as shown in the following table:

request response
SET (variable_name, variable_value) ACK(message_text)
GET (variable_name) REPLY (variable_name, variable_value)
CALL(function-name, parameters_list) | RETURN(return_value)

Requests are sent by managers to agents, and responses are sent back to managers from agents. There is
one additional kind of message, which is sent from agents to managers in the absence of any request.

NOTIFY (variable_name, variable_value, agent_name)

This message is used to communicate an alert from an agent back to a manager. For instance, an agent
might notice that a performance threshold has been crossed, and uses the alert to initiate some remedial
action on the part of the manager.

4 Example

We now present a simple, yet practical example to demonstrate how Lira can be used to achieve a dynamic
reconfiguration. The example was implemented using Java agents working on components of a pre-existing
Java application. Lira has been used in more complex and diverse settings, but this example suffices for
illustrative purposes.

The application is an overlay network of software routers for a distributed, content-based, pub-
lish/subscribe event notification service called Siena [5]. The routers form a store-and-forward network
responsible for delivering messages posted by publishers on one side of a network to the subscribes having
expressed interest in the message on the other side of the network. Publishers and subscribers are clients of
the service that can connect to arbitrary routers in the network. The routers are arranged in a hierarchical
fashion, such that each has a unique parent, called a master, to which subscription and notification messages
are forwarded. (Notification messages also flow down the hierarchy, from parents to children, but that fact is
not germane to this example.) The master of a client is the router to which it is attached. Siena is designed
to adjust its forwarding tables in response to changes in subscriptions, and also in response to changes in
topology. The topology can be changed through a Siena command called set master, which resets the master
of a given router.

Figure 2 shows a simple topology, where S;, Sa, and Ss are Siena routers, and C; and C, are Siena
clients. S; is the master of both S and S3. Each router and client has associated with it a reconfiguration
agent. All the agents are managed by a single manager. In addition to the “standard” set of variables, each
reconfiguration agent in this system exports a variable MASTER to indicate the identity of its component’s
master router.

Figure 2: Topology of an Example Siena Network.

Notice that if S; were to fail, then clients C; and Cs would not be able to communicate. In such a
case, we would like to reconfigure the Siena network to restore communication. The manager can do this
by reassigning S3 to be the master of Sg, as shown in Figure 3. The manager will change the value of
the variable MASTER of agents A, and Aj, sending the request SET("MASTER",S3) to Ay and the request
SET("MASTER","") to As.

Clearly, for the manager to be able to decide on the proper course of action, the state of the Siena
network must be monitored. Moreover, the manager must have knowledge of the current topology. This can
be done in several ways using Lira, including requests for the values of appropriate variables and the use of
the NOTIFY message when an agent notices that a router is unresponsive.

5 Related work

Supporting the dynamic reconfiguration of distributed systems has been a goal of researchers and practition-
ers for the past quarter century, and many techniques and tools have been developed. The work described in
this paper is leveraging and integrating the recent maturation of two disciplines, component-based software
engineering [13] and network management [6].

Endler divides dynamic reconfiguration into two forms according to when the change is defined: pro-
grammed and ad hoc [8]. The first form is defined at the time the system is designed, and may be compiled

T SET
("MASTER", $3) | ("MASTER", null)

Figure 3: Reconfiguration in Response to the Failure of S;.

into the code of the application. The second form is not predictable and defined only once the application
is already in execution. To a certain extent, Lira supports the use of both forms of reconfiguration, the first
through planned requests directed at reconfiguration agents, and the second either through replacement of
components or through topological reconfigurations at the application level. Of course, the goal of Lira is to
automate reconfiguration activities, so the reconfigurations cannot be completely unplanned unless control
is given over to the ultimate manager, the human operator.

Endler also discusses a distinction between functional and structural dynamic reconfigurations [8]. Func-
tional reconfiguration involves new code being added to an application, while structural reconfiguration is
topological in nature. Again, Lira supports both.

Several researchers, including Almeida et al. [1], Bidan et al. [4], Kramer and Magee [18], and Wer-
melinger [25], have tried to address the problem of maintaining consistency during and after a reconfig-
uration. Usually, the consistency properties of the system are expressed through logical constraints that
should be respected, either a posteriori or a priori. If the constraints are seen as postconditions [26], the
reconfiguration must be undone if a constraint is violated. If the constraints are seen as preconditions [8],
the reconfiguration can be done only if the constraints are satisfied.

Lira approaches the consistency problem using a sort of “management by delegation” [9], in which it
delegates responsibility to agents to do what is necessary to guarantee consistency and state integrity. This
is in line with the idea of “self-organizing software architectures” [19], where the goal is to minimize the
amount of explicit management and reduce protocol communication. It is also in line with the idea of
a lightweight, best-effort service (see Section 1), where we assume that the component developer has the
proper insight about how best to maintain consistency. This is in contrast to having the reconfiguration
infrastructure impose some sort of consistency-maintenance scheme of its own.

Java Management eXtensions (JMX) is a specification that defines an architecture, design pattern, APIs,
and services for application and network management in the Java programming language [23]. Under JMX,
each managed resource and its reconfiguration services are captured as a so-called MBean. The MBean is
registered with an MBean server inside a JMX agent. The JMX agent controls the registered resources and
makes them available to remote management applications. The reconfiguration logic of JMX agents can be
dynamically extended by registering MBeans. Finally, the JMX specification allows communication among
different kinds of managers through connectors and protocol adaptors that provide integration with HTTP,
RMI, and even the SNMP protocols. While JMX is clearly a powerful reconfiguration framework, it is also
a heavyweight mechanism, and one that is strongly tied to one specific platform, namely Java.

6 Conclusions and Future Work

Lira represents our attempt to devise a lightweight infrastructure for the dynamic reconfiguration of
component-based, distributed software systems. Lira follows the approach pioneered in the realm of network
management, providing in essence a particular method for applying the concepts of the Internet-Standard
Network Management Framework. Lira is designed to perform both component-level reconfigurations and

scalable application-level reconfigurations, the former through agents associated with individual components
and the latter through a hierarchy of managers.

We have implemented a prototype of the Lira infrastructure and used it to manage several complex
distributed applications, including a network of Siena overlay routers [5] and a prototype of a military
information fusion and dissemination system called the Joint Battlespace Infosphere [22]. Based on these
and other experiences, we have begun to explore how the basic Lira infrastructure could be enhanced in
certain specialized ways.

First, in order to simplify the exportation of reconfiguration variables and functions for Java components,
we have created a specialized version of the Lira agent. This agent uses the Java Reflection API to provide
mechanisms to export (public) variables and functions defined in the agent and/or in the component. These
exported entities are then integrated into the MIB for the agent using a callback mechanism.

Second, in order to provide more “intelligence” in reconfiguration agents, we have created an API to
integrate Lira with a ProLog-like language called DALI [7]. The idea is to be able to implement agents that
can reason about the local context, make decisions based on that reasoning, and remember (or learn) from
past situations. The result of this integration is an intelligent agent we call LiDA (Lira + DALI), which is
more autonomous than a basic Lira agent and uses its intelligence and memory to make some simple, local
decisions without support from a manager.

Finally, we have created a preliminary version of a reconfiguration language that allows one to define, in
a declarative way, application-level reconfiguration activities. We have observed that Lira agents operating
at this level follow a regular structure in which their concern is centered on the installation/activation of
new components, changes in application topology, and monitoring of global properties of the system. The
particulars of these actions can be distilled out and used to drive a generic agent. This echos the approach
we took in the Software Dock, where generic agents operate by interpreting the declarative language of the
DSD [11].

Nomne of these enhancements are strictly necessary, but they allow us to better understand how well Lira
can support sophisticated, programmer-oriented specializations, which is a property that we feel will make
Lira a broadly acceptable, lightweight reconfiguration framework.

Acknowledgements

The authors wish to thank Dennis Heimbigner, Jonathan Hill, and John Knight for their help in formulating
the ideas presented in this paper.

This work was supported in part by the Defense Advanced Research Projects Agency, Air Force Research
Laboratory, Space and Naval Warfare System Center, and Army Research Office under agreement numbers
F30602-01-1-0503, F30602-00-2-0608, N66001-00-1-8945, and DAAD19-01-1-0484. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency, Air Force Research Laboratory, Space and Naval Warfare
System Center, Army Research Office, or the U.S. Government.

References

[1]

[10]

[11]

J.P.A. Almeida, M. Wegdam, M. van Sinderen, and L. Nieuwenhuis. Transparent Dynamic Reconfig-
uration for CORBA. In Proceedings of the 3rd International Symposium on Distributed Objects and
Applications, pages 197-207. IEEE Computer Society, September 2001.

T. Batista and N. Rodriguez. Dynamic Reconfiguration of Component-Based Applications. In Pro-
ceedings of the International Symposium on Software Engineering for Parallel and Distributed Systems,
pages 32-39. IEEE Computer Society, June 2000.

J. Berghoff, O. Drobnik, A. Lingnau, and C. Monch. Agent-Based Configuration Management of Dis-
tributed Applications. In Proceedings of the 3rd International Conference on Configurable Distributed
Systems, pages 52-59. IEEE Computer Society, May 1996.

C. Bidan, V. Issarny, T. Saridakis, and A. Zarras. A Dynamic Reconfiguration Service for CORBA.
In Proceedings of the 4th International Conference on Configurable Distributed Systems, pages 35—42.
IEEE Computer Society, May 1998.

A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation of a Wide-Area Event Notification
Service. ACM Transactions on Computer Systems, 19(3):332-383, August 2001.

J. Case, R. Mundy, D. Partain, and B. Stewart. Introduction and Applicability Statements for Internet
Standard Management Framework. RFC 3410. The Internet Society, December 2002.

S. Costantini and A. Tocchio. A Logic Programming Language for Multi-Agent Systems. In 8th European
Conference on Logics in Artificial Intelligence, number 2424 in Lecture Notes in Artificial Intelligence,
pages 1-13. Springer-Verlag, September 2002.

M. Endler. A Language for Implementing Generic Dynamic Reconfigurations of Distributed Programs.
In Proceedings of 12th Brazilian Symposium on Computer Networks, pages 175-187, 1994.

G. Goldszmidt and Y. Yemini. Distributed Management by Delegation. In Proceedings of the 15th
International Conference on Distributed Computing Systems, pages 333-340. IEEE Computer Society,
May 1995.

R.S. Hall, D.M. Heimbigner, and A.L. Wolf. Evaluating Software Deployment Languages and Schema.
In Proceedings of the 1998 International Conference on Software Maintenance, pages 177-185. IEEE
Computer Society, November 1998.

R.S. Hall, D.M. Heimbigner, and A.L. Wolf. A Cooperative Approach to Support Software Deployment
Using the Software Dock. In Proceedings of the 1999 International Conference on Software Engineering,
pages 174-183. Association for Computer Machinery, May 1999.

D.M. Heimbigner and A.L. Wolf. Post-Deployment Configuration Management. In Proceedings of the
Sizth International Workshop on Software Configuration Management, number 1167 in Lecture Notes
in Computer Science, pages 272-276. Springer-Verlag, 1996.

G.T. Heineman and W.T. Councill, editors. Component-Based Software Engineering: Putting the Pieces
Together. Addison-Wesley, Reading, Massachusetts, 2001.

Hewlett Packard. HP OpenView Family Guide, 1998.

C. Kalbfleisch, C. Krupczak, R. Presuhn, and J. Saperia. Application Management MIB. RFC 2564.
The Internet Society, May 1999.

J.C. Knight, D.M. Heimbigner, A.L. Wolf, A. Carzaniga, J. Hill, and P. Devanbu. The Willow Surviv-
ability Architecture. In Proceedings of the Fourth International Survivability Workshop, March 2002.

[17]

J.C. Knight, D.M. Heimbigner, A.L. Wolf, A. Carzaniga, J. Hill, P. Devanbu, and M. Gertz. The Willow
Architecture: Comprehensive Survivability for Large-Scale Distributed Applications. Technical Report
CU-CS-926-01, Department of Computer Science, University of Colorado, Boulder, Colorado, December
2001.

J. Kramer and J. Magee. Dynamic Configuration for Distributed Systems. IEEE Transactions on
Software Engineering, SE-11(4):424-436, April 1985.

J. Magee and J. Kramer. Self Organising Software Architectures. In Proceedings of the Second Inter-
national Software Architecture Workshop, pages 35-38, October 1996.

R. Monson-Haefel. Enterprise JavaBeans. O’Reilly and Associates, 2000.

M.J. Rutherford, K.M. Anderson, A. Carzaniga, D.M. Heimbigner, and A.L. Wolf. Reconfiguration in
the Enterprise JavaBean Component Model. In Proceedings of the IFIP/ACM Working Conference on
Component Deployment, number 2370 in Lecture Notes in Computer Science, pages 67-81. Springer-
Verlag, 2002.

Scientific Advisory Board. Building The Joint Battlespace Infosphere. Technical Report SAB-TR-99-02,
U.S. Air Force, December 2000.

Sun Microsystems, Inc., Palo Alto, California. Java Management Ezxtensions Instrumentation and Agent
Specification, v1.0, July 2000.

S. Waldbusser and P. Grillo. Host Resources MIB. RFC 2790. The Internet Society, March 2000.

M. Wermelinger. Towards a Chemical Model for Software Architecture Reconfiguration. In Proceed-
ings of the 4th International Conference on Configurable Distributed Systems, pages 111-118. IEEE
Computer Society, May 1998.

A. Young and J. Magee. A Flexible Approach to Evolution of Reconfigurable Systems. In Proceedings
of the IEE/IFIP International Workshop on Configurable Distributed Systems, pages 152-163, March
1992.

10

