IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

JANUARY 2002

A Testbed for Configuration
Management Policy Programming

André van der Hoek, Member, IEEE, Antonio Carzaniga,
Dennis Heimbigner, Member, IEEE, and Alexander L. Wolf, Member, IEEE Computer Society

Abstract—Even though the number and variety of available configuration management systems has grown rapidly in the past few
years, the need for new configuration management systems still remains. Driving this need are the emergence of situations requiring
highly specialized solutions, the demand for management of artifacts other than traditional source code and the exploration of entirely
new research questions in configuration management. Complicating the picture is the trend toward organizational structures that
involve personnel working at physically separate sites. We have developed a testbed to support the rapid development of configuration
management systems. The testbed separates configuration management repositories (i.e., the stores for versions of artifacts) from
configuration management policies (i.e., the procedures, according to which the versions are manipulated) by providing a generic

79

model of a distributed repository and an associated programmatic interface. Specific configuration management policies are
programmed as unique extensions to the generic interface, while the underlying distributed repository is reused across different
policies. In this paper, we describe the repository model and its interface and present our experience in using a prototype of the
testbed, called NUCM, to implement a variety of configuration management systems.

Index Terms—Configuration management, configuration management policies, distributed configuration management, policy

programming, peer-to-peer, version control.

1 INTRODUCTION

SINCE its beginnings in the early 1970s, the field of
configuration management (CM) has slowly but surely
evolved. The marketplace for CM products is now worth
well over one billion dollars per year [8]. More than one
hundred commercial CM systems, representing a wide
range of functionality, are currently available. While some
are simple clones of SCCS [41] and RCS [47], others have
pushed the state of the art quite considerably by offering a
full spectrum of functionality [14]. Most CM systems,
however, fall somewhere in between, each providing some
distinguishing combination of functionality.

Despite the variety of available systems, several
compelling reasons exist to continue the development of
new CM systems. First, in the current generation, the
basic functionality provided by a given CM system is
fixed; if specialized functionality is needed in a particular
situation (e.g., required compliance with company-wide
standards [40] or e-mail-based synchronization of work-
spaces [33]), it becomes difficult to provide. A second
reason is that existing CM systems tend to focus on the
management of source code; if other types of artifacts
need to be managed and configured (e.g., Web sites [34],

o A. van der Hoek is with the Institute for Software Research, Department of
Information and Computer Science, University of California, Irvine, CA
92697-3425. E-mail: andre@ics.uci.edu.

o A. Carzaniga, D. Heimbigner, and A.L. Wolf are with the Software
Engineering Research Laboratory, Department of Computer Science,
University of Colorado, Boulder, CO 80309.

E-mail: {carzanig,dennis,alw}@cs.colorado.edu.

Manuscript received 22 Sept. 1998; revised 28 Mar. 2000; accepted 17 Jan.
2001.

Recommended for acceptance by W. Griswold.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 107440.

software architectures [11], or legal databases [29]), only a
limited amount of support is available. A third reason is
that existing CM systems are based on certain underlying
assumptions; if new approaches are developed that are in
conflict with some of these assumptions (e.g., the
approach based on feature logic [53]), little help is
available to implement them.

Already a daunting task in and of itself, the construction
of a CM system is further complicated by the fact that many
of today’s projects are carried out in a distributed fashion.
In these projects, multiple collaborating participants are
physically dispersed over a number of geographical
locations, sometimes even belonging to different compa-
nies. Not only does this influence the implementation of a
CM system in that it must operate in the context of a wide-
area network, it also influences the basic design of a
CM system in that its built-in processes must be supportive
of distributed and probably decentralized collaboration.

We have developed a testbed to support the rapid
construction of new, potentially distributed, CM systems.
The testbed embodies an architecture that separates
CM repositories, which are the stores for versions of software
artifacts and information about those artifacts, from
CM policies, which are the specific procedures for creating,
evolving, and assembling versions of artifacts maintained in
the repositories. Key to this architecture is the definition of
an abstraction layer that consists of a generic model of a
distributed CM repository and a programmatic interface for
implementing, on top of the repository, specific CM policies.

The generic model consists of five components covering
the major aspects of a configuration management reposi-
tory, namely, storage, distribution, naming, access, and
attributes. Similarly, the programmatic interface consists of

0098-5589/02/$17.00 © 2002 IEEE

80 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

seven orthogonal categories of functions, including access,
versioning, querying, and distribution. CM policies are
programmed as extensions to the generic interface, while
the underlying distributed repository is reused across
different policies. Structured this way, the testbed supports
direct and flexible experimentation with new CM policies.

Overall, the design of the abstraction layer was guided
by the following high-level objectives:

o The abstraction layer should be policy independent. In
order for the abstraction layer to support the
construction of a wide variety of CM policies, the
repository model and programmatic interface
should not themselves contain any restrictive policy
decisions. For example, if the repository model only
provided a facility to store versions of artifacts as a
traditional version tree, it would be very difficult to
implement the more advanced change-set policy
[35]. Similarly, if the functions in the programmatic
interface automatically created a new version of an
artifact whenever one of its constituent parts is
modified, CM policies in which the evolution of an
artifact is explicitly managed by a user would, once
again, be difficult—if not impossible—to implement.

o The abstraction layer should support distributed opera-
tion. As proven by the considerable amount of
research on the issue [2], [10], [13], [25], providing
proper support for the distributed operation of a
CM system is a complicated task. Therefore, it is
desirable to incorporate support for distribution as
an intrinsic property of the repository model and
programmatic interface. In particular, the repository
model should be able to support a variety of
distribution mechanisms (such as peer-to-peer or
master-slave) and the programmatic interface
should permit the control of the physical placement
of artifacts.

It is important, however, that support for dis-
tribution be isolated from other facets of the
abstraction. In particular, the low-level details of
the distribution aspects of building a CM system
(e.g., connection protocols, communication proto-
cols, and time outs) should be isolated from the
policy programming aspects by placing those details
within the implementation of the repository model.
Further, the distribution aspects of relevance to a
CM policy (e.g., access to remote repositories and
placement of artifacts) should be isolated from the
versioning, querying, and other functional categories
of CM policy programming. More specifically, the
functions in the interface should appear the same
regardless of the physical location of the artifacts
they manipulate.

o The abstraction layer should support the management of
arbitrary kinds of artifacts. As previously mentioned,
CM systems are increasingly needed to manage
artifacts other than source code. To allow such
specialized CM systems to be constructed, neither
the repository model nor the programmatic interface
should make assumptions about the kinds of
artifacts that are being manipulated. For example,

JANUARY 2002

it is well known that certain algorithms for comput-
ing the difference between two versions of an artifact
work better for textual data, such as documents and
program code, than for binary data, such as images
or program executables [27]. Incorporating such a
biased differencing algorithm into the abstraction
would violate its ability to properly handle different
kinds of artifacts.

e The abstraction layer should be able to support traditional
CM functionality. Even though the abstraction layer
is meant to support the construction of new
CM policies, it should be obvious that it also must
be able to support the construction of existing
CM policies. If it could not support the latter, the
architectural separation of CM repositories from
CM policies results in a loss of functionality and it
would be likely that certain variants of existing
CM policies could not be implemented.

NUCM (Network-Unified Configuration Management)
is our prototype implementation of the testbed. It has been
key to the development of several innovative CM systems,
including DVS [9] and SRM [49]. As a prototype, NUCM
was not designed to exhibit the robustness or completeness
that one would expect of a commercial implementation of
the abstraction layer. Similarly, the CM systems we built
using NUCM were not designed to be particularly robust or
complete (although two of them are currently in everyday
use). Instead, our focus was on being able to evaluate the
utility of the abstraction layer in supporting CM policy
programming.

Fig. 1 illustrates the architecture of NUCM in terms of
an example repository structure. A CM system that uses a
NUCM repository consists of two parts: the generic
NUCM client and a particular CM policy. The generic
NUCM client implements the programmatic interface and,
thus, is the foundation upon which particular CM policies
are implemented. This is illustrated in Fig. 1, where two
CM policies, namely, policy X and policy Y, both use the
generic NUCM client to store and version the artifacts that
they manage. In general, a single repository can store
artifacts that are managed by different CM policies, as
long as the policies partition the artifacts in separate name
spaces within the repository. If different policies operate
on the same artifacts, it is the responsibility of the
CM policies to resolve any conflicts.

The figure also shows that NUCM provides the concept
of a logical repository that is made up of physical
repositories. The artifacts in each physical repository are
managed by a NUCM server. Combined, the NUCM servers
for the physical repositories provide access to the complete
logical repository. In particular, when artifacts that reside in
a different physical repository than the one managed by one
of the NUCM servers are requested, that NUCM server will
communicate with the other ones to provide access to the
artifact.

This paper presents the design of our abstraction layer
for CM policy programming and our experiences to date in
using NUCM to evaluate the utility of the abstraction layer.
We begin in Section 2 by discussing the generic repository
model. Section 3 presents the programmatic interface

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING 81

CM policy X
NUCM client

logical
repository

CM policy X
NUCM client

Fig. 1. NUCM architecture.

through which the artifacts are stored and manipulated.
Section 4 describes how we have used NUCM to construct a
number of rather different CM systems. Related work is
discussed in Section 5 and we conclude with a brief look at
future work in Section 6.

2 A GENERIc CM RepPosITORY MODEL

The first part of our abstraction layer is the generic
repository model. It consists of five components: a storage
model, a distribution model, a naming model, an access
model, and an attribute model. The storage model defines
the mechanisms for versioning and grouping artifacts, the
distribution model defines the different ways in which
artifacts can be arranged across different sites, the naming
model defines the way individual artifacts can be identified
in a distributed repository, the access model defines the
primary method of access to artifacts stored in a distributed
repository, and the attribute model defines how attributes
can be used to associate metadata with artifacts.

A key characteristic of the generic repository model is
that, even though specifically designed to support the
versioning, grouping, distribution, and other aspects of
artifacts, it does not enforce any particular policy for doing
so. For instance, while the repository model provides the
capability of storing multiple versions of an artifact, it does
not impose any specific relationships among those versions.
Similarly, the repository model facilitates the storage of
different artifacts in different repositories, but it does not
enforce a particular organization of the artifacts among the
different repositories. In both these and other cases of
separation of CM repository from CM policy, it is up to the
CM policy programmer to use the interface functions
discussed in Section 3 to manipulate the CM repository
into the desired behavior.

/ CM policy X ;
{ NUCM client /

CM policy Y
NUCM client

2.1 Storage Model

The basis for the storage model is a directed graph with two
kinds of nodes: atoms and collections. An atom is a leaf node
in a graph and represents a monolithic entity that has no
substructure visible to the storage model. Typical atoms
include source files or sections of a document. Contrary to
atoms, the structure of collections is known to the storage
model: Collections are the basic mechanism used to group
atoms into named sets. For example, a collection might
represent a program that consists of a set of source files.
Alternatively, a collection could represent a document that
is composed out of a number of sections.

Collections can be used recursively and can themselves
be part of larger, higher-level collections. For instance, a
collection that represents a system release could consist of a
collection for the source code of the system and a collection
for the documentation of the system. Membership of a
collection can, of course, be mixed: A single collection can
contain both atoms and collections. A collection that
represents a document could have as its members short
sections that are captured as atoms, as well as longer,
further subdivided sections that are captured as collections.

Fig. 2 illustrates the basic concepts of atoms, collections,
and their member relationships. The figure shows a portion
of a repository for the C source code of two hypothetical
software systems, WordProcessor and DrawingEditor.
Collections are shown as ovals, atoms as rectangles, and
member relationships as arrows. Both software systems not
only contain a separate subsystem, as demonstrated by the
collections SpellChecker and Menu, respectively, but
they also share a collection called GUI-1ib. In turn, these
lower-level collections simply contain atoms, which, in this
example, represent the source files that implement both
systems.

82 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

WordProcessor

—

SpellChecker GUI-lib

Window.c

i

Spell.c

e

Fig. 2. Example repository contents without versions.

WordProcessor

—

SpellChecker GUI-lib

Spell.c Window.c

Fig. 3. Example repository contents with versions.

In contrast to other approaches, such as CME [25] or
ScmEngine [10], the storage model does not impose any
semantic relationship among the versions of an artifact. In
particular, the tree-structured revision and variant rela-
tionships that are found in many—but by no means
all—CM systems are not present in the directed versioned
graph. Instead, the graph simply provides a unique
number with which to identify each version. This allows
a CM system to employ its own type of semantic
relationships among versions and, hence, increases the
generality of the repository.

The decision not to enforce semantic relationships
among the versions of an artifact is based on the more
general observation that many such relationships exist.
Some examples include derived-from, is-composed-of, is-part-
of, depends-on, and includes. Different CM systems support
different subsets of these and other relationships. Therefore,
rather than directly maintaining only an arbitrary subset of
relationships, the storage model is generic in that it
facilitates the creation and maintenance of arbitrary,
policy-programmed relationships. It does so through the
use of collections to group artifacts and the use of attributes
to label versions of artifacts. While this may at first seem
inconvenient, since a policy programmer is now expected to
implement relationships, the ability to reuse these imple-
mentations mitigates the inconvenience. For example, the
policy code that defines the version-tree relationship of the

JANUARY 2002

DrawmcEdltor

—

GUI-lib Menu

Frame.c PullDown.c

v

PushUp.c

AN

DrawmvEdltor

—

GUI-lib Menu

\\
PushUp.c

N

3 1

Frame.c PullDown.c

WebDAV example in Section 4 reuses much of the policy
code of an earlier CM system. This earlier CM system also
uses the version-tree relationship and was built using
NUCM [50].

Fig. 3 shows how the directed graph of artifacts
presented in Fig. 2 is enhanced with versions to form a
versioned directed graph. Stacks of ovals and rectangles
represent sets of versions of collections and atoms, respec-
tively. Numbers indicate the relative age of versions: the
higher the number, the younger the version." Dashed
arrows represent the member relationships of older ver-
sions of collections. Observe that membership of collections
is on a per-version basis. For example, both version 1 and
version 2 of the collection Menu contain version 1 of the
atom PushUp. ¢, but version 2 contains an additional atom,
namely, version 2 of the atom PullDown. c.

2.2 Distribution Model

The distribution model of the abstraction layer comple-
ments the functionality of the storage model. Whereas the
storage model specifies how artifacts can be grouped,
versioned, and related through the versioned directed
graph, the distribution model precisely defines how the
versioned directed graph can be stored in a distributed

1. As further discussed in Section 3, the “age” of versions merely
indicates their relative order of creation. In fact, the contents of the versions
may, depending on the policy, change over time.

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING 83

WordProcessor

SpellChecker
Spell.c GUI-lib

[~
[& v d
2
.
7
v
P 7’
BOULDER 7
7’
7
. e
7’
’
Window.c

)_______________

DrawingEditor

~N
\ ~
Menu
\ ~
GUI-lib PullDown.c PushUp.c

Frame.c

ROTTERDAM

Fig. 4. Example repository contents of Fig. 3 as distributed over three different sites.

fashion. In particular, the distribution model defines two
types of repositories: a physical repository and a logical
repository. A physical repository is the actual store for some
part of a versioned directed graph at a particular site. It
contains, for a number of artifacts, the contents of the
versions.

A logical repository is a group of one or more physical
repositories that together store a complete versioned
directed graph of artifacts. Because the distribution model
is policy independent, a requirement for a logical reposi-
tory is that it has to be able to support the modeling of a
variety of distributed CM policies. To do so, physical
repositories that are part of a logical repository collaborate
in a peer-to-peer fashion, with no centralized “master”
repository controlling the distribution of artifacts. Instead,
distribution is controlled at the individual artifact level:
Collections not only maintain the names of their member
artifacts, they also track the physical repository in which
each member artifact is stored. Thus, member relationships
may span the geographical boundaries that exist among
physical repositories.

The physical location of artifacts in a logical repository is
irrelevant. Artifacts can be obtained from any physical
repository that is part of the logical repository, whether the
physical repository resides on a local disk, on the local
network, or on the other side of the world. Based on the fact
that collections keep track of the physical repositories in
which their member artifacts reside, requests for member
artifacts that are stored at a different physical repository
than that of the collection are forwarded. Thus, physical
repositories act as both clients and servers, requesting
services from each other and fulfilling service requests for
each other.

Fig. 4 presents these concepts with an example distributed
repository. Shown is the repository of Fig. 3 as distributed
over three different sites, namely, Boulder, Milano, and
Rotterdam. Each of these sites maintains a physical
repository with artifacts. The physical repository located
in Boulder maintains the collection WordProcessor, the
physical repository in Milano maintains the collection
DrawingEditor, and the physical repository in Rotterdam
maintains the collection GUI-1ib. Because the projects
in Boulder and Milano rely on the use of the collection
GUI-11iDb, their physical repositories are connected with the
physical repository in Rotterdam. Two logical repositories
are formed: The physical repositories in Boulder and
Rotterdam combine into one logical repository that presents
a complete view of the collection WordProcessor and its
constituent artifacts and the physical repositories in Milano
and Rotterdam combine into one logical repository that
manages the complete system DrawingEditor.

It is important to note that it is the simple presence of
member relationships among artifacts in different physical
repositories that creates logical repositories. Without the
membership of version 2 of the collection GUI-1ib within
version 1 of the collection WordProcessor, for example,
the logical repository formed by the physical repositories in
Boulder and Rotterdam would not exist. Instead, the
physical repository of Boulder would be a logical repository
all by itself.

The distribution model is versatile: Artifacts can be
distributed among physical repositories as desired, a single
physical repository can be part of multiple logical reposi-
tories, and logical repositories can themselves be part of
other logical repositories. This flexibility, combined with a

84 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

peer-to-peer architecture, allows many different distribu-
tion schemes to be mapped onto the distribution model. As
further demonstrated elsewhere [48], these schemes include
the following:

e asingle physical repository that is accessed by many
CM clients, thus creating a client-server system like
DRCS [36];

e several physical repositories that represent a hier-
archy of distributed workspaces in which changes
in lower level workspaces are gradually promoted
up the hierarchy, thus duplicating the essence of the
functionality of such systems as NSE [19] and
PCMS [46]; and

e a set of physical repositories that act as replicas, in
which the contents of the replicas are periodically
synchronized by a merging algorithm, a configura-
tion similar to ClearCase Multisite [2].

These and other approaches to distributed CM can be built
using the peer-to-peer architecture. While it is true that a
solution based on our generic distribution model might not
perform as optimally as a specialized solution for a
particular CM policy, the flexibility afforded by the
repository model allows experimentation with new dis-
tribution policies. Once proven to be of use, the implemen-
tation of an experimental policy can be optimized for
performance.

2.3 Naming Model

An important issue in distributed systems development is
naming. Rather than employing a global naming scheme in
which each artifact is assigned a single, unique identifier,
the naming model is based on a hierarchical naming
scheme. The use of hierarchical naming provides three
important advantages. First, it naturally fits the hierarchy
that is formed by the directed graph of artifacts as defined
by the storage model since each part of a name incremen-
tally indicates which member of a collection is chosen when
traversing the directed graph. Second, hierarchical naming
provides an advantage of scale by avoiding the need for
complicated algorithms that create globally unique identi-
fiers. Lastly, it follows the generally accepted practice of
decoupling the name of an artifact from its physical
location. In particular, since member relationships can span
multiple geographical locations, a hierarchical name simply
follows these relations without knowing the actual location
of the artifact it designates.

By itself, hierarchical naming is not sufficient. Still open
is the choice as to whether each part of a hierarchical name
is maintained by an artifact or by its containing collection.
To allow a single artifact to exist under different names in
different collections (an important facility in current
CM systems), the naming model prescribes the latter:
Names of artifacts are maintained individually by the
collections in which the artifact is a member.

The hierarchical name of an artifact adheres to the
following template:

//physical-repository/<namel[:version]>
[</name[:version]>...]

JANUARY 2002

Thus, names in the abstraction layer can be viewed as URLs
that are extended with version qualifiers. Version qualifiers
provide a means to specify particular versions of artifacts.
Because the storage model allows a single version of an
artifact to be a member of multiple (versions of multiple)
collections, this kind of naming scheme allows an artifact to
have multiple names. For example, assuming the logical
repository shown in Fig. 4, the following four names are all
equally valid as the fully qualified name of version 1 of the
atom PushUp.c:

//Milano/DrawingEditor:1/Menu:1/PushUp.
//Milano/DrawingEditor:1/Menu:2/PushUp.
//Milano/DrawingEditor:2/Menu:1/PushUp.
//Milano/DrawingEditor:2/Menu:2/PushUp.

Qa0
R

For convenience, the use of version qualifiers is optional. If
a version qualifier is not included, then the interpretation of
the name defaults to the version of the artifact that is the
actual member of the containing collection. For example,
the name

//Milano/DrawingEditor:2/Menu/PushUp.c

also refers to version 1 of atom PushUp . ¢ since version 2 of
collection Menu is the member of version 2 of collection
DrawingEditor and version 1 of atom PushUp.c is the
member of version 2 of collection Menu. Thus, it defaults to
the following fully qualified name:

//Milano/DrawingEditor:2/Menu:2/PushUp.c:1

Similarly, because version 2 of collection DrawingEditor
is the member of the repository in Milano, the following
two names also refer to version 1 of atom PushUp. c:

//Milano/DrawingEditor/Menu:2/PushUp.c
//Milano/DrawingEditor/Menu/PushUp.c

2.4 Access Model

The fact that artifacts reside in a logical repository does not
necessarily imply that they are directly manipulated there.
In fact, it is common practice to build a CM system around
the notion of a workspace. A workspace materializes a
subset of artifacts in the file system. When designing a
CM system, the use of a workspace provides three
advantages over direct manipulation. First, it provides an
insulated work area in which artifacts can be manipulated
without being influenced by the work of others. Second, a
workspace provides a form of caching, typically residing
much closer in proximity to the originator of changes than
the physical repository. Finally, a workspace is unobtrusive
in that it provides existing applications with access to
versioned artifacts without the need to modify those
applications to understand the details of the storage and
versioning mechanisms that are used.

For these reasons, the access model prescribes the use
of workspaces to access artifacts in a logical repository.
Each workspace represents a particular version of a
particular collection. The structure of the workspace
follows the structure of the file system. In particular,
collections materialize as directories, lower-level collec-
tions materialize as subdirectories, and atoms materialize
as files. For example, version 2 of the collection

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING 85

DrawingEditor as presented in Fig. 4 would have the
following directory structure when materialized into a
workspace on a UNIX file system.

.../DrawingEditor/GUI-1ib/
/Menu/PullDown.c
/PushUp.c

ClearCase [3] manages workspaces in the repository by
employing a translucent file system in which operating
system calls, such as open, read, and write, are trapped
and interpreted by the repository. In contrast, workspaces
in our access model follow the model that is used by
DRCS [36] and DCVS [24], where materialized artifacts
are actual copies in the file system of the artifacts in the
repository. The advantage is that proprietary replacements
for low-level operating system functions do not have to be
created (as with ClearCase) and that less network traffic is
incurred.

In traditional CM systems, the user of a workspace is a
human. The user of the workspace in our access model,
however, is primarily intended to be a CM system that, in
turn, provides tailored styles of access to their ultimate
human users. This is illustrated in Fig. 5. Three layers, each
containing a different representation of the artifacts, can be
identified. The bottom layer is the repository that contains
all versions of all artifacts. Some of these artifacts will be
materialized into a workspace, which is illustrated by the
middle layer. The materialized artifacts might be trans-
formed by a CM policy for presentation to a human user,
resulting in the top layer. Note that the bottom two layers
are standard and managed internally beneath the abstrac-
tion layer. The top layer, however, can be of any shape or
form, since it is determined by the CM policy program.

2.5 Attribute Model

To facilitate the storage of metadata in a repository, the
repository model incorporates a simple attribute model. An
attribute in this model is an untyped name/value pair that
can be dynamically associated with a particular version of

Spell.c

Version =1.0

Version = 1.1

Version = 1.2

user manipulation

User view
EEEERE|N

= A

transformation by CM policy X

\

Workspace

.../WordProcessor/SpellChecker/Spell.c
/GUI-lib/

workspace materialization

\

Repository

Fig. 5. Access model.

an artifact. Each such version can have its own unique set of
attributes, and this set can change over time. The CM policy
determines both a naming scheme for the attributes and a
set of values that the attributes may assume.

An example is provided in Fig. 6, which shows the
attributes that have been associated with the various
versions of the atom Spell.c. The CM policy managing
these versions has labeled them all with the attributes
Author, Version, and ChangeComment. Furthermore, if
a new version of an artifact fixes a previously identified
bug, that version will be labeled with the attribute
BugReport, which contains the number of the bug
report that describes the bug that is resolved. Finally, if
a version of an artifact is locked, the attribute Lock is set

Author = Andre van der Hoek

ChangeComment = Initial revision

Author = Andre van der Hoek

ChangeComment = Added support to ignore abbreviations

Author = Alexander L. Wolf

Version = 1.1.1.0

ChangeComment = Fixed faulty routine for checking plural words
BugReport = #17

Author = Andre van der Hoek

ChangeComment = Added support for interactive spellchecking

Lock = andre@cs.colorado.edu

Fig. 6. Example attributes associated with the atom Spell.c.

86 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

to contain the e-mail address of the person who has
placed the lock. Note that some attributes contain values
that are assigned by the CM policy itself (e.g., Author,
Version, and Lock), whereas other attributes contain
values that are supplied by users of the CM policy (e.g.,
BugReport and ChangeComment).

3 REPOSITORY INTERFACE

The second component of the abstraction layer defined by
the testbed is the programmatic interface through which
artifacts that are stored in a repository can be manipulated
by CM policies. The complete interface consists of seven
categories of functionality. These categories, listed in Table 1
with the functions they contain, are the following: access
functions, which provide access to artifacts in a repository
by materializing them in a workspace; versioning functions,
which manage the way artifacts evolve into new versions;
collection functions, which manage the membership of
collections; distribution functions, which control the place-
ment of artifacts in specific physical repositories; a deletion
function, which allows a CM policy to remove artifacts from
a repository; query functions, which provide a CM policy
with various kinds of information about the state of artifacts
in a repository or workspace; and attribute functions, which
manage the association of attributes with versions of
artifacts.

A CM policy is built by programming against the
interface and using combinations of interface functions to
implement the particular functionality needed. Because a
wide range of CM policies has to be supported, the interface
functions—much like the various submodels in the reposi-
tory model—do not impose any particular CM policy.
Instead, they provide the mechanisms for CM systems to
implement specific policies. While the particular semantics
of the interface functions might therefore seem odd from
the perspective of a human user, those same semantics are
invaluable to a CM policy programmer.

An important characteristic of the programmatic inter-
face is the orthogonality among the various functional
categories. For example, the distribution functions are the
only functions concerned with the distributed nature of a
repository. The other functions are not influenced by the
fact that artifacts are stored in different locations. Their
behavior is the same, regardless of whether the artifacts are
managed by a local repository or a remote one. Similarly,
the collection functions are the only functions that recognize
the special nature of collections. The other functions in the
programmatic interface behave the same, irrespective of
whether they operate on atoms or collections.

It should be noted that the functionality offered by each
individual interface function is rather limited. At first, this
seems contradictory to the goal of providing a high-level
interface for configuration management policy program-
ming. However, because of the limited functionality, each
function can be defined with precise semantics. Not only
does that generalize the applicability of the interface
functions, it also allows the rapid construction of particular
CM policies through the composition of sets of interface
functions. In Section 4, we present some of the CM policies
that we have constructed this way. Below, we introduce,
per category, the individual interface functions that

JANUARY 2002

constitute the programmatic interface to the generic
repository model.

3.1 Access Functions

Access to the artifacts in a repository is, as discussed in
Section 2.4, obtained through a workspace in which artifacts
are materialized upon request. Once the artifacts are
materialized, other interface functions become available to
manipulate them. In particular, versioning functions can be
used to store new instances of artifacts, and collection
functions can be used to manipulate the membership of
collections.

The access functions in the programmatic interface are
nc_open and nc_close. The function nc_open provides
access to a particular version of an artifact by materializ-
ing it in a workspace. Atoms are materialized as files,
collections as directories. Each use of the function
nc_open materializes a single artifact. A workspace, then,
has to be constructed in an incremental fashion. This
mechanism allows a CM system to populate a workspace
with only the artifacts that it needs. The function
nc_close is used to remove artifacts from a workspace.
The function operates in a recursive manner: When a
collection is closed, all the artifacts that it contains are
removed from the workspace as well.

3.2 Versioning Functions

Once an artifact has been opened in a workspace, the
following versioning functions become available to create
and store new versions of the artifact:

nc_initiatechange,
nc_abortchange,
nc_commitchange, and
nc_commitchangeandreplace.

Through the functionnc_initiatechange,a CMpolicy
informs a workspace of its intention to make a change to an
atom or a collection. In response, permission is granted to
change the artifact in the workspace. If the artifact is an atom,
it can be manipulated by any user program since its contents
are not interpreted by the model or interface. A collection, on
the other hand, can only be manipulated through the use of
collection functions because those functions preserve its
special nature (see Section 3.3).

Permission to change an artifact in one workspace does
not preclude that artifact from being changed simulta-
neously in another workspace. In particular, the function
nc_initiatechange does not lock an artifact. If a locking
protocol is desired, then the attribute functions described in
Section 3.7 can be used to construct that protocol. This
orthogonality of locking and versioning permits the devel-
opment of CM policies that range from the optimistic, in
which artifacts are not locked and changes are merged
when conflicts arise, to the pessimistic, in which artifacts are
locked to avoid conflicts.

The function nc_abortchange abandons an intended
change to an artifact. It reverts the materialized state of the
artifact back to the state that it was in before the function
nc_initiatechange wasinvoked. An nc_abortchange
performed on a collection can only succeed if no artifacts
that are part of the collection are currently in a state that
allows them to be changed. This forces the CM system either

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING 87

TABLE 1
Programmatic Interface Functions
| Category | Function | Description |

Access nc_open Materializes an artifact version into a workspace.
nc._close Removes an artifact version from a workspace.

Versioning nc_initiatechange Allows an artifact version in a workspace to be

modified.
nc_abortchange Returns an artifact version in a workspace to the
state 1t was in before it was initiated for change.
nc_commitchange Stores a new version of an artifact in a repository.
nc_commitchangeandreplace | Overwrites the current version of an artifact in
a repository.
Collection nc_add Adds an artifact version to a collection.
nc_remove Removes an artifact version from a collection.
nc_rename Renames an artifact within a collection.
nc_replaceversion Replaces the version of an artifact within a col-
lection.

nc_copy Copies the versions of an artifact and adds a ver-
sion of the new artifact to a collection.

nclist Determines the member artifact versions of a col-
lection.

Distribution | nc_setmyserver Sets the default physical repository in which new

artifacts will be stored.

nc_getlocation Determines the physical repository that contains
the versions of an artifact.

nc_move Moves an artifact and its versions from one phys-
ical repository to another.

Deletion nc_destroyversion Physically removes an artifact version from a

repository.
Query nc_gettype Determines the kind of an artifact.
nc_version Determines the current version of an artifact.
nc_lastversion Determines the latest version of an artifact in a
repository.

nc_existsversion Determines whether a version of an artifact ex-
ists in a repository.

nc_isinitiated Determines whether an artifact version has been
initiated for change in a workspace.

nc_isopen Determines whether an artifact version has been
materialized into a workspace.

Attribute nc_testandsetattribute Associates an attribute and its value with an ar-

tifact version (if the attribute does not yet exist).

nc_setattribute Associates an attribute and its value with an ar-
tifact version (whether or not the attribute ex-
ists).

nc_getattributevalue Determines the value of an attribute of an arti-
fact version.

nc_removeattribute Disassociates an attribute from an artifact ver-
sion.

nc_selectversions Determines the set of versions of an artifact for
which an attribute has a certain value.

to commit any changes or to abandon them, thereby mnew version of the artifact in the repository. It is the only

avoiding unintentional loss of changes.
To store the changes that have been made to an creates new versions of artifacts. None of the other
artifact, two alternative functions can be used. The first, functions have this capability, neither directly nor as a

function in the programmatic interface that actually

nc_commitchange, commits the changes by storing a side effect. The second function used to store changes to

88 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

N\

GUI-lib

Window.c Frame.c

7

(a)

N
N\

GUI-lib

Frame.c

Window.c
7z

JANUARY 2002

N

GUI-lib

Frame.c

TR
)

V\1/indow.c
——

Panel.c

| e _| \\
S
(c)

Fig. 7. Progressive states of an example collection.

artifacts is nc_commitchangeandreplace. As its name
implies, this function is similar in behavior to the function
nc_commitchange, but instead of creating a new version
of the artifact, it overwrites the contents of the version
that was initiated for change. Both functions, in addition
to storing the new contents of the artifact in the
repository, also revoke the permission to make further
changes to the artifact in the workspace. Once again,
locking is an orthogonal concern that is managed with a
different category of functions. Therefore, neither function
releases any locks that may be held.

The availability of these alternative storage functions
allows a CM policy programmer to choose whether
particular changes lead to new versions of artifacts or not.
This is an especially important decision in the case of
collections. Whereas some CM policies prescribe that any
change to a member artifact leads to a new version of the
collection (e.g., Poem [30] or CoED [6]), other CM policies
only version collections when the actual structure of the
collection (i.e., its artifact membership) has changed (e.g.,
ShapeTools [31] or ClearCase [3]). Since this is a policy
decision, the programmatic interface facilitates both cases.
To model the first case, the function nc_commitchange is
used on the collection, whereas the latter case requires the
use of the function nc_commitchangeandreplace.
Given that an artifact can be a member of multiple
collections, a CM policy could even choose to use a
different approach for each collection.

To illustrate the versioning functions, suppose we have a
repository containing the artifacts depicted in Fig. 7a.
Assume further that, using the function nc_open, a
workspace has been created that contains version 2 of the
artifact GUI-1ib and its containing artifacts. To be able
to modify the atom Window.c in the workspace, we
invoke the function nc_initiatechange. Once the
desired changes have been made, we use the function
nc_commitchange to store a new version of the atom
Window. ¢ in the repository. The result is shown in Fig. 7b.
The repository now contains three versions of the atom
Window.c, but note that the collection GUI-1ib has
not changed since we did not invoke the function
nc_initiatechange on that collection. Had we used
the function nc_commitchangeandreplace instead of
the function nc_commitchange, no new version would
have been created for the artifact Window.c. In fact, the
structure of the repository would still have looked like the
one of Fig. 7a, even though the actual contents of version 2
of the atom Window.c would have changed.

3.3 Collection Functions

Similar to the way an editor can be used to change an atom
in a workspace, collections need to be changed via some
kind of mechanism. Because collections have special
semantics, it would be unwise to allow them to be edited
directly. Therefore, the programmatic interface contains a
number of functions that preserve the semantics of
collections while updating their contents. These functions

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING 89

are the following: nc_add, nc_remove, nc_rename,
nc_replaceversion, nc_copy, and nc_list. An
important aspect of these functions is that they do not
directly modify collections in the repository. Instead, they
can only modify collections that have been materialized
(and initiated for change) in a workspace. To promote these
changes to the repository, the versioning functions
described in the previous section must be used. This
scheme allows many changes to a single collection to be
grouped into a single change in the repository.

The functions nc_add and nc_remove behave as
expected, adding and removing a version of an artifact to
and from a collection, respectively. The function nc_add
can add either a new or an existing artifact to a collection.
The addition of a new artifact will simply store its contents
in the repository. The addition of an existing artifact, on the
other hand, will result in an artifact that is shared by
multiple collections and for which a single version history is
maintained (such as the collection GUI-1ib in Fig. 4). If,
instead of a shared version history, a separate version
history is desired, then the function nc_copy must be used
in place of the function nc_add. A distinctly new artifact
will be created in the repository. The new artifact will
contain the same version history as the artifact that was
copied, but the new artifact evolves separately.

A feature that has been difficult to provide in CM systems
is the ability to rename artifacts. The testbed solves this
problem by providing, directly in its programmatic inter-
face, the function nc_rename. Because an artifact is only
renamed within a single collection at a time, it is possible for
an artifact to exist under different names in different
collections. This is an important feature of the programmatic
interface since it allows an artifact to evolve without
compromising its naming history.

The function nc_replaceversion complements the
other collection functions because it operates in the version
dimension as opposed to the naming dimension. Its
behavior is simple: It changes the member version of an
artifact in a collection to another version. A situation for
which this functionality is especially useful is when a
CM policy programmer would like to provide an “undo”
facility. For example, the facility can be used to replace a
newer version of an artifact in a collection with an older one.

The function nc_list rounds out the collection func-
tions. It returns a list of the names and versions of the
artifacts that are members of a collection. This functionality
is useful in building a CM system that, for example,
presents a user with the differences between two versions of
a collection, recursively opens a workspace, or simply
allows a user to dynamically select which artifacts to lock or
check out.

The set of collection functions is complete. If we consider
the artifacts that are members of a collection to be organized
in a two-dimensional space defined by name and version,
all primitive functionality is provided. A name-version pair
can be added, a name-version pair can be removed, a name
is allowed to change, and a version is allowed to change.
Despite the rather primitive functionality provided by each
individual function, the complete set of collection functions
allows for the rapid construction of higher-level, more

powerful functions. For example, a function that replaces,
under the same name, one atom with another, can be
constructed as a sequence of nc_remove, nc_add, and
nc_rename.

To illustrate the collection functions, we continue the
example of Fig. 7b. Assume that all artifacts are still open in
the workspace. To manipulate the collection GUI-1ib, the
function nc_initiatechange is first used to gain proper
permission. Then, to update the atom Window. c to its latest
version, the function nc_replaceversion is applied. In
addition, to provide a panel as opposed to a frame in the
collection GUI-1ib, the function nc_remove is used to
remove the atom Frame. c and the function nc_add is used
to add the atom Panel.c. These changes are transferred to
the repository using the function nc_commitchange. As a
result, the repository looks as shown in Fig. 7c. A new
version of the collection GUI-1ib has been created that
reflects the new membership. In addition, because we used
the function nc_commitchange instead of the function
nc_cimmitchangeandreplace, the old version of the
collection is still available. This means that, if the function
nc_list is used on version 2 of the collection GUI-1ib,
then version 2 of the atom Window.c and version 2 of the
atom Frame.c are listed as the collection members,
whereas, if the function nc_list is used on version 3 of
the collection, then version 3 of atom Window.c and
version 1 of atom Panel.c are listed as members.

3.4 Distribution Functions

An important aspect of the distribution model discussed in
Section 2.2 is that it isolates distribution. This is reflected in
the semantics of the various interface functions since the
functions behave the same whether artifacts are stored
locally or remotely. On the other hand, sometimes a need
exists for control over the location of artifacts. Users of
systems that completely hide distribution often encounter
performance difficulties related to the physical placement of
data. To counter this problem, the programmatic interface
contains functions that allow a CM system to determine and
change the physical location of artifacts within a logical
repository.

The first function, nc_setmyserver, specifies the
default physical repository to which newly created artifacts
are added. New artifacts can be added to any physical
repository since it is not required that they are added to the
same physical repository as the one in which their parent
collection resides. When a new artifact is added to a
different repository, a connection is made between that
repository and the repository in which the parent collection
is located. This connection is the bridge that forms the
logical repository spanning the two physical repositories.

To determine the actual location of an artifact, the
function nc_getlocation is used. It returns the physical
repository in which an artifact is stored. This information
can, in turn, be used by the function nc_move to collocate
artifacts that are regularly used together or to move artifacts
to those physical repositories that are closer in proximity to
the workspaces in which they are manipulated. To comply
with the requirement set forth by the distribution model
that all versions of an artifact are located in a single physical

90 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

repository, the function nc_move moves the complete
version history of an artifact from one physical repository
to another.

3.5 Deletion Function

Since it violates the basic premise of always having a precise
history of all changes to all artifacts, deleting (versions of)
artifacts from a repository is an uncommon practice in the
domain of configuration management. Nevertheless, it
should still be possible to do so. Therefore, the function
nc_destroyversion is provided in the programmatic
interface to physically delete a particular version of an
artifact from a repository. During deletion, however, a
specific rule is enforced: A version of an artifact can only be
deleted if that version is not a member of a collection.
Consider the example in Fig. 7c. A CM policy is allowed to
delete version 1 of atom Window.c, but the deletion of
version 2 is disallowed because it is a member of version 2
of the collection GUI-1ib. While it may seem as though we
are making a policy decision through this restriction, it is
one that is intended simply to preserve the consistency of
the repository structure.

The function nc_destroyversion, by itself, is not
sufficient to be able to delete all artifacts from a repository.
A second, implicit form of deletion has to be provided by an
implementation of the abstraction layer that complements
the explicit use of the function nc_destroyversion. The
implicit deletion has to take care of two specific cases. First,
by allowing artifacts to be removed from a collection with
the function nc_remove, it is possible that none of the
versions of a certain artifact can be reached in the versioned
directed graph of artifacts (consider applying the function
nc_remove on version 2 of the atom Frame. c). Second, it
is possible to create a sequence in which a new artifact is
added to a collection in a workspace with the function
nc_add, but removed from that collection by the function
nc_remove before a new version of the collection is stored
in the repository. In both cases, the storage space occupied
by the artifact needs to be automatically reclaimed by an
implementation of the abstraction layer.

3.6 Query Functions

The programmatic interface would not be complete without
the ability to examine the state of artifacts. For example,
when multiple clients share access to an artifact, they
should be able to determine whether any new versions of
the artifact have been created by another client. The query
functions were designed to provide this type of function-
ality. Although simple, these functions are essential in the
development of CM policies because they provide state
information that a CM system would otherwise have to
determine and track itself. The query functions that provide
information about the artifacts in a workspace are particu-
larly important in this respect.

Although the names of the interface functions speak for
themselves, we provide a one-sentence description and
typical use of each. The function nc_gettype determines
whether an artifact is a collection or an atom and is often
used when recursively opening a collection and all its
containing artifacts in a workspace. To manage version
relationships, such as a revision history, the function

JANUARY 2002

nc_version can be used to determine the version of an
artifact before and after the function nc_commitchange
has been used to store some changes. The function
nc_lastversion returns the version number of the last
version of an artifact, and is used to check for new versions
of an artifact that may have been added by another client. If
some versions of an artifact have been deleted from a
repository, the function nc_existsversion canbe used to
verify whether or not a particular version is still available.
Finally, the functions nc_isopen and nc_isinitiated
operate on artifacts in a workspace and are used to verify
whether an artifact has been opened and whether it is
allowed to change, respectively.

3.7 Attribute Functions

To facilitate, in accordance with the attribute model, the
association of metadata with the artifacts in a repository, the
programmatic interface contains a number of primitive
functions to manipulate attributes. In particular, it is
possible to set the value of an attribute with either the
function nc_setattribute, which sets the value of an
attribute irrespective of whether a value is already set, or
the function nc_testandsetattribute, which only sets
the value of an attribute when the attribute is currently
nonexistent. To remove an attribute, the function
nc_removeattribute is used. This function removes
both the attribute and its associated value. To search the
attributes that may be set on the various versions of an
artifact, the function nc_selectversions is used: For a
particular artifact in the repository and for a desired
attribute value, it returns the version numbers of those
versions whose corresponding attribute matches the value.

The attribute functions serve a dual purpose. First, they
are used to simply attach metadata to individual versions of
an artifact. For example, it is possible to capture such
characteristics as the author and creation date of the
version, one or more change request identifiers that identify
which particular change requests have been incorporated,
and a short synopsis of the changes made with respect to
the previous version.

The second purpose for which the attribute functions
were designed is to support an artifact locking mechanism.
In particular, the function nc_testandsetattribute
only sets the value of an attribute if it does not yet exist.
Therefore, the function can be used to create a lock on an
artifact by simply setting an attribute that represents the lock.
If the artifact had been previously locked (i.e., the attribute is
set), then the function and, hence, the lock attempt will fail. If
the attribute had not been previously locked (ie., the
attribute is not set), then the function and lock attempt will
succeed. The function nc_removeattribute unlocks the
artifact by removing the attribute.

Because of their generic nature, the attribute functions do
not themselves enforce locks. Any enforcement results from
the usage protocol employed by a CM policy. For example,
a lock can be “broken” (intentionally or unintentionally) by
using the function nc_setattribute on an existing lock
attribute since the function will not fail to set the attribute
even though the attribute already exists. In a similar vein,
the interpretation of a lock on a collection is left to the
CM policy: Does it mean that only the collection itself is

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING 91

locked or does it mean that anything reachable from the
collection is also locked? The usage protocol employed by
the CM policy will provide an answer that is consistent with
the policy it seeks to implement.

Although using the attribute functions for purposes of
artifact locking results in a rather primitive mechanism, the
functions are powerful enough to directly model the
locking schemes employed in such existing CM systems
as RCS [47], CCC/Harvest [44], and others. If more
sophisticated locking schemes are required, then a separate
lock manager, such as Pern [23], should be used instead.
This approach is consistent with the desire for locking to be
orthogonal to the other functionalities of the interface.

4 THRee NUCM-BASeED CM SYSTEMS

The abstraction layer, including its repository model and
programmatic interface, has been implemented in the
NUCM prototype’ and was used to develop several
CM systems, including the three, rather different ones
described in this section. At present, two of those systems,
namely, DVS [9] and SRM [49], are in everyday use, while
the third system, WebDAYV, represents an experimental
implementation of an emerging standard in Web version-
ing [22], [52]. We also created proof-of-concept imple-
mentations of the widely known check-in/check-out and
change-set policies [18], but used an earlier version of the
prototype to do so; those implementations are presented
elsewhere [50].

Below, we discuss each system and use parts of their
implementations to illustrate how NUCM can be used to
program particular CM policies. It should be noted that the
policies themselves are not the contribution. Instead, the
strength of NUCM lies in the ease with which these policies
were constructed and the limited amount of work needed to
make them suitable for use in a wide-area setting.

41 DVS

DVS (Distributed Versioning System) [9] is a versioning
system that is focused on providing a distributed environ-
ment in which documents can be authored collaboratively.?
DVS is centered around the notion of workspaces. Specifi-
cally, individual users populate their workspace with the
artifacts needed, lock the artifacts they intend to change,
modify these artifacts using appropriate tools, and commit
their changes from the workspace to a storage facility. This
policy is similar to the one employed by RCS [47], except
that DVS explicitly recognizes and versions collections and,
moreover, operates in a wide-area setting.

DVS exhibits several characteristics that illustrate the
power of the abstraction layer.

e No special code needed to be developed for DV'S to operate
across a network. DVS relies entirely on the mechan-
isms included in NUCM to support distribution. In
fact, DVS can not only operate in a client-server
mode, but it is also possible to federate multiple
physical repositories into a single logical repository
that is used by DVS.

2. http:/ /www.cs.colorado.edu/serl/cm/nucm.html.
3. http:/ /www.cs.colorado.edu/serl/cm/dvs.html.

e Only approximately 3,000 new lines of source code were
needed to create the full functionality of DVS.* The
newly written source code mainly deals with the
text-based user interface, the recursive operations
on workspaces, the proper locking of artifacts, and
the storage of metadata about the artifacts that are
versioned. Other functionality, such as distribution,
collections, and basic versioning, is inherited from
NUCM.

e The separation of policy from repository allows certain
evolutions in the policies to occur incrementally. This
characteristic of NUCM came upon us unexpectedly.
On one occasion, DVS was being used by 10 people
at five different sites to jointly author a document. It
turned out that the policy provided by DVS did not
completely match the desired process. In response,
some of the DVS functionality was changed and
some new functionality was added. When the second
version of DVS was subsequently and incrementally
deployed to the various sites, no disruption of work
occurred. Because the NUCM repository required no
downtime and the artifacts in the repository needed
no change, slightly different policies could be used
by multiple authors at the same time.

To demonstrate how DVS is built upon the functions in
the NUCM interface, Fig. 8 presents a portion of the DVS
source code. (Note that all error handling has been
removed from the example source code shown in this
section.) The use of a NUCM interface function is high-
lighted by a “+”. Illustrated is a procedure that synchro-
nizes a workspace with the latest versions of the artifacts in
a NUCM repository. The procedure allows either a single
artifact or a recursive set of artifacts to be synchronized,
depending on the value of the parameter recursive.

The procedure consists of three parts. In the first part, the
version of the artifact in the workspace and its latest version
in the repository are determined through the use of the
functions nc_version and nc_lastversion. If these
versions are the same, the artifact is up to date with respect
to the repository. If they are not, the second part of the
procedure takes care of synchronizing the two by replacing
the version in the workspace with the version in the
repository. Additionally, before the latest version of the
artifact is opened in the workspace, the current version is
closed if it had been opened previously. To avoid the loss of
changes that may have been made to an artifact, the routine
first verifies whether the current version has been initiated
for change. If so, the current version of the artifact is
preserved in the workspace and the artifact is not
synchronized. The third and final part of the procedure
deals with the recursive nature of the synchronization of a
workspace. If the artifact to be synchronized is a collection,
its contained artifacts are obtained and each of these
artifacts is in turn synchronized through a recursive call.

4.2 SRM

SRM (Software Release Manager) [43], [49] is a tool that
addresses the problem of software release management.’
SRM supports the release of “systems of systems” from
multiple, geographically distributed sites. In particular,

4. In this paper, all counts of source code lines include empty lines and
comments.
5. http:/ /www.cs.colorado.edu/serl/cm/SRM.html.

92 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

JANUARY 2002

1 int synchronizeworkspace(const char* pathname, int recursive)
2 f

3 //

4 // Part 1: Determine the current and latest version of the artifact.
5 //

6 strip_versionr(pathname, strippedpath);

7 * nc_version(strippedpath, "", currentversion);

8 * nc_lastversion(strippedpath, , lastversion);

9

10 //

11 // Part 2: If needed, get the latest version of the artifact, unless
12 // it is checked out.

13 //

14 if (strcmp(lastversion, currentversion) !'= 0) {

15 do_open = 1;

16 * if (nc_isopen(strippedpath, "."))

17 * if (!nc_isinitiated(strippedpath, "."})

18 * nc_close(strippedpath, ".", 0);

19 else

20 do_open = O;

21 if (do_open) {

22 set_versionx(strippedpath, lastversion);

23 * nc_open(strippedpath, ".", ".", "");

24 }

25 }

26

27 //

28 // Part 3: If necessary, recursively synchronize the workspace.
29 //

30 if (recursive) {

31 * atype = nc_gettype(strippedpath, ".");

32 if (atype == COLLECTION) {

33 * nc_list(strippedpath, "', &members);

34 chdir(strippedpath) ;

35 start = members;

36 while (members !'= NULL) {

37 synchronize workspace (members->name, recursive);
38 members = members->next;

39 }

40 * nc_destroy memberlist(start);

41 if (strcmp{(strippedpath, ".") '= 0)

42 chdir('..");

43 }

44 }

45 }

Fig. 8. DVS routine to synchronize a workspace.

SRM tracks dependency information to automate the
packaging and retrieval of components. Software vendors
are supported by a simple release process that hides the
physical location of dependent components. Customers are
supported by a simple retrieval process that allows
selection and downloading of components whose physical
locations are hidden.

Although SRM is not a traditional CM system that
stores and versions source code, it has many similarities to
a CM system: It needs to manage multiple releases, it
needs to manage dependencies among these releases, and
it needs to store metadata about the releases. Combined
with the need for a distributed repository that allows
multiple sites to collaborate in the release process, these
similarities led to the choice of NUCM as the platform
upon which to build SRM.

Of relevance to the discussion in this paper is the
flexibility that NUCM provides in the creation of a
distributed repository. In particular, we examine the way
new participants can join a federated SRM repository. To

facilitate this functionality, each participating site maintains
a NUCM repository that contains the releases they have
created. Additionally, one of the NUCM repositories in the
federation maintains a collection that contains all releases
from all sites. This is illustrated in Fig. 9 by the repositories
in Rotterdam and Boulder. Both repositories contain a
collection nucm_root that contains a local collection
my_releases and a global collection all_releases. In
each repository, the collection my_releases contains the
releases made by that site. The collection all_releases,
which is shared by both sites, contains all the releases. Note
that the repository in Milano is not part of the SRM
federation at this point.

The procedure join, presented in Fig. 10, illustrates
how a new physical repository can join an existing SRM
federation. It operates by creating a new collection for local
releases, my_releases, and linking to the existing
collection that contains all releases, all_releases. To
do so, it first sets up a workspace containing its main
collection nucm_root, then allows the collection to change

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING

/ ' /

|
nucm_root | nucm_root
|
|
|
|
|
|
my_releases all_releases :
|
|
BOULDER i
7’ 7 ~ N\
WordProcessor ’, N
7 N\
7 < » N
P N MILANO
N
N\
/ S
7/ nucm_root N N
7 N
7 N\

7 \ROTTERDAM

WordProcessor all_rel my_rel

GUI-lib GUI-lib

Fig. 9. Federated SRM repository before Milano joins the federation.

1 int join{const char® host, const char* port)

2

5)

4 // Part 1: Set up a workspace.

5/

6 sprintf(all releases, 7 / /%s:%s/nucm root/all releases”, host, port);
7 sprintf(mynucmroot, " / /%s:%s/nucmroot”, NUCMHOST, NUCMPORT);
8 sprintf(my releases, "WORKSPACE /my _releases”);

9 sprintf(collection, ”WORKSPACE /nucm root”);

10 * nc_open(mynucmroot, ", WORKSPACE, "");

11 * nc.nitiatechange(collection);

12

15y

14 // Part 2: Add a new artifact for my personal releases.
5

16 mkdir(my releases);

17 * nc_add(myxeleases, ", collection, ””);

18

9)

20 // Part 3: Import an existing artifact for the list of all releases.
21

22 * nc_add(allreleases, ", collection, ””);

23 * nc_commitchangeandreplace(collection, ”");

24 * nc_close(collection, ””, 0);

25}

Fig. 10. SRM routine to join a federation.

94 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

JANUARY 2002

/ I /
!
nucm_root | nucm_root
[
[
[
I
[
l / N\
I / E
my_releases all_releases I all_releases my_releases
/
[/ N\
I £ . W
BOULDER)L Py L
P N
WordProcessor ’, /N
/ ~
7 N
/ S MILANO
/ S N
/ / N
/ S
Ve / nucm_root N
Ve / N
7 N
/ N
7 \ROTTERDAM S
/
|
WordProcessor | all_releases my_releases
GUI-lib GUI-lib

Fig. 11. Federated SRM repository after Milano joins the federation.

by using the function nc_initiatechange and, subse-
quently, uses the function nc_add to add the newly
created collection my_releases and the existing collection
all_releases to the collection nucm_root. The collec-
tion nucm_root is then stored in the repository using the
function nc_commitchangeandreplace and the work-
space is finally removed by using the function nc_close.
The result of all these actions is shown in Fig. 11. Assuming
that the Milano site is being joined with the SRM repository
of Rotterdam and Boulder, the dashed lines indicate the
new artifact and the membership relationships that are
created by the procedure join. Once the artifact and the
relationships are created, Milano is a full part of the
SRM federation; when it adds new releases to the
repository, they can be accessed from all sites.

The main advantage in using NUCM to develop SRM is
that distribution could be isolated. Only two lines in the
example source code of Fig. 11 explicitly deal with
distribution: In line 6 and line 7, the remote repository that
contains the collection all_releases and the local
repository that is going to join the SRM repository are
explicitly identified. After that, all policy programming is, in
fact, transparent with respect to distribution. This particu-
larly exhibits itself in other portions of the SRM policy code.
Adding or removing releases to the SRM repository can

simply be programmed as additions and removals to the
collections my_releases and all_releases since
NUCM tracks the physical location of these collections.
Similarly, through the collection all_releases, any site
can retrieve releases from the other sites without having to
know where a release is physically located.

This strength of isolating distribution exhibits itself
throughout SRM. Only a small part of the complete
implementation, less than two percent, explicitly deals with
distribution. The remainder of the implementation is
concerned with the actual functionality of SRM itself and,
in fact, relies on the distribution transparency provided by
the internal storage layer of SRM.

4.3 WebDAV

WebDAV [22], [52] is an emerging standard that proposes
to add authoring and versioning primitives to the
HTTP protocol [20]. In particular, the standard proposes
extensions in the following five areas:

e Metadata. To be able to describe Web resources,
WebDAV proposes the creation of new HTTP
methods that add metadata to Web resources, as
well as methods to query and retrieve the metadata.

o Collections. To be able to structure Web resources
into higher-level constructs, WebDAV proposes the

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING 95

creation of new HTTP methods that allow Web
resources to be grouped into collections, as well as
methods that change the membership of collections.

e Name space management. To be able to efficiently
move, copy, and delete Web resources, WebDAV
proposes the creation of new HTTP methods that
manipulate the Web name space.

e Locking. To avoid multiple entities updating a single
Web resource in parallel and, consequently, losing
changes, WebDAV proposes the creation of new
HTTP methods that allow Web resources to be
locked and unlocked for exclusive write access.

o Version management. To be able to keep a history of
Web resources, WebDAV proposes the creation of
new HTTP methods that allow Web resources to be
versioned.

Although the objective of WebDAYV (i.e., providing an
infrastructure for distributed authoring and versioning) is
slightly different from the objective of NUCM (i.e., provid-
ing a distributed repository to construct configuration
management policies), the interface methods that have
been proposed for both are strikingly similar. Only two
major differences exist. First, NUCM includes a naming
model that explicitly incorporates a mechanism to refer to
versions of artifacts, whereas the naming scheme of
WebDAV does not define such a mechanism. Second,
WebDAV specifies a particular versioning policy, namely,
the RCS-like lockable version tree, whereas NUCM is
generic with respect to versioning policies.

Because of the similarity between NUCM and WebDAYV,
it seems advantageous to use NUCM to implement
WebDAYV, at least in order to quickly determine the utility
of its policy. To this end, we created a simple HTTP server
that is also a NUCM client. Most of the new HTTP methods
translate into direct calls to the NUCM interface, but some
require more work. In particular, the versioning routines of
WebDAYV prescribe a policy that is based on a version tree.
To implement this tree, we have to map the versions in the
tree to versions of NUCM artifacts. In our implementation,
this mapping is created by storing two NUCM artifacts for
each WebDAV artifact, namely, the actual artifact and an
associated artifact that stores the version tree for that
artifact. In addition, the version tree artifact has attributes
associated with it that map each version number in the tree
to a NUCM version number.

Fig. 12 shows how one of the procedures in our
WebDAYV implementation, namely, checkin, takes advan-
tage of this approach. (Note that, because the WebDAV
standard has continued to evolve, the example given here is
not completely consistent with the current version of the
standard.) The function stores a new version of an artifact
and updates the version tree accordingly. Its functionality
can be divided into five separate parts.

In the first part, several parameters used in the
remainder of the function are determined. The names of
the artifact being checked in and its corresponding version
tree artifact are constructed first. Subsequently, the type of
the artifact being checked in and its NUCM version number
under which it was checked out are obtained.

In the second part of the function, the new version of the
artifact is read from the WebDAV client and, subsequently,
stored in the repository through the use of the function
nc_commitchange.

The third part of the function serves an important role: It
is the part that updates the version tree. We do not show the
actual algorithm that determines the new version number
since it does not involve any use of NUCM functions.
Instead, it is shown how the version tree is obtained from
the repository, updated with the new version information
and stored back into the repository. Note the use of the
function nc_commitchangeandreplace to replace the
version tree since there is no need to store multiple versions
of the version tree itself.

The fourth part of the function sets new attributes for some
of the artifacts in the repository. In particular, it preserves the
type of the artifact that was checked in and relates the version
in the version tree with the NUCM version of the new artifact.
Note that the type information is attached to the new version
of the artifact, for which a new NUCM name is first
constructed.

Finally, in the fifth part of the function, the artifact that
was previously checked out and locked for modifications is
unlocked so that other users can now modify this version.

Once again, the reusability of NUCM proved to be
valuable in the implementation of WebDAV. The total
number of lines of source code that were developed to
create a prototype WebDAV implementation was only
1,500, of which approximately 40 percent accounts for a
graphical user interface that can be used to perform
WebDAV operations.

Admittedly, our experimental implementation does not
cover all the functionality of WebDAV. However, the
limited amount of code that needed to be developed and
the minimal time required to produce that code together
demonstrate an important aspect of NUCM: It can be used
to quickly demonstrate prototype CM policies. The devel-
opment of a standard like WebDAV can particularly
benefit from such an approach since the ramifications of
specific policy decisions can be explored with an early
implementation.

5 RELATED WORK

In its many years of existence, the discipline of configuration
management has produced numerous industrial and
research systems. Some provide only version control facil-
ities, (e.g., RCS [47], SCCS [41], Sablime [5]), others provide
more complete configuration management solutions (e.g.,
CVS [7], CoED [6], Perforce [38]), and yet others provide
integrated environments that incorporate process manage-
ment and/or problem tracking facilities (e.g., Adele [17],
ClearCase [3], Continuus [12]). With respect to distribution,
some of the CM systems are only suited for use at a single site
(e.g., EPOS [35], ShapeTools [31], SourceSafe [32]), others
incorporate a simple, sometimes Web-based, client-server
interface (e.g., DCVS [7], Perforce [38], WWCM [25]), and yet
others provide more advanced distribution mechanisms
such as replication (e.g., ClearCase Multisite [2], Continuus
DCM [13], PVCS SiteSync [28]). To understand the position
of the abstraction layer and its implementation in NUCM in
this large space of CM systems, we examine the evolution of
CM system architectures.

Fig. 13a shows the architecture that has traditionally been
used: A CM system is constructed as a single, monolithic
entity that tightly integrates its storage mechanism with its
CM policy. This approach is still the way in which most

96 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

JANUARY 2002

19 while ((n = fread(bytes, 4096, 1, client)) ; 0)
20 write(fd, bytes, n);
21 close{fd);

35 fputs(line, fd);
36 fclose(fd);
37 * nc_commitchangeandreplace(filename, 7");

38 * nc_close(filename, "7, 0);

39

40 //

41 // Part 4: Set new attributes.
42 //

1 int checkin(const char® path, const char* oldversion, FILE* client)

2 |

3 /!

4 // Part 1: Determine necessary information.

5

6 sprintf(tree, ” //%s:%s/nucm root/TREE/%s”, NUCMHOST, NUCMPORT, path);
7 sprintf(treefilename, " %s/%s"”, WORKSPACE, (rindex(tree, ’/)4+1));

8 sprintf(artifact, ” / /%s:%s/nucm root/%s:%s", NUCMHOST, NUCMPORT, path, nucmversion);
9 sprintf(filename, "%s/%s”, WORKSPACE, (rindex(artifact,’/’)+1));

10 * nc_getattributevalue(tree, ””, oldversion, nucmversion);

11 * nc_getattributevalue(artifact, ””, " TYPE”, type);

12

13

14 // Part 2: Store new version of the artifact.

5

16 * nc_open(artifact,””, WORKSPACE, "");

17 * ncdnitiatechange(filename, "”);

18 fd = open(filename, O_TRUNC — O_WRONLY);

22 * nc_commitchange(filename, ””, newnucmversion);
23 * nc_close(filename, ", 0);

24

25

26 // Part 3: Update the version tree.

o

28 * nc_open(tree, ", WORKSPACE, "”);

29 * nc.nitiatechange(treefilename, WORKSPACE);
30 fd = fopen(treefilename, "r+");

31 e

32 ... /* Determine new version number */

33 e

34 sprint{(line, ”%s CHILD OF %s“n”, newversion, oldversion);

43 sprintf(newartifact, ” //%s:%s/nucm root/%s:%s", NUCMHOST, NUCMPORT, path, newnucmversion);

44 * nc_testandsetattribute(tree, ””, newversion, newnucmversion);
45 * nc_testandsetattribute(newartifact, ””, "TYPE”, type);

46

o

48 // Part 5: We are done, unlock the artifact.

o

50 * nc_removeattribute(artifact,””, "LOCK");

51}

Fig. 12. WebDAV routine to check in a file.

CM systems are built, as exemplified by CoED [6] and DSCS
[33], both of which were only recently developed. The
advantage of this architecture is that it allows a CM system
to optimize its storage to precisely match the needs of the
CM policy. A clear disadvantage, however, is that a
resulting CM system tends to be rather inflexible [15].
Moreover, such a CM system typically has to be constructed
from the ground up, which is a major effort even today.
As CM systems have become more advanced, some have
turned towards using a commercial, generic database
management system as the underlying storage mechanism
(e.g., ClearCase [3], Continuus [12], TrueCHANGE [45]).
Ilustrated in Fig. 13b, the advantage of this solution is that
the database management system provides a reliable and
reusable platform that offers such services as transactions,

concurrency control, and rollbacks. These services no longer
have to be implemented by the organization that develops
the CM system.

Following the pattern of providing an increased level of
abstraction with which to build CM systems, Fig. 13c
illustrates that NUCM represents the next step in this
evolutionary pattern. Although NUCM currently does not
provide the same level of robustness and reliability as a
database, the abstraction layer that it provides has the
advantage of being highly specialized towards configura-
tion management. Thus, as compared to a generic database,
the model and interface defined by the abstraction layer
raise the level of abstraction with which CM policies can be
constructed and thereby facilitate their rapid implementa-
tion. As stated, NUCM currently lacks such essential

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING 97

CM policy
implementation
CM policy via
implementation CM-specific API
Complete i
CM system generic API
implementation
CM-specific,
distributed
Generic repository
database

(@)

Fig. 13. Evolution of CM system architectures.

services as transactions, rollbacks, and caching, but it is
anticipated that these can be incorporated in future
implementations. Then, actual CM systems can be imple-
mented based on the abstraction layer defined in this paper,
while exhibiting the same qualities as a CM system built on
top of a traditional database.

NUCM is only one of several systems that fall into the
category of Fig. 13c. The other systems are CME [25],
Gradient [4], CoMa [51], and ScmEngine [10].

CME extends RCE [26], itself a programmatic interface to
RCS [47], with collection management. CME is similar to
NUCM in that it provides an architectural separation of the
repository from the actual system that stores and versions
the artifacts. However, two significant differences exist.
First, the programmatic interface of CME is not generic with
respect to CM policies since it only contains functions that
implement the check-in/check-out policy. The second
difference is that CME is not distributed since it only
interfaces to a single repository at a single site. Thus,
whereas NUCM provides support for the construction of a
variety of distributed CM policies, CME only provides
support for the construction of centralized CM policies that
are based on the check-in/check-out model.

Gradient is a CM repository that is based on automatic
replication. Each update that is made to an artifact is
broadcast instantly as a delta to all replicas. Because
Gradient only allows incremental modifications to the
artifacts it manages and, furthermore, assumes that mod-
ifications are independent of each other, it permits
simultaneous updates to a single artifact at multiple sites.
Gradient is similar in spirit to NUCM in that it provides an
architectural separation of the storage mechanism from the
CM system that uses it. But, as with CME, Gradient only
supports a specific policy, both with respect to distribution
(where it only supports replicated repositories), as well as
with respect to CM policy (where it only supports the
check-in/check-out policy).

CoMa is perhaps the one system that is closest in nature
to the functionality provided by NUCM. CoMa introduces
graph rewriting as a method of constructing specific
CM policies. Based on a composition model, it utilizes
graph rewriting rules to assert and enforce constraints.
These constraints govern the evolution of the artifacts that
are managed. The goal of CoMa is to evolve the interrelated
sets of heterogeneous artifacts that are created throughout

(©

the software life cycle. Naturally, it therefore shares some of
its goals with NUCM. Specifically, it needs to manage
different kinds of artifacts and it needs to tailor its
CM policy to the artifacts that are managed. As compared
to NUCM, however, CoMa is limited in that it only
supports the construction of variations of the check-in/
check-out policy. Moreover, it does not support the
distribution of artifacts over multiple physical locations.
Thus, even though CoMa is more generically applicable
than CME, it is similarly limited in that it only supports a
small number of centralized CM policies.

ScmEngine is a distributed CM repository based on the
X.500 directory protocol [39]. X.500 directory entries
contain metadata describing the artifacts that are stored
in physical repositories. Access servers leverage the
standard X.500 directory protocol to create a logical
repository that can be accessed by CM client programs.
This distribution mechanism is, in essence, the same as the
one defined by the distribution model of the abstraction
layer. However, the remainder of the repository model and
the programmatic interface provided by ScmEngine are
significantly weaker than the ones defined by our abstrac-
tion layer. The repository model does not include collec-
tions and lacks the concept of version qualifiers to navigate
in the version space. Moreover, the programmatic interface
is very specific and lacks support for the construction of a
wide variety of CM policies, only supporting the tradi-
tional check-in/check-out policy.

Outside the domain of configuration management, we can
identify groupware and versioned databases as two im-
portant lines of work that are closely related to the work
presented in this paper. In groupware, the need for
distribution, versioning, and workspaces seems to imply
that our abstraction layer could be appropriate for use in
constructing a groupware system. However, this is not so.
Whereas the abstraction layer is based on the principle of
workspaces that provide isolation from changes by others,
groupware systems tend to focus on collaborative work-
spaces [16], [21]. The set of issues involved in supporting each
is rather different and, consequently, we believe groupware,
even though related, falls outside of the domain of NUCM.

Versioned databases (e.g.,, ODE [1], TVOO [42]) are
related to NUCM since NUCM itself can be viewed as a
versioned database. In fact, many of the features of NUCM
are shared by versioned databases. However, an important

98 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

difference exists, which is the presence of a specific
repository model and its associated programmatic interface.
Whereas these are generic in nature in a versioned database
(e.g., an entity relationship model with SQL), both are
highly specialized by our abstraction layer. In essence, one
could consider the abstraction layer that is incorporated in
NUCM to be a layer on top of a versioned database that
implements a particular schema (the repository model) and
provides a number of standard views and operations (the
programmatic interface).

6 CONCLUSION

For the past few years, the field of configuration manage-
ment has been in a consolidation phase with the research
results of the 1980s being transferred to the commercial
products of the 1990s. Nonetheless, new CM systems are still
being proposed and constructed. Some of these are new
entries in an increasingly competitive marketplace. Others
implement proprietary solutions that are tailored to the
situation at hand. Yet others explore new ground and form
the basic research that will lead to the next generation of CM
systems. During their design and implementation, though,
all face what we consider to be one of the most pertinent
problems in the field of configuration management: No
suitable platform exists that can serve as a flexible testbed for
the rapid construction of potentially distributed CM systems.

Based on the critical observation that, to effectively
address this problem it is necessary to separate CM
repositories from CM policies, this paper has introduced a
novel abstraction layer that represents a first step towards
addressing this problem. The abstraction layer precisely
defines a generic model of a distributed repository and a
programmatic interface for implementing, on top of the
repository, specific CM policies. Characteristics of the
abstraction layer are its policy independence, its ability to
manage a wide variety of different kinds of artifacts, its
inherent distributed operation, and its ability to support
traditional CM functionality.

The abstraction layer was designed to facilitate the rapid
construction of, and experimentation with, CM policies.
However, it has proven to facilitate more than that. DVS
and SRM, two of the systems that were originally
constructed to demonstrate the applicability and flexibility
of the abstraction layer, have evolved into complete
CM systems. Both are now in use in settings that involve
multiple parties in multiple geographical locations and both
continue to evolve with respect to the functionality they
provide. The abstraction layer, thus, not only supports the
construction of new CM policies, but also their gradual
evolution into more mature systems.

Our work does not end here. Although we certainly
believe that the abstraction layer is a step in the right
direction towards providing a generic, reusable, and
distributed platform for CM policy programming, much
work remains to be done. In particular, it is our belief that
the abstraction layer facilitates the construction of standard
policy libraries, thereby even further reducing the effort of
implementing a CM system. Moreover, we expect to be able
to use the abstraction layer as a vehicle for exploring other
important problems in configuration management. For

JANUARY 2002

example, we believe the abstraction layer provides a
suitable platform for investigating the problems of
CM policy integration [37].

ACKNOWLEDGMENTS

This work was supported in part by the Air Force Materiel
Command, Rome Laboratory, and the Advanced Research
Projects Agency under Contract Numbers F30602-94-C-0253
and F30602-98-2-0163. The content of the information does
not necessarily reflect the position or the policy of the
Government and no official endorsement should be inferred.

REFERENCES

[1] R. Agrawal, S. Buroff, N.H. Gehani, and D. Shasha, “Object
Versioning in ODE,” Proc. Seventh Int’l Conf. Data Eng., pp. 446—
455, Apr. 1991.

[2] L. Allen, G. Fernandez, K. Kane, D. Leblang, D. Minard, and]J.
Posner, “ClearCase MultiSite: Supporting Geographically-Distrib-
uted Software Development,” Software Configuration Management:
Int’l Conf. Software Eng. SCM-4 and SCM-5 Workshops Selected Papers,
pp. 194-214, 1995.

[3] Atria Software, ClearCase Concepts Manual. Natick, Mass., 1992.

[4] D. Belanger, D. Korn, and H. Rao, “Infrastructure for Wide-Area
Software Development,” Proc. Sixth Int’l Workshop Software
Configuration Management, pp. 154-165 1996.

[5S] Bell Labs, Lucent Technologies, Sablime v5.0 User’s Reference
Manual. Murray Hill, New Jersey, 1997.

[6] L. Bendix, P.N. Larsen, A.Il. Nielsen, J.L.S. Petersen, “CoED—A
Tool for Versioning of Hierarchical Documents,” Proc. Eighth Int'l
Symp. System Configuration Management, 1998.

[7]1 B. Berliner, “CVS II: Parallelizing Software Development,” Proc.
1990 Winter USENIX Conference, pp. 174-187, 1990.

[8] C. Burrows and 1. Wesley, Ovum Evaluates Configuration Manage-
ment. Burlington, Mass.: Ovum Ltd., 1998.

[9]1 A. Carzaniga, DVS 1.2 Manual. Dept. of Computer Science, Univ.
of Colorado, Boulder, June 1998.

[10] J.X.Ci, M. Poonawala, and W.-T. Tsai, “ScmEngine: A Distributed
Software Configuration Management Environment on X.500,” Proc.
Seventh Int’l Workshop Software Configuration Management, pp. 108-
127,1997.

[11] P.C. Clements and N. Weiderman, “Report on the Second
International Workshop on Development and Evolution of Soft-
ware Architectures for Product Families,” Technical Report SEI-
98-SR-003, Software Eng. Inst., Pittsburgh, Penn., May 1998.

[12] Continuus Software Corporation, Continuus Task Reference. Irvine,
Calif., 1994.

[13] Continuus Software Corporation, Distributed Code Management for
Team Engineering. Irvine, Calif., 1998.

[14] S. Dart, “Concepts in Configuration Management Systems,” Proc.
Third Int’l Workshop Software Configuration Management, pp. 1-18,
1991.

[15] S. Dart, “Not All Tools are Created Equal,” Application Develop-
ment Trends, vol. 3, no. 10, pp. 39-54, Oct. 1996.

[16] A. Dix, T. Rodden, and I. Sommerville, “Modeling the Sharing of
Versions,” Proc. Sixth Int’l Workshop Software Configuration Manage-
ment, pp. 282-290, 1996.

[17] J. Estublier and R. Casallas, “The Adele Configuration Manager,”
Configuration Management, Trends in Software, W. Tichy, ed., no. 2,
pp- 99-134, 1994.

[18] P.H. Feiler, “Configuration Management Models in Commercial
Environments,” Technical Report SEI-91-TR-07, Software Eng.
Inst., Pittsburgh, Penn., Apr. 1991.

[19] P.H. Feiler and G. Downey, “Transaction-Oriented Configuration
Management: A Case Study,” Technical Report CMU/SEI-90-TR-
23, Software Eng. Inst., Pittsburgh, Penn., 1990.

[20] R. Fielding, J. Gettys, J.C. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext Transfer Protocol-HTTP/1.1,”
Internet Proposed Standard RFC 2068, Jan. 1998.

[21] P. Frohlich and W. Nejdl, “WebRC: Configuration Management
for a Cooperation Tool,” Proc. Seventh Int'l Workshop Software
Configuration Management, pp. 175-185, 1997.

VAN DER HOEK ET AL.: A TESTBED FOR CONFIGURATION MANAGEMENT POLICY PROGRAMMING 99

(22]

(23]

[24]

[25]

[20]

[27]

(28]
[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

[37]

(38]

(39]

(40]

[41]

[42]

[43]

(44]
(45]
[40]
(47]

(48]

[49]

[50]

Y.Y. Goland, E.J. Whitehead, Jr., A. Faizi, S. Carter, and D. Jensen,
“HTTP Extensions for Distributed Authoring—WEBDAYV,” Inter-
net Proposed Standard RFC 2518, Feb. 1999.

G.T. Heineman, “A Transaction Manager Component for Co-
operative Transaction Models,” PhD thesis, Columbia Univ.,
Dept. of Computer Science, New York, June 1996.

T. Hung and P.F. Kunz, “UNIX Code Management and Distribu-
tion,” Technical Report SLAC-PUB-5923, Stanford Linear Accel-
erator Center, Stanford, Calif., Sept. 1992.

JJ. Hunt, F. Lamers,]J. Reuter, and W.F. Tichy, “Distributed
Configuration Management via Java and the World Wide Web,”
Proc. Seventh Int'l Workshop Software Configuration Management,
pp. 161-174, 1997.

JJ. Hunt and W.F. Tichy, RCE API Introduction and Reference
Manual. Germany: Xcc Software, 1997.

JJ. Hunt, K-P. Vo, and W.F. Tichy, “Delta Algorithms: An
Empirical Analysis,” ACM Trans. Software Eng. and Methodology,
vol. 7, no. 2, pp. 192214, Apr. 1998.

INTERSOLV, PVCS VM SiteSync and Geographically Distributed
Development. Rockville, Md., 1998.

R. Leung, “Versioning on Legal Applications Using Hypertext,”
Proc. Workshop Versioning in Hypertext Systems, Sept. 1994.

Y.-J. Lin and S.P. Reiss, “Configuration Management with Logical
Structures,” Proc. 18th Int’l Conf. Software Eng., pp. 298-307, Mar.
1996.

A.Mahler and A. Lampen, “An Integrated Toolset for Engineering
Software Configurations,” Proc. ACM SOFSOFT/SIGPLAN Soft-
ware Eng. Symp. Practical Software Eng. Environments, pp. 191-200,
Nov. 1988.

Microsoft Corporation, Managing Projects with Visual SourceSafe,
Redmond, Wash., 1997.

B. Milewski, “Distributed Source Control System,” Proc. Seventh
Int’l Workshop Software Configuration Management, pp. 98-107, 1997.
Mortice Kern Systems, Inc., Untangling the Web: Eliminating Chaos,
Waterloo, Canada, 1996.

B.P. Munch, “Versioning in a Software Engineering Database—the
Change-Oriented Way,” PhD thesis, DCST, NTH, Trondheim,
Norway, Aug. 1993.

B. O'Donovan and J.B. Grimson, “A Distributed Version Control
System for Wide Area Networks,” Software Eng. J., Sept. 1990.

F. Parisi-Presicce and A.L. Wolf, “Foundations for Software Config-
uration Management Policies Using Graph Transformations,” Proc.
2000 Conf. Foundational Aspects of Software Eng., Mar. 2000.

Perforce Software, Networked Software Development: SCM over the
Internet and Intranets. Alameda, Calif., Mar. 1998.
Recommendation X.500 (08/97)-Information Technology-Open
Systems Interconnection-the Directory: Overview of Concepts,
Models and Services, Aug. 1997.

R.]J. Ray, “Experiences with a Script-Based Software Configuration
Management System,” Software Configuration Management: Int’l
Conf. Software Eng. SCM-4 and SCM-5 Workshops Selected Papers,
1995.

M.J. Rochkind, “The Source Code Control System,” IEEE Trans.
Software Eng., vol. 1, no. 4, pp. 364-370, Dec. 1975.

L. Rodriguez, H. Ogata, and Y. Yano, “An Access Mechanism for a
Temporal Versioned Object-Oriented Database,” IEICE Trans.
Information and Systems, vol. E82-D, no. 1, pp. 128-135, Jan. 1999.
R.A. Smith, “Analysis and Design for a Next Generation Software
Release Management System,” Master’s thesis, Univ. of Colorado,
Boulder, Dec. 1999.

Softool Corp., CCC/Manager, Managing the Software Life Cycle across
the Complete Enterprise, Goleta, Calif., 1994.

Software Maintenance & Development Systems, Inc., Aide de Camp
Product Overview, Concord, Mass., Sept. 1994.

SQL Software, The Inside Story: Process Configuration Management
with PCMS Dimensions, Vienna, Va., 1998.

W.E. Tichy, “RCS, A System for Version Control,” Software—
Practice and Experience, vol. 15, no. 7, pp. 637654, July 1985.

A. van der Hoek, “A Generic, Reusable Repository for Config-
uration Management Policy Programming,” PhD thesis, Dept. of
Computer Science, Univ. of Colorado, Boulder, Jan. 2000.

A. van der Hoek, R.S. Hall, D.M. Heimbigner, and A.L. Wolf,
“Software Release Management,” Proc. Sixth European Software
Eng. Conf., pp. 159-175, Sept. 1997.

A. van der Hoek,, D.M. Heimbigner, and A.L. Wolf, A Generic,
Peer-to-Peer Repository for Distributed Configuration Manage-
ment,” Proc. 18th Int’l Conf. Software Eng., pp. 308-317, Mar. 1996.

[51] B. Westfechtel, “A Graph-Based System for Managing Configura-
tions of Engineering Design Documents,” Int’l |. Software Eng. and
Knowledge Eng., vol. 6, no. 4, pp. 549-583, 1996.

E.J. Whitehead, Jr., “World Wide Web Distributed Authoring and
Versioning (WebDAV): An Introduction,” StandardView, vol. 5,
no. 1, pp. 3-8, Mar. 1997.

A. Zeller and G. Snelting, “Unified Versioning Through Feature
Logic,” ACM Trans. Software Eng. and Methodology, vol. 6, no. 4,
pp. 398-441, Oct. 1997.

(52]

(53]

André van der Hoek received a joint BS and MS
degree in business-oriented computer science
from the Erasmus University, Rotterdam, and the
PhD degree in computer science from the
University of Colorado at Boulder. He is an
assistant professor in the Department of Infor-
mation and Computer Science and a faculty
member of the Institute for Software Research,
both at the University of California, Irvine. His
research interests include configuration manage-
ment, software architecture, configurable distributed systems, and
software education. He has developed several CM systems, was a
cochair of the Ninth International Symposium on System Configuration
Management, and is chair of the Tenth International Workshop on
Software Configuration Management. He is a member of the IEEE and
the IEEE Computer Society.

Antonio Carzaniga received the Laurea de-
gree in electronic engineering and the PhD
degree in computer science from Politecnico di
Milano, Italy. He is currently a research
associate with the Department of Computer
Science at the University of Colorado at
Boulder. His research interests are in the areas
of distributed systems engineering, software
engineering, computer networks, content-based
routing, middleware, programming languages,

&

and software engineering tools.

2

Dennis Heimbigner received the PhD degree in
computer science from the University of South-
ern California, Los Angeles. He is a research
faculty member in the Department of Computer
- Science, University of Colorado at Boulder. Prior

to that, he was at TRW in Redondo Beach,

California. His current research interests include
distributed computing, peer-to-peer computing,
and configuration management. He has pub-
lished papers in the areas of configuration

E

management, distributed computing, software process, software devel-
opment environments, concurrent programming, and programming
language semantics. He is a member of the IEEE and the IEEE
Computer Society.

Alexander L. Wolf received the PhD degree in
computer science from the University of Massa-
chusetts at Amherst. He is a faculty member in
the Department of Computer Science, University
of Colorado at Boulder. Previously, he was at
AT&T Bell Laboratories in Murray Hill, New
Jersey. His research interests are in the dis-
covery of principles and development of tech-
nologies to support the engineering of large,
complex software systems. He has published
papers in the areas of software engineering environments and tools,
software process, software architecture, configuration management,
distributed systems, and persistent object systems. Dr. Wolf served as
program cochair of the 2000 International Conference on Software
Engineering (ICSE 2000), is currently serving as vice chair of the ACM
Special Interest Group in Software Engineering (SIGSOFT), and is on
the editorial board of ACM Transactions on Software Engineering and
Methodology (TOSEM). He is a member of the IEEE Computer Society.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

