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ABSTRACT

A primary goal of generative programming and model-driven development is to raise the level
of abstraction at which designers and developers interact with the software systems they are
building. During initial development, the benefits of abstraction are clear. However, during
testing and maintenance, increased distance from the implementation can be a disadvantage. We
view test cases and test harnesses as an essential bridge between the high-level specifications and
the implementation. As such, the generation of test cases for fully generated components and
test harnesses for partially generated components is of fundamental importance to model-driven
systems. In this paper we present our experience with test-case and test-harness generation in a
model-driven, component-based distributed system. We describe our development tool, MODEST,
and motivate our decision to invest the extra effort needed to generate test code. Additionally,
we describe our approach to test-case and test-harness generation and provide a quantification of
the relative effort of generating test artifacts versus application artifacts.





1 Introduction

A primary goal of generative programming and model-driven development is to raise the level of abstraction
at which designers and developers interact with the software systems they are building. During initial
development, automatic generation of software artifacts from high-level formal specifications offers many
advantages to system developers, including increased productivity, enhanced source-code consistency, high-
level reuse, and improved performance of the generated system [2]. However, increased distance from system
implementation can be a disadvantage during testing and maintenance phases. Testing must be performed
to certify initial systems and to help cope with future changes, both planned and unexpected; this does not
change because the bulk of a system is automatically generated.

With model-driven systems, one might assume that framework and generated software have been de-
bugged and certified elsewhere, and that testing the instantiated code is redundant and wasteful. While it
is most likely true that framework and generated software have been tested, the question remains: in what
context? In practice, any previous testing can be seen as irrelevant; the only context that truly matters is
that of the particular system being created.

Testing artifacts serve as an essential bridge between the high-level specifications and the specific in-
stantiation of a model-driven system. In the event of an error or failure, their existence provides a road
map through the potentially vast amount of unfamiliar, generated code. Testing artifacts are particularly
important in data-driven distributed systems, where software is deployed in potentially heterogeneous en-
vironments with complicated interactions across multiple tiers. In these systems, there are many layers
surrounding the generated software that can be independently altered to conflict with the set of assump-
tions that were made at generation time. Although assumptions may be listed in the documentation of the
abstract models or generators, the test cases (provided they give good coverage) are an executable form of
these assumptions.

With an appropriate level of detail in the interface specifications of domain-specific components, it is
possible to automatically generate some or all of their test cases. In fact, test cases can be specified and
generated in parallel to the specification and generation of components. Of course, most model-driven
systems are not completely generated. Instead, the “cookie-cutter” code is generated, and some crucial
domain-specific components are hand written. Thus, these domain-specific components can only be fully
tested by hand-coded test cases. Nonetheless, generation technology still has a role to play: In the same
way that domain-specific components are constrained by the generated code surrounding them, test cases
for these components are also constrained by generated code. The scaffolding that is generated to surround
the domain-specific test cases is the test harness. Test harnesses are intended to handle as much test setup
and cleanup as possible, allowing the developer to concentrate on the logic to perform the actual tests.

In this paper we describe our experience with a generative approach to test-case and test-harness devel-
opment. Collectively, we refer to test cases and harnesses as test code, and show how we generate the test
code in parallel with the system it is meant to test.

Our experience is based on the use of a model-driven generative programming tool called MODEST
(Model-Driven Enterprise System Transformer), developed by the first author while at Chronos Software,
Inc.1 All systems generated by MODEST have the same basic architecture and design. The systems differ
in their domain-specific data and logic, and some features can be enabled and disabled, leading to generated
variations on a basic theme. MODEST does not implement OMG’s Model Driven Architecture (MDA)
standard [14]. However, there are enough similarities that many of the lessons learned could be readily
applied to MDA-compliant tools.

MODEST represents a formal description of the system to be generated as an XML document. This
document captures the domain-specific data model, the interfaces of domain-specific logic components, de-
pendencies on third-party libraries, and characteristics of the deployed system. Artifact generation in MOD-
EST is accomplished by a series of XSL transforms. Initially, the system specification is used to generate a
customized build script for the entire system. This build script includes targets to generate all of the other
artifacts that comprise the generated system. MODEST generates Java source code, database management
scripts, and Enterprise JavaBean (EJB) deployment descriptors.

Systems developed using MODEST are intended to be delivered to customers who do not have access
1http://www.chronosinc.com/
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Figure 1: Conceptual Elements of MODEST

to its generative capabilities, yet those customers want the ability to modify the systems. Therefore, the
delivered systems must include artifacts that would normally only be present had the system been completely
developed by hand. This requirement has several far-reaching consequences, one of which, in fact, is the
need to provide test code. To make this practical, the decision was made to try to generate as much of the
test code as possible.

While the initial decision to provide test code was not made for technical reasons, the presence of the test
code turned out to greatly enhance the development process of the underlying framework and the generation
templates. In particular, by requiring template developers to think also about test-code generation, they
became more familiar with the code being generated. Furthermore, when underlying infrastructure software
(e.g., the database, application server, and the like) was changed, the test code enabled developers to quickly
certify existing systems. On the other hand, there is a cost associated with the generation of test code. In
this paper we attempt to quantify the complexity of code-generation templates, and compare the complexity
of templates for test-code generation with templates for application-code generation.

In the next section we describe the important aspects of MODEST and the salient characteristics of the
family of systems it generates. Section 3 explains the strategy used by MODEST to generate test code.
Section 4 presents an evaluation of our experience with MODEST, and also compares the complexity of test-
code templates with application-code templates. Section 5 outlines related research, and Section 6 provides
some concluding remarks.

2 An Overview of MODEST

MODEST is a model-driven code generation tool developed commercially to streamline the programming
activities of a small software consulting company. By generating “cookie-cutter” code from a structured
representation of a customer’s requirements, MODEST allows developers to concentrate on understanding
the customer’s needs, developing domain-specific logic, and adding to the corporate knowledge base. At the
end of a development cycle, the customer receives delivery of a complete, self-contained system that satisfies
their initial requirements. Obviously, this is an idealized version of the process, but the notion that the end
product is self contained, ready for use or extension by the customer, is key.

Figure 1 depicts the three major conceptual elements of the tool: the domain specification, artifact
templates, and the generative engine. Of these, the domain specification is the only customer-driven entity.
From an engineering perspective, all systems generated by MODEST have the same architecture and design,
which are embodied in the artifact templates. The variability of each system comes entirely from the different
domain models that can be represented by the domain specification.

The domain specification uses an XML document to represent a conceptual model of a customer’s domain
of interest, including the data model and the interfaces of any domain-specific business objects that are
needed. The domain specification does not include any engineering details, which are captured entirely
by the artifact templates and the generator control script. The generator control script is itself created
automatically.
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The artifact templates are written in XSL, and are used by the generator to create different kinds
of artifacts, including build scripts, Java source code, Enterprise JavaBean deployment descriptors, and
database creation and management scripts. During the generation of a given system, a particular template
will be used separately for each instantiation of the artifact that it describes, as dictated by the system build
script.

The generator is simply the Xalan XSLT engine2 wrapped inside an ANT3 task. It is controlled by ANT
build scripts, the first of which contains the targets to generate the system-specific build script that, in turn,
is used to control the generation of all other artifacts.

In describing MODEST, we carefully distinguish among three roles: the developer, the customer, and the
(end) user. A developer uses MODEST in the production of a system tailored to the needs of a customer.
A customer receives the system and must be able to perform certain modifications to it, but without the
benefit of the MODEST generation technology. The customer provides the system to a user who interacts
with the system at run time to achieve some business purpose.

2.1 Domain Specification

Figure 2 contains a high-level view of the important sections of the MODEST domain specification. The
figure is organized hierarchically to help convey the nesting of the XML elements. The domain specification
is the only place within the MODEST environment that a customer’s requirements are explicitly maintained.

The data model for the domain of interest is captured by specifying static objects, managed objects, their
attributes, and the relationships among them. Static objects are those entities that are not intended to be
changed by users of the system. Typically, static objects are used to model ancillary objects that exist to
support the core domain entities that are modeled as managed objects. The attribute values for all instances
of static objects must be detailed in the domain specification. The static object data are used to populate
reference tables within the database, and flyweight pattern [6] classes are generated for use in the software.

Figure 3 shows a sample domain specification. In this domain, Make has been modeled as a static object
with one attribute. Two instances of Make are available: SUBARU and FORD. The customer, after receiving
the system generated from this domain specification, can add further instances.

A validator in a domain specification is used in the generation of unit and integration tests to validate
the attribute values of all instances. In Figure 3, for example, a validator is given for the name attribute
of the Model static object. For efficiency reasons, attribute values of static objects are not validated at run
time, so development-time testing of instance attribute values is quite important. Furthermore, instances

2http://xml.apache.org/
3http://ant.apache.org/
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<domain-specification>

<static-object name="Make">

<attribute name="name" type="String" unique="true" required="true">

<validator type="string-length" min="1" max="64"/>

</attribute>

<instance name="SUBARU" key="10">

<attribute-value name="name">Subaru</attribute-value>

</instance>

<instance name="FORD" key="10">

<attribute-value name="name">Ford</attribute-value>

</instance></static-object>

<managed-object name="Car" type-key="20">

<attribute type="String" name="id" unique="true" required="true">

<validator type="string-length" min="1" max="128"/>

<validator type="alphanumeric-string"/></attribute>

<attribute name="make" static-object="Make" required="true"/>

</managed-object>

<managed-object name="Driver" type-key="30">

<attribute type="String" name="name" required="true">

<validator type="string-length" min="1" max="128"/>

<validator type="alphabetic-string"/></attribute>

<attribute type="Integer" name="age" required="true">

<validator type="range" min="16" max="110"/>

</attribute></managed-object>

<relationship src="Car" dest="Driver" type="1-n"/>

<business-object name="IdGenerator">

<business-method name="nextId" return="String"/>

</business-object></domain-specification>

Figure 3: Sample Domain Specification
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of static objects represent a software feature that has a high likelihood of being changed by customers after
delivery, so the generated test cases are crucial to maintaining high-quality software.

Managed objects are those entities that can be created, updated, and deleted by the user during the
operation of the system. Aside from the basic data types, managed objects can have any declared static object
types as attributes. Static objects can have other static object types as attributes, but they cannot refer
to managed objects. Managed objects require more support code than static objects; since they represent
persistent changeable data, they need to be stored and retrieved from a database, and they typically have
relationships with other managed objects or static objects. Additionally, because attributes of a managed
object are dynamic, the managed object must contain validators to ensure that its internal state is always
consistent.

The domain modeled by the specification shown in Figure 3 contains the managed objects Car and
Driver. For managed objects, the attribute validator settings are used by generated test cases to instantiate
representative test data for the system. Values that would pass validation are used to test the functional
operation of the system, and invalid values are used to test error handling. Because managed objects
represent the core persistent data processed by the system, test cases that validate this aspect of the system
are vitally important to the customer.

Relationship elements model a “has” relationship among managed objects. The two supported rela-
tionship types are one-to-one, one-to-many, and many-to-many. Figure 3 shows a one-to-many relationship
between Car and Driver.

2.2 Generator

Code generation in MODEST is a straightforward instance of using XSL to transform XML documents
into other XML documents and plain text files. The XML/XSL combination was used because the Chronos
developers already had familiarity with the Xalan XSLT engine, and because decent tool support for creating
XML documents already exists. Following the terminology of Czarnecki and Eisenecker [2], the MODEST
artifact generator is a transformational generator that performs oblique transformations.

The structures that are used in the domain specification are significantly different from those that are
embodied in the generated artifacts. In most cases the template that creates a particular artifact pulls data
from many different parts of the specification. Figure 4 shows an augmented data-flow diagram for the
MODEST code generator. The XSL transformer is controlled by two different build scripts, the bootstrap
control script and the generated control script. The bootstrap script contains only the targets and depen-
dencies needed to invoke the XSLT engine for the creation of the system build script. Once the system build
script has been generated, it contains the dependencies and targets needed to generate all the other artifacts
in the proper order.

Several artifacts needed for the final system are generated using a multi-stage process. Figure 4 shows
this as a distinction between terminal artifacts and intermediate artifacts.
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2.3 Artifact Templates

All of the design and implementation decisions that go into the creation of the end product are codified
in the artifact templates, which are XSL style sheets. There is a different artifact template for each type
of artifact that is generated. For example, there is an artifact template that generates a Java class to
encapsulate a managed object, and this template is parameterized by the intended name of the managed
object. For a given system, a particular artifact template might be used multiple times, once for each
instance of the artifact called for in the domain specification. The domain specification shown in Figure 3
contains two managed objects. Thus, the generated build script contains two transformations that use the
managed-object template, one for Car and one for Driver.

2.4 System Family

From an engineering perspective, all systems generated by MODEST have the same design. Figure 5 provides
a high-level view of the MODEST family of systems. Architecturally, the scope of MODEST is restricted
to the application logic and data storage tiers of a standard three-tier architecture. The scope is further re-
stricted in that MODEST systems are designed to operate within the Enterprise JavaBean (EJB) distributed
object framework. This represents the target environment for code generation.

The simplest classes generated by MODEST are those that encapsulate the attributes of managed and
static objects. These simple classes are labeled “Domain Objects” in Figure 5. Managed domain objects are
not permitted to store invalid attribute values, which implies that constructors and mutator methods must
be guarded with validation logic as described in the domain specification.

The top three layers shown in Figure 5 all consist of EJB components. Both Java code and deployment
descriptors are generated for these.

The components in the persistence layer are implemented as entity EJBs that contain the logic for
storing and loading managed-object values to and from the database. There is a different entity EJB for
each managed object in the domain specification. The persistence layer is not visible to external clients;
its functionality is only available to the management and domain-specific layers above it in the system
architecture.

Next is the management layer whose objects are implemented as session EJBs. The objects perform
relationship management, and authorization and authentication for clients. These components are used by
client code to create, update, and delete managed objects as needed by the user. A separate EJB is generated
for each managed object in the domain specification.

At the highest level in Figure 5 are the components that provide domain-specific logic. The interfaces for
these components are described explicitly in the domain specification, and their implementation is performed
by developers. However, deployment descriptors, remote interfaces, and framework code can all be generated
directly from the domain specification. Framework code that allows these objects to interact properly with
the security model is encapsulated in generated base classes through which all method calls are passed.

For example, consider the business object IdGenerator shown in Figure 3. This object has a single
method with signature String nextId(). The remote interface for this object is as follows.
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interface IdGenerator extends EJBObject

{
String nextId( SecurityToken st ) throws AuthorizationException,

ServerException,

RemoteException;

}

The signature of the nextId method has been augmented with a standard parameter and standard exceptions.
The generated base class contains the augmented method that is actually called by clients. This method
wraps a call to the abstract method nextIdImpl() in code that checks the client’s authorization and deals
with logging and error handling in a standard way. The developer is responsible for providing a derived class
that implements nextIdImpl() with the correct semantics.

By wrapping the methods of domain-specific logic objects in this way, MODEST ensures that security,
logging, and error checking are handled in a consistent manner, allowing the developer to concentrate on
the complexity of the business logic, not on the complexity of the MODEST framework. However, this
scaffolding also makes it harder for the developer to test their hand-written logic directly, since they would
have to understand quite a bit about the MODEST framework to be able to create an integration test case
for it by hand. For this reason, it is critical that equivalent scaffolding be generated for the testing of the
domain-specific logic.

Beneath all of the application logic sits the database. MODEST generates a schema creation script that
can be used to create all of the tables and views needed to efficiently handle the data requirements of the
managed and static objects that are outlined in the domain specification. Additionally, this creation script
creates other database objects that are needed to enforce MODEST’s security model and to validate data
as much as possible.

3 Test-Code Generation

Test code is generated by the MODEST system in parallel with the main application code. Test code is
generated for two major reasons.

1. To validate and certify development-time activities.

Even given the generative capabilities of MODEST, development of distributed component-based sys-
tems is a complicated undertaking. Subtle, unexpected interactions among components, that are not
present in simple domains, crop up in complicated domains. Additionally, implementation of a cus-
tomer’s domain logic is often complicated, and the existence of test harnesses and test cases reduces
the chances that unexpected side effects will result from the hand-written portions of the system.

2. To provide a framework for supporting long-term maintenance activities.

As described in Section 2, the systems generated by MODEST are delivered to customers under the
assumption that maintenance and extension are going to be performed by customers without the benefit
of MODEST’s generative capabilities. The generation of test harnesses and test cases is an important
piece of this business model, and it gives potential customers confidence that the software they receive
is operational, and that it can be maintained and extended in a rational manner so that it remains
operational.

In MODEST, test-code generation consists of four major aspects: generation of code to instantiate repre-
sentative static and managed objects; generation of test cases for validating static-object implementations;
generation of test cases for validating managed-object implementations; and generation of test harnesses for
facilitating the testing of domain-specific logic.
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3.1 Representative Object Instances

All test cases need access to representative data to use in testing the functionality of the system. In MOD-
EST, the lowest-level domain-specific classes are those that simply wrap the attributes of static objects and
managed objects. In Section 2.4 these are referred to as “domain objects”. Representative instances of these
objects are needed throughout the generated test code for use as method parameters and the like.

To accomplish this, a base test-case class that provides methods for instantiating representative domain
objects is generated. All other test cases are derived from this class and so inherit these operations. An
inheritance model was used because it was thought that there might be a need for derived test-case classes
to override the instantiation methods, but in practice this was never done.

For the domain specification shown in Figure 3, the base test-case class would have the following methods.

• newMake(): randomly choose one of the Make instances.

• newDriver(): randomly populate attribute name based on its validators.

• newCar(): randomly populate attribute id using newMake() to pick a Make.

As mentioned above, the validators for managed objects are used as guidelines for choosing valid attribute
values. The algorithms to select these values probabilistically generate null values, boundary condition
values, and mid-range values to attempt to get good test coverage.

3.2 Test Cases for Static Objects

As mentioned in Section 2.1, static objects represent immutable data that play a supporting role to managed
objects. They are implemented as reference tables in the database, and as flyweight pattern classes in
software. Both unit tests and integration tests are generated to validate the static-object implementations.
The static object Make contained in the domain specification shown in Figure 3 is used as an example below.

3.2.1 Unit Tests

The implementations of static objects are validated with unit tests. All valid instances of static objects are
enumerated in the domain specification, and these data are used to exhaustively test the software. Unit tests
ensure the following properties.

1. All instances are present. This means that Make.SUBARU and Make.FORD are available and found in
the MakeFactory.all() collection.

2. equals() and compareTo() work properly for each instance. The test cases would compare
Make.SUBARU and Make.FORD to themselves and then to each other, and verify that the results were
correct based on the data in the specification.

3. Attribute values match what is listed in the domain specification. Verifies that
Make.SUBARU.getName() == "Subaru".

4. Lookup methods on factory classes work properly for each attribute of each instance. Verifies that
MakeFactory.findByName( "Subaru" ) == Make.SUBARU.

3.2.2 Integration Tests

Integration tests are needed to ensure that the generated implementation matches the data that are con-
tained in the reference tables in the database. For efficiency purposes, there are no run-time checks of
data consistency, so development-time checking is especially important. This is accomplished by selecting
all the data from the reference table (MAKE DATA in this case), and comparing it to the contents of the
MakeFactory.all() collection. The tests enforce that the two sets have the same number of elements and
that all elements have a pair in the other set.
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3.3 Test Cases for Managed Objects

Managed objects are used to represent the core domain entities that comprise a particular domain. The
managed-object instances are stored in the database, and their values can be changed, and instances can be
deleted. Because they are the central entities in the system, and because they can be modified and deleted,
they are guarded by a security model ensuring that a user is properly authenticated and authorized before
a particular action is performed. There is code to deal with managed objects in three of the layers shown
in Figure 5: domain, persistence, and management. Both unit tests and integration tests are needed to test
the implementation effectively.

3.3.1 Unit Tests

Unit tests are generated to validate the domain-object implementation. These tests ensure that the validation
code is working properly for each class by verifying that invalid attribute values cannot be used in constructors
or mutator methods, and that randomly generated valid data can be used. There are also tests to ensure
that standard methods such as equals() and compareTo() are implemented properly.

For the Car managed object shown in Figure 3, these tests would ensure that Car could not be instantiated
without a valid value for the id attribute, and that it could not subsequently be changed to something invalid.
The unit tests would also ensure that properly instantiated Car objects could be compared properly.

3.3.2 Integration Tests

Integration tests are generated to test the implementation of the persistence and management layers. The
persistence layer implementation for each managed object is tested to ensure the following.

1. Managed-object data are replicated perfectly in the database after a store operation.

2. Managed-object data are replicated perfectly in the software after a load operation.

3. Two separately loaded copies of the same data compare properly.

4. Data are replicated perfectly in the database after an update operation.

5. Data are removed from the database after a remove operation.

Because of the design decision that managed objects cannot have invalid internal state, it is not necessary
to test invalid data values at this level.

Integration tests are generated at the management level to ensure that relationships among managed
objects are properly maintained. This involves ensuring that any required relationships are satisfied in the
proper order and that invalid relationships are not permitted. For the Car object from Figure 3, this would
mean ensuring that a valid Driver object existed before a Car was created, and that Driver objects could
not be deleted if that would result in an unsatisfied Car relationship.

3.4 Domain Logic Test Harnesses

As described in Section 2, domain-specific logic is captured in the specification through business objects. The
interfaces to these business objects are captured in the specification, but the semantics are not. Although the
implementations of the actual business methods cannot be automatically generated, much of the scaffolding
and supporting code can. For application logic, this means that the developer only has to concentrate on the
complexity of the business rules and not the complexity of the MODEST framework. A similar approach is
taken for the generation of test harnesses.

The goal of the generated test harness is to allow the developer to operate at the same level of detail at
which the business method is implemented. This means that the scaffolding code should handle any setup
that is needed to interact with the business method, and wrap the domain-specific testing logic properly
to handle exceptions that are generated by the framework. For the IdGenerator business object shown in
Figure 3, an abstract test case, IdGeneratorTest, would be generated that had the following methods.
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• setUp(): Performs authentication and authorization setup that is needed to have permission to call
the business method.

• nextId(): Proxy method used by the hand-written test code. Within this method, the actual call to
the business method is performed with the appropriate security ticket and error handling.

• abstract testNextId(): Defines the subclass interface.

• tearDown(): Performs any clean up related to setUp().

4 Discussion and Evaluation

This section characterizes the benefits of test-code generation and quantifies its costs. Each of the three types
of test code are analyzed with respect to their benefits during development activities and during maintenance
activities. Additionally, an example of how generated test code can aid in debugging, and can help identify
subtle integration bugs is presented. Finally, we present a quantification of the relative complexity of creating
test-code templates versus application-code templates.

4.1 Utility of Generated Test Code

In this section we provide some observations and analysis on the utility of test-code generation during
development and maintenance activities.

4.1.1 Test Cases for Static Objects.

The code generated to handle static objects is relatively simple. After its initial development, few bugs have
been found in the implementation. This is probably partly due to the simplicity of the code, and partly due
to the exhaustive testing that is performed. For this reason, their generated test cases do not add a lot of
value at development time.

Conversely, the real utility of the static-object test cases is to ensure consistency during system main-
tenance. This is due to two factors: (1) a common way of extending a system is to manually add new
static-object instances for items that were overlooked initially and (2) proper implementation of the static
objects requires that data be added to two disconnected locations, the software classes and the database.
The existence of exhaustive integration tests ensures that the two implementations are consistent.

4.1.2 Test Cases for Managed Objects.

In contrast to that of static objects, the implementations of managed objects are fairly complicated and
they must be consistent across three different layers of the resulting system. Also, most new features and
optimizations added to the generated systems were added to the handling of managed objects. For these
reasons, the generated test cases were very helpful during system development in helping to track down
subtle bugs and inconsistencies in the complex handling of these entities.

Due to the fact that the implementation of managed objects represents the core functionality of the
generated systems and also due to the many interactions with external systems such as the database and the
EJB server, the generated managed-object test cases are invaluable during maintenance. It is critical that
the processing of managed objects is handled correctly, and almost any functional or configuration change
to the system could affect the processing of those objects.

4.1.3 Domain Logic Test Harnesses.

Test-harness scaffolding is very useful during development. Being able to ignore the details of how the
framework alters the signature of the business methods and how the security model must be initialized for
testing saves a lot of time, and reduces a barrier to manual test code creation. Additionally, because the
domain-specific tests fit within the same testing framework as the generated test cases, it guarantees that
all the tests will be run together, ensuring a consistent system.
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Business rules are another example of pieces of a system that are likely to change after initial deployment
of the system. The presence of existing domain-logic test cases (written by the initial developers) encourages
their maintenance in parallel with any changes to business rules, thereby increasing the chance that the
entire system will be tested as it is being changed.

4.2 Development-Time Benefits of Generated Test Cases

In the previous section we describe the benefits that generated test code has during development activities
and during maintenance activities. In that context, maintenance activities are assumed to be those that
occur after a generated system is delivered to the customer and, in fact, performed by the customer, not the
developer.

To the developers, the primary benefits of the generated test code is at development time. As the design of
the family of systems matured and the artifact template code stabilized, the subtlety of bugs that were being
found increased. Additionally, more advanced features were being added to the systems, and occasionally
these features interacted in subtle ways when operating in domains with higher complexity.

One advanced feature that was added was support for cascading deletes at the management EJB layer
(see Figure 5). The intent of this feature was to allow the deletion of a managed-object instance and all
other instances reachable across explicit relationships. For example, in the domain specified in Figure 3, a
Car instance and all of the Driver instances associated with it could be deleted by a single cascading delete
operation. During an atomic delete operation, logic in the management layer ensures that an object cannot
be deleted if it will leave a parent object with an unsatisfied relationship. However, during cascading deletes
this check is disabled, since it is known that the parent object will be deleted immediately after the child
object is deleted.

After its initial implementation and testing on a system with a fairly simple domain specification, this
cascading delete functionality was included as part of the standard MODEST-generated system family.
However, when a subsequent system with a more complex domain model was generated, cascading delete
integration tests were seen to fail. To find out what was happening, developers made incremental changes to
the domain specification, regenerated the system, and ran the integration tests to narrow the scope of their
debugging effort. Without looking at any of the generated code, they quickly realized that the problem was
occurring when a domain specification had more than two layers of relationships, and traced the problem
back to the section of the management EJB artifact template that dealt with disabling relationship checks
during a cascading delete.

Without the generated test code being a standard part of the system, this bug might not have been
found during development. Furthermore, the ability to rapidly regenerate test cases from modified domain
specifications afforded the developers with an invaluable tool to aid their debugging.

4.3 The Cost of Generating Test Code

Previous sections have presented the benefits of test-code generation. However, there are development-time
costs associated with the generation of test code. The principal cost is the additional effort required of
developers to create and maintain the artifact templates that generate test code. In order to evaluate this
effort, we have used some simple metrics to measure the size and complexity of artifact templates. The
values of these metrics are presented in Tables 1 and 2. Using the metrics we can compare the level of effort
in artifact template creation and maintenance for the three kinds of test code against the characteristics of
the application-code generation templates as a whole.

The three measures of artifact template size and complexity presented in Tables 1 and 2 are: (1) the
number of sub-templates; (2) the number of XSL elements; and (3) the number of XPath parent queries.

XSL style sheets process XML documents by matching sub-templates against the structure and data
contained in the XML document.4 Sub-templates can also be named and called as functions. The number
of sub-templates gives some indication of both the size and complexity of an artifact template, since they
represent the basic data-processing unit of an XSL style sheet.

4In this paper we refer to the entire XSL style sheet as the template; this corresponds to the top-level xsl:stylesheet

element. Sub-templates correspond to the xsl:template elements that are children of xsl:stylesheet.
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Type Sub-Templates XSL Elements Parent Queries
Unit Tests 3 52 2
Integration Tests 6 177 0
Test Harnesses 6 85 0
Test Code 4 93 1
Application Code 9 184 1

Table 1: Average Relative Complexity of MODEST Test-Code Templates

Type Sub-Templates XSL Elements Parent Queries
Unit Tests 18 317 16
Integration Tests 19 533 1
Test Harnesses 6 85 0
Test Code 43 935 17
Application Code 247 4968 41

Table 2: Total Relative Complexity of MODEST Test-Code Templates

XSL style sheets are themselves XML documents with special XSL elements intermingled with elements
from the output XML document. XSL processors handle the special elements, which contain both control
instructions and data expansion instructions, and pass the output elements through without interpretation.
The second metric, XSL element count, gives an indication of the amount of parameterization of the output
document, and hence the complexity of the template.

The third metric, XPath parent queries, is an additional way to measure the complexity of the XSL tem-
plate. XPath is a language for querying paths in an XML document. XPath expressions are used extensively
in XSL documents for matching templates against parts of the input document, and for selecting parts of
the input document to which templates should be applied. Since input documents to an XSL transform are
always XML documents, they are inherently hierarchical. In the simplest case the output document has the
same hierarchical decomposition as the input document, which means that the transformation can proceed in
a top-down fashion. As the output document structure diverges from the input document structure, XPath
queries that move up the hierarchy are needed. We refer to these as XPath parent queries. They begin with
the XPath parent axis shortcut “..”. We use a count of these XPath parent queries to represent the level
of structural difference between the input and output documents. Keep in mind that when generating Java
source code, MODEST employs a two-stage transformation process in an effort to reduce the complexity of
artifact templates, principally by removing the need for extensive XPath parent queries.

Tables 1 and 2 show the values of our metrics for five different partitions of the artifact templates. Test
code is shown aggregated and broken out into its three parts: unit tests, integration tests, and test harnesses.
The application-code templates are shown aggregated.

Table 1 presents the average metric values for our partitions. This data represents the relative level of
complexity of a single artifact template of each of the representative template types. These data show that,
on average, the size and complexity of test-code templates is less than that of application-code templates.
It also shows that out of the three test-code template types, the integration test case templates require the
largest number of XSL elements to generate their desired output.

Table 2 shows the total metric values for our template partitions. This is intended to represent the total
effort required to generate test code of the various types. The overriding result shown by these data is that
test-code templates are significantly smaller and simpler than the templates needed to generate application
code. Assuming that our metrics are a reasonable measure of a template’s complexity and size, this means
that test-code generation is a fraction of the overall effort required to generate all of a system’s code.
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5 Related Work

The work described in this paper lies at the confluence of some well-established areas of software engineering
research and practice. In this section we briefly review related work in the areas of OMG’s Model Driven
Architecture, model-based testing, and enterprise Java code generation.

5.1 Model Driven Architecture

At a conceptual level, the design of MODEST shares a number of similarities with the OMG’s Model Driven
Architecture (MDA) [14]. The basic idea of the MDA is that enterprises can insulate themselves from the
volatile nature of the commercial middleware market by focusing their energies on creating Platform Indepen-
dent Models (PIMs) of their business functions and relying on standard mappings and/or platform experts
to map their PIMs into Platform Specific Models (PSMs). The models discussed in the MDA specification
are formal UML models. In the MODEST system, the domain specification is platform independent, but
much more restricted than a generic UML model.

Much of the MDA approach is centered around transformations and mappings between UML models at
different levels of abstraction, and between PIMs and PSMs. The following mappings have been enumerated.

• PIM to PIM: enhancing, filtering, or specializing models without introducing any platform-dependent
details.

• PIM to PSM: projecting a sufficiently refined PIM onto a model of the execution environment.

• PSM to PSM: refining a platform-dependent model.

• PIM to PSM: abstracting existing implementation details into a platform-independent model.

MODEST employs the first three mapping types, which can all be viewed as refinement mappings. The
generalization mapping, PIM to PSM, is not utilized in MODEST, since there is a very clear distinction
between which artifacts are generated and which must be produced manually. In MODEST, manually
generated artifacts often have to conform to interfaces that are generated. However, there is no mechanism
for changes to the structure of manual artifacts to be propagated back up to the higher-level models.

Gervais [7] outlines a methodology that is based on both MDA and the Open Distributed Processing
Reference Model (RM-ODP) [1]. Gervais proposes a process for modeling the domain-specific features of a
system in a “Behavioral Model” and the high-level technological features of the system in an “Engineering
Model”. These would be merged into a platform-specific “Operational Model”, which could then be used as
the basis for generating implementation artifacts. While MODEST’s domain specification fills the same role
as Gervais’ behavioral model, its artifact templates are too low-level to even be considered an operational
model. Future plans for MODEST include higher-level models for engineering features similar to what
Gervais proposes.

5.2 Model-Based Testing

Due to the time-consuming nature of test-case and test-data creation, there have been many studies aimed
at generating them automatically. Many approaches focus on the use of high-level formal specifications as
the input to their test-generation schemes.

A framework for conducting performance tests of EJB applications is introduced by Liu et al. [12]. Their
primary objective is to be able to compare the performance trade offs that are present in different J2EE-
compliant servers in the absence of significant application-level logic. Interestingly, the testing they perform
is somewhat model driven, since their test-case selection is driven by a common model of the trade offs that
are expected to exist within the common feature sets present in J2EE servers.

Grundy, Cai, and Liu [8] discuss the the SoftArch/MTE system. This system enables the automatic
generation of prototype distributed systems based on high-level architectural objectives. Their emphasis is
on performance testing, not on application functionality testing. Many of the generative techniques used in
MODEST are similar, in particular the use of XML/XSL to generate code, database schemata, deployment
descriptors, and build files.
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Dalal et al. [3, 4] present a model-based approach to application functionality testing. In their studies,
formal specifications of functional interfaces to various telecommunications systems were made available by
a software development team. A combinatorial approach was used to generate a set of covering test-data
pairs, which was used to find several failures that were not discovered by the existing testing infrastructure.

Mats [13] and Gu and Cheng [9] present two approaches to the derivation of test cases for communications
protocols specified using SDL, while Gupta, Cunning, and Rozenbilt [10] discuss an approach to generating
test cases for embedded systems. These approaches differ from ours in that they derive test cases for a
particular system from formal specifications, as opposed to creating templates that can generate test code
for any system instance.

5.3 Enterprise Java Code Generation

Generation of code for Enterprise Java systems is a fairly common activity. A popular approach is to generate
the Home and Remote EJB interfaces, deployment descriptors, and stubs for an EJB implementation, all
from a simple description of a database table [5, 11]. The majority of these simple code generators are
compositional generators, in which the descriptor contains the modular decomposition that the generator
needs to amplify. The approach used by MODEST is to allow for domain-specific modeling at a higher level
than the software components. The modular decomposition is embedded in the generated build script and
the XSL style sheets that comprise the bulk of the MODEST system.

6 Conclusion

In this paper we presented our experience in generating test code in parallel with application code, using
a model-driven generator of component-based, distributed systems targeted at the EJB framework. Our
experience and evaluation suggests that the level of effort required for the test code is only a small fraction
of the overall effort, and brings with it significant benefits. We believe that test-code generation should
become a common feature of all model-driven generative systems.

While MODEST is a useful tool that achieves the business goals laid out for it, it only raises the level
of abstraction a few small steps above the implementation. A future goal for our work is to use higher-
level models for both domain and engineering features. Additional work is aimed at utilizing MODEST’s
generated test code to experiment with design and implementation trade offs, similar to the approach outlined
by Grundy, Cai, and Liu [8] for test-bed generation, except that our target would be to evaluate full-featured
systems.
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