
A Planning-Based Approach to Failure Recovery

in Distributed Systems

by

Naveed Arshad

B.S., Ghulam Ishaq Khan Institute of Engineering Sciences

and Technology, Pakistan, 1999

M.S., University of Colorado at Boulder, USA, 2003

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2006



This thesis entitled:
A Planning-Based Approach to Failure Recovery in Distributed Systems

written by Naveed Arshad
has been approved for the Department of Computer Science

Professor Alexander L. Wolf

Professor Dennis M. Heimbigner

Date

The final copy of this thesis has been examined by the signatories, and we find that
both the content and the form meet acceptable presentation standards of scholarly

work in the above mentioned discipline.



iii

Arshad, Naveed (Ph.D., Computer Science)

A Planning-Based Approach to Failure Recovery in Distributed Systems

Thesis directed by Professor Alexander L. Wolf

Automated failure recovery in distributed systems poses a tough challenge be-

cause of myriad requirements and dependencies among its components. Moreover, fail-

ure scenarios are usually unpredictable so they cannot easily be foreseen. Therefore,

it is not practical to enumerate all possible failure scenarios and a way to recover a

distributed system for each of them. Due to this reason, present failure recovery tech-

niques are highly manual and have considerable downtime associated with them. In this

dissertation, we have developed a planning-based approach to automated failure recov-

ery in distributed component-based systems. This approach automates failure recovery

through continuous monitoring of the system. Therefore, an exact system state is al-

ways available with a failure monitor. When a failure is detected the monitor performs

various checks to ensure that it is not a false positive or false negative. A dependency

analyzer then checks effects of the failure on other parts of the system. After this an

offline planning procedure is performed to take the system from a failed state to a work-

ing state. This planning is performed using an artificially intelligent (AI) planner. By

using planning, this approach can be used to recover from a variety of failed states and

reach any of several acceptable states: from minimal functionality to complete recovery.

When a plan is calculated, it is executed onto the system to bring it back to a working

state. We have evaluated this technique through various online and synthetic experi-

ments performed on various distributed applications. Our results have shown that this

is indeed an effective technique to automatically recover component-based distributed

systems from a failure. Our results have also shown that this technique can also scale

to large-scale distributed systems.
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Chapter 1

Introduction

Failure recovery procedures are required to provide high availability in distributed

systems. However, many existing failure recovery techniques have a considerable period

of downtime associated with them. This downtime can cause a significant business

impact in terms of opportunity loss, administrative loss and loss of ongoing business.

There is a need not just to reduce the downtime in the failure recovery process but also

to automate it to a significant degree in order to avoid errors that are caused by manual

failure recovery techniques [79].

Failures in distributed systems can be unpredictable in that they can leave the

system in one of many possible failed states. Further, there may be several different

acceptable recovered states. These may range from configurations providing minimal

functionality all the way to complete restoration of functionality. This combination of

many failure states with many recovered states complicates recovery because it may be

necessary to get from any failed state to any recovered state. Computing the recovery

path may delay recovery and may cause the system to be down for a considerable period

of time. To counter this problem a mechanism is required that can take into account

the state of the system after a failure and to search for a way to bring the system back

to a chosen working condition.

To further complicate matters, the failure of one component can have ripple effects

on other parts of the system. Moreover, the ripple effect may not be obvious. One
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component may fail and cause a dependent component to stop functioning without

clear symptoms of failure.

The present failure recovery techniques in distributed systems build scripts to

carry out the failure recovery process. These scripts are executed on systems to recover

them after a failure. Writing these scripts is a highly manual process. Therefore, human

operators have to spend a large amount of time in writing them. In some failure scenarios

a script may not be readily available for failure recovery. Moreover, due to the large

and increasing size of the component based system, manually writing an optimal script

is difficult.

To ameliorate these problems, a few systems use a library of pre-written scripts to

use in such situations. There are a few problems with this approach. The first problem

is that, after a failure systems can go into innumerable states and writing scripts for

each of these states is nearly impossible. The second problem is that the criteria for

choosing the best script from the library of scripts can be difficult to obtain because

there may be more than one script available for failure recovery in a given situation.

Other problems with failure recovery are the scenarios when a system fails in the

middle of a recovery process. Here the recovery process can fail in two ways. First,

when a failure occurs, the goal of the recovery process is to recover the system to

the pre-failure configuration. However, it may be possible that due to unavailability

or catastrophic failure of a component or machine the pre-failure configuration is not

possible. Therefore, the recovery process must be intelligent enough to select a different

configuration and apply that configuration to the system to recover it. Second, when a

system is recovering from a failure, other previously working components or machines

san also fail. Therefore, the failure recovery process has to take into account these

further failures into account before progressing further. In the worst case the whole

failure recovery process may need to be started again in this case. An automated failure

recovery mechanism must take all these factors into account while recovering a system
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from a failure.

1.1 Failure Recovery Techniques in Distributed Systems

A number of failure recovery techniques have been proposed for internet-scale

distributed systems. However, most of these techniques are not used in large-scale

systems due to a number of limitations. In this section we will discuss two techniques

that are often used in large-scale systems.

These two techniques are 1) redundancy and 2) failure recovery scripts.

Figure 1.1: A Redundant Architecture for Failure Recovery

1.1.1 Redundancy-based Failure Recovery

In a redundancy-based technique, the system is augmented with more hardware.

Two or more replica or clones of the system or parts of the system run at the same time.

In case of a failure of one clone, the other clone takes over. Redundancy is achieved

through a number of architectures. The best way, and indeed, the most costly way is

to have a seperate component like Tomcat or Apache on a seperate piece of hardware.

One such example is given in Figure 1.1 where each component in the system has a

clone. In case of a failure of any component the identical component takes over. A load

balancer is sometimes used to send the request to the working component.
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As the cost of hardware keeps going down the redundancy based techniques are a

common way to acheive high availability. However, cost of hardware is just one variable

in the working of these systems. Other variables like maintenance cost etc. also need to

be taken into account. Total cost of ownership (TCO) is a measure that tells the total

amount needed to keep a system online. Typically the total cost of ownership is 5-10

times higher than the total cost of hardware and software. One third of the TCO is

used to keep the system from failing or to recover the system after a failure. Therefore,

although a redundancy based approach is a common solution to high availability, the

costs associated with it are too high. Furthermore, downtime due to failure in redundant

systems publicized as highly available ranges from 8 to 80 hours per year [79].

1.1.2 Failure Recovery Scripts

Failure recovery scripts are also used to recover the system after a failure. How-

ever, the current process of writing these scripts is highly manual. An administrator

writes these scripts, when a failure occurs these scripts are run, in many cases, manually

onto the system.

It is practically impossible to write a script for each possible failure for each

component in the system [78]. Therefore, if a failure occurs and the script is not available

then the administrator has to write the script manually and then execute it onto the

system. Moreover, due to the change in the topology of the system following a failure,

a particular configuration may not be achieveable. However, another configuration

may work. Scripts are usually not able to recover the system in another configuration

because each configuration of the system may have a different set of requirements and

dependencies. Including all the requirements and dependencies may make the script too

hard to write and maintain.

Both of the aforementioned techniques increase cost and/or time for failure recov-

ery. Therefore, it is desired that a new technique be developed to automate the failure
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recovery process such that the system is highly available.

The goal of this dissertation is to automate the failure recovery procedure in

distributed systems. The approach to failure recovery used in this dissertation is based

on Artificially Intelligent (AI) planning. As we will see in this dissertation, AI planning

in combination with other techniques and tools can be a powerful mechanism for the

failure recovery in distributed systems.

1.2 Approach to Automating Failure Recovery

The main idea of our approach is taken from the Sense-Plan-Act (SPA) mechanism

in control systems. In control systems different system variables are maintained within

specified bounds with a certain mechanism. The values of these variables are measured

against a reference input. If the value of any variable is detected to be beyond established

bounds a planning process is initiated. This planning process uses control algorithms

to maintain the values of these variables within bounds. The results of the control

algorithm are applied to the system to bring the variable within bounds.

The essence of this approach is used in dynamic reconfiguration because the goal

of dynamic reconfiguration is also to maintain the system in a stable state [8, 63]. Sens-

ing is the detection of a need for reconfiguration in a distributed system. The need for

reconfiguration may be automatic or may be initiated by a user. Automatic initiation of

reconfiguration may result from performance degradation or an outside attack, etc. Sen-

sors and detectors are embedded in the system to provide the information about a need

for dynamic reconfiguration. Planning is a search mechanism to find the steps needed

to go from one configuration to another configuration. Planning could be performed

through various techniques like reconfiguration languages, reconfiguration algorithms,

pre-written scripts, AI planners etc. A plan is then executed on the system to bring the

desired change. This phase is called Acting.

Failure recovery is also a reconfiguration of the system from a failed state to a
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working state. However, the original SPA technique has been modified in this disser-

tation. Distributed systems are often made up of heterogeneous components that vary

in size and behavior. Therefore, an analysis step is required to check the ripple effects

of a failure to other components in the distributed system. Therefore, we have added

another phase called Analyze in the original SPA technique. Moreover, since Act is

more like executing we have changed its name to Execute to show a more software

related approach. Hence, our model of failure recovery is Sense-Analyze-Plan-Execute

(SAPE). This model is similar to IBM’s autonomic computing model [56]. However,

the difference is that IBM’s model is a general model for self-managed systems, whereas

our model is geared heavily towards failure recovery of distributed systems.

1.3 Planning and Failure Recovery

A cornerstone of our approach is artificially intelligent (AI) planning. AI Planning

is useful in recovering from failures in distributed systems for a number of reasons. The

first reason is the wide spectrum of failure scenarios. In these failure scenarios it is

not practical to enumerate all possible types of failures in a large system. Moreover,

there are a number of ways to recover each failure based on the target configuration

of the system. Planning is used traditionally in situations where it is not possible to

enumerate all the possibilities of moving from one state to another, and so planning

should be helpful in recovering the system from a failure situation.

The second reason is the capability of planners to plan from an initial state to

a goal state given the semantics of the system. In failure scenarios the initial state

is the failure state – the actual current state after the failure. The goal state is the

target configuration where the systems should be after recovery. The planning process

constructs the sequence of steps needed for the system to move from a failed state to a

target configuration state.

The third reason is the ability of planning to minimize time, cost and resource
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usage. As stated before there are a number of ways to recover from a failed state. Each

one has its own time, cost and resource constraints. By using planning one can obtain

a near optimum plan by specifying priority matrices. True optimality, of course, may

not be achieved because of limits on the amount of time given the planner to produce

a plan.

1.4 Contributions and their Evaluations

This dissertation makes a number of contributions in automating the failure re-

covery in distributed systems. First, it makes it easy to specify higher level goals for

carrying out failure recovery. Therefore, whenever a failure occurs in the system only

higher level goals need to be specified and the automated failure recovery process takes

care of the rest of the recovery process. In this way the administrator does not have

to fiddle with low level configuration directives that are hidden inside the configura-

tion files. Second, it automates the failure recovery in a number of failure scenarios

and relieves the administrator from manually writing failure recovery scripts. Third,

by using AI planning it optimizes the cost, time and resources. Moreover, by using

planning the overall failure recovery time or Mean Time To Repair (MTTR) is reduced.

Fourth, it recovers the system in the configuration that the system has before the fail-

ure. However, if for some reasons that configuration is not possible then the system

is recovered in another configuration which is lighter in terms of resource requirements

and dependencies.

To validate the aforementioned contributions we have carried out a number of

experiments. Our experiments can be divided into three broad categories: basic ex-

periments, synthetic experiments and intensive experiments. In basic experiments we

have developed an end to end failure recovery system called ‘Recover’. This recovery

system is applied on real world applications developed by other colleagues. We induced

failures of different kinds in those applications and measured the failure recovery time
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that ‘Recover’ took in recovering those applications. After basic experiments we found

out that the bottleneck of the recovery process is the planning time required by the

AI planner. Therefore, we conducted synthetic experiments with a number of appli-

cations to test the planner’s capability to plan failure recovery in large-scale internet

systems. The third type of experiments are intensive experiments which test ‘Recover’

to its limits. In these experiments we induced failure after failure in the system and

measured the capability of ‘Recover’ to recover from a series of failures. Another goal

of these experiments is to test ‘Recover’ to see its capability in recovering the system to

a relatively light configuration if the original configuration is not possible.

The results of these experiments are very encouraging. Our failure recovery sys-

tem ‘Recover’ is able to recover systems from failure in a very short period of time

in the basic type of experiments. In most of these experiments the recovery time has

been less than 15 seconds. In the synthetic experiments we calculated the planning

time because it seems to be the most contributing factor in overall recovery time. In

these experiments, the planning time for a system containing up to twenty machines

is approximately 80 seconds or less. Moreover, the intensive experiments also provided

good results in situations where extended failures are reported in the system. Details

of these experiments and their results are discussed in chapter 8.

1.5 Scope and Assumptions

In this dissertation the focus is to recover a system at the application level. This

dissertation does not deal with operating system level or firmware level recovery. We

use off the shelf widely available components to show the promise of this technique.

Moreover, we will be recovering stateless applications and components. Recovering of

stateful components is out of scope of this dissertation. Our model involves three major

artifacts, i.e. machine, component and application. An application is deployed on the

component and a component is deployed on the machine. All three of them have a
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fail-stop behavior; that is, they stop working immediately after a failure. Therefore,

no erroneous output is expected from them following a failure. Our assumption is that

the network is reliable and messages and events like failure notifications are delivered

within specified bounds. Moreover, no false positives or false negatives are possible.

Moreover, we are not taking into account database related failures in this dissertation.

Databases already have good built-in failure recovery procedures. Therefore, we only

deal with components that are higher level than databases. Also, the failure recovery

system itself does not fail. Moreover, we assume that our system does not intrduce

worse errors. Furthermore, dependencies and configurations of various applications in

the system are correctly specified.

1.6 Organization of the Dissertation

In chapter 2 we give an overview of foundational and related work. Foundational

work are tools, techniques and frameworks that we have used as the basis of this dis-

sertation. In related work we give other approaches which compete or complement the

work in this dissertation.

In chapter 3 we give a motivating example of a real world scenario. In this real

world scenario we discussed an internet-based system which requires automated failure

recovery. We also give details of the applications that we are using to evaluate our

failure recovery technique. These applications are not developed by us but by other

colleagues.

Chapter 4 gives a detailed overview of the modeling required to automate failure

recovery in distributed systems. We discussed a number of models that make it pos-

sible to view a complete system state and to decide about failure recovery. Moreover,

we discussed the types of failure being modeled in this dissertation. Furthermore, we

discussed the development of a planning domain. A planning domain encapsulates the

semantics of failure recovery. Therefore, developing a good planning domain contributes
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a lot to automated failure recovery.

Chapter 5 gives an overview of the automation of failure recovery process. In

this chapter we discuss the four phases of failure recovery which include sense, analyze,

plan and execute. All these phases are discussed with their contributions to the overall

failure recovery process.

Chapter 6 discusses two exceptions that occur during failure recovery process and

how to deal with those exceptions. The first exception is the inability to restore the

original configuration of a system following a failure. Second, is the handling capacity

of further failures in other parts of the system when the system is already recovering

from failure.

Chapter 7 gives an overview of the implementation. In this chapter we discuss the

architecture of our failure recovery system called ‘Recover’. We discuss all the required

and optional modules of ‘Recover’ and their role in the recovery process.

Chapter 8 presents our evaluation results. Three types of experiments are carried

out to evaluate our contributions: basic experiments, synthetic experiments and inten-

sive experiments. These evaluation results are measured after many test runs on the

target system.

Chapter 9 gives a conclusion and some interesting further directions that stem

from this dissertation.



Chapter 2

Foundational and Related Work

Failure recovery is based upon a number of foundational approaches. Moreover,

many related approaches to failure recovery are in place. Therefore, we divide this

chapter into two major sections: foundational work and related work.

2.1 Foundational Work

The foundational work of failure recovery is based on many areas in computer

science, such as fault tolerant computing, dynamic reconfiguration, dependency analysis

and so on. We present some foundational work from each area in this section.

2.1.1 Dynamic Reconfiguration

The purpose of dynamic reconfiguration is to allow a system to evolve incre-

mentally from its current configuration to another configuration without being taken

offline [7]. Various approaches to dynamic reconfiguration have been proposed in the

literature. In this section we present an overview of some of those approaches.

2.1.1.1 Agent-Based Approaches

In agent-based approaches an agent or a set of agents are responsible to carry out

the dynamic reconfiguration. These agents are mobile or stationary. Valetto et al. pro-

posed a mobile agent-based approach to carry out dynamic reconfiguration [98]. They
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claim that process-based dynamic reconfiguration solves the problem of maintenance of

the software system at a less cost than reengineering. Their agents or mobile code are

called worklets. These worklets carry code in the system and carry out the sequence

of reconfiguration. However when the system becomes complex pre-built scripts are

required in these agents. They have developed a system called KX which is a meta ar-

chitecture on top of the target system. Such meta architecture is in charge to introduce

an adaptation feedback and feedforward control loop onto the target system, detecting

and responding to the occurrence of certain conditions. The worklets then carry out

the dynamic reconfiguration when it is required.

Another approach for implementation of dynamic reconfiguration using mobile

agents is proposed by Berghoff et al. [14]. According to them both the central and

the decentralized schemes for dynamic reconfiguration have their disadvantages. The

disadvantages of centralized system are the constraints on scalability and resources;

violation of which can cause network clogging. In a decentralized management system

the problem of network clogging is solved but there is more traffic due to synchronization

and coordination. Therefore, the authors have proposed an approach based on mobile

agents. These mobile agents can move in the system with their state. These agents

perform the management task in isolation. Thus, there is no network clogging due

to extra bandwidth usage. Using mobile agents, management tasks can be carried

out simultaneously. The micromanagement is performed locally which reduces network

traffic. Mobile agents collect information about the system state and send it back to

the management node. According to the authors, the aim of this research is not to

provide an entirely new management framework but to extend the present centralized

management approach and add agents to it. The authors have described an agent-based

extension to the PRISMA management environment. Mobile agents are safe because

they can work in a controlled environment. Agents have an agent server and they

communicate through an information space.



13

Castaldi et al. proposed a light weight infrastructure for the reconfiguration of ap-

plications called LIRA [23]. LIRA is a light weight infrastructure for managing dynamic

reconfiguration that extends the concepts of network management to component-based,

distributed software systems. There are two types of reconfiguration the authors have

mentioned.

• Internal Reconfigurations, which rely on programmers. These reconfigurations

are built into the component by a programmer.

• External Reconfigurations, which rely on some external entity. This external

entity decides when and how to perform the reconfigurations.

The authors have defined a lightweight approach to reconfiguration. According

to this definition it is a service which uses facilities already provided by the compo-

nent. Moreover, reconfiguration is carried out remotely, in that the management of

reconfiguration is separated from the implementation of reconfiguration. Furthermore,

communication is through a simple protocol between components and entities managing

their reconfiguration, rather than through complex interfaces and/or data models.

This approach uses a network management model. A network management model

has four elements: agents, protocols, managers and management information. These

agents are not mobile agents but instead are interfaces to the information contained in

an application or a subset of application on a host.

Chen presented a framework of component development with built-in component

reconfiguration [27]. This framework has a CM agent for managing the dynamic recon-

figuration in the system. The authors claim that the present frameworks of components

like CCM, EJB and DCOM does not provide much support for dynamic reconfiguration.

Also they say that the present frameworks either put a lot of work on programmers or

they put a lot of restrictions in developing component-based applications. Therefore,

they have developed a method for determining dependencies in the components at run
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time. They have classified dependencies into two categories: static dependency and

dynamic dependency. The component framework offers dependence management that

analyzes the dynamic dependencies between components. Moreover, it uses virtual

stubs that not only realize location transparent invocations among components but also

dynamically monitor and manipulate interactions among components. In addition the

CM agent can automatically update an invalid reference to a component after its recon-

figuration. In the component framework a consistent configuration is guaranteed and

the disruption of the system is minimized. The reconfiguration is carried out at the

framework level so the developer have to do minimal work while developing a compo-

nent.

2.1.1.2 Redundancy-Based Approaches

In a redundancy-based approach the system has more than one version of com-

ponents working at the same time. Different versions provide similar functionality at

the same time. A goal of these approaches is to save the system from breaking because

of inconsistencies developed due to new versions of the components.

Feiler and Li presented a technique called Analytically Redundant Component

(ARC) that provides a protection from application faults [40]. This paper is actually

about dynamic reconfiguration in control systems. However, the authors have made

some nice observations that can be used in any system that requires dynamic recon-

figuration. They presented a technique which performs an offline analysis. This offline

analysis determines inconsistencies in configurations and identify reconfiguration paths

to recover the system to a consistent configuration. The results of this offline analysis

are used by a configuration manager to avoid configurations that are inconsistent. They

have used the simplex fault tolerance capability and augmented it with proactive fault

avoidance through detection and recovery from inconsistent reconfigurations. Before

deciding any configuration the configuration manager performs a few sanity checks. If
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a given configuration inconsistent, it should be avoided as a target configuration. The

configuration manager checks the system for questions such as, is there a desirable con-

figuration for an observed fault or inconsistancy? and What is the impact of the change

being carried out? and how this impact can be reduced?

A given configuration is considered wellformed, if it is complete and consistent.

Complete means that all component ports are connected and all connectors have a

source and destination. Consistent means that connectors are attached to component

ports and the direction of the connection matches the direction of ports.

Cook and Dage also presented a redundancy-based approach in their system HER-

CULES [30]. They argue that when a user is comfortable with a version of component

then it is difficult for him/her to adapt another new version of the component. There-

fore, they presented a technique in which the old and new versions of the component

work at the same time. When the user is comfortable with the new version of the com-

ponent then the old component version can be replaced permanently. Moreover, they

say that instead of changing the whole system, components should be replaced one by

one.

The authors have developed a framework called HERCULES. In this framework

they have taken the approach that has the following features. The framework formally

specify a specific sub domain that a new version of the component addresses. Multiple

version of the components are allowed to run in parallel. The results of multiple versions

of the same component are selected from the version whose specified domain contains

this invocations parameters. In case of ambiguity, a voting mechanism is used. All the

data is logged to check the correctness of all versions of a component.

2.1.1.3 Operating System (OS) Level Approaches

OS level approaches to dynamic reconfiguration use either components at the op-

erating system level or facilities at this level to manipulate the system using OS level
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commands. Soules et al. presented a technique for dynamic reconfiguration of the oper-

ating system level components [92]. There are two mechanisms of online reconfiguration

provided by the authors. interposition and hot swapping. In order to implement hot

swapping and interposition, four capabilities are required: First, systems must be able

to identify and encapsulate the code and data for a swappable component. Second, the

system must be able to make the swappable component quiescent. Third, the system

must be able to transfer the internal state of a swappable component to the replace-

ment component. Finally, the system must be able to modify all external references to

a swappable component. Out of these four capablities, all of them are required for hot

swapping but only the the fourth one is required for interposition.

Interposition is a technique that wraps an active components interface. Thus,

extends its functionality. Interposition wrappers can be for a specific component or

they can be generic and can be used for a variety of components.

Hotswapping replaces an active component with a new component instance that

provides the same interface and functionality. To maintain availability and correctness

of the service, the new component picks up from the state where the old one left off.

The authors have also identified a number of areas where these two techniques can

be used. For example, patches and updates, adaptive algorithms, dynamic monitoring

and so on.

Hauptmann and Wasel presented a technique for dynamic reconfiguration that

uses the operating system level services [51]. The authors gave an on the fly software

replacement technique mainly for PABXs and other embedded software systems. They

define on-the-fly software replacement as maintenance in a running system with minimal

interruption of service.

The authors provided a reconfiguration approach, which is dependent heavily on

the underlying operating system ‘Chorus’. The technique they describe is soft real time,

which means that a timing failure does not cause a catastrophic failure in the system.
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A replaceable unit in Chorus is an actor. An actor is defined as a unit of resource

allocation (similar to a heavy weight process). An actor has a protected address space.

It manages its own ports and it contains any number of threads. An actor is a unit of

configuration. It has internal and clearly defined external linkages. If more than one

actor is involved in reconfiguration then the actors are replaced in a sequential manner.

It helps to keep the soft real-time requirement, easier to control the replacement process

and memory needs of the program are smaller.

The algorithm to replace a single actor works as follows:

• Load the new actor in the address space.

• Stop all application threads of the old actor.

• Collect the state of all objects of the old actor.

• Transmit these states to the new actor.

• Migrate all ports of the old actor to the new actor along with all pending

messages.

• Map object structures between the old and the new actor.

• Start the threads of the new actor.

• Delete the old actor from the memory.

2.1.1.4 Platform and Application-Based Techniques

Different techniques are proposed for dynamic reconfiguration that are based on

specific platforms or applications like EJB, CORBA, etc.

Batista and Rodriguez presented a technique for dynamic reconfiguration in CORBA [13].

They use configuration languages for dynamic reconfiguration. According to them a
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component has two parts i.e. an interface part and an implementation part. Config-

uration can only be performed at the interface part. The authors use a configuration

language called ‘Lua’ for the dynamic reconfiguration. Lua has different parts like Lu-

aSpace and LuaORB. According to the authors Lua has the capability to support both

programmed and ad-hoc reconfigurations. The authors argue that their system support

reconfiguration at two levels. In the first one a programmer defines components that

offer the required services and in the second one the programmers declare only services

that compose an application and generic connectors select automatically the proper

components to execute them.

Almeida et al. presented a dynamic reconfiguration technique for CORBA [7].

The authors argue that granularity of reconfiguration is important before deciding to

implement dynamic reconfiguration in a system. A reconfiguration design activity is

required before a reconfiguration takes place. This activity is a kind of a plan where

specification and constraints are specified. During the reconfiguration a system must

preserve consistency. In order to hold correct a system must keep three properties:

First,the system satisfies its structural integrity requirements. Second, the entities in

the system are in mutually consistent states and third, the application state invariants

must hold. The reconfiguration must be performed in a reconfiguration safe state.

The authors then discuss dynamic reconfiguration service requirements. They give a

dynamic reconfiguration for CORBA middleware using their approach.

Rutherford et al. presented a reconfiguration tool called BARK for reconfigura-

tion in the Enterprise Java Beans Component Model [87]. Little and Wheather presented

a technique for dynamic reconfiguration in applications that are built in Java [67]. The

authors claim that the reconfiguration is required in Java applications because of the

different security accesses for different users. By providing dynamic reconfiguration,

the applications dynamically adapt themselves to the types of security restrictions that

exists when they are executed. They also say that in web applications dynamic re-
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configuration is used to provide adaptive security. The authors have used the Gandiva

model, which have a separate notion of an interface component and an implementation

component.

2.1.1.5 Middleware-based Approaches

In middleware-based approaches, a middleware is responsible for the dynamic

reconfiguration of the system. Palma et al. presented a middleware-based approach for

dynamic reconfiguration of agent-based applications [76]. The authors give two goals for

their work. The first one is to develop a general approach for dynamic reconfiguration

and the second one is to build system level tools to implement it.

They say that the dynamic reconfiguration covers four issues: modifying the ar-

chitecture of an application, modifying the geographical distribution of a an application,

modifying agent’s implementation and modifying agent’s interfaces.

The dynamic reconfiguration approach that they proposed is for an agent-based

system specified in an ADL. There are three operations that can be performed on agents:

• Rebind: where change of a reference held by an agent for another agent.

• Move: allows the agent to migrate to another site.

• Delete: allows an agent to be removed from an application.

Furthermore, there are also three states in which an agent can go. Active, which

is normal execution state. Passive, where agents can react to events but cannot send

events and Frozen, where agents cannot receive any more events.

The authors give an algorithm for carrying out the dynamic reconfiguration:

• Compute the agent passive state(APS).

• Passivate all agents of APS.



20

• Send the reconfiguration order to target agent.

The authors have applied this approach to a message oriented middleware (MOM).

Paulo et al. presented a middleware-based approach for the dynamic reconfig-

uration in CORBA components [80]. They give the requirement of a dynamic recon-

figuration approach which includes correct incremental evolution, general applicability,

scalability, impact on execution, responsibilities and transparencies and finally configu-

ration information.

They provide the structural integrity in CORBA by providing referential integrity

and interface compatibility. They provide the mutual consistency in CORBA by driving

the system into a safe state and then applying the reconfiguration. The application

invariants hold by a good reconfiguration design.

2.1.1.6 Workflow-based approaches

In workflow-based approaches the dynamic reconfiguration is carried out as task

network. Two such approaches have been presented in the literature. Kaiser et al. uses

a workflow engine called Workkflakes (a decentralized workflow engine) for the dynamic

reconfiguration of the component-based systems [54]. This system helps to carry out

local adaptations and more global reconfigurations. Workflakes coordinates the actual

reconfiguration by invoking low-level effectors. Worklets (kind of mobile agents) are

the effectors in this case. Workflakes provide a reconfiguration workflow by selecting,

instantiating and dispatching worklets and coordinate the activates of the Worklets.

The second such approach is presented by Shrivastava and Wheather [91]. They

designed an application composition and execution environment and executed a trans-

actional workflow system that enables sets of interrelated tasks (applications) to be

carried out and supervised in a dependable manner. A task model that is expres-

sive enough to represent temporal dependencies between constituent tasks has been
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developed. Transactions for dynamic reconfiguration ensures that the transactions are

carried out atomically. The authors have developed a transactional workflow system

that enables sets of inter-related tasks to be carried out and supervised in a dependable

manner.

2.1.2 Planning

Another area that provides a foundational approach to automated failure recovery

is planning. Planning is used to develop a way to change the state or configuration of

the system. Two issues are of interest here: First, how to represent a system such that

planning can be performed on it and second, the planning process itself that takes the

system from one state to other.

2.1.2.1 Models and Frameworks

Frameworks and models are one of the ways to perform planning for dynamic

reconfiguration. A model is defined as an abstraction to capture the structural and

runtime properties of the system. On the other hand a framework is defined as a

guideline for developing an application such that dynamic reconfiguration is possible

in the application. Chen et al. [27] gave two requirements for frameworks that provide

dynamic reconfiguration. The first requirement is that the framework must have the

knowledge of interactions going on in the system. In the case of reconfiguration the

framework can block interactions so that the components reach a reconfigurable state.

The second requirement is that the framework must provide location transparency.

Whisnant et al. presented a bottom up system model for reconfiguration [105].

In this reconfiguration model the system is represented by a triple (C, V, T). C is the

set of code blocks in the system. Code blocks perform a computation when triggered

by operations. V is a set of state variables in the system. T is the set of threads in the

system. In this model the components are the subsets of state variables, called elements.
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The reconfiguration is performed on elements and threads. Each code block has an

associated signature. These signatures collectively are used to analyze the dependencies

in the system.

A second system model is presented by Hauptmann et al. [51]. In this system

model a node or site is a set of tightly coupled resources. On each node there is an

arbitrary number of actors. The replaceable unit in this case is an actor. An actor is

defined as a unit of resource allocation (similar to a heavy weight process). An actor

has a protected address space. It manages its own ports and it contains any number of

threads. An actor is a unit of configuration. It has internal and clearly defined external

linkages.

After discussing two system models we are now going to discuss frameworks

that supports dynamic reconfiguration. One such framework is given by Chen and

Simons [27]. They claim that the present frameworks of components like CCM, EJB

and DCOM does not provide much support for dynamic reconfiguration. Moreover,

the frameworks put a lot of work on programmers or they put a lot of restrictions in

developing the component-based applications.

They have developed a method for determining dependencies in the components

at run time. They have classified dependencies into two categories: static dependencies

and dynamic dependencies.

The component framework offers dependence management that analyzes the dy-

namic dependencies among components, and used virtual stubs that not only realize

location transparent invocations among components but also dynamically monitor and

manipulate interactions among components during a dynamic reconfiguration.

Hall et al. presented a framework called Software Dock [50]. This is an agent-

based component deployment framework. This framework is basically geared towards

the software producer and consumer relationship. The software producer supports pro-

cesses like release and retire. On the other hand the software consumer supports pro-



23

cesses like install, activate, deactivate, reconfigure, update, adapt and remove. The

Deployable Software Description (DSD) provides a schema for describing a software

family. A server is residing at each consumer site that has the model of the system

in terms of the configuration and the set of system resources. This server serves as an

interface to the consumer site for any consumer related processes.

2.1.2.2 Dynamic Reconfiguration Languages

A dynamic reconfiguration languages is a system-independent way of represent-

ing a system so that the reconfiguration can be planned and executed on it. Various

approaches have been suggested in literature. One of the first such approach was sug-

gested by Kramer and Magee [63]. They argued that the changes must be applied at the

structural level as opposed to the application level. They described a simple system for

change management. This system consists of a system (set of processing nodes), node

(a processing entity) and nonnection (a directed communication path from an initiator

to the recipient, very close to a connector). A transaction is an exchange of information

between two and only two nodes. A change is the modification to the system structure.

Four actions are specified that act on the system: create, remove, link and unlink. The

quiescence of a node is required to make a change. Quiescence is the property where the

node is in a state in which the node is passive and there is no outstanding transaction

which it must accept. The authors have described a change management protocol that

has preconditions and the effects are the resultant state of the system. Also they say

that the algorithm in this protocol is able to generate ordered set of actions and these

actions can be done in parallel.

Endler and Wai presented a reconfiguration language called Gerel [69]. In their

work the authors presented two types of dynamic reconfiguration. The first type is

ad-hoc reconfiguration, which are performed when the system is already running and

are performed interactively through a reconfiguration manager. The second type is
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programmed reconfiguration which are preplanned changes specified at design time.

These changes are used for fault recovery, automatic dynamic load balancing etc. The

authors argue that some systems like Conic, Polylith and LADY only perform ad-hoc

reconfiguration while some systems like Durra, Darwin and PRONET only support

programmed reconfigurations. The authors argue that their solution combine these two

types of reconfiguration using a language called Gerel.

The authors claim that configuration-based approaches for dynamic reconfigu-

ration are the most successful, when a distributed system is built at two levels i.e. a

programming level and a configuration level. At the programming level the components

are built and at the configuration level they interact among each other.

The reconfiguration is performed using a change script written in Gerel. The

script has two sections: precondition and execute. The precondition is used for reliability

purposes, so that the change is only made when the particular state of the system is

reached. This helps to perform an ad-hoc and a programmed reconfiguration at the

same time. A sub language of Gerel called Gerel-SL is used to describe the structural

properties of objects. It is also used to specify preconditions. Due to the power of the

first order logic Gerel can express generic changes (changes that can be applied to a

wide range of configurations).

Agnew et al. presented a language called Clipper for representing plans for dy-

namic reconfiguration [2]. A notion of reconfiguration plans is presented by them. A

plan directs how the running system must be changed based on the events it receives

from itself or the surrounding environment. Their language ‘clipper’ allows program-

mers to express plans that are used to generate the change actions. According to their

definition the reconfiguration is a dynamic method in which the application is mapped

between two execution states. The mappings may involve changes to the structure of

the application (such as addition and deletion of modules or bindings) or it may involve

altering the structure (called a configuration) with respect to host resources. Mappings
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are expressed as plans in terms of a reconfiguration scripts. Clipper has a rule-based

notation but still heavily dependent on C++.

The authors have also provided some requirements for reconfiguration languages

which include their similarity with other high-level languages, external change control

script, expressing the constraints in the language, reliability, performance and carrying

out the reconfiguration that should be not noticeable for users.

To perform a dynamic reconfiguration, there are three possible stimuli for recon-

figuration: the application, the distributed environment or the system environment. A

reconfiguration module provides all the intended reconfiguration activities at run time.

Batista and Rodriguez used a configuration language called Lua [13]. They de-

fined components having two parts i.e. an interface and an implementation part. Con-

figuration can only be performed at the interface part. They used Lua for the dynamic

reconfiguration of the systems. Lua has different parts like LuaSpace and LuaORB. Ac-

cording to the authors Lua has the capability to support both programmed and ad-hoc

reconfigurations. The authors argue that their system support reconfiguration at two

levels. At the first level, programmers define the components that offer the required

services. At the second level, programmers declare only the services that compose an

application and the generic connectors selects automatically the proper components to

execute them.

Welch gave the idea of compensating reconfiguration [101]. He said that a running

distributed application can be changed in three ways: structure, topography or imple-

mentation. Changing the structure involves adding and removing of components. In

compensating reconfiguration an external condition is detected, an appropriate response

is determined and if required the dynamic reconfiguration is carried out. The com-

pensating reconfiguration must base its decision on the system reconfiguration, virtual

world state and the mapping among them. The author used a system called Bullpen.

Bullpen has three independently executing subsystems. ‘Scout’ detects the external
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condition and reports any preliminary information to the Coach. ‘Coach’ contains the

decision-making logic for both the compensation and reconfiguration decision. Coach

has a knowledge base. Coach also executes the reconfiguration. Finally a ‘Scoreboard’

is responsible for keeping a copy of the state of the virtual and system state and their

mapping.

Papadopoulos and Arbab used coordination languages for expressing dynamic

reconfigurations [77]. They discuss the similarities among the coordination languages

and the requirements for dynamic reconfiguration. The authors discuss a case study

using a language called ‘Manifold’. An important claim that the authors made was that

the quiescent state requirement is not required in case of using coordination language

in dynamic reconfiguration.

2.1.2.3 Extensions to ADLs for Dynamic Reconfiguration

Architectural Description Language (ADLs) are used to represent the software

architecture of a component-based system. However, the traditional ADLs lack in their

ability to dynamically change the structure of the system. Various approaches have

been suggested to add dynamic reconfiguration ability to existing ADLs. In this section

we are going to review some of these approaches.

Aguirre and Maibaum presented a temporal logic approach for extending the

ADLs for dynamic reconfiguration [3]. They argue that the present ADLs provide

constructs for modeling the architecture of the system but they do not provide any

mechanism for reasoning the evolution of the architecture. They say that according to

their knowledge the specification languages for reconfigurable systems are either informal

or they require the specification about evolution in an external meta language. The

temporal logic approach have a notion of classes (components), associations (connectors

and a new notion of subsystem for giving some modularity in component-based systems

for reconfiguration. Axioms give the semantics to these artifacts. Each artifact has
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its own set of axioms. This approach allows declarative specification and reasoning

of component-based systems. It can express the properties of the architecture in a

declarative way. The language is actually logic-based on a combination of first order

logic and temporal logic. A proof calculi can be used to prove properties of the system

including dynamic reconfiguration properties.

Wermelinger also extended the dynamic reconfiguration capability of the ADLs [104].

According to him the current set of ADLs have shortcomings when it comes to dynamic

reconfiguration. First, the arbitrary reconfigurations are not allowed. Second, the level

of abstraction does not match with the present programming techniques thus resulting

in cumbersome specification. Third, the mismatch between reconfiguration and com-

putation leads to additional formal constructs. In this approach they claim to make

the following contributions to the above shortcomings. Architecture, reconfigurations

and connectors are represented and manipulated in form of a graph that has strong

mathematical basis. The program design language is at a high-level of abstraction.

Computations and reconfigurations are kept separate but related through colimit (idea

of gluing together mathematical objects). Graphs provide an easy way of modification.

Using these advantages there are several practical problems that can be handled like

state transfer, removing a component in a quiescent state etc. The authors have tried

to use the formality of ADL combined with the power of reconfiguration programming

languages like Gerel and used algebraic specification for their work. Scripts define the

reconfiguration. Humans write these scripts. The scripts have commands and the order

in which they are executed.

Wermelinger also suggested an extension to ADLs using the chemical abstract

machine CHAM [102]. The chemical reaction model views computation as a sequence of

reactions between data elements called molecules. The system is described by a multiset

of molecules, the solution. The possible reactions are given by transformation rules: if

the current solution contains molecules given on the left hand side of a rule, the rule
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may be applied , replacing those molecules by the ones on the right hand side. There

is no control mechanism, at each time several rules may be applied, and the CHAM

chooses one of them nondeterministically. The solution thus evolves by rewriting steps.

If no further rules can be applied, the solution becomes inert, i.e. stable.

Wermelinger and Fiadeiro presented a algebraic software architecture reconfigu-

ration approach [103]. They suggested a uniform algebraic framework and a program

design language with explicit state. The algebraic framework allows to represent both

architecture and their reconfigurations and to explicitly relate the architectural level

with computational level. The program design language provides some of the usual pro-

gramming constructs while keeping a simple syntax. A reconfiguration rule is simply a

graph production where the left hand side is the interface and the right hand side is the

architectures. A reconfiguration step is a direct derivation from a given architecture G

on an architecture H. Dynamic reconfiguration is a rewriting process over graphs labeled

with program instances (i.e. architecture instances) instead of just the programs. This

ensures that the state of components and connectors that are not affected by a rule does

not change, because labels are preserved thus keeping the reconfiguration and computa-

tion separate. There can also be conditional rules that ensure the state preservation so

the reconfiguration is carried out at a quiescent time. With the use of category theory,

software architectures and their reconfiguration are both represented in graphical yet

mathematically rigorous way. Computation and reconfigurations are related in a simple

way through the colimit construction.

2.1.2.4 AI Planning

AI planning is another way to perform reconfiguration. Planning can be viewed

as a type of problem solving in which the agent uses beliefs about the actions and their

consequences to search for a solution over the most abstract space of plans, rather than

over a space of situations [86].
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Planning has been an area of significant research from the mid 1950s. Newell,

Shaw and Simon developed the first system to solve planning problems. This systems

name was General Problem Solver (GPS) [73]. After that many people have performed

research in many areas of planning and performing the research from many perspectives.

A full detail of planning research is out of scope of this dissertation1 . Instead,

this dissertation will focus mainly on the planning problems that are related to the

problem of dynamic reconfiguration of software systems. There are two ways in which

we can see the related work in planning: Stand-alone planners and the systems that use

these planners to provide enhanced planning capability like replanning.

The first perspective is stand-alone planners. These planners have been developed

to solve a range of problems in many different areas. Here our focus will be on plan-

ning systems that take into account time and resource constraints for solving planning

problems. There have been many research efforts that deal with temporal and resource

planning [100, 5, 6, 81, 71, 47, 57, 58]. These and other approaches attack the temporal

planning problem through various ways. Some of these approaches include graphplan

extensions, model checking techniques, hierarchical decomposition, and heuristic strate-

gies and reasoning about temporal networks. These approaches are capable of planning

with durative actions, temporally extended goals, temporal windows and other features

of time-critical planning domains.

Stand alone planners use various heuristics for searching. Kichkaylo et al. divided

the heuristics of stand alone planners into four categories [58]: regression planners that

start from a goal and move backwards to the start, progression planners that start

from an initial state and move towards a goal, causal-link planner that perform means-

end analysis and compilation-based planners that reduces the planning problem into a

satisfiability problem.
1 A detailed overview of planning is given in a planning textbook by Malik Ghallab, Dana Nau and

Paolo Traverso entitled “Automated Planning: Theory and Practice” published by Morgan Kaufmann,
2004
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In almost all of the research there has not been an agreement on the representation

formats for representing the semantics of the planning problems. AI planners have not

been standardized on one representation language up till very recently. Almost every

planner needs a different set of input with varying format. Therefore it is very difficult

to compare the effectiveness of AI planners in solving real problems. However, AI

planning competition IPC 20022 provides a standard language PDDL 2.2 (Planning

Domain Definition Language) that is used by many planners. This language can be

used to define the semantics of the planning activity using a single syntax.

The usage of AI planning systems for solving real world problems has signifi-

cantly increased in recent years. The European Network of Excellence in AI Planning

(PLANET) [82] identifies key areas where planning can be applied. These areas range

from Robot Planning to Intelligent Manufacturing. PLANET has identified the various

strengths and shortcomings of the AI planners. They have proposed areas of improve-

ment for further research in AI planning.

The second perspective in related work in planning is the planning systems

that use these planners. There are various planning systems like Sipe-2 [42], AS-

PEN/CASPER [29], PRODIGY [99], etc. These planning systems usually use their

own planner and have integrated the planner with an execution system. Most of these

are built for specific applications and cannot be used as a general purpose planning

system. For example ASPEN/CASPER has been developed for planning, scheduling

and execution in space mission operations. Therefore, it has special features built into

it for spacecrafts which are not necessarily useful in other domains.

Planning is one of the cornerstones of our approach, although no planners have

been built for specifically handling the dynamic reconfiguration in component-based

systems, recently there has been some work in making planners for component de-

ployment [57, 58]. Kickkaylo et al. developed a planner called Sekitei specifically for
2 http://planning.cis.strath.ac.uk/competition/
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deployment of components in a resource constraint environment.

Figure 2.1: Flow of Sekitei Planning System

Sekitei is developed to solve the Component Placement Problem (CPP). The

process followed by this planner for solving the CPP problem is shown in figure 2.1 3

. In this process the planner works in conjuction with a component framework. The

component framework dictates a component placement problem in XML. This CPP

problem is translated into a planning problem using a compiler. The planner solves the

planning problem and gives out a plan. The plan is the decompiled into a deployment

plan and fed back into the component framework. The component framework then use

this deployment plan to deploy the actual components in the network.

Sekitei planner is built to support the deployment process for use specifically in

the grid-based and networked applications. It is able to handle resource optimization

but it cannot handle temporal constraints.

2.1.3 Dependency Management

Component-based distributed systems have myriad depndencies at different level.

In order to run such systems these dependencies must be fulfilled. Moreover, to auto-

mate the failure recovery these dependencies must be represented such that an auto-

mated failure recovery procedure is able to fulfill these dependencies.
3 Adapted from Kichkaylo et al.
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Various kinds of dependencies are present in distributed systems. Managing these

dependencies is an important aspect of managing component-based applications. It is

needed to get to the root causes of the problems in component-based systems. Moreover,

it also helps in specifying a system structure from a functional point of view. There are

various approaches for characterization of dependency management.

An automated system must take into accout all of these dependencies. However,

many approaches to dependency representation are available. In this section we are

going to look at three of these approaches.

Kon and Campbell specified two kinds of component dependencies [61]. These

dependencies are dependencies that are required to add a component to the running

system called prerequisite and the dynamic dependencies that are present at runtime.

In the perquisite there are three kind of dependencies

(1) the nature of hardware resources a component needs,

(2) the capacity of the hardware resources, and

(3) the software services such as, various components it require.

In the dynamic dependencies each component has a set of hooks to which the

other component can attach. These hooks create a unidirectional dependency. The

component that is attached to the hook of other component is called a client. An

example of this relationship is given in figure 2.24 .

Whenever a component C depends on another component D the system must do

two actions 1) attach D to the hooks of C and 2) add C to the clients of D.

Although the work by Kon and Campbell provided some good initial dependency

relationships among components, there are other models of dependency management

that are more enhanced and cover other kinds of dependencies also.
4 from Kon and Campbell
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Figure 2.2: Dependency Relationship Among Components
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One such effort was by Alda et al. They have given two groups of dependency

classification. The first group are syntactical dependencies where the communication

among the components actually takes place. The second group is also based on syntac-

tical level but without direct communication among the components.

In the first group there are three kinds of dependencies a) Event Flow, 2) Data

Flow and 3) Functional Dependency. Event flow consists of a source and a sink. An event

flow is unidirectional. Events are sent and received by ports from both components. A

data flow represents the flow of information. It is a continuous flow and is bidirectional.

Any of the two components can initiate this kind of flow. A functional dependency is a

dependency among the components where the components depend on a certain method

or interface of the component.

The second group is called implicit dependencies. These include semantic con-

straints and integrity conditions, parameterization of components, changing the con-

nections, adding and removing components. Implicit dependencies imposed no direct

communication. These dependencies exist between services supplied by components and

services stemming from basic underlying services such as memory, or scheduling, which

may have an indirect influence on the performance of component.

Another work in this area was done by Keller and Kar [55]. They have presented

an extensive model of dependency management. According to their model dependencies

are classified in a multidimensional space of dependencies as shown in figure 2.3. The

dimensions in this space are dependency criticality, dependency formalization, compo-

nent activity, component type, dependency strength, space locality and domain. These

dimensions are given in the figure 2.3.

The dependency criticality is the extent to which this dependency is important.

It could be prerequisite, corequisite and exrequisite. Prerequisite are those services and

components which are required before a component can be installed. Corequistes are

components and services required in parallel with this component. Exrequisites are
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Figure 2.3: Dependency Classification by Keller and Kar
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components and services which must not be present with a component.

The dependency formalization is the degree of formalization a dependency has.

Because some information is available directly from the system properties. However,

some dependencies may just be in the system administrator notebook.

The dependencies strength is how strongly the component is dependent on its

antecedent resource.

The component activity records if a component is active or passive. An active

component can be queried. However, a passive component cannot be queried.

A component type can be a hardware or software resource, a service or a logical

entity.

Space locality and domain specify how far the antecedent is from the dependent.

This is also referred to as interdomain vs intradomain and intersystem vs intrasystem.

2.1.4 Fault Tolerance

Software fault tolerance is the use of techniques to enable continued delivery of

services at an acceptable level of performance and safety after a design fault becomes

active [106].Fault tolerance is an area which improves the reliability of computer systems.

The goal of fault tolerance is to reduce mean time to fail (MTTF) so that dependability

improves in computer systems.

In 1986 Jim Gray presented his paper on Tandem Computer System. In that

paper he identified software ad administration to be the major factors in the failure

of computer systems. To mitigate these failures, he suggested a few mechanisms to

incorporate fault tolerance in computer systems. To improve hardware fault tolerance

he suggested a combination of modularity and redundancy. Moreover, he suggested that

hardware must show a fail-fast behavior i.e. either it does the right thing or stops [48].

To mitigate administration related failures he suggested systems with minimal

maintenance and minimal operator interaction. He suggested that systems must provide
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a consistent and easy-to-use interface to the administrators.

To improve software maintenance, he suggested modular software design such

that a failure in one module is not propagated to other modules in the system. Also,

he suggested fail-fast behavior in software modules. Moreover, he suggested methods

like checkpointing of different kinds to recover software after a failure. Moreover, he

suggested ways to improve fault tolerant communications and fault tolerant storage.

Broadly, software fault tolerance is divided into two major categories: single

version fault tolerance techniques and multi-version fault tolerance techniques.

Single version fault tolerance is based on use of redundant single version of a piece

of software to find and remove software faults. Some of the relevant fault tolerance

techniques include error detection, checkpoint and restart and data diversity.

Effective fault tolerance require two properties: self-protection and self-checking [1].

Self-protection means that the component must be able to detect any abnormal behav-

ior of other interacting components while self-checking means that system must be able

to detect internal errors and do appropriate actions to correct them.

Error detection checks vary with the requirement of software. Some error checks

include replication checks, timing checks, reversal checks, runtime checks and so on. It

is impossible to detect each and every fault in the system using these checks. Therefore,

fault trees have been proposed. Fault trees can be used to identify general classes of

failures and conditions that lead to those failures [15].

Apart from error detection, checkpoint and restart is another technique to incor-

porate fault tolerance in single version software. This is mostly a recovery technique.

The most simple recovery technique is restarting a module or component. Static and

dynamic restarts are possible. In static restart the goal is to return the module to a

pre determined state while in dynamic restart the goal is to return the module to a

dynamically inserted checkpoint. However, in some cases this kind of recovery is not

possible. An example of this is messages that are sent to other modules. If a message
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is sent there is no way it can be brought back [106].

In multi-version fault tolerance, two or more versions of a piece of software execute

in sequence or parallel. These versions are used as alternatives to each other. The reason

behind such a scheme is that if one software fails then the other continue to work because

they both are built differently [11]. Some of techniques of multi-version fault include

recovery blocks and n-version programming.

Recovery blocks technique uses the checkpoint and restart technique [83]. If an

error is detected a different version of the software is tried. Checkpoints provide recovery

to a previous state if one version detects an error. A primary version is used to provide

complete performance while another backup version provide degraded performance of

an error is detected.

Similarly n-version programming is also used to provide fault tolerance in muti-

version software. Different version of software gives output to a given input. A decision

algorithm is used to select the best output after evaluating all outputs. Considerable de-

velopment efforts are required to build n-version programming. Moreover, the algorithm

for the selecting the best output also require considerable effort [11].

Another variation of recovery block and n-version programming is N-self-checking

programming [64]. In this technique both recovery block and n-version programming is

used. However, an acceptance test is added to test the output of each block. Other vari-

ations in this technique have also been suggested through consensus recovery blocks [88]

and t(n-1) version programming [107].

Cristian presented a classification of failure and related aspects from a distributed

systems point of view. According to him a server failure occurs when it no longer behave

in an expected manner. He divided failures into different kinds: timing failure occurs

when the servers response is correct but does not reach at the specified time, response

failure when the server does not responds correctly. Crisitan also presented taxonomy

of crashes possible in the server. An amnesia crash is when the server starts in a pre-
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defined initial state. In this crash the state does not depend on the state of the server

before the crash. A partial-amnesia crash when some state is maintained after the

failure but some state resets itself. A pause-crash is when the server starts in a state

that it had before the crash. A halting-crash occurs when the server never restarts [32].

Cristian also presented semantics of failures in servers. Moreover, he presented

an overview of the issues in designing hardware and software tolerance. In particular

he discussed the issues related to modularity and redundancy like server groups.

2.2 Related Work

There are a number of approaches to failure recovery in software systems. Figure

2.4 presents a classification of the failure recovery techniques that we studied. Most of

these approaches can be divided into three catagories: control theory-based techniques,

architecture-based recovery and recovery oriented computing. Some of the techniques

also overlap more than one catagory. Furthermoew, some approaches cannot be catago-

rized under these three catagories. Therefore, we present them under ‘miscellaneous’

catagory.

2.2.1 Control Theory-Based Techniques

Kephart and Chess presented an idea of autonomic computing [56]. Autonomic

Computing is a computing paradigm where systems manage themselves given high-

level objectives from administrators. There are four properties in these systems: self-

configuration, self-optimization, self-healing and self-protection.

In self-configuring the systems configure themselves automatically through high-

level policies that represent business objectives. When a new component is introduced

in the system, it is added seamlessly with the rest of the system and the rest of the

system adapts to its presence.

In self-optimization the systems continually seek ways to improve their opera-
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Figure 2.4: Related Work Classification
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tion. The improvement may be a performance increase or some operation that reduces

resource etc.

In self-healing the systems detect, diagnose and repair localized problems that

result in bugs or failure of the systems. Systems match the problem with diagnosis and

apply the diagnosis followed by a test of the system.

In self-protection the systems protect themselves against the malicious attacks.

Moreover, they also adapt themselves with credible early reports of problems.

All of these four properties of autonomic systems are based on a feedback loop of

monitor, analyze, plan and execute. An autonomic manager controls these four phases.

The work in this dissertation has a number of properties of autonomic system.

Especially our system performs self-configuring and self-healing. Our system performs

automated failure recovery. Therefore, it has the property of self-healing. Moreover,

our algorithm of failure recovery uses other available resources in the system to recover

failed applications. Since, other resources may not be configured properly to host a

given application, they need to be reconfigured. This reconfiguration is performed

automatically in the system and the rest of the system adapts to the change in the

reconfiguration. Therefore, our system also exhibits the self-configuring property.

Another important characteristic of the autonomic system is that configuration

goals can be defined at a higher level and the system performs the rest of the low

level operations to bring about the desired change. In our system the goals are very

simple and defined at a very high level. It is the planner that searches the low level

actions that bring about the desired change in the system. Therefore, our system has

the property where the goals are specified at a high level and the system performs the

low level actions. Many approaches to failure recovery have been suggested based on

this feedback loop approach.

Knight and colleagues presented a survivability framework for software systems

named Willow [60]. Willow is based on the concept that reconfiguration is required



42

at both the network level and application level for a system to achieve survivabil-

ity. Willow supports both proactive and reactive reconfigurations. Willow uses Siena

publish-subscribe mechanism for communication between the artifacts of the system.

The reconfiguration is performed as a workflow and it is applied using the software

dock framework.

Gurguis et al. presented an Architectural Runtime Configuration Management

(ARCM) for failure recovery [45]. ARCM provides three capabilities. First, ARCM

provides a monitoring and recording facility to record any changes in the architecture

at runtime. Second, it provides a visual representation of the architecture. In order to

achieve the above mentioned capabilities the architecture is represented as a directed

graph where nodes represent architectural configurations and edges represent the possi-

ble path to these configurations. Third, it provides a recovery facility in the architecture.

This recovery feature is provided through a rollback and rollforward operation in the

architecture. Rollback is the process where the architecture is reverted to a previous

configuration and rollforward is the process where the architecture is transitioned to a

subsequent configuration in the version graph.

Diao et al. also used control theory for self-healing and self-managing systems [36].

They compare the similarity of control theory and self-managing systems. The authors

note that the autonomic systems focuses on specification an construction of compo-

nents that interoperate well for management tasks while the control theory focuses on

algorithms and developing components that achieves the control objectives. Overall the

authors specify four attributes of control systems that can be applied in self-managing

systems to make it more robust. These attributes are stable, accurate, have short set-

tling times and does not overshoot (SASO). Then they give the details of how the

resource dynamics can be modeled as control theory problem and how sensors and ef-

fectors are developed that can use the control theory concepts in autonomic computing

systems. Finally, in the paper the authors say that it is difficult to test the applicability
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of control theory without an end-to-end system. Therefore, they developed a Deployable

Testbed for Autonomic Computing (DTAC). DTAC can emulate a webservice and can

be used to test the autonomic systems and the application of control theory concepts

applied to it.

Reilly et al. also presented a control-based approach to application management

and adaptation [84]. The authors describe a three layer model to achieve this. The top

layer is the actual application layer where all the application middleware such as Jini

are hosted. The second layer is the heart of their approach. It performs three functions

1) Instrumentation services for monitoring and logging the access and invocations. 2)

Control services that examine the information obtained by the instrumentation services

to identify a conflict and then select an appropriate adaptation strategy. 3) Dependency

management layer that takes care of the up to date representation of the dynamic

dependencies in the system.

This paper does not discuss how self-healing or failure recovery can be performed

using the framework described in the paper. However, the idea of the control loop is

what we are using in our dissertation for failure recovery.

Garlan and Schmerl presented an architecture-based approach of self-healing sys-

tems [47]. They argue that in current systems the adaptations are tightly integrated

with the code of the system and cannot be changed easily. Therefore, they propose an

externalize adaptation approach. In this approach they view the system under a closed

loop control system which has the following phases: monitoring, abstraction, reification

and adaptation. The system is continually monitored against some given models. When

system fall outside these models then the system adapts itself to bring it back into the

given boundaries of the evaluation models.

Shin and Cooke presented a self-healing mechanism using connectors [90]. The

system model that the authors are using is of components. However, these components

are made up of objects. Objects communicate with each other through connectors. This
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paper focuses on the self-healing inside components, based on connectors between the

objects. Each components is made up of two layers: A service layer and the healing

layer. The healing layer reconfigures the objects in the service layer if its finds an

object that is sick. Moreover, the healing layer also notifies the neighboring components

about the reconfiguration it is performing. This step is to ensure that the neighboring

components also reconfigure themselves if required. The mechanism of self-healing works

as follows. The connectors notify the healing layer about the arrival of messages from

objects. If there is an anomalous behavior in the arrival of these messages the component

reconfigures objects and repairs the object. This healing is performed through the

healing layer of the component.

Park and Chandramohan described two models of failure recovery: Static and

dynamic [78]. The main strategy behind the static model is redundancy. A monitor

maintains a list of available servers and their operating status. As soon as a failure occurs

in one server the monitor switches to another server in a isolated setting. Moreover,

in order to support the transactions that are currently going on two modes start an

continue are specified.

In the dynamic recovery model, failed components are replaced by dynamically

generated module which are deployed on the fly. The monitor can even generate im-

munized components to prevent further failures when the monitor knows the reason of

failure. If the monitor does not know the exact reason of failure then it simply replaces

the old component with the new one in a safe environment.

According to the authors the dynamic model is more efficient as it only generates

the component when required. Therefore, it has lower maintenance cost than the static

model.

2.2.2 Architecture-Based Recovery

Various approaches to architectural-based recovery are presented.
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According to our literature survery, Oreizy et al. presented seminal work in the

area of self-adaptive systems [75]. According to this paper a “Self-adaptive software

modifies its own behavior in response to changes in its operating environment”. It

provides a spectrum of self-adaptability which ranges from conditional expressions to

artificial learning.

This paper provides two different but related aspects of self-adaptation: Adapta-

tion Management and Evolution Management. Adaptation management refers to the

process where a system observes its own behavior and analyzes the observations to

determine appropriate adaptations. There are four distinct steps in this process. 1)

Collect observations is the process where the system is being monitored for some spec-

ified properties which include but are not limited to performance monitoring, safety

inspections and constraint verifications. 2) Evaluate observations is the process where

these recorded observations are analyzed and compared against an expected behavioral

model. 3) Planning change is the process where changes are planned. 4) Deploying

change descriptions is the process where the changes in he system are being propagated

to the different sites so that agents can bring about the desired change.

The other aspect of self-adaptation that the paper discusses is evolution man-

agement. Evolution management focuses on changes in the structure of the system. It

is different from adaptation management in the sense that in adaptation management

changes are only applied on the existing system without changing the structure of the

system. In evolution management the system undergoes a change in the structure by

adding or removing existing components. The structure of the system exists in the form

of an architectural model. This architectural model consists of connectors and coarse

grained components. Components are responsible for implementing application behavior

and maintaining state information while connectors are transport and routing services

for messages and objects. The evolution is carried through an architectural evolution

manager which maintains consistency and system integrity. The paper presents C2 and
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Weaves as two dynamic architecture systems which perform evolution management.

Overall this paper provides some nice settings for this dissertation. Our lifecycle of

Sense- Analyze -Plan-Execute is a way similar to the adaptation management. However,

in failure recovery the structure of the system might also change. Therefore, evolution

management is also performed in this dissertation. But this evolution management is

in terms of adding removing components whose behavior is known. No new types of

components are being inserted in the system.

Dashofy et al. presented an architecture-based solution to self-healing systems [34].

The authors describe four capabilities in the architecture if it needs to be reconfigured

at runtime. First, the capability to describe the current architecture. Second, the abil-

ity to express an arbitrary change to the architecture, Third, the ability to analyze

the result of the repair and four, the ability to execute the repair plan. For describing

the architecture the authors have used xADL 2.0 which is an XML-based architecture

description language. For expressing the architectural change a tool called ArchDiff is

used. This tool has the capability to take two xADL 2.0 architecture descriptions and

outputs a difference in the architecture based on the addition or removal of components.

Moreover, an ArchMerge tool is used to merge two architectures and apply the difference

of the architecture from ArchDiff to add the add-on artifacts to the base architecture.

In order to validate the repair results various kind of checks are performed on

the new architecture. Most of these checks are performed by a what-if analysis. This

analysis is performed off line and if the change is satisfactory then a planning agent will

perform the changes to the actual system.

An Architectural Evolution Manager (AEM) is used to perform the changes to

the runtime system. It allows the components and connectors to be replaced to execute

a clean up code. Components and connectors bordering the affected area are suspended.

Components, connectors and links are added as defined in the new architecture. Follow-

ing that the components and connectors bordering are resumed and the communication
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is started.

Tichy and colleagues discussed a rule-based technique for failure recovery in

component-based systems [97]. They developed this technique such that components

themselves find self-repair actions that can minimize damage and reduce repair time.

The objective function of a failure is presented as an inequality. This inequality is solved

using an algorithm which includes a presolving phase and a submodel expansion phase.

In the presolving phase the properties of the system not really relevant to the failure

are removed to speed up the process. The submodel expansion uses an algorithm to

calculate the actions required to recover the system from failure.

Cheng et al. used architectural styles as a basis for system self-repair [28]. In

this technique they made the architectural style a first class entity. Using this, they

determined about the properties of the system to be monitored, constraints that need

to be evaluated and so on. Moreover, the style can be used to select appropriate repair

strategies.

2.2.3 Recovery-Oreinted Computing

Recovery-orinted computing is yet another area of failure recovery. The goal of

recovery orinted computing is to reduce the mean time to repair instead (MTTR) of

reducing mean time to fail (MTTF).

Brown and Patterson argued that fault tolerant techniques are not enough to

ensure high availability of systems [17]. They say that hardware, software and the

people who operate them all make mistakes. Therefore, failure recovery and repair

must be considered a vital aspect in systems. They argue that the systems present today

are heterogeneous and much more complex than homogeneous systems like transaction

processing systems. Therefore, availability in these systems cannot be achieved by

simply making the system more fault-tolerant but there is a need for a new paradigm

required. They call it Recovery-Oriented Computing (ROC). In ROC, failures in the
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system are accepted as a normal unavoidable fact of system operation. Therefore, the

systems are designed to provide fast and effective recovery and repair mechanisms.

Patterson and colleagues argue that there is a lot of emphasis on performance im-

provement in recent years [79]. Therefore, computers are many folds faster now. How-

ever, this performance improvement has neglected other critical aspects which include

total cost of ownership, dependability, privacy, etc. Moreover, emphasis on performance

neglected another important aspect in computers and that is availability. According to

Patterson and colleagues operator errors account for a large percentage of failures in

computer systems. In order to get ideas for improving availability of computer sys-

tems, Patterson and colleagues looked at other fields to find ideas and inspirations to

improve availability. In this paper they discussed three such field: disaster and latent

errors in emergency systems, human error and automation irony and civil engineering

and margins of safety. They concluded that to improve availability, we need to repair

fast instead of recover fast. Therefore, their focus is to improve mean time to repair

(MTTR) instead of mean time to fail (MTTF).

Candea and colleagues presented a paradigm of failure recovery called Recovery

Oriented Computing(ROC) [20]. The paradigm of ROC is different than fault tolerance

as ROC does not try to prevent faults but instead finds ways to recover the system. On

the other hand fault tolerance try to prevent the fault as much as possible.

To incorporate recovery from failures ROC has two types of methods. Microre-

boot and Undo/redo. When a system fails there is usually a part of the software that

fails. Sometimes these failures can be corrected by simply rebooting the whole machine

or the software. The authors presented an even minuscule scale of rebooting. This

rebooting is performed on the part of the software that behaves incorrectly. According

to the authors the microreboot can be performed in a fraction of a time than the full

rebooting.

The second method for ROC computing is undo/redo. In this method the opera-
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tor are given the opportunity to undo or redo an action if the effects of the action cause

a problem in the system leading to a failure.

The techniques presented in this paper are for a particular kind of failures which

are caused by transient hardware and software failures. Moreover, they can also be

effective against resource leaks and volatile data structures.

Candea and Fox presented a different paradigm for failure recovery [21]. They call

it crash-only software. In this paradigm the software does not go through the phases of

graceful shutdown. Instead its stopping is equal to that of a crash. This is because the

crash reboot of a system takes less time than clean reboot. They argued that a lot of

effort has been wasted to make the software shutdown gracefully. However, these efforts

are not really required if some changes are made in the software. One of the changes

they suggested to make the software crash-only is not to store the state of the software

in the middle tier. The stopping must be induced from outside. The components in

the system must have a clearly defined boundaries. Moreover, all interactions between

the components have a timeout. Furthermore, the requests are self-describing so that

they do not depend on any session data. Incorporating these properties will make the

software crash-only. They say that doing this will make the software easy to model and

recovery time will take less.

Human operators often perform an action on system that they need to undo.

Serrano et al. presents a method for correcting these errors through indo operation in

Management Information Systems (MIS) [89]. This undo feature in MIS systems stores

the tables in the database. Any historic data could be produced using these historic

tables. Therefore, if any user of the system performs an operation to the data that he

or she wishes to undo, he or she can recover the data from the historic storage of the

data.

The crash of an operating system can cause a loss of the system state. However, in

stateful services this session data is used by the user of the system. Loss of such data can
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cause inconvenience to the user of the system. Sultan et al. provided a mechanism to

recover such sessions using a backdoor architecture. In ordinary cases such session data

is only accessible from the memory through operating system of the same machine.

Backdoor architecture provides an alternate route to such data. Sultan et al. used

a Ethernet network interface card to get access of the memory of the system where

operating system crash occurs [95]. This access is performed by the machines in the

same cluster running the same applications. Therefore, as the applications are the same

the data from the failed machine is retrieved and the client does not see a much delay in

getting his/her session back. According to the authors a restart could also recover the

operating system but a restart is destructive to the transactions already taking place.

Moreover, a restart involves a significant downtime compared to backdooe architecture.

The authors modified an operating system to include backdoor architecture. The first

modification is the ability to detect a failed operating system and the second, is to

include the capability of service continuation when one of the peer operating system

fails.

2.2.4 Miscellaneous Approaches to Failure Recovery

Some other approaches are also present in the literature that cannot be out into

the other three catagories.

George and colleagues presented a self-healing approach based on the biological

phenomena that exists in organisms [46]. They describe four properties that make a

system self-healing. Environmental awareness, where the cells sense the properties of

the surrounding environment e.g. like any damage or any other abnormal behavior.

Adaptation, where the cells even with the failure of some cells develops an organism or

a part of it. Redundancy, where many cells are devoted to the development of a single

organism and the death of a few cells does not stop the development of the organism.

Decentralization, where the cells can induce their neighboring cell to perform a certain
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task.

The authors have described three approaches that have self-healing properties

and then used these properties to design their own programming model for self-healing

systems. The three ways of self-healing that are found in organisms are Morphogenesis,

where cells adapt to the environment if one of their neighbors fails. Wound healing,

where the layers underneath the wound responds to the failing of the upper layer i.e.

the skin and performs inflammatory actions to protect the cells below it. And finally

Regeneration, which uses either stem cell, based approach to regenerate or uses a cell

multiplication approach.

The authors have described a simulator where they have simulated these behaviors

to design their own simulations. The three biological phenomenons that they mimic are

cell actions, cell division and gene actions.

Garlan et al. argues that there are situations in the self-adaptive system where

priority needs to be given to one or more factors [43]. As the user is the person who

has to benefit from the system, there must be a task aware adaptation of the system.

In this kind of adaptation the system store an explicit representation of the user intent

and base its adaptations based on the desires of the user. In the architecture described

in the paper, there are two layers above the environment of the system. A task man-

agement layer stores all user preferences and detects any changes in those preferences.

A environment management layer translate the user intents into the changes in the

environment through configuring the elements that make up the environment.

Klemm and Singh presented a Java server specific technique for failure detec-

tion and recovery [59]. They claim that Java language provides many fault tolerance

mechanisms like exception handling, garbage collection and so on. Moreover, Java un-

like C/C++ provides a graceful degradation mechanism through its exception handling

mechanism but still the availability of these servers are affected. Therefore, they pro-

posed a Java Application Supervisor (JAS) that is a an external application to Java
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Runtime Environment (JRE). JAS provides automatic failure detection and recovery.

A user specifies policies about what to do if a failure occurs. Based on these user poli-

cies, divided into thread and system policies, JAS take the appropriate action to recover

from failures without human intervention. JAS is not part of JRE. Thus, the failures

are handled externally without modifying the JRE.

Oppenheimer et al. presented a study of three internet services and examine

the failures that occur in them during the course of five months [74]. They are highly

accessed internet services and two of them have a hit rate of approximately 100 million.

The authors noticed that the failure due to operator errors surpass all other kinds

of failures. Most of the operator errors are due to misconfiguration and similar mistakes.

The authors also examines failures that occur in components and results into service

failures later.

The authors also provide a way to mitigate these a failures through various

techniques which include correctness testing of components, redundancy, configuration

checking, etc.



Chapter 3

Motivating Example

The goal of this dissertation is to automate the failure recovery process of the

systems that provide internet-scale services [74], such as those provided by Google1 and

Yahoo2 . Due to the 24 X 7 operation of these systems, they have very high availability

requirements. Even a small downtime may cause huge revenue and opportunity loss [37].

For example a single hour of downtime can cost up to $200,000 to companies like Amazon

and up to $6,000,000 to brokerage firms [37].

Internet services like Yahoo and Google have a huge infrastructure and are hosted

on a myriad number of machines. Moreover, due to the proprietry nature of these

services it may not be possible to evaluate the techniques in this dissertation to the

scale of the systems providing these services. Therefore, in this dissertation we have

selected off-the-shelf components to mimic the behavior of internet services at a small

scale.

3.1 Reasons of Failures

There are numerous reasons for the failure in these large-scale distributed sys-

tems. Brown and Patterson have identified three significant reasons for this downtime:

hardware, software and human operators [18].
1 http://www.google.com
2 http://www.yahoo.com
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Most of the internet-scale services are hosted on cheap failure-prone commodity

hardware instead of the expensive failure-resistant hardware [18]. Due to the lack of fault

tolerant components in commodity hardware, like the unavailability of ECC memory,

less built-in fault tolerance is available. Therefore, machine failures cause a huge chunk

of the downtime. Patterson and colleagues measured that hardware errors cause 15%

of the downtime in these systems [79].

Apart from hardware, the component and service failures also are a reason for this

downtime. Component failure are usually manifested by faults. These faults usually

come from custom written software deployed on these components [74]. As components

provide services to the outside world the failure of a component results in the failure of

service also. According to Patterson and colleagues, software failures account for about

34% of the total downtime [18].

However, the biggest cause of the downtime in these services is not hardware or

software failures. In fact it is the operator errors that cause 51% of the downtime. These

systems are huge in size and complexity. Therefore, administrators of these systems have

a difficult time maintaining them. Most of the time it is not possible to undo change

right away; therefore, the time to recover the system is significant. A large portion of

operator errors are due to misconfigurations in the system [79].

3.2 A Typical Internet-Service System

A typical internet service consists of three layers: A front end layer, usually called

a presentation layer, a middle tier that contains the business logic and then a database

layer for persistent storage. Moreover, there are systems with two layers where the front

end layer and the middle tier are combined. Furthermore, systems with four and more

layers are also common. In these systems there is an additional load balancer on top of

the front-end layer for load distribution [74, 24].

The front-end in a typical three-tier system is usually a webserver like Apache
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Figure 3.1: Various Configurations of Internet-Scale Systems
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httpd server or Microsoft SQLServer. The middle tier consists of either a servlet engine

such as Tomcat or an application server such as IBM Websphere or BEA Weblogic. A

combination of servlet engine and application server is also present in some architectures.

The database tier consists of a database such as Oracle or Mysql.

The front-end receives requests from clients. The front end usually processes this

request and pass it on to the middle tier. The middle tier contains the business logic of

the system. The middle tier processes the request and access data from the database

tier, if required. It then returns the processed data to the front-end which presents the

data back to the client. The presentation of the data in a meaningful manner is also a

job of the front-end.

In this project we are using distributed systems with three layers with Apache

httpd server at the front-end, Tomcat servlet engine as the middle tier and Mysql

database as the database tier. Using Apache, Tomcat and Mysql for our project seems

to be the logical choice since they are openly available with their respective source

code [36]. Apache is also a very popular webserver. According to a recent survey by

Netcraft, more than two third of internet websites are using Apache [72]. Tomcat is

also a very popular servlet engine it can work in conjunction with Apache or can recieve

client requests directly. However, a configuration of Tomcat with Apache gives a better

performance than a configuration with stand-alone Apache. Mysql also is very poluar

database. It is available for free and it stores all the data in the system. From this point

onwards we will use names of Apache, Tomcat and Mysql for the front-end, middle tier

and database tier respectively.

Internet-scale systems can come in a variety of architectures in terms of placement

of components. Some example architectures of these systems are given in Figure 3.1.

The boxes in this figure represent machines. The three components Apache, Tomcat

and Mysql can be placed in a number of ways on these machines. Each sub-figure in

figure 3.1 represents a way of placing these components. These components can be places
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with each other on a common machine or they can be placed on seperate machines.

Apache, Tomcat and Mysql all come with a default configuration. They provide

some basic services with their respective default configurations. In case of Apache the

default service is http service and in case of Tomcat it is the servlet service. However,

both of these servers can provide additional services such as php service or cgi service

if additional modules are added and configured. Configurations in all of these servers

are stored in one or more configuration files. These configuration files are modified

or in some case more configuration files are added to install additional modules. To

communicate with each other, these servers also have modules called connectors such

as jk or jk2.

Applications are deployed on these servers. A particular configuration of an

application may require any combination of these servers. If an application requires

default services then the default configuration of these servers is enough. But in cases

where applications require extra services then these servers have to be reconfigured

before an application could provide useful service to the user.

An application in an internet-scale system is usually a website or portal. Websites

are constructed in a myriad number of ways. Different technologies and tools are used to

develop these websites. For example, a website may use Cascading Style Sheets (CSS) at

the presentation layer and Java Server Pages (JSP) for the business logic layer. Another

website may use simple html for the frontend and servlets at the business logic layer.

Yet another website may use CGI scripts or PHP at the front end and combine the

presentation layer and business logic layer. Some websites are solely deployed in the

business logic layer i.e. Tomcat and they just use the Apache as a proxy for forwarding

requests to Tomcat. Hence, one can see the large variety of tools and technologies used

to develop a website application. It is important to note here that the technologies

like CSS, PHP and so one require specialized services from the components like Apache

and Tomcat. These services are not provided by default and needs to be installed and
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configured on these components.

Mysql also requires a configuration to work but in default cases the configuration

of Mysql is usually simple and does not require a lot of manipulation in the configuration

files. Moreover, databases systems such as Mysql already have built in failure recovery

mechanisms. Therefore, in this project we assume that the configuration of the Mysql

database is fixed and it does not require manipulation in cases of failure recovery.

Figure 3.2: Architecture of System used in this Dissertation

3.3 Distributed Systems Architecture

In this dissertation we are incorporating automated failure recovery mechanism in

an architecture which consists of three websites or applications. These three applications

are Sms, Rubbos and Webcal. Sms3 stands for Strand Map Service. It is a service

designed to provide strand map functionality to the user. It is an educational resource

for Digital Library for Earth System Education4 . This particular service provides a

graphical interface for the strand maps [96].

Rubbos5 is a bulletin board benchmark site designed like slashdot with huge

amounts of data. People can post messages on this bulletin board and all these messages
3 http://www.dlese.org/Metadata/strandmaps/
4 http://www.dlese.org/dds/index.jsp
5 http://www.cs.rice.edu/CS/Systems/DynaServer/RUBBoS/
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can be accessed by other people.

Webcalendar6 (called Webcal also) is an online calendar for individuals and/or

groups for scheduling meetings, tasks etc.

All these applications have a set of requirements in terms of dependencies. Mor-

ever, the authors of all these applications provide more than one high-level configuration

for their deployment. These deployment configurations are specified at a very high-level

and can be used as guide to deploy these applications. However, these applications have

to be configured at each component where they are deployed seperately.

The various configurations of these applicatios are given below.

Sms (Strand Map Service)

Possible Configurations

(1) Apache + Tomcat + Mysql

(2) Tomcat + Mysql

(3) Apache

Rubbos

Possible Configurations

(1) Apache + Tomcat + Mysql

(2) Apache/PHP + Mysql

(3) Tomcat + Mysql

(4) Apache

Webcal

Possible Confgurations
6 http://sourceforge.net/project/showfiles.php?group id=3870
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(1) Apache/PHP + Mysql

(2) Apache/PHP

Not all the configurations of these applications provide the full functionality. The

general rule is that the lower the number, the higher the functionality provided by the

application. Therefore, all the applications are deployed in the system with configuration

1. If a failure occurs the goal is to restore configuration 1. If this is not possible a lower

number configuration is applied.

In order to test and evaluate our failure recovery mechanism described in this

dissertation we have used four machines: serl, skagen, leone and tigre. Three Apache

components, two Tomcat components and one Mysql component are present on these

machines. The placement of all these components is fixed during the lifetime of the

system. The architecture of machines and their various components is given in Figure 3.2



Chapter 4

Modeling for Failure Recovery

In this chapter we will discuss the modeling issues of the systems described in the

previous chapter. Modeling such systems gives us the ability to incorporate automated

failure recovery techniques in them. However, due to the various architectures available

for developing distributed systems it is very difficult to develop a failure recovery model

that is applicable to all types of distributed systems [62]. Therefore, in this dissertation

the modeling is geared specifically towards the internet-based distributed systems using

components like Apache, Tomcat and Mysql. Although we are modeling these compo-

nents, the essence of this modeling can be used in any other similar type of distributed

system.

Every modeling starts out with a theme or requirement. The requirement of

modeling in this dissertation is functionality for the user. It is our goal that whatever

is going on behind the scenes the user must get functionality back as soon as possible.

Therefore, in any case failure recovery of a part of the system that is never used must

not precede a part of the system that is used frequently by the users.

Functionality for the user is provided by an application. The application is de-

ployed on a component. However, it does not matter what component the application

is deployed on as far the user is concerned. The concern for the user is the functionality

of the application with which he or she is interacting.

As applications provide functionality to the user, the driving force of our failure
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recovery modeling is an application. We define an application as “a software entity that

is capable of providing direct functionality to the end users of a system”. A common

example of an application in our architecture is a website. A website provides a direct

functionality to the user while hiding any details of where and how it is deployed. An

application cannot work alone. It is deployed on one or more components to provide

the intended functionality. Each application requires the component to provide some

services. Without these services the application cannot provide the functionality to the

user.

As components provide the services to the application, components are the next

artifact in our modeling process. We define a component to be “a software entity that

hosts an application and provides the necessary services that are required for the working

of the application”. Apache, Tomcat and Mysql are all considered components in our

model. In fact, these three are types of components and more than one instance of them

could be running at a given time. A component requires a machine to be able to work.

A component has a default configuration but it can have additional configurations also.

But the additional configurations are driven in part by the needs of the application

being deployed. The configuration of the component is changed through manipulating

the configuration files.

Components provide services. Some services are provided by default and addi-

tional services are provided through additional modules. Components connect with

other components. In order to connect two types of components, a special type of mod-

ule called a connector is required. The connector provides a communication mechanism

between the components.

Components are deployed on machines. Therefore, machines are also part of

modeling for failure recovery. We define a machine as ”a hardware entity that has

certain resources like memory and hard disk and contains a operating system to work

with other software entities”. Components are deployed on machines. Depending on
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the type of component, more than one instance of a component can be present on a

machine.

These three artifacts - application, component and machine - have numerous

properties. To automate the failure recovery process, we have formalized the properties

of these artifacts into different models. Inside these models there are two kinds of

sub-models. Static models remain the same during the lifetime of the system. The

fixed properties of the artifacts are included in the static model. On the other hand

dynamic models are continously updated during the lifetime of the system. These

models capture the properties of the artifacts that change at runtime.

4.1 Application Model

To model the applications for failure recovery two separate models are needed:

an application configuration model (ACM) and an application dynamic model (ADM).

ACM is a static model and usually stays the same during the lifecycle of the application

while ADM is a dynamic model and changes with any change in the actual deployment

of the application.

4.1.1 Application Configuration Model

An application is deployed on components. An application can be deployed using

multiple high-level topological configurations. For example, in the previous chapter we

saw that multiple configurations of different applications are available and all of them

had various dependencies and requirements. These configurations are fixed and cannot

be changed. Therefore, these configurations are to be stored somewhere so that they

can be used for failure recovery.

An application configuration model (ACM) is a repository of the possible con-

figurations of each application in the system. Each configuration is identified by a

configuration number. This model give details of dependencies of each configuration.
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A template of ACM is given below.

Application Configuration Model

(1) Application Name

(2) Configuration Number

(3) Component A

(a) Component ‘A Included

(b) Component ‘A Intercomponent Dependencies

(c) Component ‘A Intracomponent Dependencies

(d) Application Import Time to Component ‘A

(4) Component ‘B

(a) Component ‘B Included

(b) Component ‘B Intercomponent Dependencies

(c) Component ‘B Intracomponent Dependencies

(d) Application Import Time to Component ‘B

(5) Component ‘C

(a) Component ‘C Included

(b) Component ‘C Intercomponent Dependencies

(c) Component ‘C Intracomponent Dependencies

(d) Application Import Time to Component ‘C

.. ..

Each configuration is identified by a configuration number. Moreover, an appli-

cation requires certain components in each configuration. The information about the

types of components required in each configuration is stated in this model. The detailed

information about the component is given in terms of intercomponent and intracompo-

nent dependencies of an aplication in each configuration. Note that this configuration

information is specified at a very high-level. Low level details about a configuration are

not included. Most of the applications may have only one such high-level configuration.

The maximum configurations that we have seen in the applications that we are using

in this dissertation is four.
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The first sub-field in items 3-5 is an indicator of whether the component is part

of the configuration or not. It is a boolean value. One (1) means that the component

is part of the configuration and zero (0) means that the component is not part of it.

The rest of the three sub-fields give further information about the component

only if the value of the first item is one (1). “Intercomponent Dependencies” give the

connection requirement for the component. For example, in a particular configuration

Apache needs to be connected with Tomcat. This fact that the application requires

Tomcat to work is stated in the intercomponent dependencies item in the ACM. Note

that the exact method of connection is not specified because it is a low level detail. It

is up to the failure recovery mechanism to find compatible instances of components to

connect with each other. The information about which type of connection a component

supports is given in another model described later in this chapter.

“Intracomponent Dependencies” list the services that this particular configura-

tion of the application requires from the component. If only default services are required

then they are not listed. Only additional services are listed. An exmaple of an intra-

component dependency is the requirement of the application Webcal to support PHP

in Apache. PHP is not a default service of Apache. Since it is not a default service

it is listed under this item. Likewise, an application may require ssl service for secure

connection. Since ssl is not a default service it is also listed here. Again this is a very

high-level detail and the low level details which include the actual specification of these

services are not listed here.

The last sub-field is the application import time. An application is imported

to a component on a need basis. After a failure of an application it is imported in

another component from a central repository. The time required for the application

to be imported to a component is called “import time”. Application import time is

also fixed because the size of the application is fixed and cannot be changed during the

lifetime of the system. One may argue that it can change if one machine is faster than
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the other. However, in this dissertation we have used identical machines so this time is

fixed.

More than one application could be present in one system at a given time. There-

fore, to identify a configuration uniquely, which is the key to find a particular configu-

ration of a particular application, both the application name and configuration number

are required.

This model contains the information about configurations of applications in the

system. A sample configuration for the application Rubbos as it appears in ACM is

given below. This is the configuration 1 of Rubbos from the previous chapter. Other

configurations are represented in a similar way in ACM.

(1) Application Name: Rubbos

(2) Configuration Number: 1

(3) Apache

(a) Apache Included: 1
(b) Apache Intercomponent Dependencies: Tomcat
(c) Apache Intracomponent Dependencies: php-service, ssl-service
(d) Application Import Time Apache: 12

(4) (a) Tomcat Included: 1
(b) Tomcat Intercomponent Dependencies: Mysql
(c) Tomcat Intracomponent Dependencies: jsp-service
(d) Application Import Time Tomcat: 15

(5) Mysql

(a) Mysql Included: 1
(b) Mysql Intercomponent Dependencies: 0
(c) Mysql Intracomponent Dependencies: 0
(d) Application Import Time Mysql: 89

4.1.2 Application Dynamic Model

An ACM captures the static configuration information of applications. However,

these applications are deployed on the system at runtime. The information about their

state at runtime is captured in the application dynamic model (ADM).
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At any given moment, an application can exist in only one configuration. This

configuration may change during the lifetime of the application due to reconfigurations

in the system.

Reconfigurations are initiated by an administrator or automatically after a fail-

ure. To support this dynamism in application configuration, ADM is used to track

configuration changes in the application during the lifetime of the system.

Following is the template of ADM that captures the runtime information of an

application.

Application Dynamic Model

(1) Application Name

(2) Current Configuration

(3) Component A

(a) Component ‘A’ Machine

(b) Component ‘A’ State

(4) Component B

(a) Component ‘B’ Machine

(b) Component ‘B’ State

(5) Component C

(a) Component ‘C’ Machine

(b) Component ‘C’ State

.. ..

ADM has the name of the application and the configuration number. The configu-

ration number must be one of those found in the corresponding ACM of this application.

Moreover, this model also contains information such as on which machine a component

is working and what the state of the component is. Therefore, for each type of compo-

nent a separate field is present in this model. It has the name of the machine where the

component is present and a state indicator giving information about its current state.

This state indicator could have three values: W, N or F. W means that the component
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is working. N means that it is not working but an attempt could be made to turn it

on while F indicates that the component is failed. If a zero is present instead of the

name of the machine then it means that the particular component is not part of this

particular configuration.

4.2 Component Model (CM)

A component model contains information about the components. It includes

static information like the interfaces of each component and the dynamic information

such as the behavior and state of the component at runtime.

4.2.1 Component Interfaces

Any component has a set of well-defined interfaces that provide management

facilites to its users. Therefore, a list of these interfaces and their respective usage in

management of components is required. Therefore, all the components that are used

in the system must provide a list of these interfaces so that they can be used in failure

recovery.

In our architecture Apache, Tomcat and Mysql are used. These artifacts were

not developed originally as components. However, they have a lot of similarities with

components. They provide management facilities to their users. Moreover, they have

notions like state, type and so on. However, unlike components, they lack well-defined

interfaces. Their management is mostly performed through a mix of manipulating

configuration files and control commands. Thus, in order to model them as components,

well-defined interfaces are required. Upon close examination, it is clear that they can

be modeled as components with well-defined interfaces.

All of these components have the information related to their working in various

configuration files. For example, in Apache, the httpd.conf file has most of the config-

uration information. Most of the configuration changes in Apache can be performed
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through this file. Nevertheless, other configuration files are also present in addition to

this particular configuration file. Similarly Tomcat has a server.xml file that has all the

important configuration information related to the working of Tomcat. In configuration

files the configuration information is specified through various directives. Modification

of these directives indicates a configuration change for the component. Some configu-

ration changes could be performed by just changing the value of a directive to another

value. However, for some configurations some complex manipulation of the directives is

required.

In order to change the configuration of Apache or Tomcat administrators modify

these files manually. This manual process can take a long time if any failure occurs in the

system. In addition, operator errors are the biggest cause of downtime in systems [18].

In cases of failure recovery, operators are sometimes under intense pressure to bring the

system back online. Therefore, the chances of error are always there in failure recovery.

More errors may do even more harm to the system that is still recovering from failure.

All these factors add more time in failure recovery.

Our goal in this project to make the recovery process as automated as possi-

ble. Therefore, we have developed shell scripts to change the configuration of Apache.

These shell scripts are atomic. Atomic means that they change the smallest level of

configuration. The smallest level of configuration of the components in our system is a

configuration directive. Each shell script modifies one particular configuration directive

in these components. A script can take parameters, and based on the value of those

parameters, change configuration file. With the help of these scripts an administrator

can run the script to obtain a desired configuration. However, the running of the scripts

is still a manual process. Furthermore, every failure scenario could be different and one

or more scripts need to be applied to recover the system from a failure. The execution of

these scripts cannot be random and they need to be executed in a certain order. Since

a recovery script can be different for classes of failures, it poses a tough challenge for
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the administrator to have a recovery script for each possible failure scenario. We have

solved this problem by considering a script as an interface. Each script in our model

is an interface to the component. Since these scripts have the property of an interface,

i.e. a name and parameter(s), they can be treated as interfaces. Therefore, each script

in our model is an interface with a specified number of required or optional parameters.

We will discuss the mechanics of automated failure recovery using these scripts in the

next chapter.

These scripts/interface are of two kinds: 1)Configuration Interface and 2)Control

Interface.

Configuration Interface: The scripts that are used to change the configuration

paramters of the component are called configuration interface. These scripts are used to

make changes in the configuration files. Sometimes based on the need of the application

new configuration files are also created using these scripts. Some examples of scripts used

in this dissertation include “addNameBasedVirtualHost” script in Apache. This script is

used when one instance of Apache fails. Since Apache has failed the application deployed

on it is also considered failed. If another Apache instance is available somewhere in the

system then it can be used to host this application in addition to an already hosted

application. Therefore, “addNameBasedVirtualHost” is one of the interfaces provided

by Apache to change its configuration. This type of interface is called a configuration

interface.

Control Interface: All components in our project are standalone components.

These components have to be started and stopped manually using control commands.

These control commands form another category of interface in our modeling called

control interface. This control interface is also part of the interface for each component.

Start, restart and stop operations of a component are all part of the control interface.

‘Start’ means that a component is started from a stopped state. Stop means that a

component is stopped form a started state. Restart means that the component is in a
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started state but it is stopped and started again. Other states like hibernate, sleep and

so on are also possible.

Configuration interface is different for Apache, Tomcat and Mysql since different

kinds of configurations are possible in them. Therefore, each of them specifies a different

set of interfaces to manipulate their configuration. On the other hand control interface

is the same for all three types of components. In this dissertation we are only using the

start, restart and stop interfaces provided by these target components.

4.2.2 Component Properties

Apart from interfaces component properties are also required to model the run-

time behavior of components. These properties are updated regularly to ensure an

up-to-date picture of the component. A template of the component model that cap-

tures the properties of the components at runtime is given below.

(1) Component Type

(2) Component Machine

(3) Component State

(4) Start Time

(5) Restart Time

(6) Accessible Port

(7) Module Currently Installed

(8) Module Available to be Installed

(9) Current Load

(10) Component Instance Number

(11) Connectors Available

(12) Applications Installed

Among these properties, “Component Type” determines the type of a component.

The three types of components in our system are Apache, Tomcat or Mysql. “Compo-

nent Machine” is the name of the machine where the component is deployed. The name
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of the machine should be unique in the system. “Start Time” and “Restart Time” give

the approximate amount of time a given component takes to start and restart. This

time is stated in seconds. Usually this time is the same for components of the same

type but could be different if the version and/or platform of the component is different.

“Accessble Port” is the numeric value of the port where the component can be accessed

through its respective protocol. For example, the default port for Apache component is

port 80, for Tomcat it is port 8080 and for Mysql it is port 3306. Other ports are also

possible in a given component.

“Component State” is an indicator attached to each component in this model.

This state indicator could have three values: W, N or F. W means that the component

is working. N means that it is not working but an attempt could be made to turn it

on while F indicates that the component is failed. It means that the component cannot

be restarted. This state can only be possible if the machine on which the component is

deployed has failed. Therefore, the component deployed in this machine is also failed.

Unless the machine is back online the component cannot be started. Another reason

for state F is when repeated attempts have been made to restart the component but

somehow due to a catastrophic error the component cannot be restarted.

In this dissertation a component is defined as a software entity that provides

services to the application. Components provide these services through their modules.

Some services are provided to the applications by default; others are provided through

additional modules. For example, Apache provides the service of http access by default

but to provide a php service, an appropriate module needs to be installed and configured

as an add-on.

Three kinds of modules are present in the system: First, modules that are al-

ready installed in the component and they are providing their intended service; Second,

modules that are not installed but can be installed if an application requires them;

and, third, modules that are not available at all with the component. The modules of
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the first and second catagory are described in the fields 7 and 8 in “Module Currently

Available” and “Module Available to be Installed” fields respectively.

All the components are also under varying loads at different times. Therefore, to

track the load on a component in a given time period ,a field “Current Load” is provided.

The load is calculated as follows. Each component has a maximum number of concurrent

connections possible at one time. Therefore, the average number of connection in a

specified period of time divided by the total number of connections give the load of the

component in a given time period. This load is specified in terms of percentage.

It is possible that more than one component of the same type are working on a

machine at some time. Therefore, the component instance field provides more informa-

tion about the identification of the component. The component instance is usually the

process id if the components are deployed on unix or its variants.

Finally, each component has one or more applications deployed on it. In this dis-

sertation the maximum number of applications that could be deployed on a component

is two. The list of applications deployed on a component is in field 12 “Applications

Installed” of the component model.

Each instance of components is identified by three parameters: type, instance and

machine. These parameters are used to identify a component uniquely among the set

of working components in a given system.

In brief, each type of component in our model provides interface for controlling

its functionality. These interfaces are of two kinds: control and configuration. Control

interface provide functionality such as start, stop and restart while configuration inter-

face provides functionality such as add module, deploy application etc. These interfaces

are fixed and are not changed during the lifetime of the system. These interfaces have

parameters to modify the state or configuration of the component. Another important

point is that the component is an atomic entity in our model. A component exists only

in its entirety. It is not possible that a component exists on two machines. A component
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can only exist at one machine at a given time.

4.3 Machine Model

Components are hosted on machines. Therefore, it is necessary to keep track of

the state of the machines since a failure in a machine is undoubtedly a failure of all

components installed on it. Therefore, the information in the machine model includes

properties of machines such as the operating system, architecture, IP address, compo-

nents installed and so on. Moreover, since machines always are under variable loads, the

information such as memory available or hard disk space available and so on, is also part

of this model. Furthermore, machine model also keeps track of the components installed

on the machine, application installations available and the state of the machine.

The template of the machine model used in this dissertation is given below.
Machine Model

(1) Machine Name

(2) Machine IP Address

(3) Application Installations Available

(4) Maximum Load

(5) Current Load

(6) Total Memory

(7) Available Memory

(8) Total Harddisk Space

(9) Available Harddiak Space

(10) Operating System

(11) Machine Architecture

(12) Components Installed

(13) Software Available

(14) Machine State
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“Machine Name” serves as the identity of the machine. This name of the machine

is the one through which other machines can access it. For example, one of the machines

in this dissertation is serl.cs.colorado.edu. Other machines can access this machine

through this name. Moreover, each machine is assumed to have a single ip address.

This ip address is stated in the “Machine IP Address” field of the machine model.

This model also lists which application installations are available on it. Applica-

tions are deployed through their respective installations. These applications could only

be deployed if their respective installations are available on the same machine where the

component is present. Due to this requirement a record of application installations for

each machine is kept in this model. The application installations are available under

a pre-specified directory in each machine. Therefore, only the name of the application

is required in this model to deploy the application from installation directory to the

working directory.

Like the components the machines are also under variable load. Therefore, the

“Current Load” field has the information about the load on a machine in a given time

period. This load is calculated in various ways like the processor load or response time

request. Other ways to calculate ”average load” are commands such a top, procinfo,

uptime and w in unix and its variant operating systems. Some of the unix utilities like

sysstat also provide some load information. Because of various ways of getting this load

information we have not identified a single way of calculating this load average in this

dissertation. However, the value that we have used in this dissertation is the “calc load”

method in unix kernel. Unix commands like top and uptime use this method to find the

average load. This load is stated in percentages. Therefore, the load average percentage

is stated in this model under the “Current Load” field.

Moreover, information about the current status of total and available memory is

also provided. This information is stated in terms of kilobytes(KB). Similarly, the fields

stating the total and current hard disk space usage are also available in this model
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to track the amount of space left on a machine. This information is also stated in

kilobytes(KB). In unix and its variants the hard disk space is calculated through the

commands du (in linux) and df (in freebsd).

Platform information which includes operating system and architecture are also

part of the machine model. This information is stated in the fields “Operating System”

and “Machine Architecture”.

This model also states the components installed on the machine under the “Com-

ponents Installed” field. The components could be Apache, Tomcat and Mysql. The

field ‘software available’ is not used in the experiments of this dissertation. This field

is included for handling dependencies that the components have on other software. For

example, to run Tomcat requires a version of jdk. As jdk cannot be characterized as

component it cannot be under the intercomponent dependencies. Therefore, a seperate

field is required to keep track of all the extra software present in one machine. However,

since the components we have used in this dissertation have very few software depen-

dencies, we have not used this field. It is only part of this model to handle any future

requirements.

Finally, “Machine State” is the field that keeps track of the state of the machine.

The state of the machine could either be ‘working’ (W) or ‘failed’ (F). As opposed to

the components, no ‘not working’ (N) state is available for the machine. This is beacuse

we do not have a way of remotely turning on the machine.Therefore, whether it is state

N or F we consider both states as failed (F).

4.4 Failure Modeling

Since our goal in this project is to automate the failure recovery process, it is

important to describe the kinds of failure that we are targeting.
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4.4.1 Cause of Failures

A system can undergo various types of failure. Each type of failure is manifested

by one or more fault. Many categories of faults have been identified such as the catego-

rization by Avizienis [12]. Another characterization was done by Gray and Lindsey after

many years of working with computer systems [48]. They have characterized faults into

four types: A Heisenbug is a fault that alters its characteristics or disappears when it is

researched. A common example of such faults is those that are caused by race conditions

and are only possible under a certain environment. Recreating the environment may be

difficult in these types of faults. A Bohrbug on the other hand is a type of fault that does

not hide itself or alter its characteristics when researched. A it Schrodingbug is a type

of fault that is only possible under certain unusual conditions. Finally, a Mandlebug is

a type of fault whose behavior is so complex that it looks chaotic.

Out of these four types of fault, in this project, our focus is not to fix the fault

but to recover the entire system. Therefore, we will not directly deal with the types of

fault but we will deal with the type of failures caused by these faults. Our goal is to

recover the system from failure and not to incorporate any kind of fault tolerance in the

system.

4.4.2 Types of Failures

Three types of failure occur in computer systems: permanent, intermittent and

transient.

4.4.2.1 Permanent

These failures occur by accidentally cutting a wire, power breakdowns and so on.

It is easy to reproduce these failures. These failures can cause major disruptions and

some part of the system may not be functioning as desired.
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4.4.2.2 Intermittent

These are non deterministic failures and appear on occasion. Most of the times

these failures are neglected in testing of the system and only appear when the system

goes into operation. Therefore, it is hard to predict the extent of damage these failures

can bring to the system.

4.4.2.3 Transient

These failures are caused by some inherent fault in the system. However, these

failures are corrected by retrying such as restarting software or resending a message.

These failures are very common in computer systems.

4.4.3 Behavior of Failed Systems

The types of failures just described cause the system to behave in a certain way.

Three types of behavior are possible in systems after a failure.

A fail-stop system is one that does not output any data once it has failed. It

immediately stops sending any events or messages and does not respond to any messages.

A byzantine system is one that does not stop after a failure but instead behaves

in a inconsistent way. It may send out wrong information, or respond late to a message

etc.

A fail-fast system is one that behaves like a Byzantine system for some time but

moves into a fail-stop mode after a short period of time.

In this project our focus is to handle systems that have a fail-stop behavior. It

does not matter what type of fault or failure has caused this behavior but it is necessary

that the system does not perform any operation once it has failed. In other words it

just stops doing anything following a failure.
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4.4.4 Failures in Our Model

Our model consists of application, component and machine. As stated earlier

component and machine are atomic artifacts in our system. Atomic artifact means that

they cannot fail partially. Only total failures are possible in these artifacts. Therefore,

both component and machine have three states: working (W), not-working (N) and

failed (F).

4.4.4.1 Failure of Machine

Machine failure is when a machine fails because of a hardware component failure

such as a hard disk or network interface. It could also fail due to software problems at

the firmware level. In any case if after many retries a machine cannot be contacted then

the machine is considered failed and recovery operation is initiated. Our assumption is

that if after several retries a machine is unable to respond then it is considered failed

for all practical purposes. Even if a machine appears to be working latter we will not

consider it working.

A failure in a machine results in failure of all components of the machine. There-

fore, as soon as a machine is considered failed all the components deployed on it are put

into a failed state also.

4.4.4.2 Failure of Component

Failure of a component could be a result of machine failures. A component may

also fail due to a software fault. If a component cannot be accessed, it is considered

failed and put into the failed state in the component model.

Failure of the component has an effect on the application(s) deployed on it. The

application is not considered failed but is put into a not-working (N) state. Although the

application is also failed, it is moved to a not-working (N) state instead of a failed (F)

state. The reason for this difference is that components and machines are fixed. A failed



80

state (F) means that they cannot be recovered. However, an application can be recovered

by deploying it on other working components and machines. Therefore, technically

speaking, applications cannot go into an F state until all possible configurations of the

application are exhausted.

4.4.4.3 Failure of the Application

As mentioned earlier failures are not possible in applications. However, due to

the failures of machines and components an application can lose its functionality. The

functionality loss can be divided into two categories: total functionality loss and partial

functionality loss.

Total Functionality Loss: Applications are deployed on one or more com-

ponents. All the components need to work in order for the application to provide full

functionality. However, if all the components where application is deployed fail then

the application suffers a total functionality loss. Total functionality loss is also possible

if the application is wholly deployed on one component and the component suffers a

failure. Because the component is failed, the application also stops working resulting in

total functionality loss.

When an application suffers a total functionality loss then a total redeployment of

the application is required on other components in the system. The configuration of this

redeployment must be same which the application has before the failure. However, if the

configuration is not possible then another less strict configuration is applied. The con-

figuration information for each application is available in the application configuration

model (ACM).

Partial Functionality Loss: Partial functionality loss is possible when an

application is deployed on more than one component. In this case, all components

where application is deployed fail but at least one component is still in a working state.

In this case, when at least one component hosting a part of the application is working
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and at least one component hosting a part of the application fails, we call it partial

funtionality loss of the application.

After a partial failure the application needs recovery. This recovery also requires

the recovery process to restore any dependencies of the working parts of the application.

The goal here is to bring the application back into the configuration where it was before

the failure. If for some reasons the original configuration is not possible than a less

strict configuration is applied.
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Since this chapter is about the modeling aspects of this dissertation, we discuss

the modeling of the planning domain in this chapter also. The actual use of this domain

in actual planning is discussed in the next chapter.

4.5 Constructing a Domain

AI Planning requires a number of artifacts to create a plan that goes from the

initial state to the goal state. A detailed discussion of planning is given in section 5.3.

Out of all the artifcats required to plan, the domain is the most important one. A

domain capture semantics of the system for planning. A domain is fixed for the life of

the system. It consist of actions that are carried out on the system to move it from one

state to another. In this dissertation the domain is modeled to bring the system from

a failed or partially failed state to a working state.

A domain can be modeled in a number of ways. However, as far as the knowledge

of the author and readers of this dissertation, no published work has gathered major

ways of constructing a domain. Therefore, to develop a domain one has to look at

examples of other already developed domains. Some good examples are available from

the “International Planning Competition”1

4.5.1 Scope of the Domain

The first step in developing a domain is to decide how much of the semantics of

the system must be modeled. Because the semantics of the system can be complex, one

has to abstract out the semantics. Moreover, AI planning has its own strenghts and

limitations. AI planning cannot solve each and every complexity of failure recovery.

However, it can be a great aid in designing systems with automated failure recovery.

In this dissertation our goals are following:
1 International Planning Competition is a biyearly event that occurs with the International Con-

ference on AI Planning & Scheduling. Different planners compete in this planning competition. The
domains used in this competition are good examples of domain construction
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• The user is able to specify the instructions at a higher level such that he or she

does not have to deal with configuration details.

• The resulting plan from the planners is detailed enough so that one can easily

translate it into low level configuration directives.

Keeping these two goals in mind we now start developing our domain. Our driving

force in developing this domain and subsequent initial and goal states are the models

we describe in the previous sections of this chapter. In this section we will mostly

concentrate on modeling aspects of the domain. A complete version of the domain we

developed in this dissertation is given in Appendix C.

4.5.1.1 Objects

The first thing to be specified in the domain are types of objects. Objects are

the physical and logical items on which actions are performed in the planning domain.

All types of artifacts in the system that can be acted upon in one way or another are

listed as objects in the domain. Artifacts like service, machine, component, connector

and application are some kinds of objects present in the domain. These objects can

be further subtyped if required. Subtyping is helpful in cases where for instance a

component has two types e.g. Apache and Tomcat. This subtyping achieves the same

objective as the subtyping concept in programming languages. Again note here that

these are types of objects. The exact instance of the object is described in the ‘problem

file’ (discussed later).

4.5.2 Predicates and Functions

Predicates and functions determine the state of an object. Predicates determine

the state of an object or a relationship between two or more objects at a particular

time. Functions determine some quantified value associated with one or more objects.
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4.5.3 Predicates

Predicates determine the state of an object before and after an action is carried

out. Figure 4.1 and 4.2 contain the predicates and functions used in the domain we

developed for this dissertation. The predicates form a relationship between one one or

more objects like if two components are connected the connection relationship is repre-

sented as a predicate (connection-configured ?ap - apache ? ma - machine ?t - tomcat

?ma - machine ?con - connctor). In this predicate the first two parameters are Apache

instance and a machine where Apache instance is present. The next two parameters

are Tomcat and the machine where the instance is present. The last parameter is the

name of the connector that is providing the connectivity between the two component.

Similarly other predicates also form a relationship between one or more artifacts in the

system. For example (apache-configured ?ap - apache ?ma - machine). This predicate

shows that an instance of Apache is configured on the machine specified.

Predicates with a single artifact as parameter are also present in the domain.

Usually these predicates represent the state of the artifact. For example, the predicate

(machine-failed ?ma - machine) represents the state of a machine if it has failed.

Another use of predicates is in specifying a goal state. The predicates in figure

4.2 represent a goal state. Note that all predicates here have different set and/or types

of parameters. One or more of these predicates are specified as a goal state. This

large number of predicates for goal state is because we want to give the user of the

domain as much flexibility as possible in specifying a goal state. Since we have an

application-driven failure recovery all of the predicates that are specified by a user

involve application. These predicates are used to recover an application from failure.

Two kinds of goal states could be specified in a system: an explicit goal state

and an implicit goal state. An explicit goal state specifies exactly what state is required

including the specification of all the instances of the objects involved. On the other
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hand in an implicit configuration all the instances are not specified and the selection of

the particular instances is left for the planner.

The different application-ready predicates are divided into explicit predicates and

implicit predicates. For example (application-ready-1 ?app application) is an implicit

predicate. In this predicate no artifacts are specified. The planner has to decide which

objects it needs for failure recovery. The (application-ready-1a ?app application) and

(application-ready-1b ?app application) are similar predicates but the way all these

predicates work internally is different. We will discuss the differences between the two

when we discuss specifying goal state.

All other predicates in the same figure are explicit predicates where at least some

information is specified other then merely specifying the application that requires recov-

ery. For example, the predicate (application-ready-3-with-connectivity ?app - application

?ap - Apache ?t - Tomcat) states that the application requires recovery and both Apache

and Tomcat are included in the configuration. An exact instance of Apache and Tom-

cat is to be included when specifying this predicate as a goal state. Moreover, because

it states connectivity, both the instances of Apache and Tomcat are required to con-

nect with each other before the application can deliver its desired functionality. Other

predicates also specify varying degree of information.

As stated earlier an application can have multiple configurations in ACM. Se-

lection of the appropriate predicate is dependent on the inter-component and intra-

component dependencies stated in the configuration.

Since just explaining the predicates without expressing the relationship between

them is pointless, we leave the rationale behind predicates for the next section where

we discuss the action and their modeling.
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Figure 4.1: Predicates used in the Domain
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Figure 4.2: Predicates used in the Domain
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4.5.4 Functions

Functions are specified whenever a numeric value is involved. Some examples of

numeric values include cost, time and hard disk space and so on. Such numeric values

may need to be calculated during the planning process. Some of these numeric values are

related with time such as restart-time of a component or import time of an application.

Others are related with memory space or hard disk space and so on. All of the numeric

values involved in the domain are stated in terms of functions. A list of functions used

in the domain is given in figure 4.2.

4.5.5 Actions

Developing actions for a domain is the most critical aspect of constructing the

domain. We have used a bottom-up approach for developing actions in this domain.

Appendix C lists all the actions used in the domain.

However, before delving into the details of the actions modeled in the domain,

lets take a look at what role an action play in a domain. An action changes the state

of the system. For example, in robot motion planning an action may changes the angle

of the elbow of a robot being modeled. Another action may move the robot’s foot by

some unit. To apply an action to the system the system must be already in a certain

state. For example an action cannot change the direction of a robotic arm from 90◦ to

120◦ if the arm is not already at 90◦. Therefore, to perform an action the system must

be in a certain state. This pre-requisite state is called the pre-condition or condition for

taking the action. that turns it to 120◦. For example, the requirement that the robot’s

arm is at 90◦ is a pre-condition for performing the action. The result of applying an

action is called an effect or post-condition. Therefore, if the pre-condition of the action

is that the robot’s arm is at 90◦, the effect of the action is that it is changed to 120◦.

All the actions have pre-conditions and post-conditions. In addition, an action
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has time, cost and other values associated with it. All the artifact that are listed as

parameters of the predicates in both pre-conditions and post-conditions are listed as

parameters of the action. An action can have more than one pre-condition and post-

conditon.

In some cases, the pre-condition of an action are post-condition of other actions.

For example, before applying the action that changes the robotic arm’s angle from 90◦

to 120◦, another action may have changed its angle from 70◦ to 90◦. The post-condition

of an action that changes the direction from 70◦ to 90◦ is a pre-condition for the action

that changes the direction from 90◦ to 120◦.

Therefore, an action is a network of pre-conditons and post-conditions. These

pre-conditions and post -conditions are used to encode the semantics of a given system

in form of a planning domain. However, not all pre-conditions of an action are post-

conditions of other actions. Some pre-conditions are given as facts in the initial state of

the system. The initial state contains some pre-conditions of the system that are actually

facts of a given system. For example, in the robotic arm example described above, a

pre-condition may be specified as if the robot has an arm of length 15 centimeters only

then it can be moved from an angle of 90◦ to 120◦. The length of the robotic arm

is a fixed value and cannot be changed. Therefore, the length of the robotic arm is

specified as a fact in the initial state. Therefore, if the length of the robot’s arm is not

15 centimeters, its angle cannot be changed from 90◦ to 120◦.

Actions in our domain are modeled similarly. We have used a bottom-up approach

to develop the domain. Therefore, we start from the predicates that specify the goal

state of the planning problem. As mentioned earlier the goal state is specified in terms

of the start-system.... predicates. Therefore, we take one of them and see how the

actions are developed using a bottom-up approach.

(application-ready-5 ?app ?ap ?s ?t ?con) is a goal predicate. This predicate

involves five artifacts. In plain English this goal means that an application needs to
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be deployed on Apache and Tomcat. Apache must provide a service and both Apache

and Tomcat connect using the connector. start-syatem-5 is the action that makes this

predicate true. It is given below:

(:durative-action start-system-5
:parameters (?ma1 - machine ?ma2 - machine ?app - application ?ap -
apache ?s - service ?t - tomcat ?con - connector)
:duration
(= ?duration 1)
:condition
(and
(at start (connectivity-available ?ap ?ma1 ?t ?ma2 ?con))
(at start (apache-providing-service ?ap ?ma1 ?s))
(at start (application-ready-in-apache ?app ?ap ?ma1))
(at start (tomcat-working ?t ?ma2))
(at start (application-ready-in-tomcat ?app ?t ?ma2))
(at start (apache-working ?ap ?ma1))
(at start (machine-working ?ma1))
(at start (machine-working ?ma2))
(at start (not (machine-failed ?ma2)))
(at start (not (machine-failed ?ma1)))
)
:effect
(and
(at end (application-ready-5 ?app ?ap ?s ?t ?con ))
)
)

Now lets look at the pre-conditions of this action. The last four pre-conditions

of this action are facts that must be provided in the initial condition. These predicates

ensure that the machines where both Apache and Tomcat are deployed are working and

are not in a failed state. Because these predicates are provided as facts in the initial

condition we will not discuss them here instead we will discuss them in the next chapter

where we describe the development of initial and goal states.

The predicate (apache-providing-service ?ap ?ma1 ?s) is a special case. It could

be a post- condition of an action or it could be a fact given in the initial condition.

Remember from our previous discussion that modules provide services. Modules in our
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model can be divided into two catagories: modules that are installed and providing their

intended service, and modules that are not installed but could be installed to provide

a given service. Therefore, if the module is installed with Apache then this predicate is

specified in the initial condition. However, if the module is not installed with Apache

then it needs to be installed and configured. In this case this can not be a fact. To

handle this, we have three actions that install and configure the module in Apache.

These actions are only required when the module is not already installed with Apache.

These three actions are given below.

(:durative-action add-module-to-apache
:parameters (?ma - machine ?ap - apache ?mo - module ?s - service)
:duration
(= ?duration 1)
:condition
(and
(at start (apache-installation-available ?ap ?ma))
(at start (apache-has-module-installation ?ap ?mo ?ma))
(at start (not (apache-has-installed-module ?ap ?mo ?ma )))
(at start (apache-module-provides-service ?ap ?mo ?s))
)
:effect
(and
(at end (apache-module-require-configuration ?ap ?ma ?mo))
)
)

(:durative-action configure-module-in-apache
:parameters (?ma - machine ?ap - apache ?mo - module ?s - service)
:duration
(= ?duration 1)
:condition
(and
(at start (apache-module-require-configuration ?ap ?ma ?mo))
(at start (apache-module-provides-service ?ap ?mo ?s))
)
:effect
(and
(at end (apache-has-installed-module ?ap ?mo ?ma))
)
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)

(:durative-action start-apache-with-service
:parameters (?ma - machine ?ap - apache ?app - application ?s - service
?mo - module)
:duration
(= ?duration (time-to-start-apache ?ap))
:condition
(and
(at start (apache-configured ?ap ?ma))
(at start (not (apache-working ?ap ?ma)))
(at start (machine-working ?ma))
(at start (application-available-in-apache ?app ?ap ?ma))
(at start (>(- (max-machine-load ?ma) (current-machine-load ?ma))
(apache-load ?ap) ))
(at start (apache-has-installed-module ?ap ?mo ?ma))
(at start (apache-module-provides-service ?ap ?mo ?s ))
(at start (application-requires-service ?app ?s))
)
:effect
(and
(at end (apache-working ?ap ?ma))
(at end (apache-providing-service ?ap ?ma ?s))
(at end (application-ready-in-apache ?app ?ap ?ma))
(at start (increase (current-machine-load ?ma) (apache-load ?ap)))
)
)

The action start-apache-with-service has the (apache-providing-service ?ap ?ma

?s) predicate as the effect. Therefore, this action can make the predicate true in the

pre-condition of start-system -5. However, two predicates apache-has-installed-module

?ap ?mo ?ma) and (apache-module-provides-service ?ap ?mo ?s) are required to be true

in order to make this predicate true. The predicate (apache-module-provides-service

?ap ?mo ?s) is a fact and it is specified in the initial state. However, the predicate

(apache-has-installed-module ?ap ?mo ?ma) requires another action to make it true.

The action configure-module-in-apache has this predicate as an effect. Therefore,

this action will make this predicate true. However, the pre-condition predicate (apache-
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Figure 4.3: Graphical Representation of the Actions for Goal Predicate (application-
ready-5 ? app ?ap ?s ?t ?con )
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module-require-configuration ?ap ?ma ?mo) of this action also needs to be true.

This predicate is the post-conditon or effect of the action add-module-to-apache.

Therefore, this action will make this predicate true. Note that the action does not

have a pre-condition predicate that requires another action to make them true. This is

beacuse all pre-conditions of action add-module-to-apache are facts and are specified in

the initial state.

Therefore, the predicate (apache-providing-service ?ap ?ma ?s) requires three

actions in the domain to make it useful for the start-system-5 action. Other predicates

in the pre-condition of this action require more or less similar actions. For example,

the predicate (tomcat-working ?ap ?ma). This predicate require the following action to

make it true.

(:durative-action start-tomcat
:parameters (?ma - machine ?t - tomcat ?app - application)
:duration
(= ?duration (time-to-start-tomcat ?t))
:condition
(and
(at start (tomcat-configured ?t ?ma))
(at start (not (tomcat-working ?t ?ma)))
(at start (machine-working ?ma))
(at start (application-available-in-tomcat ?app ?t ?ma))
(at start (¿ (- (max-machine-load ?ma) (current-machine-load ?ma))
(tomcat-load ?t) ))
)
:effect
(and
(at end (tomcat-working ?t ?ma))
(at end (application-ready-in-tomcat ?app ?t ?ma))
(at start (increase (current-machine-load ?ma) (tomcat-load ?t)))
)
)

This action will make the predicate (tomcat-configured ?t ?ma) true for use in the

start- system-5 action.

A graphical representation of how different actions are dependent with each other
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to make the goal predicate (application-ready-5 ?app ?ap ?s ?t ?con ) true in action

start-sytem-5 is given in figure 4.3. Note that this figure represents only actions that

are required in the worst case scenario. If system after a failure is in a partial working

condition so some of the predicates already true and are specified in the initial condition.

All the goal predicates have similar representations. Each goal predicate has one

action that fulfills the requirement of the goal predicate. However, that one action

may have several pre-conditions. Some of those pre- conditions are stated as the initial

condition. Others require actions to make them true. Therefore, predicates like start-

system-5 are considered a glue action that force other actions to execute, in order to

make some predicates true.

This kind of modeling is similar to human reasoning. Humans also take actions

after a failure. We have tried to model the actions of the domain as close to the

administrator as possible.

4.5.6 Actions and Interface

One of our goal in this dissertation is to develop actions such that they can be

translated directly to interfaces of components. However, not all actions in the domain

can be directly translated to the interface. For example the glue actions like start-

component-5 does not have a corresponding interface. However, the actions that are

added in the plan due to this glue action have a direct one-to-one transformation to the

interface of their respective component. For example, the action add-module-to-apache

has a similar script/interface in Apache.

The domain that we have developed for this dissertation is given in Appendix C.

More details about the usage of the domain is discussed in the next chapter.



Chapter 5

Automating the Failure Recovery Process

Automating the failure recovery process is the main focus of this dissertation.

The automation of failure recovery in this dissertation is achieved by using a technique

originally developed for control systems and modified for autonomic computing [8, 9].

This technique is called Sense-Analyze-Plan-Execute (SAPE). A sample time-wise fail-

ure recovery diagram using this technique is shown in figure 5.1. In this figure each

step of failure recovery is given: steps 1-2 make up the ‘sense’ phase, steps 3-4 make up

the ‘analyze’ phase, steps 5-8 form the ‘plan’ phase, and finally 9-12 form the ‘execute’

phase. In this chapter we describe these four phases and their role in automating the

failure recovery in distributed systems. We use a sample failure recovery scenario in

this chapter to make the discussion concrete.

5.1 Failure Scenario

In this scenario, we have a system with five machines: leone, serl, serl-back,

skagen and tigre, three kinds of components: Apache, Tomcat and Mysql, and three

applications: sms, rubbos and webcal. This system is shown in figure 5.2.

Rubbos is an application that require Apache, Tomcat and Mysql in a configura-

tion. Therefore, it is working using the Apache on serl, Tomcat on leone and Mysql on

tigre. Sms is another application that requires three components. It is working using

Apache and Tomcat on skagen and Mysql on tigre. Finally, webcal requires only Apache
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Figure 5.1: Failure Flow Figure
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and Mysql. The Apache it is deployed on is on machine serl-back and Mysql is on tigre.

We assume that all machines are connected with each other. Moreover, Mysql cannot

fail because it has already good failure recovery mechanisms built into it.

The failure that is induced in this system is of machine ‘serl’. We will see in this

chapter that how the failure recovery process detects this failure and recovers the system.

In each section we will describe the theoretical foundations of each phase followed by

this example.

5.2 Sense

Sense is the phase of failure recovery where a failure is detected. Failure detection

is an active area in distributed monitoring and detection. A number of approaches have

been developed to detect a failure in distributed systems [41, 59, 94, 49, 85, 66, 35,

52, 38, 70, 44, 25]. However, we have employed an approach proposed by Felber and

colleagues [41]. In this section we will first describe their original approach followed by

our modification to it.

5.2.1 Failure Detection Models

Felber’s approach is based on three different detection models: the push model,

the pull model and the dual model. All these models have three entities: a monitorable

object which is the one being monitored for failure, a monitor for monitoring one or

more monitorable objects and detecting any failures, and finally a client to report the

results of monitoring of one or more monitorable object.

5.2.1.1 Push Model

A push model is a kind of heartbeat model. A monitorable object sends out

a heartbeat message at regular intervals to the monitor. The monitor receives the

message and the reception of message indicates that the component is working. If the
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Figure 5.2: System before, during and after Failure Recovery
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monitor detects that a message has not arrived within its expected time bounds then

the component is considered suspected. A client is only notified when a component

becomes suspected. As only one way communication is going on in this model, it is

considered an efficient model from a network usage perspective.

Figure 5.3: Push Model (from Felber et al.)

5.2.1.2 Pull Model

In a pull model the flow of information is opposite to that of the push model.

The information is only generated when it is requested. Thus, when a monitor sends

out a liveliness request the monitorable object responds to the request. A reply to the

liveliness request means that the monitorable object is alive. This model is less efficient

as the information flows in two ways. However, this model is easier to implement since

the monitorable object does not need to have knowledge of time.

5.2.1.3 Dual Model

The dual model is a mix of the push and pull detection models. It has two

phases: in the first phase all the monitorable objects use a push style model. However,
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Figure 5.4: Pull Model (from Felber et al.)
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as soon as one or more expected messages do not arrive within specified time bounds,

the monitor switches to the pull model. The monitor sends out a liveness request to all

the monitorable objects whose messages do not arrive within the time bound. If one

or more monitorable objects does not respond to the liveness request the monitor puts

those objects in the suspected state.

Figure 5.5: Dual Model (from Felber et al.)

5.2.2 Failure Detection in our Model

We have implemented all three models of failure detection in our system. Any

of the three methods could be used for failure detection. However, only one model can

be used at a given time. Since three types of monitorable objects, i.e. application,

component and machine, are involved in our project, we have made some changes to

the dual method. Following is the failure detection algorithm that we have employed in

our model.

Algorithm for Failure Detection

Each component sends a periodic heartbeat to the monitor. The heartbeat con-

tains a timestamp, machine name and other optional information.

When a heartbeat arrives, the monitor compares the timestamp of a heartbeat

to the previous heartbeat received. If the heartbeat has a continuously increasing delta

then the monitor puts the component in a SUSPECTED state. A continuously increas-

ing delta shows that the component’s performance is deteriorating and the client should
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be ready for a possible failure of the component. However, another possibility is that it

is just a network blip or other temporary reason and heartbeats after some time start

arriving normally. Therefore, if after a certain time the delta is back to its normal limits

the component is put back into an ALIVE state.

If monitor does not receive an expected heartbeat from the component then the

monitor puts the component in a SUSPECTED state, and performs the following op-

erations:

• Sends an are you alive message to the component. If the component responds

with a message then the monitor puts the component back in the ALIVE state

and continues as normal.

• However, if the component fails to respond to an are you alive message then the

monitor checks the heartbeats of the other components on the same machine. If

the heartbeats of the other components are received normally then the monitor

puts the component in a FAILED state.

• However, if the heartbeats of the other components are not received by the

component, then the monitor sends an are you alive message to the machine.

If the machine responds to the message then the components on that machine

are put into a SUSPECTED state.

• If the machine does not respond then the machine and all components on it are

put in a SUSPECTED state. If there is still no message after a certain time the

machine and all the components are put in a FAILED state.

The communication between the monitor and monitorable objects is performed

through Siena [22]. Siena is a overlay publish subscribe network. A publisher publish

events and a subscriber recieve those events. The relevent information is sent across the

network using Siena events. In our system the monitor and monitorable objects both
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serve as publisher and subscriber of events in different situations. The monitor acts as

a subscriber of events in steps 2 and 12 in figure 5.1 while a monitorable object acts

as a publisher of these events. Whereas in events such as 10 the monitor serves as a

publisher and a monitorable objects serve as subscribers.

A failure detection in the system depends on the delta of heartbeat and/or ping

in the system. For example, if the delta of sending the heartbeat is five seconds and a

failure is detected two seconds after a heartbeat, the next heartbeat is not until three

seconds after the failure. Therefore, failures detection is dependent on the timeperiod

between the heartbeats and/or pings. Since the time period between heartbeats and/or

pings is dependent on the system, we will not include this time in our total failure

recovery time. Our time calculation starts from the time when a heartbeat and/or ping

detects a failure.

To detect a failure and to update the monitor about the state of the monitorable

object, two kinds of agent are embedded. These two agents are machine agent and

component agent. The machine agent is responsible for the failure detection at machine

level, while the component agent is responsible for the failure detection at component

level. We do not need a seperate application agent since we assume that application

cannot fail by itself. Therefore, only a failure in component or machine can cause

disruption to an application.

Both machine agent and component agent respond to the type of failure detection

model in use. Using push model both send an event to the monitor after an interval of

time specified by the monitor. In case of pull model both responds to the ping event

by the monitor. In dual model, a combination of push and pull model is applied. In

dual model, very lightweight events are sent to the monitor to keep the network from

clogging. These lightweight events only carry identification information of the machines

and components. When the monitor recieves the identification information it does not

perform any action until it detects a change in the delta of recieving heartbeat messages
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or stops recieving these messages at all. In both of these cases it sends out a ping

message to both agents. If the agents are working they respond to the ping message

with a relatively heavy message. This heavy message contains information about the

performance, load, hard disk space and other variables of the system alongwith the

identification information of the machine. If one or more agents fail to respond then

the monitor put the component or machine of the respective agent(s) in a failed state.

The detection of the failure is mostly the job of the monitor because our assump-

tion is that if a component fails the agent associated with it also fails. Likewise if a

macine fails the agent associated with it also fails. Since both kind of agents fail with

their respective entities the failure detection is performed through timeout.

In the example shown in figure 5.1 all the machines and components are moni-

torable objects in figure 5.2. Therefore, the events shown in steps 2,10 and 12 are an

abstraction of events from all of machines and components. Now in example 5.2 the

machine serl fails at a certain time. Depending on the failure detection algorithm the

failure is detected in steps 1-2 of figure 5.1 .

Once one or more failures are detected the application dynamic model (ADM),

component model (CM) and machine model (MM) are updated accordingly. The client

is notified about the one or more failures in the system. The client in our project is

a dependency analyzer which analyzes the effect of the failures on other parts of the

system. This analysis is performed in the next phase of our model which is called

‘analyze’. The analyze phase serves as an input to the ‘plan’ phase. Therefore, there

is a lot of terminology that is common between these two phases. For this reason, we

present a brief description of the Artificially Intelligent Planning (AI Planning) before

actually describing these two phases in the recovery procedure.
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5.3 Introduction to AI Planning

In traditional AI planning, there are three artifacts required to find a plan: a

domain that encodes the semantics of the system, an initial state that describes the

state of the system at the present moment, and a goal state that describes the desired

state of the system. The domain is fixed and cannot be changed at runtime. However,

the initial state and goal states are variable and are determined by the state of the system

after a failure. In order to standardize the planning terminology and to exchange and

evaluate results, the AI planning community has developed a standardized language

for defining the domain, initial state and goal state. This language is called PDDL

(Planning Domain and Definition Language) [68]. The AI community has constructed

a number of planners [58] that use different heuristics to compute plans. The results

from each planner may be somewhat different for a given problem. However, they all

use the basic planning paradigm and take as input a domain, an initial state and a goal

state.

5.3.1 Planning Inputs

The planner requires a number of inputs. These inputs are divided into three

parts: the domain, the initial state, and the goal state. Figure 5.6 gives a description

of domain and initial and goal states. Initial and goal states are both specified in a

problem file.

The domain is relatively static. It specifies the following items:

• Types of artifacts: this consists of all the artifacts that have a role in deter-

mining the system state.

• Predicates/Facts: the predicates are associated with artifacts (see the section

marked predicates in Figure 5.6 An example might be at-machine, which is a

predicate that relates a component (or connector) to the machine to which that
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component is assigned. The domain actually specifies simple predicates, which

are n-ary relations. These can be combined using logical operators into more

complex predicates. As with Prolog, instances of these n-ary relations can be

asserted as facts, and a state is effectively a set of asserted facts. Predicates are

also referred to as constraints.

• Utilities: a variety of utility functions can be defined to simplify the specifi-

cation (see the functions section of Figure 5.6). An example might be local-

connection-time, which computes the time to connect a component given that

the component and the connector are on the same machine.

• Actions: the actions are the steps that can be included in a plan to change the

state of the system (see durative-action items in Figure 5.6).

The output plan will consist of a sequence of these actions. An example is start-

component, which causes the state of a component to become active. Actions have

preconditions (at start in Figure 3) and post-conditions (effects in Figure 5.6). The

post-conditions can add, modify, or remove facts from the on-going state that is tracked

by the planner during plan construction. The actions are called durative because they

have an assigned execution time that is used in calculating the total plan time.

The initial state represents the current state of the system (see the “init” section

of Figure ..). This section defines the known artifacts and asserts initial facts about

those artifacts. The goal state represents the desired state of our system (see the“goal”

section of Figure 5.6). It specifies predicates that represent constraints that must be

satisfied in any plan constructed by the planner. The last line of Figure 5.6 defines the

metric that is to be used to evaluate the quality of a plan. In this case, the metric is

minimal total execution time for the plan.
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5.3.2 Explicit and Implicit Configurations

The initial predicates and the goal constraints are integral parts of the configura-

tions. They can be specified in two different ways: implicit and explicit configuration.

Implicit Configuration: The implicit configuration specifies a non-specific

predicate about the system that needs to hold after the plan finishes. For example,

it can be stated that component A must be connected, but without specifying exactly

to what it is connected. This helps the system to specify partial information as a goal.

In cases where the system does not have an explicit configuration of the system, it

specifies the goal state in terms of the implicit configuration.

Explicit Configuration: In an explicit configuration the artifacts and their

configurations are explicitly described as facts in the goal state. For example, it can be

stated that component A is connected, and specifically that it is connected to connector

B. Explicit configuration information can be specified in a number of ways, depending

on the need of the system. An explicit configuration typically requires the exact spec-

ification of the related predicates: connected-component and component-is-connected,

for example. The former predicate specifies that a specific component A is connected

to a specific connector B and, hence, is an explicit configuration statement. The latter

predicate specifies only that component A is connected to some (unspecified) connec-

tor. If connected-component(A,B) is true, then component-is-connected(A) must also

be true.

5.3.3 Planning Output

The output of the planning process is a plan. A typical plan is shown in figure 5.6

The plan is enumerated chronologically. The steps of the plan take the system from the

initial state to the goal state. The plan is parallel and some actions could be executed

at the same time.
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After briefly describing the basic planning mechanism we now move on to the

analyze phase.

5.4 Analyze

The analyze phase is initiated when one or more failures are detected in the

system. The goal of this phase is to generate an exact picture of the system. Since a

system can go into a number of states after a failure, this phase ensures that a complete

system specification is available for the recovery process.

A component based system has many dependencies. These dependencies are

required for correct execution of a system. Failures usually disrupt these dependencies

and an analysis of the system determines the dependencies that are disrupted after a

failure.

A dependency analyzer is used to analyze the state of the system following a

failure. Using the terminology of Felber et al. [41], the dependency analyzer serves as

a client of failure notification and is invoked by the monitor when a failure is detected.

In analyze phase two types of analyses are performed: first, the dependency analyzer

determines the effects of failure in the system. Following this analysis a complete state

of the system is summarized and given to the next phase, ‘plan’.

5.4.1 Determining Effects of a Failure

In order to determine the ripple effects of a failure, the dependency analyzer first

checks the application dynamic model (ADM) for the current state of each application

in the system. Recall from the previous chapter that any application in the system

has only one configuration at a specific time. This configuration must be one of those

found in the application configuration model (ACM). ACM has information about the

working configuration of all applications in the system at any given time.

If a failure is detected in one or more components further tests are carried out to
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check the extent of failure. As stated earlier, one of the goals of this dissertation is to

recover the parts of the system that are used by the users. Therefore, the first test is to

see if an application is deployed on the component. As applications are deployed across

one or more component, various cases are possible with respect to the functionality of

any application.

In a configuration where the application is deployed on only one component,

the failure of the component means a total loss of functionality for the application.

Therefore, the whole application needs to be recovered in this case. Similarly, in a

configuration where the application is deployed on more than one component and all

components fail then the application loses its full functionality. In both of the afore-

mentioned cases the application needs to be totally redeployed. An example of such a

configuration is when an application is deployed on both Apache and Tomcat and both

of the components fail. In this case, the application loses its full functionality and needs

to be redeployed again.

The third case is when an application is deployed on more than one component.

If a failure leaves the application in a state where at least one component is working and

at least one component has failed then the application loses its partial functionality. In

this case only the affected parts of the application require a recovery. For exmaple, if

an application is deployed on Apache and Tomcat and Apache fails after a failure in the

system, the part of the application deployed on Apache needs to be recovered. However,

the part of the application deployed on Tomcat is not required to be recovered.

Failure of a machine results in similar scenarios since machine failures indicate

that one or more components on the machine have also failed. Therefore, machine

failures result in one or more of the aforementioned failure situations.



111

5.4.2 Gathering Complete Application Description

When it is determined that an application has suffered total or partial loss of

functionality then the dependency analyzer searches the ACM to get the dependency

requirements of the application. The dependency analyzer has already determined the

state of the application, i.e. total or partial loss of functionality. It matches the state

of the application with the configuration information of the application extracted from

ACM. The configuration information serves as the reference model (in terms of control

theory jargon). The current state of the application is measured against the reference

model. This comparision gives information about the components and their dependen-

cies in the application that are affected by the failure.

Various kinds of dependencies exist in the system [55, 39, 61, 66, 65, 26, 4, 33, 93,

31]. However, two types of dependencies are modeled in our system: intercomponent

dependencies and intracomponent dependencies.

In some configurations applications are deployed on more than one component.

These components are required to communicate with each other. This communication

requirement is called an intercomponent dependency in our model.

Moreover, as stated previously an application may also require some services from

the component. Some services are provided by the component by default and others by

installing additional modules. If a service requires the component to install additional

modules then this is called an intracomponent dependency.

Although we model only these two types of dependencies in our system, other

types of dependencies are possible. Some of these dependencies include platforms de-

pendencies, version dependencies, etc. In this dissertation, we are using machines with

similar platform i.e. unix and its variants. Moreover, we are using the same versions

of the components across all machines. Therefore, it is not required to model these

dependencies in this dissertation.
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An example of the working of the dependency analyzer follows: If an application

is deployed on Apache and Tomcat and Apache fails after a failure in the system, the

dependency analyzer checks the configuration information from the ACM and gets the

reference model. The reference model gives information about the intercomponent and

intracomponent dependency. The intercomponent dependency is the connection with

Tomcat and the intracomponent dependency is some kind of service from Apache like

ssl service or php service. As Tomcat is already in a working state it does not need a

recovery. Therefore, recovery requirements in this case are to establish a connection with

Tomcat and to install additional modules in Apache, if an add-on service is required by

the application.

Now let us see what happens in the analyze phase in the system described in 5.2.

In this system, a machine ‘serl’ fails. A machine failure means that all the components

deployed on it also fail. Only one component is deployed on this machine. This com-

ponent is Apache and it is hosting part of the application Rubbos. Since component

Apache has failed the application Rubbos also loses its functionality. However, Rubbos

is not only deployed on Apache, it is deployed on two other components, Tomcat and

Mysql, also. Therefore, Rubbos has a partial functionality loss.

When it is determined that a failure has occured in the system, the models MM,

CM and ADM are updated accordingly. The machine model (MM) is updated to reflect

the failure of machine ‘serl’. The component model (CM) is updated to reflect the

failure of component Apache on serl. The ADM model is updated to show the failure

of component Apache on serl.

The goal of the dependency analyzer is to find enough information that the whole

system can be recovered to its configuration before the failure. Therefore, the depen-

dency analyzer checks the application dynamic model (ADM) to see which components

have failed. It finds out that the component Apache on serl is failed at the moment. It

again queries ADM to see what applications are deployed on it. Once it finds that ap-
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plication Rubbos is deployed on the failed component, it gets the working configuration

number of Rubbos from ADM. Using the name of the application Rubbos and configu-

ration number it queries the application configuration model (ACM) to get the detailed

reference configuration information that corresponds to the given configuration number

of Rubbos. In the next step it compares the reference configuration information from

the ACM to the current configuration information from the ADM. This comparison is

performed to find out about the partial or total functionality loss of the application.

Depending on the partial or total functionality loss it generates a description of the

current state of Rubbos. This description is not in terms of the ACM or ADM models

but it is specified in terms of predicates of the failure recovery planning domain.

These predicates are used in the initial state of the problem file. Since the problem

file is generated in the next phase ‘plan’, these predicates are given to the ‘plan’ phase

as input. These predicates are listed in the initial state of the planning problem along

with other predicates in the initial state. The initial state used in this example is given

in Appendix A. The initial state also includes the predicates that are given as input by

the ‘analyze’ phase.

5.5 Plan

The ‘plan’ phase is initiated after the completion of ‘analyze’ phase. In this phase

the artifacts of the planning problem, i.e. initial state and goal state, are generated.

Together with these artifacts, the domain is given as input to the planner. The planner

performs a search using its heuristics and outputs one or more plans. The best plan is

selected and translated for failure recovery.

5.5.1 Initial and Goal States

The initial and goal states specify the current and target configurations of the

system respectively. The initial state is the configuration of the system where something
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has failed. The goal state is the configuration of the system before the failure occurs.

5.5.1.1 Initial State

The first things described in the initial state are the instances of the objects used

in the system. These instances include all the machines, components, applications,

modules, services and so on. These instances are an actual reprsentation of the physical

and logical entities of the system. The types of these objects must correspond to the

types mentioned in the domain.

Together with objects the initial state describes all the facts of the system. Any

property of the system that is holding in the failed configuration constitutes a fact. All

the facts of the system are to be described in the initial state. These facts can be divided

into two broad catagories.

Predicates are facts that describe the state of a system or form a relationship

between two or more objects of the system. They describe the logical state of the system.

These predicates must have their type specified in the domain of the system. The initial

state given in Appendix B shows the predicates of the system in our example. These

predicates are in a form such as (application-available sms skagen). This particular

predicate is of type (application-available ?app - application ?ma - machine). Here the

actual instance of an application and a machine are specified. The application is sms

and the machine is skagen. Similarly, predicate (apache-providing-service apache skagen

skagen ssl service) is of type (apache-providing-service ?ap - apache ?ma - machine ?s -

service). In this predicate the instances are apache skagen, which is the identifier for the

Apache on skagen, skagen is the machine and the add-on service provided by Apache is

ssl service.

An example of a predicate that shows the state of an artifact is predicate (machine-

failed serl). This predicate states that the machine serl has failed. Similarly, predicate

(machine-working leone) shows that machine leone is working.
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Functions, on the other hand, describe quantified values of the system. For

example, a function (= (current-machine-load leone) 10) describes that the current

machine load of the machine leone is 10%. Similarly, the function (= (time-to-restart-

apache apache skagen) 3000) states that the time to restart Apache on skagen is 3

seconds.

All the predicates and functions describe the current state of the system. These

predicates and functions are taken from the three models ADM, MM amd CM. These

models capture the state of the system at any given time so the information from these

models is accurate up to the last time they were updated.

Apart from predicates and functions generated by these models the predicates

given to the ‘plan’ phase as input from the ‘analyze’ phase are also listed with the

initial condition.

5.5.2 Goal State

Goal state describes the target configuration of the system. We assume that

the goal state is specified to recover the system to its original configuration before the

failure. However, this assumption is for the current chapter only. In the next chapter

we will relax this assumption and consider cases where the original configuration cannot

be restored.

A goal state can be specified in two ways: implicit configuration and explicit

configuration.

In an Implicit Configurtion the goal state is specified at a higher level. This

higher level specification is provided to reduce the time of the automated system or

human administrator and to shift the task of finding the lower level operations to the

planner. Therefore, in our system the implicit configuration is specified whenever one or

more applications are to be recovered. The task of dealing with the dependencies, both

intercomponent and intracomponent, are left for the planner. In our system, depending



116

on the types of components involved, three implicit configurations are possible. These

are discussed below with the cases when they are used. In all of the cases below Mysql

is considered to be part of the configuration unless otherwise stated.

When an application requires both Apache and Tomcat in a particular config-

uration we use the implicit configuration (application-ready-1 ?app - application) as a

goal state. The only information required here is the name of the application to be

recovered.

In the second case, if the configuration only uses Apache then the implicit con-

figuration (application-ready-1a ?app - application) is used as a goal state. In this case

also, only the application name is to be specified.

Finally in the third case if the configuration only involves Tomcat, implicit con-

figuration (application-ready-1b ?app - application) is used. Also in this case the name

of the application is to be provided.

All of the above implicit configuration predicates look similar. However, they

have different names and the semantics behind them are different also. In most cases

specifying an implicit configuration predicate is enough to recover the application. But

there are cases where some restrictions are placed by the administrator of a system on

deployment of applications. For example, an application may expect a lot of hits and

should be deployed on machine X because machine X is the most powerful machine to

handle the application. Moreover, sometimes the administrator wants the components

to connect through a specified connector and not through any connector. In the afore-

mentioned cases and similar other cases we need to give the user enough expressive

power in the goal state. Therefore, the second type of goal state, called an explicit

configuration, is used.

In an Explicit Configuration more expressive power is provided to the user.

Because the user may require different levels of expressiveness there are numerous pred-

icates to specify an explicit configuration. Some of the explicit configuration predicates
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are described in this section.

The predicate (application-ready-5 ?app - application ?ap - apache ?s - service ?t

- tomcat ?con - connector) is the most detailed predicate in our domain. This predicate

expresses the information about the application, the instances of Apache and Tomcat,

the service and the connector. Using all this information the planner can only find a

plan if constraints specified through predicates are fullfilled.

The predicate (application-ready-4 ?app - application ?ap - apache ?t - tomcat

?con - connector) is less expressive than the predicate described above. It does not have

a service specification. Otherwise it is the same as the previous one.

The predicate (application-ready-3 ?app - application ?ap - apache ?t - tomcat)

is further restricted and does not have the specification of connector or service.

Predicates (application-ready-3-with-connectivity ?app - application ?ap - apache

?t - tomcat), (application-ready-3-with-service ?app - application ?ap - apache ?t - tom-

cat ?s - service) and (application-ready-3-with-connectivity-and-service ?app - applica-

tion ?ap - apache ?t - tomcat ?s - service) all are similar but they have different goal

specifications in terms of objects.

Finally, predicate (application-ready-2a ?app - application ?ap - apache) is for

a configuration where only Apache is required in the goal state. Similarly, predicate

(application-ready-2b ?app - application ?t - tomcat) is where only Tomcat is required

in the goal state.

In addition to the initial and goal states a metric is described to control the plan

calculation by the planner. The metric could be any function in the domain like apache-

start-time or tomcat-restart-time. The metric could either be maximized or minimized.

Furthermore, two other metrics are also possible. These metrics are total-time and

number of steps. They both can also be maximized or minimized.

All of the above described pieces information which include object instances,

initial state, goal state and metric constitutes a ‘problem file’ in the terminology of AI
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planning.

5.5.3 Plan

The problem file and the domain are given as inputs to the planner. The domain

is a fixed entity but the problem file can vary with each failure scenario. Along with

these items some optional information can also be specified, for example, the maximum

time to compute a plan or which particular algorithm should be used to compute the

plan e.g. best-first etc.

A number of domain-independent planners have been developed [100, 5, 6, 81, 71,

47, 42, 29, 99]. Domain-independent means that they are not developed for particular

domain but a domain can be developed based on a given problem. Moreover, planners

have also been developed to solve reconfiguration problems [58]. The planner we are

using in this system is called LPG-td 1 [47]. LPG-td uses local search on planning

graph as its planning heuristic. This planning heuritic performs really well in the failure

recovery domain we have developed.

A planner usually outputs more than one plan to solve a given problem. Two or

more plans are only given as output if the latter plan is better than the former one. The

quality of the plan is found through the metric specified in the previous section. For

example, of the plan metric is to minimize total-time than another plan is not given as

output until it has a lower total time than the previous plan. One can specify an upper

bound on how many plans a planner should give as output. The minimum number is

one for this bound.

Another optional parameter to control the planner is maximum cputime. This

is an optional paramter and is not required to be specified when invoking a planner.

However, this feature becomes handy when the recovery process is to be performed in a
1 LPG is being developed at Universita degli Studi di Brescia in Italy. This planner gave one of the

best results in the third International Planning Competition (IPC) held in 2004. Also, this planner,
compared to other planners, has a really good error detection capability. This capability is very useful
for people who are not from the AI world to find errors in their domain and the problem file.
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certain time; for example, in some applications there is a 30 second fail-over period. To

find the optimum cpu time for a given domain test runs are required to see approximately

how much time the planner requires to give a plan. In these test runs usually there is

an upper threshold value by which the planner finds a plan and if more time is given to

the planner it will not find another plan. Therefore, when this threshold value is found,

it should be used as the cputime given to the planner.

When a best plan is selected a plan interpretation is performed. In this step the

plan is interpreted according to the architecture of the system. The plan has actions

from the domain required to bring the system from the initial state to the goal state.

These actions in the plan are for all of the system. However, the system is divided into

components, machines and applications. To find the destination of each action, we have

included the name of the machine as a paramter in each action. Therefore, all actions

in the plan have a machine associated with them.

These actions are then sorted machine-wise. The actions are translated into their

respective interfaces. The parameters of the action are also parameters of the interfaces.

Therefore, it is one-to-one mapping. When this mapping is performed the actions are

ready to be shipped to their respective machines.

The monitor puts these actions into events and publishes the actions for each

machine. Each event sent to a machine has the unique name of the machine so that it

is only recieved by the correct machine. This dispatch of the event is controlled by an

‘execution manager’. Details of the execution manager are discussed in the next section.

Now let us go back to our example and see how a plan is developed for the recovery

in the system in figure 5.2. A problem file is given in Appendix B for this particular

failure scenario. The plan given out by the planner is given in Appendix B. we shall

discuss each action of the plan.

The very first action (RECONFIGURE-APACHE SKAGEN APACHE SKAGEN

RUBBOS HTTPD) selects machine skagen for the remaining actions. The compo-
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nent that is used on this machine is Apache skagen and the application is offcourse

Rubbos. The file that is required for the configuration changes is the httpd file of

Apache skagen. The next action (IMPORT-APPLICATION-IN-APACHE SKAGEN

APACHE SKAGEN RUBBOS) imports the respective application into the working

directory of Apache skagen. In our recovery scenario it is the Rubbos application

that is being imported. The next action UPDATE-CONFIGURATION-FILE-FOR-

RECONFIGURATION-ADDVIRTUALHOST SKAGEN APACHE SKAGEN HTTPD

RUBBOS SMS) is performing a configuration change in the file httpd of Apache skagen.

This configuration change is adding a new virtual host in Apache. Virtual host is a fea-

ture of Apache where two or more applications can work in the same instance of Apache

and still can be accessed by their own names. This feature of Apache can only be used if

there is another application already working. In this plan there is already an application

in Apache named sms working in Apache skagen. Therefore, this action adds both the

applications sms and rubbos to share the Apache skagen using virtual host directive

of Apache. The next action (RESTART-APACHE-WITH-VIRTUALHOST SKAGEN

APACHE SKAGEN RUBBOS SMS) is a restart command. This restart command is re-

quired to implement the virtual host configuration change just made in the configuration

file.

Since a part of rubbos is already working on Tomcat leone, it is not required

to be recovered. However, the rubbos on Apache skagen must be connected to the

rubbos on Tomcat leone. Therefore, the next action (ADD-CONNECTIVITY SKA-

GEN LEONE APACHE SKAGEN TOMCAT LEONE MOD PROXY RUBBOS) con-

nects both parts of the application using the connector ‘mod proxy’. Finally, an action

(START-SYSTEM-1 SKAGEN LEONE RUBBOS APACHE SKAGEN TOMCAT LEONE

MOD PROXY SSL SERVICE LIBPHP4) is a kind of glue action that we discussed in

the previous chapter. This action does not perform any real operation but it is just there

to flag that the recovery process is now complete and no further actions are required.
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Note that each action also specifies the respective machines where the recovery

process is carried out. For the first four actions the machine is skagen since these

actions are being performed on components deployed on skagen only. However, in the

add-connectivity action leone is also mentioned since rubbos on skagen and leone need

to connect with each other to ensure complete recovery of the rubbos application.

This plan is translated into scripts sorted for each machine. The plan interpreta-

tion step translates each step of the plan. However, in some situations not all actions

are required to be sent to a particular machine. For example, the add-connectivity

action uses mod proxy to connect Apache skagen with Tomcat leone. However, in case

of connector ‘mod proxy’ no change is required in the configuration of tomcat leone.

Thus, this action is not added in the actions of leone.

The translation of the plan to script for reconfiguration that are infact interfaces

is shown below.

Machine Name: skagen
Actions:
sh /home/arshad/planit/scripts/importApplicationInApache.sh rubbos
sh /home/arshad/planit/scripts/addNameBasedVirtualHost.sh
/home/arshad/apache2/htdocs/sms sms
/home/arshad/apache2/bin/apachectl -k restart
sh /home/arshad/planit/scripts/addConnectivity.sh rubbos leone.cs.colorado.edu
mod proxy

The three interfaces or scripts required to recover rubbos on Apache skagen are

shown here. The first action, reconfigure-apache, is not translated because it is only an

indication that the reconfiguration is performed in Apache skagen. Since these scripts

are developed in bash shell, they also have a ‘sh’ to execute these scripts. The parameters

required for these scripts are also shown next to each script.

These actions are dispatched to the machine skagen using an ‘execution manager’.

We will discuss the execution manager in the next section under the phase ‘execute’.
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5.6 Execute

Once the script is ready for dispatch to the machines it is handed over to an

execution manager. This execution manager, puts the script in a Siena event and adds

other identifying information into the event such as the destination machine name and

some other attributes. It then publishes the event in the Siena network.

Machines receive the script and save it in a file. This file contains the scripts

to be executed on the machine. It executes the file. If all scripts in the file execute

properly then the machines send the execution manager a success signal using another

Siena event. The execution manager after receiving the event updates the respective

models to save the information about the new configuration. This new configuration is

used for any further operation in the system.

Now let us see what happens in our example. The execution manager sends the

scripts shown in the last section to the machine skagen. When skagen receive the scripts

it executes them. If the execution is successful it sends a event back to the execution

manager about the success of the execution scripts. When the execution manager

recieves the event it updates the models in the system to reflect the new configuration

of the system. The system is now working as shown in figure 5.2(c).

This ends the recovery process. However, we have not discussed the case where a

script does not work. This is a special case and we will deal it in the next chapter when

we discuss the various failure scenarios during failure recovery of the system.
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Figure 5.6: Planning Domain, Initial State, Goal State and Plan



Chapter 6

Failures During Failure Recovery

In the previous chapter we discussed the automation of the failure recovery process

in distributed systems. Our assumption there was of a perfect recovery process. A

perfect recovery means that no failures are possible in or during the recovery process.

However, failures in and during the recovery process do occur. Therefore, in this chapter

we are going to relax the condition of a perfect recovery process and deal with failures

in and during the recovery process. Failures in the recovery process means that the

system is unable to recover from a failure. Failures during the recovery process means

that more application, component and machine failures are detected in the system

while the recovery process is going on. Let us look at each of these failures and see what

changes are required in the recovery process to deal with such failures. In addition to

these two types of failures, towards the end of the chapter we also discuss a situation

when a flawed plan is given by the planner.

6.1 Handling Recovery Failures

In the previous chapter the goal of the failure recovery process was to recover the

system to the configuration that it had before the failure. However, in some cases the

original configuration may not be possible to attain. When this happens the recovery

process has to abort. A human has to intervene and recover the system manually. Since

the goal in this dissertation is to automate the recovery process as much as possible, we
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will discuss how to deal with such scenarios when the recovery process aborts due to a

failure in the recovery process.

The recovery process is divided into four phases: Sense, Analyze, Plan and Exe-

cute. In the first phase, ‘sense’, a failure in the system is detected. Recovery failures are

not possible since, during the sense phase, a failure is just detected and no target config-

uration is chosen as yet for failure recovery. This is because we have chosen a fail-stop

model in our system. Moreover, our assumption is that Siena events are guaranteed to

be delivered. Therefore, no false-positives or false-negatives are possible in the system.

Hence, keeping in view our assumptions, no failures are possible during this phase.

Likewise, in the next phase, ‘analyze’, the ripple effects of the failure are detected

using a dependency analyzer. In this phase, the information is being gathered about the

system and no recovery has started yet. Therefore, in this phase also recovery failures

are not possible with one exception, the recovery failure that is possible in this phase

is when the dependency analyzer is not able to gather correct information about the

ripple effects of the failure. However, we assume that this does not happen and the

dependency analyzer gathers correct information about the state of the system.

In the next two phases, ‘plan’ and ‘execute’, we have to deal with scenarios when

an application fails to recover to its original state/configuration. These two phases

have two further sub-cases. The first sub-case is when an application is providing some

partial functionality and the recovery to the original configuration has failed. In the

second sub-case the application is not providing any functionality at all.

We will now discuss the two phases and their sub-cases.

6.1.1 Recovery Failures During ‘Plan’ Phase

In the plan phase initial and goal states are written down in a problem file and

a planner finds a plan for going from the initial state to the goal state. However, it is

possible that a plan is not available. This happens because some dependency has not
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been met and/or resources are scarce in the system. To deal with this situation, we

have added a ‘Target Configuration Manager’ (TCM) in our architecture. TCM con-

tains knowledge about the existing and other possible configurations of each and every

application in the system. In addition, TCM also keeps track of the past configurations

of the applications in the system. Therefore, if one configuration is not possible in the

system, it should not be used as a goal state in a future failure recovery situation.

Our assumption is that in normal circumstances the system works in its highest

configuration. In the highest configuration the application has the highest number

of resources and dependencies. Therefore, when a failure first occurs all applications

in the system must be working in their highest configuration. Other configuration of

applications in the system have less strict requirements. As a rule in this dissertation,

the higher a configuration number is, the less resources and/or dependencies it requires.

As discussed earlier two cases are possible when a plan is not available for a given

goal state. In the first case an application is still partially providing functionality while

in the second case the application has lost its total functionality.

The planner is given a problem file and a domain to find a plan. However,

sometimes the planner is unable to find a plan due to various reasons like inadequate

resources, etc. When this happens and the application to be recovered has lost its

partial functionality, the application is left in a hanging state. This hanging state is

not desired because the application cannot be recovered to a full functionality because

of the absence of a plan. Therefore, the parts of the application that are working

are forced to stop. This is necessary because other configurations of the application

may have totally different requirements and dependencies and this working part of the

application may not be useful in those configurations. Bringing the working parts to a

full stop means that the application is now fully stopped and is in a known state. The

act of bringing the application to a full stop is performed by an overall monitor which

detects the absence of a plan for a given goal state. The monitor then invokes the TCM
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to find another configuration. Completely stopping an application means that now the

application needs to be redeployed from scratch. Therefore, this problem turns into a

deployment problem in dynamic reconfiguration [8].

TCM selects the next configuration of the application from the ACM. This new

configuration is selected as a goal state of the application. Since the new configuration

has different dependencies and requirements, the whole initial and goal states are de-

veloped again and put into a new problem file. The planner is invoked again and asked

to find a plan.

If the planner is able to find a plan then the plan is translated into a script and

the recovery process continues. However, if a plan is still not available then TCM is

again invoked to find another configuration. TCM then selects another configuration and

repeats the the whole process described above. This continues until all the configurations

of an application are exhausted. At this point the recovery process has to be halted

because no recovery in the system is possible.

In the second sub-case, when an application has totally lost its functionality, the

same process as described above, is repeated. However, as the application has already

lost its full functionality, there are no running parts of the application. Therefore the

steps to stop an application completely are not required. The rest of the recovery process

is similar.

6.1.2 Recovery Failures During ‘Execute’ Phase

When a plan is found by the planner for a given goal state, it is translated and

sent to the machines for recovery execution. However, it is possible that a problem

occurs in the execution of the recovery script. Problems are possible in the recovery

script itself, e.g. in its syntax, etc, or it is possible in the execution of the script, e.g.

an application cannot be imported to a directory because the directory is read-only.

However, we assume that the scripts do not have any syntax mistakes. Therefore, the
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former case is not possible in the system but the latter case is possible.

If a script is sent to the machine agent to execute and it fails then the machine

agent must undo all the commands in the script. Most of the commands are control

commands like start and stop. They can be easily reversed. However, to undo a config-

uration change in a configuration file the agent keeps a backup of all configuration files

modified. Therefore, when one script does not work the old versions of configuration

files are restored. The goal of this excercise by the agent is to ensure that no change is

made in the configuration of components and/or applications on a particular machine.

After undoing all the changes the monitor sends an event back to the monitor to indicate

an unsuccessful recovery.

The monitor keeps track of all machines where it sends recovery scripts. If all the

machine agents indicate a sucessful recovery then the monitor updates the models to

reflect the changes in the system. However, if even one machine indicates a unsucessful

recovery it needs to undo the changes to all the machines.

Therefore, the monitor send undo events to all the machines to undo all the

changes they performed recently. When all the machines confirm that they they have

performed the undo operation, the monitor initiates a new recovery process.

TCM is invoked to select a new configuration of the applications to be recovered.

The recovery process starts again from the ‘analyze’ phase. The rest of the process is

similar to the normal recovery process.

The recovery process just described is for the applications that are not providing

any functionality. However, in cases where the application has lost its partial function-

ality and cannot be recovered, an additional step is required. This additional step is to

stop the application completely before invoking the TCM to find another configuration.

The rest of the recovery process is similar.
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6.2 Handling Failures during Failure Recovery

When a system experiences a failure and the recovery process is being applied

onto the system, more failures are also possible in it. These failures can create a problem

in it because they change the state of the system which is being used to recover a system.

For example, the planner may be using a machine to recover an application but during

the recovery process that machine also fails. Now even if the plan is executed onto

the system it will not recover the system because the machine is not working anymore.

Figure 6.1 is a modified view of figure 5.1 to show the possibilities of further failures

during recovery. In this section we will look at ways to deal with such further failures

in the system during failure recovery process.

As stated earlier, the theoretical underpinning of our approach is based on the

dependencies in the system. The dependencies in the system are specified in the form

of a dependency model which is part of the ACM. To make it more concrete we have

represented this model in form of a dependency graph in this chapter. Each component

of the system is a node in the dependency graph.

6.2.1 Kinds of Dependencies

We have modified the kinds of dependencies to handle failures during failure

recovery. There are two kinds of dependencies in the dependency graph: hard and soft.

Both of these dependencies are inter-component dependencies.

Hard Dependencies are dependencies representing actual functional dependen-

cies between components without which the dependent component can not provide any

real functionality. For example, component A has a hard dependency on component

B. If component B fails then component A, although working, can not provide any

functionality. An instance of hard dependency in the real world is the dependency of a

application server on a servlet engine. This is shown in Figure 6.3 by a solid line in the
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Figure 6.1: Further Failures Possible During Recovery
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Figure 6.2: Failure detection that results in a decision to either continue or restart the
recovery phase.

dependency graph. If the servlet engine fails the application server, although working,

can not provide any functionality. This is because servlet engine invokes all the func-

tionality of application server. Without the servlet engine there is no other component

that invoke the functionality in the application server.

Soft Dependencies are dependencies representing use relationships between

components. For example, component A has soft dependency on component C. If com-

ponent C fails then component A can still provide partial functionality. An instance of

soft dependency is a dependency of an http server on a DNS server. This is shown in

Figure 6.3 by a dotted line in the dependency graph. If the DNS server fails the http

server can be accessed directly by using an IP address instead of full qualified domain

address.

6.2.2 Dependency State

The various states that a component can take are working (W), working with no

functionality (N ), working with reduced functionality (R) and failed (F).

The dependency relationship that determines the state of the component is de-

termined based on whether that component is dependent or antecedent to a failed

component and whether the dependency between them is hard or soft. If a component

depends on the failed component and has a hard dependency on the failed component
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then it is working with no functionality, therefore, it is in state N . However, if a com-

ponent depends on the component and has a soft dependency on the failed component

then it is working with partial or reduced functionality and is in state R. All other

components with no dependency link to the failed component are in the working state

W.

6.3 Example System

In order to explain our use of dependencies, we give a small example of a real

world system. This example is a typical web based system consisting of various servers

that we call components in this paper. Figure 6.3 shows the hard and soft dependencies

among the different components of the system. Please note that this may not be an

actual representation of dependencies among a real application because dependencies

are design specific for real world systems.

In our example system there are six components: DNS, HTTP, Servlet, Applica-

tion server (AS), Database, and SMTP. All these components are assumed to be in a

working state. However, their state can change based on their dependency relationship

with a failed component.

6.4 Planning

Planning has various sub-phases as shown in Figure 6.2. These phases are invoked

sequentially during the recovery process.

The first sub-phase in the planning process is to analyze the dependency graph.

The states of the components are determined by analyzing their dependency relationship

with the failed component. In order to see how it works lets take a failure scenario

from our example and analyze the dependency graph. All the components initially

are in state W. Suppose that the component Database fails. Therefore, the database

component goes in a failed state F . The Application server (AS) component has a hard
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Figure 6.3: Dependency graph of system components.

dependency on the database component so it goes into the state N . The Servlet has a

soft dependency on Database so it goes in state R. All other components in the system

(SMTP, HTTP and DNS) are in the state W because failure of the Database does not

affect them directly. However, if there is a transitive dependency with a hard edge from

any of the components that are currently in a state N then the transitively dependent

component also be in state N . No such dependency is present in our example system.

The next phase is to find a target configuration based on the states of the com-

ponents in the system. The target configuration may be explicit or implicit. In an

explicit target configuration there is a configuration available which gives the details

of the component placement, its configuration parameters etc. However, if an explicit

configuration is not available then an implicit configuration can be specified. An im-

plicit configuration specifies only the properties that needs to be true at the end of the

recovery process. A minimum implicit configuration is ”component A must be working”

specified in the planning language format.

After the planner executes, it is assumed to produce a plan for getting from the
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initial (failed) state to the target configuration. In order to execute the plan, it is

converted into an executable script. This script is then given as input to the execute

phase.

6.4.1 Handling Failure During Planning

Up to the point where the script is given to the execute phase, all of the planning

has been offline, and nothing has actually been done to the failed system. Handling

new failures that occur during the planning phase depends on the current state of those

components and their relationship to the state of all other components. Components

detected as failed can be in any of these states previously R, N or W. In the following

subsection we discuss the failure of the components based on their previous state. and

how the recovery system handles these additional failures. Table 6.1 provides a summary

of the process.

6.4.1.1 Failure of components in state N

As discussed in the previous section the components in state N are not provid-

ing any functionality. Before starting the planning process, therefore, we treat these

components as being in a failed state and are known to our planner.

If a component in state N reports failure, we are already calculating a plan for

its recovery, so we do not need to restart the planning process.

One problem that must be addressed is the restarting of components in N . Such

a component may not be providing any functionality, but it may still be running. The

solution to this problem is to explicitly stop all the components in state N after the

planning phase finishes. By stopping these components, they truly go into a state F .

It should be noted that this solution, stopping non-functioning components, may

actually be unnecessary. It might be the case that the component can be made to

function again once all of its antecedents are up and running. We currently do not
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take this possibility into consideration because it complicates the planning and allows

for better optimization of the resulting plan. An implicit assumption here is that the

stopping and starting time of the components is in not significant.

To show how this process works, assume that we start the recovery process of the

Database. we assume that because the Application Server (AS) is in a state N it is

also considered to be failed. At the end of the planning phase if AS has not reported a

failure, it is explicitly stopped to execute the recovery plan on it.

6.4.1.2 Failure of components in state R

The failure of the components in state R during the planning process can compli-

cate the plan because these components are presumably providing some functionality,

and it may be that some other dependent components are using their functionality. In

practice, the handling of components in state R is pretty straightforward. If a com-

ponent in state R fails we have two options. We can either stop the planning process

and start it again taking into account the failure of component previously in state R

or we can wait and let the present recovery process finish. Once the present recovery

process finishes, we make a second run of the recovery process and recover the newly

failed component.

Again in our example: if the Servlet fails during the recovery process then the

recovery process of Database (and Application Server) can continue without problem.

Once these two recover, then the recovery process is applied to the Servlet. Note that

there is a hard dependency of the Application Server on the Servlet. Therefore, unless

the Servlet Engine is working, the Application Server can not provide any functionality.

In this particular case, then, the planning process has to be stopped and restarted to

take the failure of the Servlet into account.
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6.4.1.3 Failure of components in state W

Working components can be divided into two categories based on their depen-

dency relationship with the components in states N or R.

(1) Components that are antecedents of components in state F , N or R, and

(2) components that are not antecedents of any component in states F , N or R.

In the first category the failed component is an antecedent of a component in

state F ∧N ∧R. In this case the planning phase must be restarted because there

is no point in recovering a dependent component without recovering an antecedent

component. Without an antecedent component (assuming a hard dependency), the

dependent component will not be able to provide any functionality. Therefore, the

antecedent component has to be included in the planning phase to get a better recovery

plan.

So if, for example, the Http server fails during the recovery process, it has to be

stopped and started again. This is because the Servlet is in state R and it has a hard

dependency on Http. Because Http has failed, the Servlet engine will also be considered

as failed. Thus the recovery process has to be restarted while taking into account the

failures of Database, AS, Servlet and Http.

In the second category, the present recovery process can continue and finish. After

it has completed, the recovery can be planned and executed for the newly failed and

totally independent component. For example, if the DNS fails then its can be recovered

later because no component in the system has a hard dependency on it.

6.5 Plan Execution

The output of the planning phase is a recovery plan for the system. This plan

is translated into an executable script (i.e. a recovery script). The recovery script is

executed on the system to bring the components in the system back to the working
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state. Again however, additional (or already repaired) components may fail during the

execution of the recovery script.

6.5.1 Handling Failure During Plan Execution

We again group the components based on their state during the recovery process.

Recall from the previous section that the components in state N were failed or explicitly

stopped. Therefore, we are already recovering them so we will only consider the failure

of components in states R and W.

6.5.1.1 Failure of components in state R

The failure of components in state R does not cause a significant problem during

the recovery process. The components in stateR are dependent so they can be recovered

at a later time. Thus the present recovery process can continue without interruption.

Once the recovery process finishes, the newly failed component can be recovered by

executing the plan-execute phase again on the system.

Rolling back the recovery process in this case can be costly because here the

actual recovery is being executed on the system. Therefore, the best alternative is to

wait and recover these components later.

6.5.1.2 Failure of components in state W

The failure of the components in state W can be divided into two categories. The

first category is if they are an antecedent of the components being recovered and the

second is if they are totally independent.

In the first case the recovery process has to be rolled back. This rolling back

is required because without the antecedent component the recovery of the failed com-

ponents will not actually recover the system. Therefore, rolling back of the recovery

process is critical. Once the recovery process is rolled back the plan for recovery again
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has to be made by incorporating the newly failed components. After the recovery plan

is available the execute phase is carried out on the system.

In the second case the recovery process can continue and finish because the to-

tally independent components are not dependent or antecedent of any component being

recovered. Therefore, they can be recovered after the current recovery process finishes.

6.5.1.3 A Flawed Recovery

Another type of failure in the recovery process results from a flawed plan. In

this case the recovery process seems to work but the resulting system is not functioning

normally or not functioning at all. This may be because the planner produced a flawed

plan. Recall that we assume that the recovery process is perfect and it does not make

mistakes. The mistake is in the plan that is computed by the planner.

There are two steps involved in this type of failure. First to detect that the system

is not working normally. Second, to recover it again.

In order to find out if the system is working normally we use an acceptance test.

This acceptance test can be thought to be an online testing of the system; however, it

is at a relatively small scale. We assume that the components of the system are already

thoroughly tested before deployment. Therefore, we only need to check if the system is

properly doing what it is supposed to do after the recovery. In order to achieve this, a set

of acceptance tests is carried out on the system. These tests have precomputed results

that should be given by a working system. Therefore, the results from the acceptance

test from the system are compared against the pre computed expected results. If the

results match, it means that the system is restored properly. However, if the results do

not match then it implies the system is not recovered properly.

The number of acceptance tests conducted on the system are based on two metrics

which cover the whole system functionality. These two tests are yield and harvest of

the system components [16].
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Yield is the number of tests conducted on the system and how many of them

succeeded. If all the tests conducted on the system succeeded then the yield is 100%.

Y ield =
tests completed

tests offered
(6.1)

Harvest is the number of components accessed in the system during the testing

phase. All the tests conducted on the system must access all the components of the

system. When all the components are accessed and the results given out as expected

then the harvest is 100%.

Harvest =
components accessed

total number of components
(6.2)

A 100% yield and 100% harvest means that the system is working properly.

However, if the tests do not result into a 100% yield and 100% harvest then there is a

problem. This shows that the plan was flawed and we need to re-recover the system.

One of the first steps in this (re-)recovery is to stop all the recovered components

and initiate the planning of recovery again. However, in the new initial state given to

the planner, it has to be specified that a particular configuration of the system did not

work and we need to find a new plan different from the previous plan.

When a new plan is found we repeat the recovery phase with the new plan and

test the system again. If the system works as expected then it is considered to be healed.

However, if the system does not pass the acceptance test then this process is repeated

again until we find a fully recovered system.

Failures during the acceptance test can also occur. However, as the system is

recovering these failures can wait until the acceptance test finishes. If the system pass

the acceptance test the new failure is planned and executed as a new recovery process.

However, if the system fails the recovery process and a new recovery process needs to

be carried out on the system then the new failure is included in the previous set of

failures. Therefore, the plan that recovers the components include the previously failed

components and the newly failed components.
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Table 6.1: A summary of what happens to the recovery process when more components
fail.



Chapter 7

Implementation

To evaluate our Sense-Analyze-Plan-Execute (SAPE) methodology we have devel-

oped a system called “Recover”. Previously we developed another system called Planit

to plan deployment and dynamic reconfiguration in distributed systems [8]. Recover

is specificially geared towards failure recovery. However, since our approach involves a

significant dynamic reconfiguration aspect, we have reused some modules of Planit to

plan for dynamic reconfigurations in “Recover”.

In this chapter we will discuss the implementation details of all modules of Re-

cover. We have already discussed the details of the working of these modules in the

previous chapters. Therefore, our focus in this chapter will be on the architectural and

implementation aspects of modules in Recover.

An architecture of Recover is given in figure 7.1. Most of the implementation of

Recover is performed using Java 1.5. For communication between remote modules of

Recover we have used Siena publish-subscribe network. To execute the configuration in

the target system bash shell is used to write and execute reconfiguration scripts.

7.1 Monitor

The monitor is the main module of Recover. It coordinates a number of aspects

of a system. A Siena server is used to communicate between all the modules and agents

in the system. Therefore, every module and agent needs to register itself with the Siena
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Figure 7.1: A High-Level Architecture of “Recover”
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server.

Whenver the system starts, the monitor sends out an identify yourself event in the

system. This is a general event and all the agents have the ability to receive that event.

All the agents that are working in the system and have subscribed to the Siena server

receive this event. In response to this event all agents send identification information

to the monitor. This identification information includes detailed information about

the artifact, i.e. machine or component. This information includes details about the

operating system, memory available, etc. When the monitor receive these events it

updates the models and adds information about the respective applications, components

and machines to their respective models. The monitor then sends an event to all the

agents to start the sensing process. A user can select one of the three sensing modes:

push, pull or dual. If the user chooses the push model, the monitor only recieves events

and updates the models based on the information of those events. Similarly, if the user

chooses a pull mode, the monitor sends an are you alive message to the agents after a

specified time and receives the return event and updates the models accordingly. In the

dual mode the monitor works in the push mode first and switches to the pull mode if it

detects an unusual behavior in the reception of the events from the agents.

Any of these modes can be used at any given time. The user has to specify a

selection. Moreover, the user can also set or change the interval of the events in any of

these models. All these selections are performed through the monitor.

The monitor also plays a role in the detection of a failure. The detection of failures

is discussed in detail in chapter 5. Once a failure is detected the monitor hands the

control to the dependency analyzer to find an exact picture of the application affected

by the failure. The dependency analyzer is discussed later in this chapter.

Following this the monitor gives the control to the problem manager for developing

the problem file for the planning process. When the problem file is developed, the

monitor gives the domain and planner file to the planner to find a plan. The planner
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finds one or more plans. The monitor selects the last (and the best) plan given by the

planner. It hands over the plan to the plan manager. The plan manager interprets,

sorts and translates the plan to the interfaces available in the system.

At this point the monitor gives this plan to the execution manager which sends

the parts of the plan to their respective machines. The execution manager reports

the success or failure of the execution of the plan back to the monitor. In case of

success the monitor updates the models. However, in case of failure it invokes the

target configuration manager. The target configuration manager selects the next best

configuration and hands it back to the monitor. The monitor gives the new configuration

to the problem manager to develop a new problem file. The rest of the process continues

as we have discussed before in detail.

All of these coordination efforts make the monitor one of the most important

modules in Recover. Furthermore, we assume that the monitor never fails. At this

time we have one monitor for the whole system. However, for bigger systems we can

use a hierarchical distribution of monitors. However, some changes are required in the

architecture to achieve this objective.

In the following sections we describe each module in Recover and what interfaces

it uses to interact with other modules of Recover.

7.2 Machine and Component Agents

Both machine and component agents are deployed at remote locations. A ma-

chine agent is associated with a machine and a component agent is associated with a

component. Only one agent can be associated with each machine and one agent can

be associated with each component. Both of these agents work and interact with the

monitor. Based on the sensing mode both types of agents respond to events sent by

the monitor. In order to send periodic heartbeat both of these agents have a separate

thread that sends out a Siena event after every specified time period.
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In addition to the information about the component, the component agent also

sends information about applications deployed on a component. Both machine agent

and component agent use bash scripts and features provided by Java 1.5 to extract

information about their respective artifacts. For example, the machine agent gets infor-

mation about the memory using the unix command “cat //proc//meminfo”. Similarly,

to find hard disk information the machine agent uses the command “df -h”. The com-

ponent agent also uses bash shell scripts to get information about the component. For

example, it checks the status of Apache, i.e. whether it is working or not working using

Apache file “httpd.pid”. When it finds out that Apache has pid it checks the status of

Apache using an http request. If Apache responds to the request, it means that Apache

is indeed working. To find about applications deployed on a component the compo-

nent agent checks the working directory “htdocs” of Apache and the similar directory

in Tomcat, i.e. “webapps” to get information about the deployed applications. If an

application exists then it must be present in these directories.

7.3 Current Configuration Inspector

The current configuration inspector (CCI) is implemented as a submodule of

the monitor. It is used when the dual model is being used as the sensing mode. It

explicitly asks the component and machine agents about their status. In response to

the event by CCI both component and machine agents send a heavy message and inform

about the state and all other information required to get the system models updated.

CCI is also used at times to update information about the system configuration. The

dynamic values in the system such as applications deployed, hard disk space, memory

information, etc. are all updated periodically using CCI. CCI is an optional module

and the monitor can work without using it. However, in that case only the push model

can be used for sensing.
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7.4 Models

As stated in chapter 4, we have four models to describe the state of the system at

any given time. These models are Machine Model (MM) to track the information about

machines, Component Model (CM) to keep information about components, Application

Dynamic Model (ADM) to keep information about an application’s configuration and

its details at any given time and finally Application Static Model (ACM) to keep static

information about the possible configurations of all the applications in the system.

Apart from ACM, all models are updated periodically.

These models are updated to reflect the latest state of the machines, compo-

nents and applications in the system. We have implemented these models using Mysql

database. Each of them has a separate table which contains the relevent information.

These tables are updated by the monitor only. However, the information contained in

them can be accessed by other modules like the problem manager or target configuration

manager, etc.

7.5 Dependency Analyzer

The depdendency analyzer is invoked by the monitor when a failure is detected.

The monitor does not give any input to the dependency analyzer. As the models are

updated before invoking the dependency analyzer, the dependency analyzer checks the

models to detect the failure in the system. Moreover, the task of the dependency an-

alyzer is to check all four models and get a complete description of the application.

Because of the intercomponent and intracomponent dependencies the dependency an-

alyzer queries the models repeatedly to get the complete state of the application. The

actual algorithm which dependency analyzer uses to find the state of a failed application

is described in chapter 5. The output of the dependency analyzer are the predicates that

describe the intercomponent and intracomponent dependencies in the system. These
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predicates are given back, to the monitor in the form of a list. Each item in the list

contains one predicate.

7.6 Problem Manager

The problem manager(PM) develops the problem file for planning. The problem

file contains instances of objects, initial state, goal state and a metric. PM searches MM

to list machines, CM to get components and ADM to get applications in the system.

All these instances are specified the format of PDDL in the problem file. Next it writes

the initial and goal states of the system.

The initial state is a set of predicates and functions that describes the current

state of the system. We have developed templates to list each of the predicates and

functions in the system. The objects and values of the predicates and functions are

given as input to the respective template. These templates then generate a predicate in

PDDL form. All this information about the objects and their values is found through the

system models. At this time the templates can only be used for generating the predicates

whose types are available in our failure recovery domain. All of these predicates are

written as the initial state of the system.

The list of predicates that are given as input by the monitor has the dependency

information about applications in the system. These predicates also make up the initial

condition. Therefore, this list is also written as part of the initial state by the problem

manager.

After writing the initial condition the problem manager uses one of the goal

predicates discussed in chapter 5 and writes it as a goal predicate. If the application

is to be recovered in a different confguration then the target configuration manager is

invoked and it selects a goal state.

Finally, the problem manager writes the metric. The metric in most cases is the

“minimize total-time” since our goal is to recover the system in as little time as possible.
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After writing all these four parts the problem manager outputs the problem file to the

monitor.

7.6.1 Planner

When the monitor receives the problem file, it gives it to the planner, together

with the domain, as input. The planner is given a time and a maximum number of

plans to find. These two optional parameters are fixed at this time in our system.

After many runs we have found that the maximum time to find a plan is less than

ten seconds. Therefore, the maximum cputime to find a plan is ten seconds for the

planner. Moreover, we also have an upper bound on the number of plans. This number

is currently five. This is an arbitrary number and could be increased if desired.

As the time given to the planner is ten seconds, the planner takes approximately

ten seconds to find plans for the given initial and goal state. The planner used in this

dissertation is LPG-td [47]. LPG-td outputs plans up to the maximum number provided.

The monitor checks the list of plans and selects the plan that took the longest amount

of time to calculate. This is necessary because the planner does not output another

plan until it finds a better plan.

The file containing the best plan is given as input to the plan manager.

7.7 Plan Manager

The plan manager accepts the plan file as input. It scans through the plan and

perform various operations on the plan file. It gets rid of all the extra information

other then actions. The actions are than sorted machine-wise. When action sorting is

complete they are translated into their respective interfaces. The plan manager keeps

a dictionary of actions and their respective interfaces. The translation does not involve

any more computation because we have one action for each interface.

The plan manager groups the interfaces in a machine-wise list. This list contains
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actions that are to be executed on each machine. One list is developed per machine.

All these lists are given as output to the monitor.

7.8 Execution Manager

The monitor gives the lists from the plan manager to an execution manager. The

execution manager checks each list and extracts the name of the machine. It puts the

name of the machine along with the actions in a Siena event. It then broadcasts the

events in the Siena network. Each event contains the machine name, actions list and

an identifier that tells the execution agent that this reconfiguration is to be performed

on the system.

7.9 Execution Agent

An execution agent is associated with each machine. The job of the execution

agent is to receive the ‘reconfigure event’ and execute the reconfiguration. Moreover, it

returns the execution results to the execution manager.

When it receives a reconfigure event, it extracts the actions from the event. It

puts the actions in a temporary file and exeuctes the file. Before executing scripts, it

makes a backup of the configuration files of each component. If all the execution actions

are completed sucessfully it sends a Siena event back to the execution manager to signal

a success. However, if the execution fails it sends another event to signal a failure.

Execution agent also undoes all the actions that it performed before the failure.

Therefore, it reverts the configurations of the system using back up files and restarts

them if necessary.

7.10 Target Configuration Manager

The targer configuration manager (TCM) is an auxiliary module of Recover. It is

only used if an application cannot be restored into its original configuration before the
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failure. If an application cannot be recovered to its original configuration TCM is used

to find a new configuration from the ACM. It develops the goal state for the new config-

uration and hands that goal state to the planner. The planner invokes the dependency

analyzer and problem manager and the recovery process continues as normal.



Chapter 8

Evaluation

To test the effectiveness of automated failure recovery techniques, we carried

out some experiments using our system ‘Recover’. Broadly, these experiments can be

divided into three categories: basic experiments, synthetic experiments, and intensive

experiments. The first two are quantitative and third one is qualitative. In this chapter

we will give details of these experiments and discuss their results.

In both basic and synthetic experiments our goal is to find a recovery plan that

restores the failed applications into their configurations before the failure. Therefore,

other less strict configurations are not applied to the applications when a plan could not

be found to restore them in their original configurations. In the intensive experiments,

we will relax this restriction and see how the recovery system performs if an application

cannot be restored into its original configuration.

8.1 Basic Experiments

In order to test the effectiveness of the failure recovery process, we have tested

it first on a relatively small-scale system. The goal of these experiments is to get a

range for the time required for failure recovery. Moreover, since as far as we know

this dissertation is the first attempt to use automated planning for failure recovery in

distributed systems, it is imperative to test this technique on small-scale systems first,

so that we can find any shortcomings or limitations of this approach.
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Figure 8.1: Experimental Setup for Basic Experiments
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Figure 8.2: Failure Recovery after Failure of Machine Skagen
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Figure 8.3: Failure Recovery after Failure of Machine Serl
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Figure 8.4: Failure Recovery after Failure of Machine Leone
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8.1.1 Experimental Setup

We have developed a small-scale version of an internet service system. In this sys-

tem three applications are deployed in various configurations. There are four machines

and six component instances on which these applications are deployed. An architecture

of this system is given in 8.1.

The application Rubbos requires all three components. It is deployed on Apache

and Tomcat components of machine Leone. Moreover, it is using the Mysql database

on machine Tigre. The application Sms also requires all three components and it is

deployed on Apache and Tomcat of machine Skagen. It also uses the Mysql database on

Tigre. The third application Webcal requires only two components, which are Apache

on Serl and Mysql on Tigre.

Three machines - Leone, Skagen and Serl - have the linux operating system while

Tigre is a Windows machine. All of these four machines are powerful server machines

with comparable processor speeds and memory.

8.1.2 Induced Failures

In order to test the effectiveness of the failure recovery procedure and to find

out about the time required to recover these applications from failure, we have induced

machine failures in the system. We tested the recovery of the system by failing one

machine at a time except Tigre, since our assumption is that database systems have

their own built-in recovery procedures. Note that the machine failures do not involve

crashing the machine, but rather stopping all software on it. Our goal is to see how

the recovery procedure uses the other resources in the target system to recover from

machine failures. This exercise is performed on all three machines, i.e. Skagen, Serl and

Leone. We performed each experiment at least five times to get a range required for

failure recovery in each case.
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8.1.3 Measurements

We have taken various measurements to evaluate the failure recovery procedure.

The measurements that we took are the following:

(1) When a failure is detected, the monitor is notified of that failure. Here the time

required for this notification is measured. Note that this time does not include

the time which is in between failure occurence and failure detection. Instead it

is the time between the detection of a failure and the time when the monitor

receives a notification about the failure.

(2) The failure notification requires a very small period of time to be delivered to

the monitor. Since all the machines in the experimental system are connected

through LAN, the time of notification is very small. Therefore, this time cannot

be detected precisely because the system clocks of different systems may not be

synchronized. Therefore, we have estimated this time and used the estimations

in our results.

(3) When a failure is detected, the monitor updates the models CM, MM and ADM.

As these models are stored in a Mysql database, various update queries are used

to update these models. The overall time required to update these models is

measured under model updating.

(4) Once the models are updated and a complete picture of the system is in place,

the monitor develops a problem file which includes the initial and goal states.

The writing of this problem file involves various i/o operations. The total time

used by the monitor to write the whole problem file is measured to see the time

required by the monitor to develop initial and goal states.

(5) Once the problem file is developed, it is given to the planner along with the

domain to find a plan for the given failure recovery scenario. The planner
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searches through the problem space and finds a plan. The time required by the

planner to find a plan is measured here. This time can also be bounded if the

failure has to be recovered in a bounded time. In this case an upper limit to

find a plan is given to the planner. This upper limit can be easily found after

some test runs. For example, in our case the upper limit to find the best plan

is five seconds.

(6) The plan given as output by the planner is interpreted, translated and dis-

patched to the execution agents of one or more machines. This translation

is performed through a lookup table stored in a database. The translation is

performed and the actions are packaged machine-wise. The time required to

perform this step is measured also.

(7) The time period between the dispatch and reception of the recovery notification

at the execution agent’s end is measured. Again since we cannot measure this

time precisely, we will use an estimate of this time. According to our test runs

no notification required more than 100ms to travel from source to destination.

Therefore, we will use 100 ms in our estimates.

(8) The execution agent executes the recovery plan. This execution of the recovery

plan is measured here. If more than one machine is involved in the exection of a

plan then the maximum time used by any machine is used in the measurement.

The time required for the recovery plan execution depends on the length of the

recovery plan and the time required for these actions. Therefore, this time is

very dependent on the target system and its size.

(9) The results of the recovery plan execution, i.e. failure or success, is delivered

back to the monitor. The time required to deliver these results is measured

here. Again this is an estimation and we will use 100ms as an estimate.
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Table 8.1: Recovery time for application Rubbos after its failure on Skagen

Failure of Skagen Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Min Max Avg

Failure Notification 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Model Updating 0.22 0.21 0.22 0.23 0.22 0.21 0.23 0.22

Developing Initial and Goal State 0.11 0.11 0.11 0.12 0.11 0.11 0.12 0.112

Recovery Planning 2.65 2.63 2.61 2.61 2.62 2.61 2.65 2.624

Plan Translation and Dispatch 0.2 0.3 0.4 0.3 0.3 0.2 0.4 0.3

Recovery/Notification 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Recovery Plan Execution 2.22 1.96 1.91 1.94 1.95 1.91 2.22 1.996

Recovery Results 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Total 5.7 5.51 5.55 5.5 5.5 5.5 5.7 5.552

Table 8.2: Recovery time for application Rubbos after its failure on Serl

Failure of Serl Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Min Max Avg

Failure Notification 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Model Updating 0.22 0.23 0.21 0.22 0.2 0.2 0.23 0.216

Developing /Initial and Goal State 0.12 0.11 0.12 0.12 0.12 0.11 0.12 0.118

Recovery Planning 2.59 2.57 2.57 2.59 2.63 2.57 2.63 2.59

Plan Translation and Dispatch 0.3 0.2 0.2 0.2 0.2 0.2 0.3 0.22

Recovery/Notification 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Recovery Plan Execution 0.12 0.11 0.13 0.07 0.06 0.06 0.13 0.098

Recovery Results 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Total 3.65 3.52 3.53 3.5 3.51 3.5 3.65 3.542

Table 8.3: Recovery time for application Rubbos after its failure on Leone

Failure of Leone Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Min Max Avg

Failure Notification 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Model Updating 0.22 0.22 0.21 0.23 0.22 0.21 0.23 0.22

Developing /Initial and Goal State 0.11 0.11 0.12 0.11 0.11 0.11 0.12 0.112

Recovery Planning 2.69 2.62 2.64 2.59 2.58 2.58 2.69 2.624

Plan Translation and Dispatch 0.2 0.3 0.4 0.2 0.3 0.2 0.4 0.28

Recovery/Notification 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Recovery Plan Execution 1.09 1.24 1.37 1.37 1.14 1.09 1.37 1.242

Recovery Results 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Total 4.61 4.79 5.04 4.8 4.65 4.61 5.04 4.778
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8.1.4 Experimental Results

The results of our experiments are given in figures 8.2-8.4. Let us discuss one by

one the three failure scenarios and their failure recovery results. The times required for

various phases of recovery procedure (given in the tables) match the horizontal bars in

their respective graphs.

In the case of failure of machine Skagen the results of failure recovery are given

in figure 8.2. In the five experiments that we did the recovery took between 5.5 and 5.7

seconds. The two major steps that took most of the recovery time were the planning

time and recovery plan execution time. The planning time ranges from 2.61 seconds to

2.65 seconds. The recovery execution time ranges from 1.91 seconds to 2.22 seconds.

This time is quite reasonable if we take into account that Apache and/or Tomcat are

started and/or restarted during this time which is a relatively time consuming operation.

Overall the failure recovery process did very well as it recovered the application Sms

that is deployed on Skagen in 5.7 seconds at maximum.

In the second case, machine Serl is failed. The results of the time required for

recovery in this case are given in figure 8.3. Here the recovery process completes in a

time ranging from 3.5 seconds to 3.65 seconds. Here the range is bit wider than the

previous case. The reason for this wide range is the difference in the recovery plan

execution time. The recovery plan execution is carried out on one machine in the

first three experiments and on a relatively faster machine in the last two experiments.

Therefore, he wider range is possible.

In the third case, machine Leone is failed. The recovery results are given in

figure 8.4. The range of recovery time ranges from 4.61 seconds to 5.04 seconds. Here

also the major contributing factor is the recovery plan execution time. Again because

recovery plan execution is performed in different machines using different plans, the

overall recovery time also shows a widened range.



161

The detailed results of basic experiments are given in Tables 8.1-8.3.

8.2 Synthetic Experiments

In the basic experiments, we found that the two factors that contribute most to

the length of the failure recovery are planning time required by the planner and recovery

plan execution time required by the execution manager. On further investigation we

discovered that recovery execution time does not vary with a large number of compo-

nents and machines. The reason for this is that recovery plan is distributed among one

or multiple machines in the system. All execution agents on the machines execute these

steps in parallel. The more machines there are in the system, the more possibility if

parallel execution is there. However, planning time takes a great deal of time in the

recovery process so parallelism is not available while calculating the plan.

Therefore, we decided to carry out further experiments to find the time that the

planner requires in large-scale system. To simulate large scale systems is not possible

in a laboratory setting because it requires a lot of dedicated resources. Therefore, we

developed a simulator that simulates a large scale system and its failure scenarios.

We did two types of experiments using this simulator. The first type of experi-

ments is machine failure experiments. In these experiments we have 20 machines and

20 component instances (10 Apache and 10 Tomcat). One component instance is placed

Table 8.4: Machine Failures: Time to find the First Plan

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Failures Min Max Avg

61.36 61.21 61.2 61.7 61.2 1 61.21 61.7 61.344

55.64 55.66 55.4 56.78 57.1 2 55.37 57.11 56.112

42.17 42.06 42.5 42.65 42.4 3 42.06 42.65 42.368

31.39 31.61 31.9 31.83 31.3 4 31.32 31.88 31.606

28.4 28.46 28.7 27.71 27.8 5 27.71 28.74 28.228

25.6 25.47 25.7 25.22 25.1 6 25.05 25.72 25.412

22.54 22.2 22.9 22.24 22.2 7 22.2 22.86 22.414

17.05 16.78 16.8 16.85 16.7 8 16.73 17.05 16.844

13.72 12.58 12.9 13.57 12.8 9 12.58 13.72 13.108

11.25 11.37 11.6 12.07 11.7 10 11.25 12.07 11.592
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Figure 8.5: Planning time to find a Plan after Machine Failures
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Figure 8.6: Planning time to find a Plan after Component Failures
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Table 8.5: Machine Failures: Time to find the Best Plan

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Failures Min Max Avg

61.5 61.52 61.4 63.58 61.9 1 61.42 63.58 61.99

56.17 55.86 56.3 57.28 57.6 2 55.86 57.57 56.632

45.84 43.21 45.9 45.04 43 3 42.98 45.93 44.6

33.8 31.91 32.3 31.83 33.3 4 31.83 33.8 32.62

31.19 32.91 29.3 27.76 32.6 5 27.76 32.91 30.758

36.37 25.53 30.3 28.84 26.5 6 25.53 36.37 29.502

28.63 26.76 27 28.14 22.3 7 22.29 28.63 26.558

17.31 22.65 22.3 17.11 18.4 8 17.11 22.65 19.538

14.06 12.92 23.6 14.91 21.5 9 12.92 23.59 17.39

19.78 12.79 11.7 12.24 17 10 11.74 19.78 14.706

Table 8.6: Component Failures: Time to find the First Plan

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Failures Min Max Avg

80.21 81.18 80 81.03 81.2 1 80.03 81.19 80.728

81.43 81.28 80.8 81.41 81.7 2 80.8 81.69 81.322

81.7 82.04 81.1 81.96 82.2 3 81.13 82.15 81.796

82.23 82.08 81.9 81.86 81.8 4 81.81 82.23 81.982

82.36 82.73 82.3 82.46 82.5 5 82.34 82.73 82.468

82.51 82.27 82.3 82.09 82.5 6 82.09 82.51 82.334

82.9 83.26 83.1 82.95 83.1 7 82.9 83.26 83.056

83.98 83.28 83.2 83.29 83 8 82.96 83.98 83.34

83.87 83.95 83.7 84.02 84 9 83.72 84.02 83.916

84.27 84.22 84.2 84.35 83.6 10 83.6 84.35 84.122

Table 8.7: Component Failures: Time to find the Best Plan

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Failures Min Max Avg

80.33 81.18 80.5 81.12 81.5 1 80.33 81.49 80.918

81.43 82.31 81.1 82.05 81.9 2 81.08 82.31 81.748

82.52 84.6 83.3 82.08 82.2 3 82.08 84.6 82.932

83.61 82.38 84.8 81.38 82.7 4 81.38 84.76 82.958

82.62 83.22 84.9 82.61 85.1 5 82.61 85.13 83.692

82.77 85.06 85.1 82.63 82.5 6 82.47 85.07 83.6

82.9 83.47 92 83.21 83.1 7 82.9 92 84.926

85.85 83.91 83.5 88.5 83 8 82.96 88.5 84.94

88.01 84.66 98.2 84.83 93 9 84.66 98.24 89.754

87.43 84.98 86.3 84.35 85.5 10 84.35 87.43 85.704
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on one machine. There are 10 applications deployed on these components. Each appli-

cation is deployed on one instance of Apache and one instance of Tomcat. Therefore,

there are no free resources in the simulated system.

8.2.1 Induced Machine Failures

We induced random failures of machines in the system. In the first case one

machine is failed, in the second two machines are failed and so on. We did experiments

to test up to ten machine failures. The limit of ten was imposed by the planner. To

add credibility to our results we did all these experiments at least five times. During

the experiment, we gave an open time to the planner to find a plan.

The results of these experiments are given in figure 8.5. Two graphs are plotted

in this figure: The first graph shows the amount of time required to find the first plan

and the second graph gives the time to find the best plan. These results are a bit

counterintuitive. The more machine failure we induce, the better is the performance of

the planner.

The reason for this is that as one of our original assumptions, a machine cannot

be restored if it fails. Therefore, the planner is not searching through the facts of the

failed machines because it cannot recover anything on them. Consequently, the search

graph is smaller, which means the search time is smaller. Section 8.4 provides further

discussion.

In the second graph the difference between the time to find the best plan widens

among different runs of the experiments. The reason for this is that the fewer resources

are available in the system, the more time is required to find a best plan. Less resource

availability means that the planner has to search more to find a better plan.
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8.2.2 Induced Component Failures

We did similar experiments with components. The difference here is that only

component failures are induced in the system and the machines continue to work nor-

mally. The same experimental setup is used in these types of experiments. We fail

components one by one up to ten components. As there are two types of components

in the system i.e. Apache and Tomcat, we fail each type of component turn by turn.

Therefore, in our first experiment we have one failed Apache. In the second experiment

we have one failed Apache and one failed Tomcat and so on.

The results of these experiments are given in figure 8.6. Table 8.9 gives the

corresponding actions and facts of the planning problem with each component failure.1

In these experiments as more and more components fail, more time is required by the

planner to search the graph. Overall the time to find the first plan increases with more

component failures. However, as machines are working and the components can be

restored (although we are not restoring them) the time to find the best plan is almost

the same for the failure of up to six components. As there are less resources in the

system remaining, the time to find the best plan increases after more than six failed

components.

The details results of both machine and component failures are given in Tables

8.4-8.7.

8.2.3 Computational Complexity Issues

Detailed complexity analyses for planners are quite difficult and have been rel-

atively rare. Some studies have been conducted to assess the complexity of specific

domains [53], but we were unable to find any domain-independent analyses.

The most important result in planning complexity comes from a paper by Tom

Bylander [19]. In that paper, he shows the rather surprising result that the complexity
1 The last value in this table is an approximation
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Table 8.8: Machine Failures: Corresponding Actions and Facts from the Planner LPG

Number of Machine Failures Actions Facts
1 27200 4868
2 25450 4728
3 21920 4188
4 18590 3677
5 17220 3564
6 14280 3092
7 13100 2994
8 11920 2896
9 9560 2478
10 7400 2084

Table 8.9: Component Failures: Corresponding Actions and Facts from the Planner
LPG

No of Component Failures Actions Facts
1 31140 5446
2 31160 5450
3 31180 5454
4 31200 5458
5 31220 5462
6 31240 5466
7 31240 5468
8 31260 5472
9 31300 5476
10 31320 5480
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of a planner is not dependent on the algorithm it uses. It is instead dependent on

the planning domain combined with the initial state and the goal state. Therefore,

the complexity of a domain is dependent on factors like the number of objects in the

system, pre-conditions, and post conditions. These factors change with each domain

and planning problem (i.e. initial state and goal state).

Assuming that Bylander is correct, then the proper way to analyze the complexity

of a planning system is to examine the domain to which it is being applied. To this

end, we measured the number of actions and facts (which includes the pre- and post-

conditions) for each of our synthetic experiments described in section 8.2.

Table 8.8-8.9 gives the corresponding actions and facts for each experimental

run. They shed more light on our claim that the search space is being reduced. It is

clear that the number of actions and facts are going down with each machine failure.

Therefore, each experiment has a smaller number of facts and consequently the search

tree is smaller. Therefore, the search time with more machines is decreasing in both

graphs.

Additional domain measurements would be desirable. Specifically, we would like

to see how the actions and facts scale with the addition of more artifacts (machines and

components). Unfortunately, our planner is largely a black box, and we cannot obtain

these kinds of measurements at the moment. This must remain in our list for future

work when we may be able to switch to a different and more transparent planner.

8.3 Intensive Experiments

We performed intensive experiments to test two features of our failure recovery

system ‘Recover’: (1) The capability to handle further failures in the system, (2) The

recovery of applications to less strict configurations if the original configuration is not

available. The spectrum of possibilities for this kind of testing is very wide. There-

fore, we present one test run of one of our experiment we performed to test these two
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Figure 8.7: System State After two Consistent Failures
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capabilities.

The architecture of system that we used in this experiment is similar to the ar-

chitecture we used in the basic experiments. However, we only deployed one application

on this system as shown in figure 8.7. The Rubbos application is deployed on machine

Leone. The components on the other machines Serl and Skagen do not have any appli-

cations installed on their respective components. However, these components are still

part of the system and can be used if required. The original state of the system before

any failure is shown in figure 8.7(a).

We induce the failure of machine Leone in the system. Therefore, application

Rubbos which is wholly deployed on Leone suffer a total loss of functionality. The

similar recovery planning as we saw in basci experiments is performed. The relative

times that the system took for recovery are given below.

Table 8.10: Recovery Process After First Failure

Time for each phase (in seconds)
Failure Notification 0.1
Updating Models/Analysis of System 0.25
Developing Initial and Goal State 0.9
Recovery Planning 2.62
Plan Interpretation & Dispatch 0.2
Recovery Notification 0.1
Recovery Plan Execution 2.49
Recovery Results 0.1
Total Recovery Time 6.76

This recovery process restores the application Rubbos on Skagen, using its Apache

and Tomcat instances. Now the application Rubbos is working on Skagen. The system

state at this time is shown in figure 8.7(b).

When it is ensured that application Rubbos is working on Skagen, we induce the

failure of machine Skagen in the system. The recover process started and following

measurements are taken
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Table 8.11: Recovery Process After Second Failure

Time for each phase (in seconds)
Failure Notification 0.1
Updating Models/Analysis of System 0.24
Developing Initial and Goal State 0.9
Recovery Planning 5

The planner is given maximum of five seconds of cpu time to find the plan.

However, as one can see there is no Tomcat available on Serl and Tigre. Therefore,

the planner after using its five seconds is still not able to find a plan. Because of the

unavailability of Tomcat no matter how much time we give to the planner, it still is not

able to find a plan to restore Rubbos to its original configuration.

When the monitor detects that there is no plan given as output by the planner

it invokes Target Configuration Manager (TCM) because the application Rubbos could

not be restored to its original configuration. The TCM finds a new less strict configura-

tion using the ACM, that only requires Apache and Mysql for the application Rubbos.

The monitor starts again from model updating and the following measurements are

performed.

Table 8.12: Recovery Process After Second Failure

Time for each phase (in seconds)
Developing Initial and Goal State 0.3
Recovery Planning 2.68
Plan Interpretation & Dispatch 0.4
Recovery Notification 0.1
Recovery Plan Execution 0.19
Recovery Results 0.1
Total Recovery Time 10.13

The models are updated again. The monitor also writes a new problem file with

the new configuration as the goal state. It then gives the planner the new problem

file. At this time, the planner is able to find a plan for the new configuration and it
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finds machine Serl to have all the dependencies for the new configuration. Therefore,

the less strict configuration of application Rubbos is deployed on machine Serl and it

starts operating with a reduced functionality. The total time to recover the application

Rubbos is 10.13 seconds. The new state of the system is given in figure 8.7(c).

In brief, our failure recovery system ‘Recover’ is able handle multiple failures in

the system, Moreover, it is also capable of recovering an application to a lesser strict

configuration if for some reason the original configuration is not attainable.

8.4 Conclusion

This experimentation exercise led us to believe that automating a failure recovery

process in component-based distributed systems is indeed a possibility. However, to

achieve this the most important aspect is to model these systems with failure recovery

in mind. We have shown with these experiments that how an off-the-self system can

be modeled to achieve automated failure recovery. These experiments have also shown

that to ease the job of an administrator we need to model systems at the micro-level

i.e. configuration files because the complexity of these systems is really hidden in them.

Modeling at the micro-level also provided the ability to specify high-level goals.

Our experiments have also shown that AI planning is indeed an effective tool for

modeling and recovering a system from failure recovery. AI planning gave us several

advantages over normal search based planning. First, it is fast as compared to the other

search based techniques. Second, we are able to specify high-level goals and the planner

itself found the low-level actions to achieve that goal. This is not possible in normal

search techniques. Finally, planning give us a step by step plan optimizing the time and

resource usage. It is very difficult and in come cases not possible for search techniques

to do such optimizations.

Furthermore, our experiments have also shown that developing a failure recovery

script at run-time is also possible. This run-time development of scripts also gave
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several advantages. First, it is not required by an administrator to develop recovery

scripts manually. Second, the development of script is very fast and is usually a fraction

of a second when a plan is already in place. Third, the script is ordered in terms of

the dependencies of the system so no action can take place unless a dependency of that

action is already in place.

Finally, we stress that the results of these experiments are possible due to better

modeling of the system for automated failure recovery. Better modeling always requires

more time and cost e.g. the time to develop an AI planning domain. However, the

cost and time spent on this modeling is amortized over time from the availability of the

system.



Chapter 9

Future Research and Conclusion

9.1 Future Research

The research presented in this dissertation raised some interesting new problems.

Some of the problems are directly stemmed from this research and can solve other

problems in failure recovery. However, others are general that can help anybody doing

research in component-based distributed systems.

9.1.1 Dealing with Failures during Failure Recovery

An important aspect of recovering from failures is to handle further failures in the

system [10]. We have dealt with certain types of extended failures in this dissertation.

However, the range of further failures is too broad. Therefore, the goal of this future

research is to handle failures during failure recovery. As a recovering system is already

in an inconsistent state, more failures can create a much more complicated situation.

Therefore, these extended failures must be handled according to the extent of the failure

and the state of the recovering system. In this research, we will find techniques such

that the failure recovery in the systems is reliable. This research will find stable points

in sequence of failures or extended failures when a recovery can be initiated. Moreover,

it should deal with extended failures in the system and furthermore, it recovers the

system without impacting the other unrelated components of the system.
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9.1.2 Addition of More Resources in the System

Although we have assumeed that a machine and other resources cannot be recov-

ered from a failure. However, in real world situations this is seldom true. Therefore,

an interesting direction for future research is to take into account resources addition

in future and to redeploy the applications. Even in normal scenarios this research is

useful when more resources are added in the system and the applications needs to be

redeployed to balance the load.

9.1.3 Developing a Framework for Developing Scripts for Reconfigura-

tion

The development of scripts that can play a role of interface to the outside world

is not very mature. Another interesting research topic is to develop a framework for

developing these scripts so that one can easilt develop a new script without much prob-

lem. Presently one needs to be really proficient in the scripting langauge to develop

good scripts.

9.1.4 Automated Mechanism to Develop a Planning Domain

Development of a planning domain is probably the most important in modeling

a system for failure recovery. Therefore, good guidelines and tools must be developed

to make this process easier for developer or administrator. This tood can be made such

that the users dpecify the requirements and dependencies and the tood automatically

generate a skeleton domain.

9.1.5 Dynamic Reconfiguration to Improve System Performance

Dynamic reconfiguration can be used in large scale distributed systems to improve

system performance. There are some steps that are required to improve the system

performance at runtime.
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First, runtime performance improvement requires runtime performance measure-

ment. Most of the techniques of measuring performance require the system to be taken

off-line. There are no good techniques available for runtime performance measurement

in live distributed systems. Therefore, the first goal of this project is to be develop tools

and metrics to measure the performance of a given working system at any given time

or between two time instances.

The second step is to find out the bottlenecks that cause the performance degra-

dation. The initial approach to find the bottleneck is based on two kinds of probes:

internal and external. External probe calculate the response time from the system and

detects any performance degradation. Based on the results of the external probe the

internal probe look at the components of the system and detects the component creating

the performance degradation. Depending on the results from both the probes the third

step is to perform the reconfiguration on the system to improve the system performance.

9.1.6 Distributed Systems Simulator

Development of component-based distributed systems is difficult because in most

research environments it is difficult to evaluate their behavior in large scale settings.

Therefore, most of the papers in component-based systems lack key performance data.

Although many simulators for distributed systems are available, however, most

of these simulators simulate the levels below the application layer i.e. network and

operating system levels. Therefore, in this future research we will develop a distributed

systems simulator based on an extendible framework. This distributed simulator will be

capable of having platform and language plugins to simulate the behavior on a certain

platform or language. Therefore, the behavior of components developed in different

languages for a variety of platforms can be tested and evaluated using this simulator.

Initially, the goal is to develop a simulator to support homogeneous systems such as

java-based systems and later we will extend it to heterogeneous systems.
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9.1.7 Failure Forensics

It is also important for an administrator of the system to know about the failures

and recovery performed by an automated system. Therefore, a way to store informa-

tion about all the actions done by automated failure recovery system is needed. By

having this kind of system the administrator can also diagnose problems that are not

automatically solved by the recovery system itself.

9.2 Conclusion

In this dissertation we have presented an automated failure technique based on

continuous monitoring and AI planning. Our technique is unique in a sense that it

requires very little from the user during the running of the system. Therefore, if this

technique is properly applied to the system after careful modeling, the systems will be

able to automatically recover from failures without much human intervention. Having

said we are not replacing the role of a human being in system administration. We are

not at a point where we claim that our work is a panacea for all failure recovery in all

types of distributed systems. Our technique can be applied to certain types of systems

under certain failure scenario.

One of the most unique aspects of our technique is using AI planning for failure

recovery. According to our literature survey nobody has used AI planning in failure

recovery scenarios. However, AI planning has its own limitations in terms of represen-

tation of the system being modeled. Therefore, one cannot solely rely on AI planning.

But AI planning, along with other techniques can be a powerful tool for failure recovery

and anywhere where dynamic configuration of a system is required.
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Appendix A

Initial and Goal State

(
define ( problem testp1 )
( :domain final domain )
(:objects
leone serl serl-back skagen tigre - machine
httpd - file
libphp4 jsp mime alias rpc cache benchmark security ssl setenvif imap
dr - module
libphp4 service mime service alias service rpc service cache service
benchmark service security service imap service jsp service
ssl service setenvif service - service
mod jk mod jk2 mod proxy - connector
apache skagen apache serl-back apache leone apache serl - apache
tomcat skagen tomcat leone - tomcat
rubbos sms webcal - application
)
(:init
(= (max-machine-load leone) 100)
(= (max-machine-load serl) 100)
(= (max-machine-load serl-back) 100)
(= (max-machine-load skagen) 100)
(= (max-machine-load tigre) 100)
(= (current-machine-load leone) 10)
(= (current-machine-load serl) 10)
(= (current-machine-load serl-back) 10)
(= (current-machine-load skagen) 10)
(= (current-machine-load tigre) 10)
(= (time-to-start-apache apache skagen) 2000)
(= (time-to-start-tomcat tomcat skagen) 3000)
(= (time-to-start-apache apache serl-back) 1000)
(= (time-to-start-apache apache leone) 9000)
(= (time-to-start-tomcat tomcat leone) 5000)
(= (time-to-start-apache apache serl) 7000)
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(= (application-count apache skagen) 1)
(= (application-count apache serl-back) 1)
(= (application-count apache leone) 0)
(= (application-count apache serl) 1)
(= (time-to-restart-apache apache skagen) 3000)
(= (time-to-restart-tomcat tomcat skagen) 4000)
(= (time-to-restart-apache apache serl-back) 1200)
(= (time-to-restart-apache apache leone) 11000)
(= (time-to-restart-tomcat tomcat leone) 2100)
(= (time-to-restart-apache apache serl) 9000)
(= (apache-load apache skagen) 50)
(= (tomcat-load tomcat skagen) 20)
(= (apache-load apache serl-back) 10)
(= (apache-load apache leone) 10)
(= (tomcat-load tomcat leone) 20)
(= (apache-load apache serl) 50)
(= (time-to-import-application-in-apache rubbos) 1)
(= (time-to-import-application-in-tomcat rubbos) 1)
(= (time-to-import-application-in-apache sms) 1)
(= (time-to-import-application-in-tomcat sms) 1)
(= (time-to-import-application-in-apache webcal) 1)
(= (time-to-import-application-in-tomcat webcal) 1)

(machine-working leone)
(application-available sms leone)
(application-available rubbos leone)
(application-available webcal leone)
(apache-installation-available apache leone leone)
(tomcat-installation-available tomcat leone leone)

(machine-failed serl)
(application-available sms serl)
(application-available rubbos serl)
(application-available webcal serl)
(apache-installation-available apache serl serl)

(machine-working serl-back)
(application-available sms serl-back)
(application-available rubbos serl-back)
(application-available webcal serl-back)
(apache-installation-available apache serl-back serl-back)

(machine-working skagen)
(application-available sms skagen)
(application-available rubbos skagen)
(application-available webcal skagen)
(apache-installation-available apache skagen skagen)
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(tomcat-installation-available tomcat skagen skagen)

(machine-working tigre)
(application-available sms tigre)
(application-available rubbos tigre)
(application-available webcal tigre)

(apache-working apache skagen skagen)
(apache-has-configuration-file apache skagen httpd)
(apache-has-module-installation apache skagen setenvif skagen)
(apache-module-provides-service apache skagen setenvif setenvif service)
(apache-has-installed-module apache skagen ssl skagen)
(apache-providing-service apache skagen skagen ssl service)
(apache-has-installed-module apache skagen libphp4 skagen)
(apache-providing-service apache skagen skagen libphp4 service)
(connector-available-in-apache mod jk apache skagen skagen)
(connector-available-in-apache mod proxy apache skagen skagen)

(tomcat-working tomcat skagen skagen)
(connector-available-in-tomcat mod jk tomcat skagen skagen)
(connector-available-in-tomcat mod proxy tomcat skagen skagen)

(apache-working apache serl-back serl-back)
(apache-has-configuration-file apache serl-back httpd)
(apache-has-module-installation apache serl-back ssl serl-back)
(apache-module-provides-service apache serl-back ssl ssl service)
(apache-has-installed-module apache serl-back jsp serl-back)
(apache-providing-service apache serl-back serl-back jsp service)
(apache-has-installed-module apache serl-back libphp4 serl-back)
(apache-providing-service apache serl-back serl-back libphp4 service)
(connector-available-in-apache mod jk apache serl-back serl-back)
(connector-available-in-apache mod proxy apache serl-back serl-back)

(apache-working apache leone leone)
(apache-has-configuration-file apache leone httpd)
(apache-has-module-installation apache leone jsp leone)
(apache-module-provides-service apache leone jsp jsp service)
(apache-has-installed-module apache leone ssl leone)
(apache-providing-service apache leone leone ssl service)
(connector-available-in-apache mod jk apache leone leone)
(connector-available-in-apache mod proxy apache leone leone)
(connector-available-in-apache mod jk2 apache leone leone)

(tomcat-working tomcat leone leone)
(connector-available-in-tomcat mod jk2 tomcat leone leone)
(connector-available-in-tomcat mod proxy tomcat leone leone)
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(apache-has-configuration-file apache serl httpd)
(apache-has-module-installation apache serl setenvif serl)
(apache-module-provides-service apache serl setenvif setenvif service)
(apache-has-installed-module apache serl ssl serl)
(apache-providing-service apache serl serl ssl service)
(apache-has-installed-module apache serl libphp4 serl)
(apache-providing-service apache serl serl libphp4 service)
(connector-available-in-apache mod jk apache serl serl)
(connector-available-in-apache mod proxy apache serl serl)

(application-ready-in-tomcat rubbos tomcat leone leone)
(tomcat-configured tomcat leone leone)

(application-ready-in-apache sms apache skagen skagen)
(apache-configured apache skagen skagen)
(application-ready-in-tomcat sms tomcat skagen skagen)
(tomcat-configured tomcat skagen skagen)

(application-ready-in-apache webcal apache serl-back serl-back)
(apache-configured apache serl-back serl-back)
(application-requires-service rubbos ssl service)
(application-requires-service webcal libphp4 service)
)
(:goal
(and
(application-ready-1 rubbos)
)
)
(:metric minimize (time-to-start-apache))
)



Appendix B

Plan

; Version LPG-td-1.0
; Seed 15958803
; Command line: lpg-td-1.0 -o final domain.pddl -f testp1.pddl -n 5 -
cputime 20
; Problem testp1.pddl
; Time 3.62
; Search time 0.00
; Parsing time 3.60
; Mutex time 0.01
; Quality 0.60

Time 3.62

0.0003: (RECONFIGURE-APACHE SKAGEN APACHE SKAGEN
RUBBOS HTTPD)
1.0005: (IMPORT-APPLICATION-IN-APACHE SKAGEN APACHE SKAGEN
RUBBOS)
2.0008: (UPDATE-CONFIGURATION-FILE-FOR-RECONFIGURATION-
ADDVIRTUALHOST SKAGEN APACHE SKAGEN HTTPD
RUBBOS SMS)
7.0010: (RESTART-APACHE-WITH-VIRTUALHOST SKAGEN APACHE SKAGEN
RUBBOS SMS)
3007.0012: (ADD-CONNECTIVITY SKAGEN LEONE APACHE SKAGEN
TOMCAT LEONE MOD PROXY RUBBOS)
3008.0015: (START-SYSTEM-1 SKAGEN LEONE RUBBOS APACHE SKAGEN
TOMCAT LEONE MOD PROXY SSL SERVICE
LIBPHP4)



Appendix C

Failure Recovery Planning Domain

(define (domain final_domain)
(:requirements :strips :typing :equality :adl :fluents)
(:types

machine apache tomcat file application module connector
service mysql software - object
)

(:predicates
(application-available ?app - application ?ma - machine)
(application-requires-service ?app - application ?s - service)
(application-ready-5 ?app - application ?ap - apache ?s - service
?t - tomcat ?con - connector)
(application-ready-4 ?app - application ?ap - apache ?t - tomcat
?con - connector)
(application-ready-3 ?app - application ?ap - apache ?t - tomcat)
(application-ready-2a ?app - application ?ap - apache)
(application-ready-2a-with-service ?app - application ?ap - apache
?s - service)
(application-ready-2b ?app - application ?t - tomcat)
(application-ready-1 ?app - application)
(application-ready-3-with-connectivity ?app - application
?ap - apache ?t - tomcat)
(application-ready-3-with-service ?app - application
?ap - apache ?t - tomcat ?s - service)
(application-ready-3-with-connectivity-and-service
?app - application ?ap - apache ?t - tomcat ?s - service)
(application-ready-1a ?app - application)
(application-ready-1b ?app - application)
(application-ready-in-apache ?app - application ?ap - apache
?ma - machine)
(application-ready-in-tomcat ?app - application ?t - tomcat
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?ma - machine)
(machine-working ?ma - machine)
(machine-failed ?ma - machine)
(virtualhostadded-in-apache ?ap - apache ?app1 - application
?app2 - application)
(import-application-to-apache ?app - application ?ap - apache
?ma - machine)
(application-available-in-apache ?app - application
?ap - apache ?ma - machine)
(apache-working ?ap - apache ?ma - machine)
(apache-has-configuration-file ?ap - apache ?f - file)
(apache-has-installed-module ?ap - apache ?mo - module ?ma - machine)
(apache-has-module-installation ?ap - apache ?mo - module ?ma - machine)
(apache-module-provides-service ?ap - apache ?mo - module ?s - service)
(apache-providing-service ?ap - apache ?ma - machine ?s - service)
(apache-configured ?ap - apache ?ma - machine)
(apache-installation-available ?ap - apache ?ma - machine)
(apache-configuration-file-require-modification ?ap - apache
?ma - machine ?f - file)
(apache-configuration-file-updated ?ap - apache ?ma - machine ?f - file)

(connectivity-available ?ap - apache ?ma1 - machine ?t - tomcat
?ma2 - machine ?con - connector)
(connector-configuration-required ?ap - apache ?ma - machine
?t - tomcat ?ma - machine ?con - connector)
(connection-configured ?ap - apache ?ma - machine ?t - tomcat
?ma - machine ?con - connector)
(apache-reconfigured ?ap - apache ?m - machine)
(virtualhostadded ?c - apache ?a1 - application ?a2 - application)
(apache-module-require-configuration ?ap - apache
?ma - machine ?mo - module)
(connector-available-in-apache ?con - connector ?ap - apache
?ma - machine)
(connector-available-in-tomcat ?con - connector ?t - tomcat
?ma - machine)
(application-available-in-tomcat ?app - application ?t - tomcat
?ma - machine)
(tomcat-installation-available ?t - tomcat ?ma - machine)
(import-application-to-tomcat ?app - application ?t - tomcat
?ma - machine )
(tomcat-configured ?t - tomcat ?ma - machine)
(tomcat-working ?t - tomcat ?ma - machine)
)

(:functions
(time-to-start-apache ?ap - apache)
(time-to-restart-apache ?ap - apache)
(time-to-start-tomcat ?t - tomcat)
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(time-to-restart-tomcat ?t - tomcat)
(max-machine-load ?ma - machine)
(current-machine-load ?ma - machine)
(apache-load ?ap - apache)
(tomcat-load ?t - tomcat)
(time-to-import-application-in-apache ?app - application)
(time-to-import-application-in-tomcat ?app - application)
(application-count ?a - apache)
)

(:durative-action add-module-to-apache
:parameters (?ma - machine ?ap - apache ?mo - module ?s - service)
:duration

(= ?duration 1)
:condition
(and
(at start (apache-installation-available ?ap ?ma))
(at start (apache-has-module-installation ?ap ?mo ?ma))
(at start (not (apache-has-installed-module ?ap ?mo ?ma )))
(at start (apache-module-provides-service ?ap ?mo ?s))
)
:effect
(and
(at end (apache-module-require-configuration ?ap ?ma ?mo))
)
)

(:durative-action configure-module-in-apache
:parameters (?ma - machine ?ap - apache ?mo - module ?s - service)
:duration

(= ?duration 1)
:condition
(and
(at start (apache-module-require-configuration ?ap ?ma ?mo))
(at start (apache-module-provides-service ?ap ?mo ?s))
)
:effect
(and
(at end (apache-has-installed-module ?ap ?mo ?ma))
)
)

(:durative-action configure-apache
:parameters (?ma - machine ?ap - apache ?app - application ?f - file)
:duration

(= ?duration 5)
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:condition
(and
(at start (apache-installation-available ?ap ?ma))
(at start (not (apache-working ?ap ?ma)))
(at start (apache-has-configuration-file ?ap ?f))
)
:effect
(and
(at end (apache-configuration-file-require-modification ?ap ?ma ?f))
(at end (import-application-to-apache ?app ?ap ?ma))
)
)

(:durative-action import-application-in-apache
:parameters (?ma - machine ?ap - apache ?app - application)
:duration
(= ?duration (time-to-import-application-in-apache ?app))
:condition
(and
(at start (not (application-available-in-apache ?app ?ap ?ma )))
(at start (import-application-to-apache ?app ?ap ?ma))

(at start (application-available ?app ?ma))
)
:effect
(and
(at end (application-available-in-apache ?app ?ap ?ma))

)
)
(:durative-action update-configuration-file-for-
configuration-settingup-application
:parameters (?ma - machine ?ap - apache ?f - file ?app - application)
:duration

(= ?duration 1)
:condition
(and
(at start (apache-configuration-file-require-modification ?ap ?ma ?f))
(at start (application-available-in-apache ?app ?ap ?ma))
)
:effect
(and
(at end (apache-configuration-file-updated ?ap ?ma ?f))
(at end (apache-configured ?ap ?ma))

)
)
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(:durative-action start-apache-with-service
:parameters (?ma - machine ?ap - apache ?app - application
?s - service ?mo - module)
:duration

(= ?duration (time-to-start-apache ?ap))
:condition
(and
(at start (apache-configured ?ap ?ma))
(at start (not (apache-working ?ap ?ma)))
(at start (machine-working ?ma))
(at start (application-available-in-apache ?app ?ap ?ma))
(at start (> (- (max-machine-load ?ma) (current-machine-load ?ma))
(apache-load ?ap) ))
(at start (apache-has-installed-module ?ap ?mo ?ma))
(at start (apache-module-provides-service ?ap ?mo ?s ))
(at start (application-requires-service ?app ?s))
)
:effect
(and
(at end (apache-working ?ap ?ma))

(at end (apache-providing-service ?ap ?ma ?s))
(at end (application-ready-in-apache ?app ?ap ?ma))

(at start (increase (current-machine-load ?ma) (apache-load ?ap)))
)
)
(:durative-action start-apache
:parameters (?ma - machine ?ap - apache ?app - application)
:duration

(= ?duration (time-to-start-apache ?ap))
:condition
(and
(at start (apache-configured ?ap ?ma))
(at start (not (apache-working ?ap ?ma)))
(at start (machine-working ?ma))
(at start (application-available-in-apache ?app ?ap ?ma))
(at start (> (- (max-machine-load ?ma) (current-machine-load ?ma))
(apache-load ?ap) ))
)
:effect
(and
(at end (apache-working ?ap ?ma))

(at end (application-ready-in-apache ?app ?ap ?ma))
(at start (increase (current-machine-load ?ma) (apache-load ?ap)))
)
)
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(:durative-action reconfigure-apache
:parameters (?ma - machine ?ap - apache ?app - application ?f - file)
:duration

(= ?duration 1)
:condition
(and
(at start (apache-installation-available ?ap ?ma))
(at start (apache-working ?ap ?ma))
(at start (apache-has-configuration-file ?ap ?f))
)
:effect
(and
(at end (apache-configuration-file-require-modification ?ap ?ma ?f))
(at end (import-application-to-apache ?app ?ap ?ma))
)
)
(:durative-action update-configuration-file-for-
reconfiguration-addvirtualhost
:parameters (?ma - machine ?ap - apache ?f - file
?app1 - application ?app2 - application)
:duration

(= ?duration 5)
:condition
(and
(at start (apache-configuration-file-require-modification ?ap ?ma ?f))
(at start (application-available-in-apache ?app1 ?ap ?ma))
(at start (application-ready-in-apache ?app2 ?ap ?ma))
(at start (not (virtualhostadded-in-apache ?ap ?app1 ?app2)))
)
:effect
(and
(at end (virtualhostadded-in-apache ?ap ?app1 ?app2))
(at end (apache-configuration-file-updated ?ap ?ma ?f))
(at end (apache-configured ?ap ?ma))

)
)
(:durative-action restart-apache-with-service
:parameters (?ma - machine ?ap - apache ?app1 - application
?s - service ?mo - module)
:duration

(= ?duration (time-to-restart-apache ?ap))
:condition
(and
;;(at start (virtualhostadded-in-apache ?ap ?app1 ?app2))
(at start (apache-working ?ap ?ma))
(at start (apache-has-installed-module ?ap ?mo ?ma))



198

(at start (apache-module-provides-service ?ap ?mo ?s ))
(at start (application-available-in-apache ?app1 ?ap ?ma))
(at start (machine-working ?ma))
(at start (> (- (max-machine-load ?ma) (current-machine-load ?ma))
(apache-load ?ap) ))
(at start (application-requires-service ?app1 ?s))
)
:effect
(and
(at end (apache-working ?ap ?ma))
(at end (apache-providing-service ?ap ?ma ?s))
(at end (application-ready-in-apache ?app1 ?ap ?ma))
;;(at end (application-ready-in-apache ?app2 ?ap ?ma))
(at start (increase (current-machine-load ?ma) (apache-load ?ap)))
)
)
(:durative-action restart-apache-with-virtualhost
:parameters (?ma - machine ?ap - apache ?app1 - application
?app2 - application)
:duration

(= ?duration (time-to-restart-apache ?ap))
:condition
(and
(at start (virtualhostadded-in-apache ?ap ?app1 ?app2))
(at start (apache-working ?ap ?ma))
(at start (machine-working ?ma))
(at start (> (- (max-machine-load ?ma) (current-machine-load ?ma))
(apache-load ?ap) ))
)
:effect
(and
(at end (apache-working ?ap ?ma))
(at end (application-ready-in-apache ?app1 ?ap ?ma))
(at end (application-ready-in-apache ?app2 ?ap ?ma))
(at start (increase (current-machine-load ?ma) (apache-load ?ap)))
)
)
(:durative-action restart-apache
:parameters (?ma - machine ?ap - apache ?app1 - application)
:duration

(= ?duration (time-to-restart-apache ?ap))
:condition
(and

(at start (apache-working ?ap ?ma))
(at start (machine-working ?ma))
(at start (> (- (max-machine-load ?ma) (current-machine-load ?ma))
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(apache-load ?ap) ))
(at start (application-available-in-apache ?app1 ?ap ?ma))
(at start (< (application-count ?ap) 1))
)
:effect
(and
(at end (apache-working ?ap ?ma))
(at end (application-ready-in-apache ?app1 ?ap ?ma))
(at start (increase (application-count ?ap) 1))
(at start (increase (current-machine-load ?ma) (apache-load ?ap)))
)
)
(:durative-action configure-tomcat
:parameters (?ma - machine ?t - tomcat ?app - application )
:duration

(= ?duration 1)
:condition
(and
(at start (tomcat-installation-available ?t ?ma))
(at start (not (tomcat-working ?t ?ma)))

)
:effect
(and
(at end (import-application-to-tomcat ?app ?t ?ma))
)
)
(:durative-action reconfigure-tomcat
:parameters (?ma - machine ?t - tomcat ?app - application )
:duration

(= ?duration 5)
:condition
(and
(at start (tomcat-installation-available ?t ?ma))
(at start (tomcat-working ?t ?ma))

)
:effect
(and
(at end (import-application-to-tomcat ?app ?t ?ma))
)
)
(:durative-action import-application-in-tomcat
:parameters (?ma - machine ?t - tomcat ?app - application)
:duration
(= ?duration (time-to-import-application-in-tomcat ?app))
:condition
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(and
(at start (application-available ?app ?ma))
(at start (import-application-to-tomcat ?app ?t ?ma))
(at start (not (application-available-in-tomcat ?app ?t ?ma)))
)
:effect
(and
(at end (application-available-in-tomcat ?app ?t ?ma))
(at end (tomcat-configured ?t ?ma))

)
)
(:durative-action start-tomcat
:parameters (?ma - machine ?t - tomcat ?app - application)
:duration

(= ?duration (time-to-start-tomcat ?t))
:condition
(and
(at start (tomcat-configured ?t ?ma))
(at start (not (tomcat-working ?t ?ma)))
(at start (machine-working ?ma))
(at start (application-available-in-tomcat ?app ?t ?ma))
(at start (> (- (max-machine-load ?ma) (current-machine-load ?ma))
(tomcat-load ?t) ))

)
:effect
(and
(at end (tomcat-working ?t ?ma))
(at end (application-ready-in-tomcat ?app ?t ?ma))
(at start (increase (current-machine-load ?ma) (tomcat-load ?t)))
)
)
(:durative-action restart-tomcat
:parameters (?ma - machine ?t - tomcat ?app - application)
:duration

(= ?duration (time-to-start-tomcat ?t))
:condition
(and
(at start (tomcat-configured ?t ?ma))
(at start (tomcat-working ?t ?ma))
(at start (machine-working ?ma))
(at start (application-available-in-tomcat ?app ?t ?ma))
(at start (> (- (max-machine-load ?ma) (current-machine-load ?ma))
(tomcat-load ?t) ))

)
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:effect
(and
(at end (tomcat-working ?t ?ma))
(at end (application-ready-in-tomcat ?app ?t ?ma))
(at start (increase (current-machine-load ?ma) (tomcat-load ?t)))
)
)
(:durative-action add-connectivity
:parameters (?ma1 - machine ?ma2 - machine ?ap - apache
?t - tomcat ?con - connector ?app1 - application)
:duration
(= ?duration 1)
:condition
(and
(at start (tomcat-configured ?t ?ma2))
(at start (apache-configured ?ap ?ma1))
(at start (connector-available-in-apache ?con ?ap ?ma1 ))
(at start (connector-available-in-tomcat ?con ?t ?ma2 ))
(at start (application-ready-in-apache ?app1 ?ap ?ma1))
(at start (application-ready-in-tomcat ?app1 ?t ?ma2))

)
:effect
(and

(at end (connectivity-available ?ap ?ma1 ?t ?ma2 ?con))
)
)
(:durative-action start-system-1
:parameters (?ma1 - machine ?ma2 - machine ?app - application
?ap - apache ?t - tomcat ?con - connector ?s - service
?mo - module)
:duration
(= ?duration 1)
:condition
(and
(at start (connectivity-available ?ap ?ma1 ?t ?ma2 ?con))
(at start (application-ready-in-apache ?app ?ap ?ma1))
(at start (tomcat-working ?t ?ma2))
(at start (application-ready-in-tomcat ?app ?t ?ma2))
(at start (apache-working ?ap ?ma1))
(at start (machine-working ?ma1))
(at start (machine-working ?ma2))
(at start (not (machine-failed ?ma2)))
(at start (not (machine-failed ?ma1)))
(at start (apache-providing-service ?ap ?ma1 ?s))
(at start (application-requires-service ?app ?s))
(at start (apache-has-installed-module ?ap ?mo ?ma1))
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)
:effect
(and

(at end (application-ready-1 ?app ))

)
)
(:durative-action start-system-1a
:parameters (?ma1 - machine ?app - application
?ap - apache ?s - service)
:duration
(= ?duration 1)
:condition
(and
(at start (application-ready-in-apache ?app ?ap ?ma1))
(at start (apache-working ?ap ?ma1))
(at start (machine-working ?ma1))
(at start (not (machine-failed ?ma1)))
(at start (apache-providing-service ?ap ?ma1 ?s))
(at start (application-requires-service ?app ?s))
)
:effect
(and

(at end (application-ready-1a ?app ))

)
)
(:durative-action start-system-1b
:parameters (?ma2 - machine ?app - application
?t - tomcat ?con - connector)
:duration
(= ?duration 1)
:condition
(and
(at start (tomcat-working ?t ?ma2))
(at start (application-ready-in-tomcat ?app ?t ?ma2))
(at start (machine-working ?ma2))
(at start (not (machine-failed ?ma2)))
)
:effect
(and

(at end (application-ready-1b ?app ))

)))


