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Although the number and variety of available con�guration management (CM)

systems has grown rapidly in the past few years, the need to construct new CM systems

remains. The desire to manage di�erent kinds of artifacts other than source code,

situations demanding highly specialized solutions, and the exploration of new research

questions all may require the construction of a novel CM system. Unfortunately, in

the face of today's move towards distributed projects, this is becoming an increasingly

daunting task for which existing CM technology provides little to no support.

This dissertation contributes a novel reusable testbed that supports the rapid

development of|potentially distributed|prototype CM systems. The testbed sepa-

rates CM repositories from CM policies by providing a generic model of a distributed

repository and an associated programmatic interface. Together, the repository model

and programmatic interface stipulate a precisely de�ned abstraction layer upon which

speci�c CM policies are built. In particular, CM policies are programmed as unique

extensions to the interface, while the underlying distributed repository is reused across

di�erent policies. Within the abstraction layer, distribution is isolated. Low-level de-

tails of distributed programming are placed within the implementation of the repository

model whereas distribution aspects that are controlled at the policy programming level

are placed in a separate, orthogonal functional category within the programmatic inter-

face.

Two tangible bene�ts result from the use of the reusable testbed. First, the

e�ort required in constructing prototype CM systems is reduced signi�cantly because

the generic repository is reused and the CM policy is easily implemented. Second, the
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rapid exploration of new CM policies is enabled, leading to the creation of unique CM

policies that are tailored to speci�c situations.

The testbed is evaluated abstractly, by mapping ten CM policies onto the reposi-

tory model and programmatic interface. Additionally, it is evaluated concretely through

the use of a prototype, called NUCM, upon which three novel CM policies are im-

plemented. Demonstrating the expressiveness, feasibility, utility, and validity of the

testbed, these policies are characterized by their rapid development, ease of change,

incremental evolution, and seamless distributed operation.
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Chapter 1

Introduction

Con�guration management (CM) is the discipline of managing the evolution of

large and complex software systems [Tic88]. It encompasses many di�erent activities,

including coordinating multiple developers making simultaneous updates to one or more

artifacts, archiving historical versions of artifacts, selecting a con�guration of artifacts,

identifying the artifacts that make up a con�guration, and building a derived artifact

out of its source artifacts.

Since its beginnings in the early 1970s, the discipline of CM has slowly but surely

evolved. The marketplace for CM products is now worth well over one billion dollars

per year [BW98]. More than one hundred commercial CM systems, representing a wide

range of functionality, are currently available. Some are simple clones of SCCS [Roc75]

and RCS [Tic85], while others have pushed the state of the art quite considerably and

o�er a full spectrum of functionality [Dar91]. Most other CM systems fall somewhere

in between, each providing some distinguishing combination of functionality.

1.1 Problem

Despite the variety of available systems, several compelling reasons exist to con-

tinue the development of new CM systems. First, it is recognized that the bene�ts

provided by the use of a con�guration management system also apply to domains

other than the traditional domain of source code. Web sites [Mor96], software ar-
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chitectures [CW98a], and legal databases [Leu94] are just a few of the domains in which

the need for an adequate con�guration management system has been reported. A sec-

ond reason is that certain situations require highly specialized CM functionality that is

currently not provided by CM systems. For instance, required compliance with a set

of company standards [Ray95], the desire for an e-mail based capability to synchronize

distributed workspaces [Mil97], and the need to trace �ne-grained artifacts [LT98] all

led to the development of new CM systems that speci�cally targeted the problem at

hand. A third reason is that the �eld of con�guration management continues to evolve

through the research and development of new approaches. Some of these approaches,

as exempli�ed by EPOS [GKY91], ICE [ZS97], and the Software Dock [HHW99], break

traditional assumptions and require the construction of a new type of CM system.

Although desirable from a reuse point of view, current CM systems cannot be used

in the implementation or even the prototyping of new CM systems. Simple modi�cations

to existing functionality, such as changing roles, access rights, or transition conditions

of states, already require source code changes or additional scripts that use triggers and

event mechanisms [Dar96]. Because the construction of a new (prototype) CM system

would require far more complex changes, current CM systems are simply not a suitable

platform for such construction. Several reasons can be identi�ed for this inadequacy.

� CM systems focus on the management of source code.

If other types of artifacts need to be managed and con�gured, only a limited

amount of support is available. Consider the build process. Most CM systems

incorporate some variant of Make [Fel79]. As recognized and demonstrated by

Odin [Cle95], however, Make is rather limited and a more generic solution can

be devised that not only supports the build process but also other types of

derivations.

� CM systems are inexible in terms of the functionality they provide.
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If new approaches are developed that are in conict with some of the as-

sumptions that underlie this inexibility, little to no help is available to im-

plement those approaches. For example, underlying the virtual �le system of

ClearCase [Atr92] is the assumption that workspaces are continuously connected

to a central server. Of course, this assumption is in violation of a CM system

that desires to provide disconnected operation.

� CM systems are constructed based on a rigid architecture.

If new functionality requires changes to this architecture, the changes tend to be

far reaching and diÆcult to implement. A particularly illuminating example of

this problem is provided by the recent advent of distribution. Most CM systems

were initially designed with a centralized architecture. Because a complete

redesign and reimplementation is far too expensive, support for distributed

operation in these systems remains rather crude. Typically, either a simple

client-server interface is provided, or users are made primarily responsible for

the maintenance of consistency among various sites [vdHHW96].

Not all CM systems possess every single one of these drawbacks, but each CM system

su�ers from at least one. Compounded, thus, these reasons make it impossible to use

an existing CM system as a reusable platform upon which a large variety of new CM

systems can be constructed.

At the same time, building a new CM system completely from scratch is also

a rather daunting undertaking. It is often unclear what the exact requirements are.

Several, usually costly, prototypes have to be constructed �rst in order to understand

the exact desiderata for the eventual implementation of the complete CM system. This

process is further compounded by the need to construct and prototype not only an

appropriate versioning mechanism with an associated user interface, but also a large

amount of infrastructure. This results in a development process that regularly takes
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several years to complete.

The process of constructing a (prototype) CM system from scratch is even further

complicated by the fact that many of today's projects are carried out in a distributed

fashion. In these projects, multiple collaborative participants are physically dispersed

over a number of geographical locations, sometimes even belonging to di�erent organi-

zations. Not only does this inuence the implementation of a CM system, in that it

must operate in the context of a wide-area network, it also inuences the basic design

of a CM system, in that its built-in processes must be supportive of distributed, and

sometimes decentralized, collaboration.

Being unable to easily extend or adapt an existing CM system, combined with

being unable to easily build a new CM system from scratch, leads to what can be con-

sidered one of the most pertinent problems in the �eld of con�guration management: no

suitable platform exists that facilitates the rapid construction of, and experimentation

with, new|potentially distributed|CM systems.

1.2 Approach

As a �rst step towards solving this problem, this dissertation contributes a novel,

reusable testbed that can be leveraged to rapidly construct and experiment with proto-

type CM systems that may potentially be distributed. It is recognized that, to e�ectively

create such a reusable testbed, it is critical to separate CM repositories, which are the

stores for versions of software artifacts and information about those artifacts, from CM

policies, which are the speci�c procedures for creating, evolving, and assembling ver-

sions of artifacts maintained in the repositories. Key to this architectural separation is

the precise de�nition of a novel abstraction layer that consists of a generic model of a

distributed CM repository and a programmatic interface for implementing, on top of the

repository, speci�c CM policies. The generic model consists of �ve parts that cover the

major aspects of a con�guration management repository, namely storage, distribution,
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naming, access, and attributes. Similarly, the programmatic interface consists of seven

orthogonal categories of functions. These categories are access, versioning, collection,

attribute, removal, distribution, and querying. As illustrated by Figure 1.1, use of the

abstraction layer results in an architecture in which CM policies are programmed as

unique extensions to the generic interface while the underlying distributed repository

is reused across di�erent policies. Structured this way, the testbed supports the rapid

construction of, and exible experimentation with, new CM policies.

In any abstraction layer that separates policy from mechanism, the functionality

provided by the mechanism de�nes which types of policies can be built. In the case

of the abstraction layer embedded in the testbed, a particular instance of a CM policy

combined with the generic repository still does not yield a complete CM system. Other

parts of the CM system, such as process management, a user interface, and build tools,

are not supported by the abstraction layer and still need to be implemented through

some other means. Although an abstraction layer that provides an all-encompassing

solution is certainly desirable, the scope of such a project would simply be too large.

Therefore, the goal of the abstraction layer is limited in that it is meant to only support

the construction of the core of a CM system, namely its storage, distribution, versioning,

and access facilities. Overall, this leads to the following high-level objectives by which

the design of the abstraction layer is guided.

� The abstraction layer should be policy independent.

In order for the abstraction layer to support the construction of a wide variety

of CM policies, the repository model and programmatic interface should not

themselves contain any restrictive policy decisions. For example, if the reposi-

tory model only provided a facility to store versions of artifacts as a traditional

version tree, it would be very diÆcult to implement the more advanced change

set policy [GKY91]. Similarly, if the functions in the programmatic interface au-
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tomatically created a new version of an artifact whenever one of its constituent

parts is modi�ed, CM policies in which the version number of an artifact is ex-

plicitly managed by a user would, once again, be diÆcult|if not impossible|to

implement.

� The abstraction layer should support distributed operation.

As proven by the amount of research and development on the issue [AFK+95,

CPT97, Con98, HLRT97], providing proper support for the distributed opera-

tion of a CM system is a rather complicated task. It is therefore desirable to

incorporate support for distribution as an intrinsic property of the repository

model and programmatic interface. In particular, the repository model should

be able to support a variety of distribution mechanisms (such as peer-to-peer

or master-slave), and the programmatic interface should allow for control of the

physical placement of artifacts.

It is important, however, that support for distribution be isolated from other

facets of the abstraction. In particular, the low-level details of the distribution

aspects of building a CM system (e.g., connection protocols, communication pro-

tocols, and time outs) should be isolated from the policy programming aspects

by placing those details within the implementation of the repository model. Sec-

ond, the distribution aspects of relevance to a CM policy (e.g., access to remote

repositories and placement of artifacts) should be isolated from the versioning,

querying, and other functional categories of CM policy programming. More

speci�cally, the functions in the interface should appear the same regardless of

the physical location of the artifacts they manipulate.

� The abstraction layer should support the management of a wide va-

riety of di�erent kinds of artifacts.

As previously mentioned, CM systems are increasingly needed to manage ar-
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tifacts other than source code. To allow such specialized CM systems to be

prototyped with the abstraction layer, neither the repository model nor the

programmatic interface should make assumptions about the kinds of artifacts

that are being manipulated. For example, it is well known that certain algo-

rithms for computing the di�erence between two versions of an artifact work

better for textual data, such as documents and program code, than for binary

data, such as images or program executables [HVT98]. Incorporating such a

biased di�erencing algorithm into the abstraction layer would violate its ability

to properly handle di�erent kinds of artifacts.

� The abstraction layer should support traditional CM functionality.

Even though the abstraction layer is meant to support the construction of new

CM policies, it should be obvious that it also must be able to support the

construction of existing CM policies. If it could not support the latter, the

architectural separation of CM repositories from CM policies results in a loss of

functionality, and it would be likely that certain variants of existing CM policies

could not be implemented.

1.3 Evaluation

The dissertation evaluates the testbed in two complementary ways. First, the

expressiveness of the abstraction layer embedded in the testbed is evaluated by map-

ping a number of CM policies onto the repository model and programmatic interface.

These mappings fall into three categories. The four CM policies that comprise the �rst

category map the versioning aspects of four representative and existing CM policies.

The next four CM policies, constituting the second category, show how the distribution

aspects of four other CM policies can be mapped. Finally, the two policies in the last

category illustrate the simplicity with which novel CM policies can be explored. To-
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gether, these ten mappings illustrate that the abstraction layer is capable of supporting

the construction of a wide variety of CM policies, whether these CM policies are pre-

existing or novel. Moreover, they demonstrate that a variety of distributed CM policies

can be constructed and that di�erent kinds of artifacts can be managed.

A testbed like the one developed in this dissertation cannot be evaluated just

by mapping CM policies. Additionally, it needs to be evaluated in a concrete setting.

Therefore, a prototype implementation of the testbed, called NUCM (Network-Uni�ed

Con�guration Management), is developed. NUCM consists of two parts: a repository

server, which manages the storage of artifacts according to the repository model, and

a generic client, which implements the programmatic interface. CM policies are pro-

grammed using the interface functions provided by the generic NUCM client. The client,

in turn, interacts with sets of geographically distributed repository servers to provide

CM policies with access to the artifacts managed.

It is important to realize that, as a prototype, NUCM does not exhibit the robust-

ness or completeness that one would expect from an industrial-strength implementation.

Instead, the focus is on the use of NUCM to further evaluate the applicability of the

testbed. This evaluation pertains to three critical qualities, namely feasibility, utility,

and validity. The �rst, feasibility, is demonstrated by the implementation of NUCM it-

self. The simple fact that the prototype exists demonstrates that the abstraction layer,

and thus the testbed, can be realized in a concrete setting. The second, utility, is demon-

strated by the implementation of three novel CM systems. Two of these, DVS [Car98],

a distributed versioning system, and SRM [vdHHHW97], a software release manage-

ment system, are currently in everyday use. The third is a prototype implementation

of an emerging standard, WebDAV [GWF+99]. Following the WebDAV speci�cations,

the prototype extends the HTTP protocol [FGM+98] with authoring and versioning

primitives. The last quality evaluated, validity, is demonstrated by the fact that the

implemented and mapped CM policies are easily and rapidly constructed, operate in-
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herently in a distributed environment, manage di�erent kinds of artifacts, and actually

can evolve over time.

1.4 Bene�ts

In summary, this dissertation contributes a novel reusable testbed that is a �rst

step towards changing the way that CM systems are constructed. Two tangible ben-

e�ts result from the application of the testbed. First, the testbed reduces the e�ort

required in prototyping new CM systems signi�cantly, because the generic CM reposi-

tory is reused and the CM policy is easily implemented through the use of the functions

in the programmatic interface. Second, the testbed enables the exible exploration of

new CM policies, thereby facilitating the development of CM policies that are tailored

to a speci�c situation. These bene�ts result from the precise de�nition of a reusable,

generic, and distributed repository that is combined with an associated, equally precisely

de�ned, abstraction layer. Because the underlying repository infrastructure is reused

among di�erent CM policies, each policy itself is programmed as a unique extension

to the programmatic interface. While still supporting traditional con�guration man-

agement functionality, new aspects introduced by the testbed are policy independence,

intrinsically distributed operation, and management of arbitrary types of artifacts. The

power of the testbed, and thus the critical importance of the new aspects, is demon-

strated by the implementation of three new CM systems and the mapping of ten other

CM policies onto the abstraction layer.

1.5 Roadmap

The remainder of this dissertation elaborates the de�nition and evaluation of the

testbed. It is organized as follows.

� Chapter 2 introduces the topic of con�guration management, lays out the spec-
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trum of functionality found in con�guration management systems, and scopes

(within this spectrum) the work presented in this dissertation.

� Chapter 3 describes the generic repository model in detail. Five submodels

are discussed: the storage model, which de�nes the primitive versioning and

grouping mechanisms; the distribution model, which de�nes how artifacts are

distributed among separate sites; the naming model, which de�nes how individ-

ual artifacts are identi�ed; the access model, which de�nes how access to stored

artifacts is obtained; and the attribute model, which de�nes how attributes can

be associated with artifacts.

� Chapter 4 discusses the programmatic interface through which artifacts that

are stored in the repository are accessed and manipulated. Seven orthogonal

categories of functionality are identi�ed: access, versioning, collection, attribute,

removal, distribution, and querying. The functions that make up each category

are illustrated based on a comprehensive example.

� Chapter 5 demonstrates the expressiveness of the abstraction layer by mapping

a number of CM policies onto the repository model and programmatic interface.

Four well-known versioning policies, four widely-used distribution policies, and

two new versioning and distribution policies are mapped.

� Chapter 6 introduces NUCM, an realization of the abstraction layer into an

actual implementation of the testbed. Not only are the particulars of the im-

plementation discussed, but also the optimizations that one would expect to be

made in an industrial-strength implementation of the abstraction layer.

� Chapter 7 presents the lessons learned while implementing three novel CM sys-

tems with NUCM. Two of those systems are in everyday use, whereas the third

is a prototype implementation of an emerging standard in Web versioning.
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� Chapter 8 discusses related work. Even though the testbed is unique in terms of

the functionality it provides, several other systems are contrasted and compared

in order to properly place the contribution of this dissertation within the current

body of work in the �eld of con�guration management.

� Chapter 9 summarizes the work presented in this dissertation, reiterates the

contributions, and concludes with an outlook at future work that builds upon

the results presented.



Chapter 2

Background

Over the years, the �eld of con�guration management has produced a large num-

ber of commercial and public-domain CM systems. The functionality provided by these

systems varies quite considerably and ranges from simple version control mechanisms

to highly advanced process engines. Unfortunately, the full spectrum of functionality of

these systems is large and consists of many di�erent dimensions. In addition, some of

these dimensions have been addressed by other generic solutions that were speci�cally

designed to address only those dimensions. For these reasons, the work of this disser-

tation is scoped and exclusively focuses on generically providing storage, distribution,

versioning, and access facilities for CM policies.

This chapter de�nes the scope of the work presented in this dissertation. First,

it introduces some basic terminology that is used throughout the remaining chapters.

Following that, it discusses a comprehensive spectrum of functionality that accurately

characterizes the current state of the art in CM systems. It then briey presents an

overview of some of the more representative work in the �eld of CM. It concludes by

identifying, based on the spectrum and overview, the speci�c subset of functionality

that the testbed is meant to support.
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2.1 Basic Terminology

Before discussing the spectrum of functionality and scoping the work of this dis-

sertation, it is necessary to de�ne some of the basic terminology used in the �eld of

con�guration management. Based on a coalescence of the de�nitions of Conradi and

Westfechtel [CW98b], Estublier and Casallas [EC95], and Tichy [Tic88], the following

terminology is adopted throughout this dissertation.

� Artifact. An artifact records the result of a development or maintenance ac-

tivity. Many di�erent kinds of artifacts, all of di�ering granularity, are created

throughout the software life cycle, including requirement speci�cations, design

documents, source code, test cases, and documentation. Either compound or

elementary, artifacts are the basic entities that are stored by a CM system.

Because they usually exist in multiple incarnations, artifacts can be versioned.

� Revision. A revision is a new incarnation of an artifact that is intended to

supersede its predecessor. A series of revisions represents the evolution of an

artifact along the time dimension. Bug �xes, enhancements in functionality,

and preventive maintenance are some of the typical causes of evolution.

� Variant. A variant is a new incarnation of an artifact that is intended to

coexist with its predecessor. A group of variants represents, based on some

distinguishing property, a set of logical alternatives of an artifact. Variability is

often caused by di�erences in hardware or software platforms, by the existence

of multiple performance levels, or by the provision of specialized customizations.

� Version. A version is either a revision or a variant of an artifact. Sets of

versions are typically organized in a version tree, a directed acyclic graph that

captures the evolution and variability of an artifact in a single model.
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� Con�guration. A con�guration groups a set of versions of artifacts into a

single entity. It provides a shorthand to refer to its contained artifacts via a

single designation. Con�gurations are artifacts themselves and can indeed be

versioned as well.

� Baseline. A baseline is a speci�c version of a con�guration that is identi�ed

as being special. It is typically used to identify the start of a new line of

development or to capture the particular con�guration that is delivered to a

speci�c customer.

� CM repository. A CM repository is that part of a CM system that provides

the storage for versions of artifacts and information about those artifacts. Some

CM systems use commercial databases (e.g., TrueCHANGE [Sof94b] and Con-

tinuus [Con94]), but most are based on proprietary solutions (e.g., the comma-v

�les of RCS [Tic85] and the hierarchical �le system of ShapeTools [ML88]).

� CM policy. A CM policy is that part of a CM system that implements the

collection of procedures used in creating, evolving, and assembling versions of

artifacts that are maintained in an associated CM repository. Two of the better-

known CM policies are checkout/checkin, which is based on a pessimistic, trans-

action oriented style of operation, and change set, which is based on an opti-

mistic, merging oriented style of operation.

2.2 Spectrum of Functionality

The current state of the art in commercially available CM systems is rather stag-

nant. Research results from the late 1980s and early 1990s have been transferred, and

the research conducted in the late 1990s is still too new and immature to be adopted.

Moreover, the development that does take place either enhances existing CM systems

with simple improvements in usability and available features, or represents the addition
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of new entries to an increasingly competitive market. Although certainly important

from a commercial point of view, the actual functionality that is provided by these

systems is converging towards a stable state.

This stable state is accurately characterized by the spectrum of functionality

developed by Dart [Dar90, Dar91]. Illustrated in Figure 2.1, the spectrum identi�es

eight separate classes of functionality.

(1) Components. Functionality in this category is concerned with identifying,

classifying, and accessing artifacts. This involves storing versions of artifacts in

repositories, distinguishing di�erent kinds of artifacts, grouping artifacts into

system components, and recording con�gurations, baselines, and project con-

texts.

(2) Structure. Functionality in this category is concerned with the consistency of

a group of artifacts. This involves modeling the logical and physical structure

composed by artifacts, specifying interfaces, identifying and maintaining rela-

tionships among artifacts, and selecting a valid and consistent set of versions of

artifacts.

(3) Construction. Functionality in this category is concerned with the derivation

process of a deliverable artifact out of its source artifacts. This involves freezing

a set of artifacts, optimizing the derivation process by caching derived artifacts,

performing change impact analysis, and regenerating a deliverable artifact out

of its frozen source artifacts.

(4) Auditing. Functionality in this category is concerned with the creation of

an audit trail. This involves keeping a history of all changes to all artifacts,

maintaining traceability among all related components and their evolution, and

logging details of the work done.
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(5) Accounting. Functionality in this category is concerned with the provision of

information about the artifacts being maintained. This involves calculating and

recording statistics, examining the status of artifacts, and generating reports

about all sorts of aspects of the artifacts and process.

(6) Controlling. Functionality in this category is concerned with the control over

how and when changes are made. This involves controlling access to artifacts,

avoiding conicts, managing change requests, tracking bugs and their impact

on artifacts, propagating changes across baselines, and partitioning artifacts to

limit the e�ects of change.

(7) Process. Functionality in this category is concerned with the smooth operation

of the con�guration management process. This involves providing support for

managing and enforcing life cycle activities, identifying and assigning tasks,

communicating information to relevant parties, and documenting knowledge

about the project.

(8) Team. Functionality in this category is concerned with team support. This

involves managing individual and group workspaces, resolving conicts among

changes to artifacts, and facilitating the maintenance of families of systems.

These eight classes of functionality can roughly be partitioned into three groups. The

�rst primarily addresses management aspects, and consists of auditing, accounting,

and controlling. The second primarily addresses development aspects, and consists

of structure, components, and construction. The last performs a bridging function

between the management and developments aspects, and consists of process and team.

2.3 Representative Work in Con�guration Management

As evidenced by the existence of a workshop series that is exclusively dedicated

to the topic of con�guration management [Win88, Tic89, Fei91b, Est95, Som96, Con97,
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Mag98, Est99], a large body of work has slowly but surely evolved the state of the

art towards CM systems that address all of the functionality that is identi�ed in the

aforementioned spectrum. In fact, since the invention of SCCS [Roc75] and RCS [Tic85],

with their ability to archive and coordinate changes to an artifact, and Make [Fel79] and

Build [EP84], with their ability to automate and optimize the software build process,

a myriad of CM systems have become available for general use. As each system yields

its own strengths and weaknesses, they can be evaluated and compared along many

dimensions. Two of the most comprehensive evaluations are provided by Ovum [BW98],

which surveys the features that are provided by commercially available CM systems,

and Conradi and Westfechtel [CW98b], who analyze, from a modeling point of view, the

technology underlying industrial and research CM systems. Regardless of di�erences in

features and technology, though, the underlying goal of all CM systems remains the

same: precisely controlling changes to artifacts.

The advances and enhancements that have been made over time can be divided

into three groups. Characterizing the �rst group is the fact that the available func-

tionality is broadened through fundamental changes to the models that underlie CM

systems (e.g., change sets to compose new con�gurations as incremental changes to a

baseline [GKY91], object-orientation to ensure interface compatibility in selected con�g-

urations [AB89], typed graphs to support a wide variety of derivation processes [Cle95],

and feature logic to exibly integrate a number of versioning styles into a single CM

system [ZS97]). The second group has taken existing CM functionality and has focused

on enhancing the general applicability of the technology (e.g., Web-based interfaces

to provide remote versioning capabilities [HLRT97, Sta96], specialized user interfaces

to explicitly manage LATEX documents [BLNP98], and augmented �le systems to pro-

vide access to versioned �les through \normal" �le system paths [LM88]). The last

group has made small, but vital, improvements to the models and applicability of CM

systems (e.g., platform-independent derivation rules to support shorter and more under-
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standable \Make�les" [Tib96, WS97], inter-�le branching to promote variants to easily

identi�ed entities [Sei96], better compression techniques to save storage space [HVT98],

and syntactic analysis of source code to improve merge results [Buf95]).

Of interest to this dissertation are the advances made in groups one and three.

Unlike the advances in group two that change neither the model nor the policy, the

advances in groups one and three are directly concerned with the models and policies

that are in everyday use. For the advances in group one, the testbed should support the

rapid creation of, and experimentation with, new models and policies. For the advances

in group three, the testbed should support the adjustment of existing policies to improve

their understanding and usability.

2.4 Scope

The testbed separates CM repositories from CM policies. Its focus is on the stor-

age of artifacts and the provision of an interface that facilitates the exact speci�cation

of the policy according to which the artifacts are manipulated. This means that cer-

tain classes in Dart's spectrum of functionality are out of scope with respect to this

dissertation. Of course, the fact that certain classes are in scope and certain classes are

out of scope is no coincidence. Rather, the testbed is designed to complement many

of the other generic solutions that have already been devised and applied to the �eld

of con�guration management. In particular, with respect to the testbed, Dart's classes

of accounting and process are completely out of scope. Although both certainly use

the kind of information that is stored in a CM repository, the functionality in these

classes is more concerned with supporting the general, overarching software develop-

ment process rather than con�guration management speci�cally. Moreover, for both

classes generic solutions have been devised already that support report generation and

process automation, respectively.

Of the remaining classes, the focus of the testbed is on four: components, struc-
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ture, auditing, and team. These classes are clearly within scope: their primary con-

cern is with the storage of artifacts, the maintenance of relationships and structure,

and the recording of a history of changes. The functionality in the last two classes,

construction and controlling, is partially supported. Some of it is in scope, such

as snapshots and change propagation, and some of it is out of scope, such as change

impact analysis and bug tracking. Based on the avoidance of duplication of readily

available techniques and the focus of the testbed on storage and policy programming,

the following is observed for each (partially) supported class.

� Components. The testbed should support the storage of, and access to, mul-

tiple versions of artifacts. The testbed should also support the identi�cation

and storage of baselines and be able to delineate those artifacts that are part of

a speci�c project. Of course, it should be able to do so in a policy-independent

manner.

� Structure. The testbed should support the storage and retrieval of relation-

ships among artifacts, including those that model the physical and logical struc-

ture of the compound artifacts in the repository. The storage and labeling of

consistent sets of artifacts should be supported, but the actual veri�cation of

whether a particular set of artifacts is consistent is dependent on the type of

artifact being managed and is, thus, outside of the scope.

� Construction. The testbed should support the storage of frozen con�gura-

tions, potentially consisting of both source and derived artifacts. Out of scope,

however, is the actual derivation process itself, because independent derivation

engines such as Odin [Cle95] and qef [Tib96] can be used as compliments to the

functionality provided by the testbed. Change impact analysis is not supported

either, since it is heavily dependent on the type of artifact being stored.

� Auditing. The testbed should support the creation of CM policies that pre-
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cisely track a history of changes, that exactly trace relationships among artifacts

(even as both the artifacts and relationships evolve), and that log detailed in-

formation about the nature and circumstances of changes.

� Controlling. The testbed should support controlled access to artifacts, the

propagation of changes across baselines, and the partitioning of artifacts into

separate groups. However, advanced infrastructures that speci�cally support a

wide variety of locking policies have been developed [Hei96]. The testbed should

not duplicate these e�orts and should only provide a basic access control mecha-

nism. Additionally, change request and bug tracking tools are ubiquitous (e.g.,

Archimedes' BugBase [Arc99] or Tower Concept's Razor [Tow99]) and their

functionality is complementary to that of the testbed. Therefore, supporting

change requests and bug tracking is also out of scope.

� Team. The testbed should support the storage and management of families of

compound artifacts as well as the creation of (team) workspaces. Conict reso-

lution mechanisms are not supported by the testbed, because these mechanisms

are dependent on the type of artifact being managed. Moreover, oftentimes

these mechanism are based on merge algorithms [Buf95], which are well under-

stood and already developed.

Figure 2.2 presents the resulting scope of the testbed. The amount of coverage of each

class with a particular pattern indicates how much of the functionality in that class is in

or out of scope. In particular, a striped, slightly darker pattern indicates functionality

that is out of scope and already addressed by other solutions. The use of a solid, lighter

pattern indicates the functionality that is in scope. The testbed is meant to generically

support the construction of those aspects of CM policies. Finally, white indicates the

functionality for which no generic solution is available and for which the testbed does

not provide any support. These capabilities, which are consistency enforcement and
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change impact analysis, are too dependent on the types of artifacts being managed for

any solution to address the problem in a generic fashion.

It should be noted that the spectrum of functionality de�ned by Dart is stated in

terms of the management of software. The testbed, of course, should provide the above

set of capabilities regardless of what types of artifacts are managed. Additionally, it

should be reiterated that the testbed has to function in a distributed setting, and should

be policy independent.

Finally, it should follow from the above discussion that the combination of the

generic CM repository (as de�ned by the testbed) with a particular instance of a CM

policy (as de�ned by a CM policy programmer) does not always yield a complete CM

system. In some cases, the functionality can be suÆcient, but in most, additional pieces

of functionality still need to be integrated. Fortunately, in many of these cases the

functionality to be integrated is relatively independent and complementary in nature

to the functionality that is provided by the testbed. Consider the build process. Given

a set of artifacts in a workspace, the actual derivation mechanism can autonomously

create the derived artifacts. In other cases in which additional functionality needs to be

integrated, that functionality is of a higher-level nature than the testbed and actually

builds upon the policies that are implemented. Consider process management. Given a

CM policy, a general process engine uses the policy and the information stored in the

repository to, for example, assign developers to tasks and communicate the appropriate

information to them.
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Chapter 3

Generic Repository Model

The �rst component of the abstraction layer de�ned by the testbed is its generic

model of a distributed con�guration management repository. The complete model con-

sists of �ve complementary submodels: the storage model, which de�nes the mech-

anisms for versioning and grouping artifacts; the distribution model, which de�nes

the di�erent ways in which artifacts can be arranged across di�erent sites; the naming

model, which de�nes the way individual artifacts can be identi�ed in a distributed repos-

itory, the access model, which de�nes the primary method of access to artifacts stored

in a distributed repository; and the attribute model, which de�nes how attributes can

be used to associate metadata with artifacts.

A key characteristic of the generic repository model is that, even though specif-

ically designed to support the versioning, grouping, distribution, and other aspects of

artifacts, it does not enforce any particular policy of doing so. For instance, while the

repository model provides the capability of storing multiple versions of an artifact, it

does not impose any speci�c relationships among those versions. Similarly, the repos-

itory model facilitates the storage of di�erent artifacts in di�erent repositories, but it

does not enforce a particular organization of the artifacts among the di�erent reposito-

ries. In both these, and other, cases of separation of CM repository from CM policy, it

is up to the CM policy programmer to use the interface functions discussed in the next

chapter to manipulate the CM repository into the desired behavior.
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In this chapter, each of the submodels of storage, distribution, naming, access,

and attribute is discussed in detail.

3.1 Storage Model

The basis for the storage model is a directed graph with two kinds of nodes:

atoms and collections. An atom is a leaf node in a graph and represents a monolithic

entity that has no substructure visible to the storage model. Typical atoms include

source �les or sections of a document. Contrary to atoms, the structure of collections is

known to the storage model: collections are the basic mechanism used to group atoms

into named sets. For example, a collection might represent a program that consists

of a set of source �les. Alternatively, a collection could represent a document that is

composed out of a number of sections.

Collections can be used recursively and can themselves be part of larger, higher-

level collections. For instance, a collection that represents a system release could consist

of a collection for the actual source code of the system and a collection for the docu-

mentation of the system. Membership of a collection can, of course, be mixed: a single

collection can contain both atoms and collections. A collection that represents a doc-

ument could have as its members short sections that are captured as atoms, as well as

longer, further subdivided sections that are captured as collections.

Within the context of con�guration management, a directed graph is capable of

modeling the required storage needs. In fact, the structure a�orded by the directed

graph is exactly suÆcient and a more restrictive structure would lead to de�ciences in

modeling capabilities. In particular, imposing a strictly hierarchical graph would result

in a structure that prohibits the modeling of shared artifacts (e.g., specialized error

handling routines used in all coding projects, or a standard disclaimer included in every

document that is made publicly available). Similarly, disallowing the creation of cycles

within the graph would result in a structure that prohibits the modeling of mutually
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recursive data (e.g., two Web pages that contain links to each other, or collections of

clip art that reference each other as containing a related set of illustrations).

Figure 3.1 illustrates the basic concepts of atoms, collections, and their member-

ship relations. The �gure shows a portion of a repository for the C source code of two

hypothetical software systems, WordProcessor and DrawingEditor. Collections are

shown as ovals, atoms as rectangles, and membership relations as arrows. Both soft-

ware systems not only contain a separate subsystem, as demonstrated by the collections

SpellChecker and Menu, respectively, but they also share a collection called GUI-lib.

In turn, these lower-level collections simply contain atoms, which in this example repre-

sent the actual source �les that implement both systems. It should be noted that one of

the atoms is a member of two collections, but is named di�erently in each one, namely

Frame.c and PullDown.c, respectively.

To simplify capturing multiple versions of a single artifact, the basic directed

graph of the storage model is extended to form a versioned directed graph. In this

type of graph, versioning is introduced as an orthogonal dimension to both atoms and

collections. That is, atoms and collections each can have multiple versions that all exist

in parallel. An important consequence of this fact is that membership of collections

is on a per-version basis: collections contain speci�c versions of other artifacts. This

scheme allows the membership of collections to evolve in a manner similar to the way

the contents of atoms evolve.

In contrast to other approaches, such as CME [HLRT97] or ScmEngine [CPT97],

the storage model does not impose any semantic relationship among the versions of

an artifact. In particular, the tree-structured revision and variant relationships that

are found in many|but by no means all|CM systems is not present in the directed

versioned graph. Instead, the graph simply provides a unique number with which to

identify each version. This allows a CM system to employ its own type of semantic

relationships among versions, and hence increases the generality of the repository.
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Figure 3.1: Example Repository Contents without Versions.
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The decision not to enforce semantic relationships among the versions of an ar-

tifact is based on the more general observation that many such relationships exist.

Some examples include derived-from, is-composed-of, is-part-of, depends-on, and

includes. Di�erent CM systems support di�erent subsets of these, and other, relation-

ships. Therefore, rather than directly maintaining only an arbitrary subset of relation-

ships, the storage model is generic in that it facilitates the creation and maintenance of

arbitrary, policy-programmed relationships. It does so through the use of collections to

group artifacts and the use of attributes to label versions of artifacts (see Section 3.5 for

a detailed discussion of attributes in the repository model). While that may at �rst seem

inconvenient, since a policy programmer is now expected to implement relationships,

the ability to reuse these implementations mitigates the inconvenience. For example,

the policy code that de�nes the version tree relationship of the WebDAV example in

Chapter 7 reuses much of the policy code of an earlier CM system. This CM system,

an implementation of the checkout/checkin policy discussed in Section 5.1.1, also uses

the version tree relationship and was built using the testbed [vdHHW96].

Figure 3.2 shows how the directed graph of artifacts presented in Figure 3.1 is

enhanced with versions to form a versioned directed graph. Stacks of ovals and rectan-

gles represent sets of versions of collections and atoms, respectively. Numbers indicate

the relative age of versions: the higher the number, the younger the version.1 Dashed

arrows represent the member relationships of older versions of collections. Observe that

membership of collections is on a per-version basis. For example, both version 1 and

version 2 of the collection Menu contain version 1 of the atom PushUp.c, but version 2

contains an additional atom, namely version 2 of the atom PullDown.c.

1 As further discussed in Section 4.2, the age of a version merely indicates its time of creation. The
actual contents of the version may change over time.
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3.2 Distribution Model

The distribution model of the abstraction layer complements the functionality of

the storage model. Whereas the storage model speci�es how artifacts can be grouped,

versioned, and related through the versioned directed graph, the distribution model

precisely de�nes how the versioned directed graph can be stored in a distributed fash-

ion. In particular, the distribution model de�nes two types of repositories: a physical

repository and a logical repository. A physical repository is the actual store for some

part of a versioned directed graph at a particular site. It contains, for a number of

artifacts, the contents of the versions.

A logical repository is a group of one or more physical repositories that together

store a complete versioned directed graph of artifacts. Because the distribution model

is policy independent, a requirement for a logical repository is that it has to be able to

support the modeling of a variety of distributed CM policies. To do so, physical repos-

itories that are part of a logical repository collaborate in a peer-to-peer fashion. No

centralized \master" repository controls the distribution of artifacts. Instead, distribu-

tion is controlled at the individual artifact level: collections not only maintain the names

of their member artifacts, they also track the physical repository in which each member

artifact is stored. Thus, membership relations span the geographical boundaries that

exist among physical repositories.

In contrast to the artifacts in a physical repository, the actual location of artifacts

in a logical repository is irrelevant. Artifacts can be obtained from any physical repos-

itory that is part of the logical repository, whether the physical repository resides on a

local disk, on the local network, or on the other side of the world. Based on the fact

that collections keep track of the physical repositories in which their member artifacts

reside, requests for member artifacts that are stored at a di�erent physical repository

than that of the collection are forwarded. Thus, physical repositories act as both clients



32

and servers, requesting services from each other and ful�lling service requests for each

other.

The level of granularity at which a versioned directed graph is distributed over

physical repositories is the artifact. All versions of an artifact are collocated within a

single physical repository. The distribution of individual artifact versions over multiple

physical repositories is not supported, because such a �ne-grained level of distribution

would incur a signi�cant communication cost. In particular, when all versions of an

artifact are stored within a single physical repository, a storage reclamation mecha-

nism that is based on reference counting does not require any communication among

repositories to determine whether the storage space for an artifact can be reclaimed.

Similarly, the collocation of all versions of an artifact facilitates a form of navigation in

the version space that only requires communication with one physical repository. These

and other important optimizations are not possible if individual versions of an artifact

can be arbitrarily distributed throughout a logical repository.

A single physical repository can be part of multiple logical repositories. This is

an essential aspect of the distribution model, since it allows the sharing of artifacts

over otherwise disconnected e�orts (e.g., a separately maintained graphics library that

is used by a number of coding e�orts throughout the organization, or a standard set of

company-wide disclaimers and guidelines that are part of every set of documents that

is made publicly available). Instead of having to replicate these shared artifacts in each

logical repository, the sharing of a physical repository by multiple logical repositories

allows a single point of evolution of the shared artifacts.

Figure 3.3 presents these concepts with an example distributed repository. Shown

is the repository of Figure 3.2 as distributed over three di�erent sites, namely Boul-

der, Milano, and Rotterdam. Each of these sites maintains a physical repository

with artifacts. The physical repository located in Boulder maintains the collection

WordProcessor, the physical repository in Milano maintains the collection Drawing-
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Editor, and the physical repository in Rotterdam maintains the collection GUI-lib.

Because the projects in Boulder and Milano rely on the use of the collection GUI-lib,

their physical repositories are connected with the physical repository in Rotterdam.

Two logical repositories are formed: the physical repositories in Boulder and Rotter-

dam combine into one logical repository that presents a complete view of the collection

WordProcessor and its constituent artifacts, and the physical repositories in Milano

and Rotterdam combine into one logical repository that manages the complete system

DrawingEditor.

It is important to note that it is the simple presence of membership relations

among artifacts in di�erent physical repositories that creates logical repositories. With-

out the membership of the collection GUI-lib version 2 within the collection Word-

Processor version 1, for example, the logical repository that is the combination of the

physical repositories in Boulder and Rotterdam would not exist. Instead, the physical

repository of Boulder would be a logical repository all by itself.

The distribution model is rather versatile. Artifacts can be distributed among

physical repositories as desired, a single physical repository can be part of multiple log-

ical repositories, and logical repositories can themselves be part of other logical reposi-

tories. This extreme exibility, combined with a peer-to-peer architecture, allows many

di�erent distribution schemes to be mapped onto the distribution model. As demon-

strated in Section 5.2, these schemes include the following:

� a single physical repository that is accessed by many CM clients, creating a

client-server system like DRCS [OG90];

� several physical repositories that represent a hierarchy of distributed workspaces

in which changes in lower level workspaces are gradually promoted up the hierar-

chy, duplicating the essence of the functionality of such systems as NSE [FD90]

and PCMS [SQL98]; and
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Figure 3.3: Example Repository Contents of Figure 3.2 as Distributed over Three Dif-
ferent Sites.
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� a set of physical repositories that act as replicas, in which the contents of the

replicas are periodically synchronized by a merging algorithm, a con�guration

similar to ClearCase Multisite [AFK+95].

These and other approaches to distributed CM can be built using the peer-to-peer ar-

chitecture. While it is true that a solution based on our generic distribution model

might not perform as optimally as a specialized solution for a particular CM policy, the

exibility that the repository model a�ords allows experimentation with new distribu-

tion policies. Once proven to be of use, the implementation of an experimental policy

can be optimized for performance.

3.3 Naming Model

An important issue in distributed systems development is naming. Rather than

employing a global naming scheme in which each artifact is assigned a single, unique

identi�er, the naming model is based on a hierarchical naming scheme. The use of

hierarchical naming provides three important advantages. Firstly, it naturally �ts the

hierarchy that is formed by the directed graph of artifacts as de�ned by the storage

model, since each part of a name incrementally indicates which member of a collection

is chosen when traversing the directed graph. Secondly, hierarchical naming provides an

advantage of scale by avoiding the need for complicated algorithms that create globally

unique identi�ers. Lastly, it follows the generally accepted practice of decoupling the

name of an artifact from its physical location. In particular, since membership rela-

tions can span multiple geographical locations, a hierarchical name simply follows these

relations without knowing the actual location of the artifact it designates.

By itself, hierarchical naming is not suÆcient. Still open is the choice as to

whether each part of a hierarchical name is maintained by an artifact or by its containing

collection. To allow a single artifact to exist under di�erent names in di�erent collections
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(an important facility in current CM systems), the naming model prescribes the latter:

names of artifacts are maintained individually by the collections in which the artifact

is a member.

Figure 3.4 illustrates the basic hierarchical naming scheme that is used. High-

lighted by the bold arrow is the name for version 2 of the artifact PullDown.c.

DrawingEditor/Menu/PullDown.c

Note that even though the name does not contain information about speci�c locations

and originates in the physical repository of Milano, it designates an artifact that actually

resides in the physical repository of Rotterdam.

Also illustrated by Figure 3.4 are two de�ciences of the basic hierarchical naming

scheme when applied to the versioned directed graph as de�ned by the storage and

distribution models. The �rst de�ciency is that the basic hierarchical naming scheme

does not operate in the versioning dimension. In particular, because membership in a

collection is on a per-version basis, it is possible that certain versions of artifacts (such

as version 1 of the atom PullDown.c) do not belong to any collection. These versions

of artifacts cannot be addressed. The second de�ciency is that a hierarchical name does

not contain a starting point de�ning where in a logical repository the interpretation

of the name should begin. This means that it is likely a particular name has to be

interpreted at multiple physical repositories before the desired artifact is located.

The �rst de�ciency is solved through the use of version quali�ers. Version

quali�ers are optional extensions that, in each part of a full hierarchical name, can alter

the actual version from which interpretation should continue. For example, the name

DrawingEditor/GUI-lib:3/Frame.c

addresses version 3 of the atom Frame.c. This version (in fact the whole artifact

Frame.c) is not reachable with a regular hierarchical name that includes the collec-

tion GUI-lib, since the artifact Frame.c is only contained by version 3 of the collection
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GUI-lib and not by version 2 (and all collections that have as their member a version

of the artifact GUI-lib only contain version 2). Thus, the version quali�er is needed to

navigate from version 2 to version 3 of the collection GUI-lib, where the interpretation

of the full hierarchical name continues. Note that, in the above name, the collection

DrawingEditor is not augmented with a version quali�er. By default, the member

version of an artifact is chosen if no version quali�er is speci�ed. Of course, version

quali�ers can always be used, regardless of whether or not they are needed. Conse-

quently, version 3 of the atom Frame.c could also have been identi�ed using version

quali�ers at each stage of the hierarchical name.

DrawingEditor:2/GUI-lib:3/Frame.c:3

The second de�ciency, a lack of starting point, is solved by pre�xing each hier-

archical name with a designation of the physical repository that should interpret the

name. This is equivalent to the scheme used for host names on the Internet, where the

location of a domain name server must be provided as a starting point for performing

name resolution. It is also similar to Universal Resource Locators (URLs), which consist

of two parts: a host name (followed by an optional port number) and the hierarchical

name that identi�es the resource to be located.

With the extensions of version quali�ers and starting points, the full name of an

artifact, thus, has to adhere to the following template.

//physical-repository/<name[:version]>[</name[:version]>....]

For example, assuming the logical repository that is presented in Figure 3.4, the follow-

ing name is the full name of version 3 of the atom Frame.c.

//Milano/DrawingEditor/GUI-lib:3/Frame.c

Alternatively, it can be named as follows

//Boulder/WordProcessor/GUI-lib:3/Frame.c:3
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or even, as illustrated by the bold arrows in Figure 3.5, as follows.

//Milano/DrawingEditor:1/Menu:2/PullDown.c:3

A single (version of an) artifact can thus, depending on the actual membership hierarchy

of the artifacts in the versioned directed graph, be addressed with a multitude of names

that each may originate in a di�erent physical repository.

Note that in an actual implementation of the testbed the identi�cation of a physi-

cal repository needs either a private DNS-like service that interprets the starting points,

or a mapping of the starting points onto an existing DNS service. The implementation

discussed in Chapter 6 uses the latter solution and identi�es physical repositories by

the host name and port number on which a server is running.

3.4 Access Model

Besides the precise de�nition of the storage, distribution, and naming of artifacts,

the generic repository model needs to specify how access to stored artifacts is obtained.

The fact that artifacts reside in a logical repository does not necessarily imply that they

are directly manipulated there. In fact, it is common practice to build a CM system

around the notion of a workspace. A workspace materializes a subset of artifacts in the

�le system and has three distinct advantages over direct manipulation. First, it provides

an insulated work area in which artifacts can be manipulated without being inuenced

by the work of others. Second, a workspace provides a form of caching: it typically

resides much closer in proximity to the originator of changes than the repository. Fi-

nally, a workspace is unobtrusive in that it provides existing tools and applications with

access to versioned artifacts without the need to modify these tools and applications to

understand the details of the storage and versioning mechanisms that are used.

For these reasons the access model prescribes the use of workspaces to access

artifacts in a logical repository. Each workspace represents a particular version of a
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particular collection. The structure of the workspace follows the structure of the �le

system. In particular, collections materialize as directories, lower-level collections ma-

terialize as sub-directories, and atoms materialize as �les. For example, version 2 of the

collection DrawingEditor as presented in Figure 3.5 would have the following directory

structure when materialized into a workspace on a UNIX �le system.

.../DrawingEditor/GUI-lib/

/Menu/PullDown.c

/PushUp.c

Note that the workspace contains an empty directory called GUI-lib. This is due

to the fact that the version of the collection GUI-lib that is part of the collection

DrawingEditor, namely version 2, has no members. Note also that, although not

illustrated, the workspace is not restricted to contain only the artifacts that are managed

by the access model. It also may contain other directories and �les, such as the auxiliary

and temporary �les created by word processors and compilers.

Unlike ClearCase [Atr92], which manages workspaces in the repository by employ-

ing a translucent �le system in which operating system calls, such as open, read, and

write, are trapped and interpreted at the repository, workspaces follow the model that

is used by DRCS [OG90] and DCVS [HK92]: materialized artifacts are actual copies

(in the �le system) of the artifacts in the repository. The advantage is that proprietary

replacements for low-level operating system functions do not have to be created (as with

ClearCase) and that less network traÆc is incurred.

Given that a single artifact can be a member of multiple collections, it is possible

that an artifact is copied into a workspace multiple times. For example, if the collection

DrawingEditor that is displayed in Figure 3.5 is materialized with version 3 of the

collection GUI-lib rather than version 2 as well as version 3 of the atom PullDown.c
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rather than version 2, the workspace would be populated as follows.

.../DrawingEditor/GUI-lib/Frame.c

/Menu/PullDown.c

/PushUp.c

In this workspace, the �les Frame.c and PullDown.c represent exactly the same version

of exactly the same artifact and their contents are, thus, identical. Rather than creating

the illusion of a single materialized artifact (e.g., changes made to any of the materialized

copies are visible in all copies in a workspace), the access model keeps each copy separate.

This solution provides a CM policy with the exibility to decide whether or not the

various copies of an artifact should be kept synchronized, which is an explicit policy

decision that should not be made by the access model.

A similar situation arises because of the potentially cyclic nature of the directed

versioned graph of artifacts. In the case where no cycles are present, the materialization

strategy preserves the hierarchical structure of the storage model and a one-to-one

correspondence exists between a \slice" of the directed graph and the directories and

�les in the �le system. However, when cycles are present in the graph, the one-to-one

correspondence is broken since the copying strategy instantiates a potentially in�nite

series of materialized artifacts. Unfortunately, this is a limitation of the use of a �le

system to represent workspaces: some �le systems simply do not have the facilities

(e.g., symbolic or hard links) to represent cycles. However, it is pertinent that the

access model uses the �le system. Therefore, a sacri�ce is made in that cycles are an

exception with respect to the one-to-one correspondence between a slice of the versioned

directed graph and the �le system.

In traditional CM systems, the users of a workspace are human. The purpose of

the workspace of the access model, though, is to provide CM systems access to artifacts

that are stored in a repository. It is expected that these CM systems will manipulate

workspace artifacts, providing tailored styles of access to their human users. This is
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illustrated in Figure 3.6. Three layers, each containing a di�erent representation of

the artifacts, can be identi�ed. The bottom layer is the repository that contains all

versions of all artifacts. Some of these artifacts will be materialized into a workspace,

which is illustrated by the middle layer. The materialized artifacts, in turn, might be

transformed by a CM policy for presentation to a human user or application, resulting

in the top layer. Note that the bottom two layers are standard, they are managed by

the abstraction layer. The top layer, however, can be of any shape or form because they

are policy dependent.

Two basic alternatives exist to representing the contents of a workspace to a user.

In the �rst alternative, the workspace is transformed before its contents are presented

to a user. Such a transformation might range from no transformation at all, to a

simple restructuring of the artifacts within the workspace (e.g., changing their names

or modi�cation rights), to a wholesale restructuring of the artifacts into a separate

directory structure. In the latter case, the workspace is solely used as a communication

bu�er between the CM policy and the repository. Figure 3.6a presents an example

of a transformation. CM policy X moves the artifacts in the workspace to a di�erent

directory in the �le system before giving the user access.

The second alternative is for the developer of a CM policy to provide a specialized

browser or editor that hides the details of the workspace from the user. For example,

the CM model described by Lin and Reiss [LR96] could use the repository model in such

a way that its software units are mapped to atoms, its aggregate modules are expressed

as collections, and its specialized browser is used to present the contents of workspaces.

As another example, the workspaces used by the WebDAV prototype (see Chapter 7)

are never made visible to a user. Instead, the artifacts are transferred to a Web browser

that uses a specialized interface to manipulate and version them. Figure 3.6b is similar

to the WebDAV prototype: CM policy Y does not allow a user direct access to the

artifacts in the workspace and uses a Web browser instead to let a user manipulate
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artifacts.

3.5 Attribute Model

To facilitate the storage of metadata in a repository, the repository model allows

the association of attributes with individual versions of artifacts. Attributes are untyped

name-value pairs. An example of their use is provided in Figure 3.7, which shows

the attributes that are associated (by some hypothetical CM policy) with the various

versions of the atom Spell.c. The CM policy labels all versions of an artifact with

the attributes Author, Version, and ChangeComment. Furthermore, if a new version of

an artifact addresses a previously identi�ed bug, that version will be labeled with the

attribute BugReport, which contains the number of the bug report that describes the

bug that is resolved. Finally, if a version of an artifact is locked, the attribute Lock

is set to contain the e-mail address of the person who has placed the lock. Note that

some attributes contain values that are assigned by the CM policy itself (e.g., Author,

Version, and Lock), whereas other attributes contain values that are supplied by users

of the CM policy (e.g., BugReport and ChangeComment).

Access to attributes is handled di�erently than access to artifacts. Instead of

being materialized in a workspace, attributes are directly accessed and manipulated in

a repository. The reason for this distinction is twofold. First, attributes are not the

object of change in a CM system, they merely capture auxiliary information about the

objects that do change (the artifacts). Therefore, their values tend to be set once rather

than continuously changed.

The second reason for directly manipulating attributes in a repository is that

they can be used in a supporting role for such process engines as Spade [BFGL94],

Oz [BSK94], and Endeavors [BT96]. Whereas these process engines can be used to

actually execute and enforce the CM process, attributes can be used for such comple-

mentary purposes as setting locks, communicating who is changing a certain artifact,
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determining who has ownership of a particular artifact, and other sorts of information

that need to be maintained, exchanged, and manipulated by the process engines. For

the management of this kind of supporting information it is critical that attributes are

directly manipulated in a repository, where changes are immediately visible to all par-

ticipants, rather than in a workspace, where changes are not visible to others unless

they are committed to the repository.

The attribute model is rather basic. More advanced mechanisms, adding inherent

support for attribute typing or multi-value attributes, can certainly be adopted. How-

ever, these types of functionality represent convenience functions and, in reality, are of

a development and not a research nature. Given that the basic attribute mechanism is

capable of supporting most CM needs, the addition of these types of extensions is left

to future development. The segregation of the attribute model as a separate submodel

within the overall generic repository model ensures that such extensions can be made

without impacting other areas of functionality.



Chapter 4

Programmatic Interface

The second component of the abstraction layer de�ned by the testbed is the

programmatic interface through which artifacts that are stored in a repository can be

manipulated by CM policies. The complete interface consists of seven categories of

functionality. These categories, listed in Table 4.1 with the functions they contain, are

the following: access functions, which provide access to artifacts in a repository by

materializing them in a workspace; versioning functions, which manage the way arti-

facts evolve into new versions; collection functions, which manage the membership of

collections; distribution functions, which control the placement of artifacts in speci�c

physical repositories; a deletion function, which allows a CM policy to remove artifacts

from a repository; query functions, which provide a CM policy with various kinds of

information about the state of artifacts in a repository or workspace; and attribute

functions, which manage the association of attributes with versions of artifacts.

A CM policy is built by programming against the interface and using combina-

tions of interface functions to implement the particular functionality needed. Because a

wide range of CM policies has to be supported, the interface functions|much like the

various submodels in the repository model|do not impose any particular CM policy.

Instead, they provide the mechanisms for CM systems to implement speci�c policies.

While the particular semantics of the interface functions might therefore seem odd from

the perspective of a human user, those same semantics are invaluable to a CM policy
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Table 4.1: Programmatic Interface Functions.

Category Function Description

Access nc open Materializes an artifact version into a workspace.
nc close Removes an artifact version from a workspace.

Versioning nc initiatechange Allows an artifact version in a workspace to be mod-
i�ed.

nc abortchange Returns an artifact version in a workspace to the
state it was in before it was initiated for change.

nc commitchange Stores a new version of an artifact in a repository.
nc commitchangeandreplace Overwrites the current version of an artifact in a

repository.

Collection nc add Adds an artifact version to a collection.
nc remove Removes an artifact version from a collection.
nc rename Renames an artifact within a collection.
nc replaceversion Replaces the version of an artifact within a collec-

tion.
nc copy Copies the versions of an artifact and adds a version

of the new artifact to a collection.
nc list Determines the member artifact versions of a collec-

tion.

Distribution nc setmyserver Sets the default physical repository in which new
artifacts will be stored.

nc getlocation Determines the physical repository that contains the
versions of an artifact.

nc move Moves an artifact and its versions from one physical
repository to another.

Deletion nc destroyversion Physically removes an artifact version from a repos-
itory.

Query nc gettype Determines the kind of an artifact.
nc version Determines the current version of an artifact.
nc lastversion Determines the latest version of an artifact in a

repository.
nc existsversion Determines whether a version of an artifact exists in

a repository.
nc isinitiated Determines whether an artifact version has been ini-

tiated for change in a workspace.
nc isopen Determines whether an artifact version has been ma-

terialized into a workspace.

Attribute nc testandsetattribute Associates an attribute and its value with an artifact
version (if the attribute does not yet exist).

nc setattribute Associates an attribute and its value with an artifact
version (whether or not the attribute exists).

nc getattributevalue Determines the value of an attribute of an artifact
version.

nc removeattribute Disassociates an attribute from an artifact version.
nc selectversions Determines the set of versions of an artifact for which

an attribute has a certain value.
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implementor.

An important characteristic of the programmatic interface is the orthogonality

among the various functional categories. Speci�cally, the functions in one category are

independent of the functions in the other categories. For example, the distribution

functions are the only functions concerned with the distributed nature of a repository.

The other functions are not inuenced by the fact that artifacts are stored in di�erent

locations. Their behavior is the same, regardless of whether the artifacts are managed

by a local repository or a remote one. Similarly, the collection functions are the only

functions that recognize the special nature of collections. The other functions in the

programmatic interface behave the same, irrespective of whether they operate on atoms

or collections.

It should be noted that the functionality o�ered by each individual interface

function is rather limited. At �rst, this seems contradictory to the goal of providing

a high-level interface for con�guration management policy programming. However,

because of the limited functionality, each function can be de�ned with precise semantics.

Not only does that generalize the applicability of the interface functions, it also allows

the rapid construction of particular CM policies through the composition of sets of

interface functions.

Below we introduce, per category, the individual interface functions that consti-

tute the programmatic interface to the generic repository model. It should be noted that

the introduction is relatively informal. The functionality of each function is discussed

and examples of their use are given. A detailed de�nition of each function, as imple-

mented in the NUCM prototype discussed in Chapter 6, is provided in Appendix A.

4.1 Access Functions

Access to the artifacts in a repository is, as discussed in Section 3.4, obtained

through a workspace in which artifacts are materialized upon request. The access func-
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tions manage these requests, materializing artifacts in a workspace when they are needed

and removing artifacts from a workspace when their presence is no longer required.

Once artifacts are materialized, other interface functions become available to manip-

ulate them. In particular, versioning functions can be used to create and store new

instances of artifacts, and collection functions can be used to manipulate the member-

ship of collections.

The access functions in the programmatic interface are nc open and nc close.

The function nc open provides access to a particular version of an artifact by mate-

rializing it in a workspace. Atoms are materialized as �les, collections as directories.

Each use of the function nc open materializes a single version of a single artifact. A

workspace, then, has to be constructed in an incremental fashion. This mechanism al-

lows a CM policy to populate a workspace only with the artifacts that it needs, thereby

avoiding any overhead of unnecessarily retrieving artifacts that will not be used.

The function nc open can be used in two ways. In the �rst, an artifact version

is directly materialized from a repository and a full name as de�ned in Section 3.3

is required. In the second, the artifact version to be opened is de�ned by a regular

operating system path name that points to an artifact version that is already open in

another workspace; that version of the artifact is retrieved from the repository. Although

in both cases the artifact version is retrieved from the repository, the second use allows

a CM policy to duplicate an existing workspace without the need to memorize the exact

contents of that workspace.

The function nc close is used to remove artifacts from a workspace. The function

operates in a recursive manner: when a collection is closed, all the artifacts that it

contains are removed from the workspace as well. However, closing a collection only

succeeds when neither the collection, nor any of its contained artifacts in the workspace,

is in a state that allows them to be changed (see Section 4.2). This forces a CM policy

to explicitly commit or abandon any changes, thereby avoiding their unintentional loss.
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When an artifact is closed, it is only removed from the workspace. The function

nc close has no e�ect on the contents of the repository.

4.2 Versioning Functions

Once a set of artifacts has been opened in a workspace, the following functions be-

come available to create and store new versions of these artifacts: nc initiatechange,

nc abortchange, nc commitchange, and nc commitchangeandreplace.

Through the function nc initiatechange, a CM policy informs a workspace of

its intention to make a change to an atom or a collection. In response, permission is

granted to change the artifact in the workspace. If the artifact is an atom, it can be

manipulated by any user program since its contents are not interpreted by the model or

interface. A collection, on the other hand, can only be manipulated through the use of

collection functions because those functions preserve its special nature (see Section 4.3).

Permission to change an artifact in one workspace does not preclude that artifact

from being changed simultaneously in another workspace. In particular, the function

nc initiatechange does not lock an artifact. If a locking protocol is desired, then the

attribute functions described in Section 4.7 can be used to construct that protocol. This

orthogonality of locking and versioning permits the development of CM policies that

range from the optimistic, in which artifacts are not locked and changes are merged

when conicts arise, to the pessimistic, in which artifacts are locked to avoid conicts.

The function nc abortchange abandons an intended change to an artifact. It

reverts the materialized state of the artifact back to the state that it was in before

the function nc initiatechange was invoked. Similar to the function nc close, the

function nc abortchange, when applied to a collection, can only succeed if no artifacts

that are part of the collection are currently in a state that allows them to be changed.

Changes to these artifacts need to be either committed or abandoned.

To store the changes that have been made to an artifact, two alternative functions
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can be used. The �rst, nc commitchange, commits the changes by storing a new version

of the artifact in the repository. It is the only function in the programmatic interface

that actually creates new versions of artifacts. None of the other functions have this

capability, neither directly nor as a side e�ect. The second function used to store

changes to artifacts is nc commitchangeandreplace. As its name implies, this function

is similar in behavior to the function nc commitchange, but instead of creating a new

version of the artifact, it overwrites the contents of the version that was initiated for

change. Both functions, in addition to storing the new contents of the artifact in the

repository, also revoke the permission to make further changes to the artifact in the

workspace. But, once again, locking is an orthogonal concern that is managed with a

di�erent category of functions. Therefore, neither function releases any locks that may

be held.

The availability of these alternative storage functions allows a CM policy pro-

grammer to choose whether particular changes lead to new versions of artifacts or not.

This is an especially important decision in the case of collections. Whereas some CM

policies prescribe that any change to a member artifact leads to a new version of the

collection (e.g., Poem [LR96] or CoED [BLNP98]), other CM policies only version col-

lections when the actual structure of the collection (i.e., its artifact membership) has

changed (e.g., ShapeTools [ML88] or ClearCase [Atr92]). Since this is a policy decision,

the programmatic interface facilitates both cases. To model the �rst case, the function

nc commitchange is used on the collection, whereas the latter case requires the use of

the function nc commitchangeandreplace. Given that an artifact can be a member of

multiple collections, a CM policy could even choose to use a di�erent approach for each

collection.

To illustrate the versioning functions, the example of Figure 3.5 is continued.

Assume that, using the access functions, a workspace has been opened that contains a
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subset of the artifacts in the repository.

.../DrawingEditor/GUI-lib/

/Menu/PullDown.c

/PushUp.c

To be able to modify the atom PushUp.c, the function nc initiatechange is invoked.

Once the desired changes have been made, the function nc commitchange is used to

store a new version of the atom PushUp.c in the repository. The result is shown in

Figure 4.1. The repository now contains two versions of the atom PushUp.c, but note

that the collection Menu has not changed, since the function nc initiatechange was

not invoked on that collection. In particular, the membership of the collection Menu

is still the same as before the creation of the new version of the atom PushUp.c. If,

instead of the function nc commitchange, the function nc commitchangeandreplace

had been used, no new version would have been created for the artifact PushUp.c. In

fact, the structure of the repository would still have looked like the one of Figure 3.5,

even though the actual contents of version 1 of the atom PushUp.c would have changed.

4.3 Collection Functions

Similar to the way an editor or drawing program can be used to change an atom

in a workspace, collections need to be changed via some kind of mechanism. But,

because collections have special semantics, it would be unwise to allow them to be

edited directly. Therefore, the programmatic interface contains a number of functions

that preserve the semantics of collections while updating their contents. These functions

are the following: nc add, nc remove, nc rename, nc replaceversion, nc copy, and

nc list. An important aspect of these functions is that they do not directly modify

collections in the repository. Instead, they can only modify collections that have been

materialized (and initiated for change) in a workspace. To promote these changes to

the repository, the versioning functions described in the previous section must be used.
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This scheme allows many changes to a collection to be grouped into a single change to

the repository. As an important side e�ect of grouping multiple changes into a single

change, the version explosion problem is avoided. In particular, if each change to a

member artifact leads to a new version of its parent collections, collections at the higher

levels in the graph would have to be versioned at a very high rate. This clearly is

ineÆcient and the programmatic interface allows a CM policy to avoid this situation

altogether.

The functions nc add and nc remove behave as expected, adding and removing a

version of an artifact to and from a collection, respectively. The function nc add can add

either a new or an existing artifact to a collection. The addition of a new artifact will

simply store its contents in the repository. The addition of an existing artifact, on the

other hand, will result in an artifact that is shared by multiple collections and for which

a single version history is maintained (such as the collection GUI-lib in Figure 4.1,

which is shared by the collections WordProcessor and DrawingEditor). If, instead of a

shared version history, a separate version history is desired, then the function nc copy

must be used in place of the function nc add. A distinctly new artifact will be created

in the repository. Initially this artifact contains the same version history as the artifact

that was copied, but the new artifact evolves separately.

A feature that has been diÆcult to provide in CM systems is the ability to rename

artifacts. The testbed solves this problem by providing, directly in its programmatic

interface, the function nc rename. Because an artifact is only renamed within a single

collection at a time, it is possible for an artifact to exist under di�erent names in di�erent

collections. This is an important feature of the programmatic interface, since it allows an

artifact to evolve without compromising its naming history (e.g., renaming an artifact

in one collection does not change its name in the other collections that contain the

artifact).

The function nc replaceversion complements the other collection functions be-
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cause it operates in the version dimension as opposed to the naming dimension. Its

behavior is simple: it changes the member version of an artifact in a collection to an-

other version. Its purpose is to allow a collection to stay in tune with the ongoing

evolution of its member artifacts. However, the function nc replaceversion is not

limited to replacing older versions of an artifact with newer ones. Changing the mem-

ber version of an artifact is also useful in the opposite direction. In particular, for CM

policies that would like to provide an \undo" facility, newer versions in a collection can

be replaced by older ones.

The function nc list rounds out the collection functions. It returns a list of the

names and versions of the artifacts that are members of a collection. This functionality

is useful in building a CM policy that, for example, presents a user with the di�erences

between two versions of a collection, recursively opens a workspace, or simply allows a

user to dynamically select which artifacts to lock or check out.

The set of collection functions is complete. If we consider the artifacts that are

members of a collection to be organized in a two-dimensional space de�ned by name

and version, all primitive functionality is provided. A name-version pair can be added,

a name-version pair can be removed, a name is allowed to change, and a version is

allowed to change. Despite the rather primitive functionality provided by each individual

function, the complete set of collection functions allows for the rapid construction of

higher-level, more powerful functions. For example, a function that replaces, under the

same name, one atom with another, can be constructed as a sequence of invocations of

the functions nc remove, nc add, and nc rename.

The use of the collection functions is illustrated by a continuation of the example

of Figure 4.1. Assume that all artifacts are still open in the workspace. To be able

to manipulate the membership of the collection Menu, the function nc initiatechange

is �rst used to gain proper permission. Then, to update the atom PushUp.c to its

latest version, the function nc replaceversion is applied. In addition, to provide a
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\popup" rather than a \pulldown" menu in the collection Menu, the function nc remove

is used to remove the atom PullDown.c and the function nc add is used to add the

newly created atom PopUp.c. These changes are transferred to the repository using the

function nc commitchange. As a result, the repository looks as shown in Figure 4.2. A

new version of the collection Menu has been created that reects the new membership.

In addition, because the function nc commitchange was used instead of the function

nc commitchangeandreplace, the old version of the collection is still available. This

means that if the function nc list is used on version 2 of the collection Menu, then

version 2 of the atom PullDown.c and version 1 of the atom PushUp.c are listed as

members, whereas if the function nc list is used on version 3 of the collection, then

version 2 of the atom PushUp.c and version 1 of the atom PopUp.c are listed as members.

4.4 Distribution Functions

An important aspect of the distribution model discussed in Section 3.2 is that it

isolates distribution. This is reected in the semantics of the various interface functions,

since the functions behave the same whether artifacts are stored locally or remotely. On

the other hand, sometimes there is a need for control over the location of artifacts. In

general, users of systems that completely hide distribution often encounter performance

diÆculties related to the physical placement of data. To counter this problem, the

programmatic interface contains functions that allow a CM system to determine and

change the physical location of artifacts within a logical repository.

The �rst function, nc setmyserver, speci�es the default physical repository to

which newly created artifacts are added. New artifacts can be added to any physical

repository, since it is not required that they are added to the same physical repository

as the one in which their parent collection resides. When a new artifact is added to a

di�erent repository, a connection is made between that repository and the repository

in which the parent collection is located. This connection is the bridge that forms the
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logical repository spanning the two physical repositories.

To determine the actual location of an artifact, the function nc getlocation is

used. It returns the physical repository in which an artifact is stored. This information

can, in turn, be used by the function nc move to collocate artifacts that are regularly

used together or to move artifacts to those physical repositories that are closer in prox-

imity to the workspaces in which they are manipulated. To comply with the requirement

set forth by the distribution model that all versions of an artifact are located in a sin-

gle physical repository, the function nc move moves the complete version history of an

artifact from one physical repository to another. Note that the movement of artifacts

has no e�ect on the contents of a workspace. In fact, to avoid the opening and closing

of artifacts that only need to be moved and do not need to be changed, it is possible to

move artifacts directly without �rst opening them in a workspace.

To demonstrate a typical use of the distribution functions, assume that it is de-

cided that the collection GUI-lib of Figure 4.2 should have ownership of the atoms

PopUp.c and PushUp.c. The collection GUI-lib is �rst opened and then initiated for

change in a workspace using the functions nc open and nc initiatechange, respec-

tively. Subsequently, the atoms PopUp.c and PushUp.c are added by using the function

nc add, after which the new version of the collection GUI-lib is stored using the function

nc commitchangeandreplace. At this point, both the atoms PushUp.c and PopUp.c

are still located in the physical repository of Milano, an undesirable situation since they

should be collocated with the other members of the collection GUI-lib. To remedy this

situation, the function nc move is applied in order to move both artifacts to the physical

repository of Rotterdam. The result is shown in Figure 4.3. Note that the complete

version history of both artifacts has been moved, and not only the directly contained

member versions. Note also that the order in which the above operations take place is

irrelevant. The artifacts could have been moved before being added to the collection

GUI-lib.
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4.5 Deletion Function

Since it violates the basic premise of always having a precise history of all changes

to all artifacts, deleting (versions of) artifacts from a repository is an uncommon practice

in the domain of con�guration management. Nevertheless, it should still be possible

to do so. Therefore, the function nc destroyversion is provided in the program-

matic interface to physically delete a particular version of an artifact from a repository.

Normally, this function is used to purge obsolete artifact versions from a repository.

Consider the example of Figure 4.3. The artifact spell.c is present in four di�erent

versions. If each of these versions occupies a lot of storage space, a possible scenario

involves using the function nc destroyversion to delete some of the earlier versions in

order to acquire extra storage space for other artifacts.

A second, less common use of the function involves reverting erroneous checkins.

For example, when a new version of spell.c is checked in and its contents is just plain

wrong, the function nc destroyversion can be used to delete this new version from

the repository.

Three observations need to be made about the use of the function nc destroy-

version. The �rst is that the function operates directly on a repository. An artifact

version that needs to be deleted does not have to be opened in a workspace. Because

the artifact is going to be deleted from the repository, �rst opening the artifact in

a workspace would only incur useless communication overhead without providing any

additional bene�ts.

The second observation regards the versions of an artifact that can be deleted by

the function nc destroyversion. A speci�c rule is enforced: a version of an artifact

can only be deleted if it is not a member of a collection. Consider, once again, the

example in Figure 4.3. In this example, a CM policy is allowed to delete version 1

of the atom Frame.c, since that version is not directly contained by a collection. The
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deletion of version 2 and version 3, however, is disallowed because version 2 is a member

of version 2 of the collection Menu.c and version 3 is a member of version 3 of the

collection GUI-lib. This restriction preserves the consistency of the repository structure

by avoiding \dangling" membership relations. If, for any reason, a CM policy does need

to delete a version that is contained by a collection, it �rst has to remove the containment

that prevents the deletion. For example, a CM policy may need to delete version 2 of

the atom Frame.c from the repository in Figure 4.3. The policy �rst has to use the

function nc replaceversion to change the version that is a member of version 2 of the

collection Menu. Alternatively, the CM policy may use the function nc remove to remove

the atom from the membership of version 2 of the collection Menu altogether. After one

of those two functions has been properly applied, version 2 of the atom Frame.c is no

longer contained and can be physically deleted from the repository by using the function

nc destroyversion.

The third observation is that the function nc destroyversion, by itself, is not

suÆcient to be able to delete all artifacts from a repository. A second, implicit form

of deletion has to be provided by an implementation of the abstraction layer that com-

plements the explicit use of the function nc destroyversion. The implicit deletion

has to take care of two speci�c cases. First, by allowing artifacts to be removed from

a collection with the function nc remove, it is possible that none of the versions of a

certain artifact can be addressed. Consider the example in Figure 4.3. If version 1 of the

collection SpellChecker is removed from version 1 of the collection WordProcessor, it

is no longer possible to address the single version of the collection SpellChecker or the

various versions of the atom Spell.c. These two artifacts form an isolated part of the

graph and the storage space that they occupy needs to be reclaimed.

The second case regards a sequence in which a new artifact is added to a collection

in a workspace with the function nc add, but removed from that collection by the

function nc remove before a new version of the collection is stored in the repository.
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In this case, the function nc add has added a new artifact to the repository that is no

longer reachable after the function nc remove has been applied. Once again, its storage

space needs to be reclaimed.

As a comprehensive example, consider the contents of Figure 4.3. Assume that

version 1 of the atom Frame.c is explicitly deleted by using the function nc destroy-

version, that version 3 of the collection GUI-lib is modi�ed by using the function

nc remove to remove version 3 of the atom Frame.c, and that version 2 of the collection

Menu is modi�ed by using the function nc remove to remove version 2 of the atom

PullDown.c. The repository that results after these changes are made is illustrated in

Figure 4.4. Observe that version 2 and version 3 of the atom that was known as Frame.c

(or PullDown.c) are no longer reachable in the graph. Therefore, an implementation

of the testbed has to make sure that the storage space occupied by these versions is

reclaimed. This results in the repository contents that is shown in Figure 4.5.

4.6 Query Functions

The programmatic interface would not be complete without the ability to examine

the state of artifacts. For example, when multiple users share access to an artifact, they

should be able to determine whether any new versions of the artifact have been created

by another user. As another example, when new artifacts are added to a repository by

one user, another user should be able to determine whether the artifact is an atom or

a collection. The query functions were designed to provide this type of functionality.

Although simple, these functions are essential in the development of CM policies because

they provide state information that a CM policy would otherwise have to determine

and track itself. The query functions that provide information about the artifacts in a

workspace are particularly important in this respect.

Six functions fall into the category of query functions. The �rst, nc gettype,

determines whether an artifact is a collection or an atom. Artifacts do not have to be



65

WordProcessor DrawingEditor

Spell.c

SpellChecker

4

3

2

GUI−libGUI−lib

BOULDER

ROTTERDAM

MILANO

Menu

3

PushUp.c

1

1

PopUp.c

3

PopUp.c

1

PushUp.c

2

Window.c

2

Figure 4.4: Example Repository Contents after Version 1 of Atom Frame.c Is Deleted,
Version 3 Is Removed from the Collection GUI-lib, and Version 2 Is Removed from the
Collection Menu.



66

WordProcessor DrawingEditor

Spell.c

SpellChecker

4

GUI−libGUI−lib

BOULDER

ROTTERDAM

MILANO

Menu

PopUp.c PushUp.c

3

21

1

3

PopUp.c PushUp.cWindow.c

2 1 2

Figure 4.5: Example Repository Contents after the Storage Space for Version 2 and
Version 3 of the Atom Frame.c Is Reclaimed.



67

opened in a workspace to use the function nc gettype. Both artifacts in a repository

and artifacts in a workspace can be examined for their type. The function is often used

when recursively opening a collection and all its contained artifacts in a workspace.

The second function, nc version, determines the speci�c version of the artifact

that a particular name addresses. Once again, artifacts do not have to be opened

for their version to be identi�ed. Both the version of an artifact in a repository and

the version of an artifact in a workspace can be determined. Typically, the function

nc version is used in the management of version relationships, such as a revision his-

tory. In particular, when the function nc version is used to determine the version of

an artifact before and after the function nc commitchange has been used to store some

changes, the predecessor relationship can be tracked and stored in a version tree.

To determine the last version of an artifact that exists in a repository, the function

nc lastversion is used. It returns the version number of the last version of the artifact

that was added to the repository using the function nc commitchange. Normally, the

function nc lastversion is used to check for new versions of an artifact that may have

been added by another user.

If some versions of an artifact have been deleted from a repository, a CM policy

needs to be able to verify whether a particular version that is requested by a user is

still available. The function nc existsversion is designed for exactly this purpose: it

returns whether a version of an artifact is present in a repository or not.

The last two functions solely operate on workspaces. The function nc isopen ver-

i�es whether an artifact has been opened in a workspace. The function nc isinitiated

complements the function nc isopen by determining whether an artifact is in a state

that allows a CM policy to modify it (i.e., the function nc initiatechange has been

applied to the artifact but neither the function nc commitchange nor the function

nc commitchangeandreplace has yet been used to store the changes in the reposi-

tory). Typically, these functions are used to reacquaint a user with the state of a
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workspace after the workspace has not been accessed for some time. In addition, the

function nc isinitiated is regularly used to inform a user about the artifacts that can

be changed in a workspace.

4.7 Attribute Functions

To facilitate, in accordance with the attribute model, the association of metadata

with the artifacts in a repository, the programmatic interface contains a number of prim-

itive functions to manipulate attributes. In particular, it is possible to set the value of an

attribute with either the function nc setattribute, which sets the value of an attribute

irrespective of whether a value is already set, or the function nc testandsetattribute,

which only sets the value of an attribute when the attribute is currently non-existent.

To remove an attribute, the function nc removeattribute is used. This function re-

moves both the attribute and its associated value. To search the attributes that may

be set on the various versions of an artifact, the function nc selectversions is used:

for a particular artifact in the repository and for a desired attribute value, it returns

the version number of those versions whose corresponding attribute matches the value.

The attribute functions serve a dual purpose. First, they are used to simply attach

metadata to individual versions of an artifact. For example, it is possible to capture such

characteristics as the author and creation date of the version, one or more change request

identi�ers that identify which particular change requests have been incorporated, and

a short synopsis of the changes made with respect to the previous version.

The second purpose for which the artifact functions were designed is to support

an artifact locking mechanism. In particular, the function nc testandsetattribute

only sets the value of an attribute if it does not yet exist. Therefore, the function can

be used to create a lock on an artifact by simply setting an attribute that represents

the lock. If the artifact had been previously locked (i.e., the attribute is set), then the

function, and hence the lock attempt, will fail. If the attribute had not been previously
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locked (i.e., the attribute is not set), then the function and lock attempt will succeed.

The function nc removeattribute unlocks the artifact by removing the attribute.

Because of their generic nature, the attribute functions do not themselves enforce

locks. Any enforcement results from the usage protocol employed by a CM policy. For

example, a lock can be \broken" (intentionally or unintentionally) by using the function

nc setattribute on an existing lock attribute, since the function will not fail to set the

attribute even though the attribute already exists. In a similar vein, the interpretation

of a lock on a collection is left to the CM policy: does it mean that only the collection

itself is locked or does it mean that anything reachable from the collection is also locked?

The usage protocol employed by the CM policy will provide an answer that is consistent

with the policy it seeks to implement.

Although using the attribute functions for purposes of artifact locking results

in a rather primitive mechanism, it is demonstrated in Section 5.1 that the functions

are powerful enough to directly model the locking schemes employed in such existing

CM systems as RCS [Tic85], CCC/Harvest [Sof94a], and others. If more sophisticated

locking schemes are required, then a separate lock manager, such as Pern [Hei96], can

be used instead. This approach is consistent with the desire for locking to be orthogonal

to the other functionalities of the interface.

To illustrate both roles of the attribute functions, �rst revisit Figure 3.7. Shown

is a set of attributes and their values as associated with the various versions of the

atom Spell.c. To change the comment associated with version 4, the function nc set-

attribute is used. It overwrites the current value of the change comment with the

new text. To determine all versions of the atom Spell.c that are locked, the function

nc selectversions is used. Given the example attributes in Figure 3.7, it returns 4 as

the only version that is currently locked.

Table 4.2 demonstrates how the attribute functions can be used to lock individual

versions of an artifact. The table contains a sequence of function invocations that are
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performed by two di�erent users. Both users want to change the same version of the

atom Spell.c. However, because the �rst user is successful in obtaining a lock through

the use of the function nc testandsetattribute, the second user cannot set a lock

on the artifact. Adhering to the CM policy at hand, the second user refrains from

making any modi�cations, even though the artifact has been opened in the workspace.

The �rst user makes the desired changes and commits those changes to the repository.

However, committing changes does not remove any locks, thus the second invocation

of the function nc testandsetattribute by the second user still fails. Only after

the �rst user has made more changes, committed those changes, and unlocked the

artifact version using the function nc removeattribute, the second user can lock the

appropriate version of the atom Spell.c and perform the desired changes.
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Table 4.2: Using Attributes to Lock a Version of an Artifact.

User 1 User 2

nc open(Spell.c)
nc testandsetattribute(Spell.c, LOCK, user1)
! (succeed)

nc open(Spell.c)
nc testandsetattribute(Spell.c, LOCK, user2)
! (fail)

nc initiatechange(Spell.c)
. . .
. . . change Spell.c. . .
. . .
nc commitchange(Spell.c)

nc testandsetattribute(Spell.c, LOCK, user2)
! (fail)

nc initiatechange(Spell.c)
. . .
. . . change Spell.c. . .
. . .
nc commitchange(Spell.c)
nc removeattribute(Spell.c, LOCK)

nc testandsetattribute(Spell.c, LOCK, user2)
! (succeed)

nc initiatechange(Spell.c)
. . .
. . . change Spell.c. . .
. . .
nc commitchange(Spell.c)
nc removeattribute(Spell.c)



Chapter 5

Modeling Example Con�guration Management Policies

To understand how the testbed can be used in the creation of CM policies, as well

as to demonstrate that the testbed can support the construction of a wide variety of CM

policies, this chapter discusses the mapping of ten example policies onto the abstraction

layer. For each policy, the storage requirements are mapped onto the repository model,

while the essence of the procedures through which the stored artifacts are manipulated

is mapped onto the programmatic interface.

Di�erent examples highlight di�erent aspects of the mapping process. The focus

of the �rst four example CM policies is on the versioning aspects of the abstraction

layer. These policies, although primarily used to manage source code, are in wide-

spread use in current CM systems and are representative of the breadth of CM policies

that have been developed to date. The next four example CM policies illustrate how

the isolation of distribution within the abstraction layer can be exploited to model a

variety of distributed CM policies. Once again, representative, existing CM systems are

used as the basis for these examples. The last two example CM policies are novel, since

no existing CM system provides their kind of functionality. In addition to the three CM

policies that are presented in Chapter 7, these two policies are provided to demonstrate

the ability of the testbed to be applied outside of the traditional CM domain.

The programming language Tcl [Ous94] is used as the speci�cation language in

the examples. It should be noted, however, that none of the policies presented in this
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section is complete. The goal of the examples is to demonstrate how the functions in the

programmatic interface can be combined into useful pieces of functionality, rather than

to demonstrate how fully functional policies can be built. Therefore, error handling and

irrelevant details are omitted from the presented procedures. The procedures should

only be viewed as pseudo code, not as fully functional programs.

5.1 Modeling Versioning Aspects of Traditional CM Policies

Of the many CM systems that have been developed to date, only a handful

employ exactly the same policy. The others are all unique in the types of procedures

they use to manipulate and create versioned artifacts. However, several core policies

have been identi�ed that lie at the heart of most CM systems. These core policies

are checkout/checkin, composition, long transaction, and change set [Fei91a]. Actual

policies that are used in CM systems are either exact copies or minor variants of these

core policies. Below, each core policy is mapped onto the abstraction layer and discussed

in detail.

5.1.1 Checkout/Checkin

The �rst two CM systems, SCCS [Roc75] and RCS [Tic85], pioneered the check-

out/checkin policy. It has since been the basis for numerous CM systems, including

DSCS [Mil97], Gradient [BKR96], Ode [ABGS91], Sablime [Bel97], ScmEngine [CPT97],

and SourceSafe [Mic97]. The policy focuses on providing version support for individual

artifacts and is typically based on the combined use of a repository and a �le system.

Versions of artifacts are stored in the repository, but users do not have direct access to

those versions. Instead, they have to check out a particular version of an artifact to

the �le system before being able to access its contents. Artifacts can be checked out for

read or write access. Read access simply provides a user with the ability to examine

the contents of the artifact. Write access allows a user to actually change the contents
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of the artifact. Once the appropriate changes have been made, the user checks in the

artifact to create and store a new version in the repository.

Typically, a user who checks out a version of an artifact for writing also locks

that version in the repository. While other users can check out the same version of the

artifact for reading, they cannot check it out for writing as long as it remains locked.

This assures that a particular version of an artifact includes all the changes that were

made in previous versions. Speci�cally, new versions cannot, by accident, not include

changes, since concurrent work is prohibited.

If it is so desired that concurrent development does take place, branches can be

used to allow two or more users to change the same version of an artifact at the same

time. The �rst change is checked in normally, but any subsequent checkin from a branch

needs to be merged with the latest version of the artifact, ensuring that all changes are

included in the main branch. Depending on the availability of an appropriate merge

algorithm (e.g., one that understands the type of artifact being versioned), changes can

be propagated among branches by checking out, for writing, a version on one branch,

applying a merge algorithm to incorporate changes from another branch, and checking

in the resulting artifact. Although the creation of merge algorithms is outside the scope

of this dissertation, the checkout/checkin policy does track the fact that a merge has

occurred.

Branches serve two other important roles that are of a more permanent nature.

First, they are used to represent the start of an independent line of development, such

as a line for maintenance or a line for a customer that receives a specialized version of

a product. Second, they are used to represent variants of an artifact, such as a variant

for Windows and a variant for Unix. In both cases, the branch evolves separately from

the main branch. Once again, only if an appropriate merge algorithm is available can

changes from one branch be propagated to another branch.

The set of relationships that is created by all the revisions, variants, lines of devel-
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opment, and merges is traditionally captured as predecessor and successor relationships

in a structure that is called the version tree.1 Because each edge in the tree is labeled

with a set of comments that describe the changes made, the version tree provides a sim-

ple model that conveniently aids a user in understanding the variety of artifact versions

that are available.

5.1.1.1 Repository Design

Figure 5.1a illustrates one possible mapping of the checkout/checkin policy onto

the repository model. Two types of artifacts are stored in the repository, namely con-

tent artifacts and version tree artifacts. Each content artifact has an associated

version tree artifact that maintains the version relationships resulting from checking

out and checking in the content artifact. Content artifacts are versioned to capture

the various revisions and variants that are created over time. Version tree artifacts, on

the other hand, only exist in a single version, since they already capture the version

relationships of their associated content artifacts.

Note that, to avoid naming conicts, two separate name spaces exist within the

repository. These name spaces are created through the use of two collections that are

not versioned, one called Trees and one called Artifacts. The collection Trees has as

its members the only version of each version tree artifact and the collection Artifacts

has as its members the �rst version of each content artifact. Because the sole purpose

of the collection Artifacts is to create a separate name space, this scheme suÆces and

there is no reason to advance or update the speci�c versions of the content artifacts that

are its members.

The schema presented in Figure 5.1a is, by itself, not suÆcient to support the full

functionality of the checkout/checkin policy. An additional set of attributes is needed.

Shown in Figure 5.1b for the content artifact Artifacts/Window.c and its associated

1 Although in reality a version graph is formed, the term version tree is historically used.
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version tree artifact Trees/Window.c, these attributes serve four purposes: 1) to relate

the version numbers provided by the storage model to the version numbers used by

the checkout/checkin policy; 2) to lock individual versions of a content artifact; 3) to

capture metadata; and 4) to represent the version tree.

The attribute Version performs the �rst function: attached to each version of a

content artifact, it contains a version number that was assigned by the checkout/checkin

policy. For example, version 3 of the content artifact Artifacts/Window.c has 1.1.1.0

as the value of its attribute Version, which means that its contents are presented as

version 1.1.1.0 to a user of the checkout/checkin policy.

Not only does the attribute Version support the conversion of the version num-

bers used in the storage model to the version numbers used by the policy, the reverse

is also supported. In particular, the function nc selectversions can be used for this

purpose. Because each version number that is assigned by the checkout/checkin policy

is unique, a lookup with the function nc selectversions of a particular version num-

ber used by the policy results in a single version number that identi�es a speci�c version

of a content artifact in the storage model.

The second and third purposes for which attributes are used are already discussed

in previous sections. In particular, locking and the association of metadata in the

checkout/checkin policy follow the scheme as laid out in Sections 3.5 and 4.7. Locks

are placed on individual versions of a content artifact and identify who owns the lock.

Similarly, simple metadata can be associated with each version of a content artifact. In

the example of Figure 5.1b, version 3 of the content artifact Artifacts/Window.c is

locked by the user John.Doe@somewhere.net and version 2 is a part of the release 1.0

beta. Note that not all versions of a content artifact have to be part of a release:

the attribute Label is not present for version 1 and version 3 of the content artifact

Artifacts/Window.c.

The last purpose of the attributes in the checkout/checkin model is to capture
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Lock = John.Doe@somewhere.net

1.1.1.0−suc = { }

1.1−suc = { }

1.0−suc = { 1.1, 1.1.1.0 }

Artifacts/Window.c

(a)

(b)

1

1

Trees

1 1
2

1 23

3

2

1 Version = 1.0

Version = 1.1.1.0

1

1.1.1.0−pred = { 1.0 }

1.0−pred = { }

1.1−pred = { 1.0 }

Trees/Window.c

Version = 1.1
Label = Release−1.0beta

1

Artifacts

PullDown.cWindow.c PopUp.cPullDown.cWindow.c PopUp.c

Figure 5.1: Example Repository Structure for the Checkout/Checkin Policy (a), and
Typical Attributes Associated with Individual Versions of a Content Artifact and its
Version Tree (b).
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the predecessor and successor relationships that form the version tree. Two important

observations are in place about these attributes. First, unlike the other attributes, they

are not attached to the versions of a content artifact. Although that certainly would

have been a possibility|with attributes either distributed over the various versions or

attached to just its �rst version|the alternative of associating the attributes with a

version tree artifact provides a conceptual separation of concerns and a single location

in which all version relations are stored.

The mere existence of the attributes that represent the version tree is the second

observation. An alternative design could have represented the version tree as the con-

tents of a version tree artifact instead of as a set of attributes. However, using attributes

has the advantage that individual relations can be set and retrieved without opening a

version tree artifact in a workspace, making the approach more eÆcient.

5.1.1.2 Core Policy Design

Figures 5.2 and 5.3 show a mapping of the checkout/checkin policy onto the

functions in the programmatic interface. Presented are the two procedures that form

the core of the checkout/checkin policy, checkout and checkin. Based on the repository

design of Figure 5.1, these procedures utilize the interface functions to manipulate the

various artifacts and attributes into the desired behavior.

The core policy design is based on the use of workspaces. In particular, the pro-

cedure checkout checks out a particular version of a content artifact into a workspace,

making it available for a user to change its contents. The procedure checkin comple-

ments the procedure checkout by storing, as a new version in the repository, the content

artifact that has been modi�ed in a workspace. The workspaces as de�ned by the ac-

cess model (see Section 3.4) can be used as is, since no special artifact manipulation or

presentation is needed to support the checkout/checkin policy.

As implied by its name, the procedure checkout checks out a particular version of
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a content artifact into a workspace. Its programmatic logic is divided into three parts.

The �rst part determines the values of some useful variables that are used throughout

the remainder of the procedure. In particular, the variable user is set to the name

of the user that employs the procedure; the variable host is set to the name of the

repository from which artifacts should be retrieved; the variable artifact is set to the

full name of the content artifact that needs to be checked out; the variable filename

is set to just the last part of the content artifact name; the variable wsartifact is set

to the name of the content artifact in the workspace; the variable storageversion is,

using the function nc selectversions, set to the version of the content artifact in the

storage model; and the variable artifact is modi�ed by appending a version quali�er

to indicate the desired version of the content artifact that needs to be checked out.

By using the function nc testandsetattribute, part two of the procedure at-

tempts to lock the version of the content artifact that needs to be checked out. If the

lock is obtained, no further action is taken in this part. If the lock cannot be obtained,

the function nc getattributevalue is used to determine which user owns the lock and

an appropriate failure message is displayed to inform the user of the procedure.

The �nal part of the procedure performs the actual checkout. It �rst opens the

desired version of the content artifact in the workspace by using the function nc open.

Then, through the function nc initiatechange, it gives the user permission to change

the content artifact in the workspace. It concludes by informing the user that the

operation has successfully completed. Of note in this part of the procedure is the

correspondence between the variable artifact and the variable wsartifact. Whereas

the variable artifact designates the content artifact in the repository, the variable

wsartifact designates the content artifact in the workspace. Because the function

nc open preserves the name of an artifact when it opens it in the workspace, the two

variables, although di�erent in value, identify the same content artifact.

After a content artifact has been checked out, the user can manipulate it at will.
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proc checkout f workspace content version g
f

#

# Part 1: set some useful variables.

#

set user $env(USER)

set host $env(REPOSITORYHOME)

set artifact "//$host/Artifacts/$content"

set filename [file tail $content]

set wsartifact "$workspace/$filename"

set storageversion [lindex [nc selectversions $artifact "Version" $version] 0]

set artifact "$artifact:$storageversion"

#

# Part 2: attempt to lock the appropriate artifact version.

#

set locked [nc testandsetattribute $artifact "Lock" $user]

if f $locked == "false" g f
set lockuser [nc getattributevalue $artifact "Lock"]

if f $lockuser == $user g f
puts "$artifact $version is already checked out."

exit

g else f
puts "$artifact $version is checked out by $lockuser."

exit

g
g

#

# Part 3: retrieve the locked artifact.

#

nc open $artifact $workspace

nc initiatechange $wsartifact

puts "$artifact $version has been checked out."

g

Figure 5.2: Checking Out a Version of a Content Artifact in the Checkout/Checkin
Policy.
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Once the changes have been �nished, though, a new version should be stored in the

repository. The procedure checkin, shown in Figure 5.3, is used for this purpose. Once

again, the procedure is partitioned into a number of parts. Similar to the procedure

checkout, the �rst part sets the values of some variables that are used throughout the

remainder of the procedure. In particular, the variables user, host, filename, and

wsartifact are set as in the procedure checkout; the variable oldstorageversion is,

using the function nc version, set to the old version number of the content artifact in

the repository; the variable oldartifact is set to the name of the old version of the

content artifact; the variable oldversion is, using the function nc getattributevalue,

set to policy version number that the user used to check out the content artifact; and

the variable tree is set to the full name of the version tree artifact that is associated

with the content artifact being checked in. Of note is the variable oldartifact, which

reects a name in a workspace to which a version quali�er is attached. When used as a

parameter to the function nc getattributevalue, the attribute value is retrieved from

the repository, since a workspace does not store attribute values.

The second part of the procedure checkin locks the version tree artifact. Note

that the procedure repeatedly attempts to lock the version tree artifact if it is already

locked. Unlike the locks that are placed by the procedure checkout, which may last for

a relatively long time, a version tree artifact is only locked to provide for concurrency

control while it is being updated during a checkin. Therefore, if a version tree artifact is

locked, it suÆces to wait and poll until another checkin operation completes and unlocks

the version tree artifact.

After the version tree artifact is locked, the actual checkin operation is performed

using the function nc commitchange. As a result, a new version of the content artifact is

stored in the repository and permission to change the content artifact in the workspace

is revoked. The function nc commitchange returns the version number that identi�es

the new version of the content artifact in the repository. This version number is sub-
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proc checkin f workspace content g
f

#

# Part 1: set some useful variables.

#

set user $env(USER)

set host $env(REPOSITORYHOME)

set filename [file tail $content]

set wsartifact "$workspace/$filename"

set oldstorageversion [nc version $wsartifact]

set oldartifact "$wsartifact:$oldstorageversion"

set oldversion [nc getattributevalue $oldartifact "Version"]

set tree "//$host/Trees/$content"

#

# Part 2: lock the tree to receive exclusive access.

#

set treelocked [nc testandsetattribute $tree "Lock" $user]

while f $treelocked == "false" g f
set treelocked [nc testandsetattribute $tree "Lock" $user]

g

#

# Part 3: store a new version of the artifact.

#

set newstorageversion [nc commitchange $wsartifact]

set newartifact "//$host/Artifacts/$content:$newstorageversion"

set newversion [calcnewversion $oldversion]

nc testandsetattribute $newartifact "Version" $newversion

#

# Part 4: update the version tree.

#

set successor "$oldversion-suc"

set successors [nc getattributevalue $tree $successor]

lappend successors $newversion

nc setattribute $tree $successor $successors

set newpredecessor "$newversion-pred"

nc setattribute $tree $newpredecessor f $oldversion g
set newsuccessor "$newversion-suc"

nc setattribute $tree $newsuccessor fg

#

# Part 5: unlock everything.

#

nc removeattribute $tree "Lock"

nc removeattribute $oldartifact "Lock"

puts "$content $newversion has been checked in."

g

Figure 5.3: Checking In a New Version of a Content Artifact in the Checkout/Checkin
Policy.
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sequently used to create a full name for the new version of the content artifact, as well

as to associate a new policy version number as an attribute. Note that the new policy

version number is calculated using an external procedure called calcnewversion. This

procedure advances the policy version number and automatically creates branches using

the following algorithm.

increment last part of version number by 1

while the version number exists

append 1.0 to the version number

return version number

The version numbers that are calculated by this standard algorithm are unique and allow

traceability based on the structure of the version number. Consider, for example, a pre-

existing set of versions identi�ed by the numbers 1.0, 1.1, and 1.1.1.0. If version 1.0 is

checked out and subsequently checked in, the algorithm iterates over the version numbers

1.1, 1.1.1.0, and 1.1.1.0.1.0 in its calculation of a new version number. Conversely,

traceability (in terms of obtaining the parent of a particular version) is achieved by

reversing the algorithm: �rst remove all occurrences of 1.0 at the end of the version

number and then subtract 1 from the last part of the resulting version number.

Part four of the procedure modi�es the version tree by updating the attributes

attached to the version tree artifact. In particular, it updates the successor attribute of

the predecessor of the new version, and adds a predecessor and successor attribute for

the new version. Note that the function nc setattribute is used in this part of the

function. Because the version tree artifact is locked and guarantees exclusive access over

time, the use of the function nc setattribute suÆces to change some of the existing

attributes and to add some new attributes.

The last part of the procedure checkin releases the locks that are held. First

the version tree artifact is unlocked to allow other users to check in new versions of the

content artifact. Subsequently, the appropriate version of the content artifact itself is
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unlocked to allow other users to check out that version again in order to make other

changes.

5.1.1.3 Variations on the Checkout/Checkin Policy

Several variations of the checkout/checkin policy have been developed over the

years. The repository design and associated procedures described above can easily be

adapted to support these variations. Below, we briey describe some of the variations

and discuss how the repository design and associated procedures are changed to accom-

modate each variation.

� A checkout of a single version of a content artifact locks all versions

of the content artifact.

Sometimes, exclusive access to all versions of a content artifact is required,

without any other user modifying the history of that content artifact at the

same time. In such cases, a checkout should lock all versions of the respective

content artifact. This policy requires a simple modi�cation to the standard

checkout/checkin policy: instead of using multiple instances of the attribute

Lock (one for each individual version of a content artifact) a single instance is

associated with the version tree artifact. Because only one version of the version

tree artifact exists, a procedure checkout that is modi�ed to attach a lock to the

version tree artifact prevents all subsequent invocations from completing. Of

course, the lock that is used by the procedure checkin of Figure 5.3 to perform

concurrency control is now superuous: the version tree artifact is already locked

and the procedure checkin does not need to perform any additional locking.

� The creation of a branch is disallowed.

In some policies, it is required that linear evolution takes place [BKR96]. In

these policies, branches cannot be created. Two modi�cations, each leading
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to a slightly di�erent behavior, can be made to the standard checkout/checkin

policy. In the �rst, the procedure checkout is modi�ed to, a priori, prevent the

creation of branches in the procedure checkin. With this change, the policy

guarantees a linear path of evolution in which each version of a content artifact

is based on its immediate prior version. Two modi�cations are required to at-

tain this behavior. The �rst modi�cation is based on the recognition that only

one change can be made at the same time. The solution to this requirement is

provided by the previous variant of the standard checkout/checkin policy: the

procedure checkout locks all versions of a content artifact by simply placing

the lock on the version tree artifact. The second modi�cation obtains the latest

version of the content artifact using the function nc lastversion, compares

that version against the value of the variable storageversion, and only con-

tinues the procedure if the values are the same. This modi�cation, executed

after the lock on the version tree artifact has been placed, guarantees that the

changes to be made are based on the latest version of the content artifact.

The second modi�cation should be made if new versions of a content artifact,

even though creating a linear path of storage, can be based on older versions. In

this case, the procedure calcnewversion needs to be adjusted to return linear

version numbers. The simplest way to achieve this behavior is to obtain the

value of the attribute Version (using the function nc getattributevalue) on

the last version of the content artifact (determined by the function nc lastver-

sion) and returning the next version number in the sequence. This change still

allows multiple changes to be made concurrently. To avoid such parallelism,

the change should be combined with the changes made in the �rst variation (a

checkout of a single version of a content artifact locks all versions of the content

artifact).
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� A checkout reserves a revision number.

To know up front whether or not a checkout will lead to the creation of a branch,

some CM policies employ a scheme in which the procedure checkout reserves a

revision number [HLRT97]. To modify the standard checkout/checkin policy to

attain this behavior, two changes need to be made. The �rst change concerns the

procedure checkout, which in e�ect becomes a mix of the original procedures

checkout and checkin. In particular, the procedure checkout needs to lock the

version tree artifact for concurrency control, calculate the next version number,

update the version tree, and use a sequence of the functions nc initiatechange,

nc commitchange, and nc initiatechange to create a new, reserved version of

the content artifact in the repository.

The second change concerns the procedure checkin. Because the procedure

checkout has been modi�ed to perform most of the functions of the original

procedure checkin, the new procedure checkin reduces to using the function

nc commitchangeandreplace to store the new version of the content artifact in

its pre-allocated slot.

� Certain branches are represented as a newly named artifact.

To avoid the confusion that sometimes arises because branches represent more

than one concept (i.e., parallel work, lines of development, and variants), some

policies separate these concerns and restrict branches to solely represent parallel

work [Sei96]. Any other type of branch is represented in the name space of the

repository: a new content artifact is created that, although linked to the original

content artifact, evolves separately. To accommodate this change, only the pro-

cedure checkin needs to be modi�ed. In particular, parts three and four are only

executed when regular evolution or parallel work occurs. In other cases, a new

content artifact needs to be created by opening the collection Artifacts, using
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the function nc initiatechange to be able to modify the collection, adding

the new content artifact, and using the function nc commitchangeandreplace

to store the change in the repository. In a similar fashion a new version tree

artifact is created and stored underneath the collection Trees. To keep track of

the history across content artifacts, appropriate attributes are set on the new

content artifact, the new version tree artifact, and the old content artifact.

5.1.2 Composition

The composition policy forms the basis for a large number of well-known CM

systems, including Adele [EC94], ClearCase [Atr92], CVS [Ber90], and PVCS [INT98b].

It extends the checkout/checkin policy with a compositional capability that allows indi-

vidual content artifacts to be grouped into components and components to be grouped

into higher-level components. Moreover, just like content artifacts, components can be

versioned as well. The resulting graph of versioned components and versioned content

artifacts forms a composition that is commonly termed a system model. This system

model is central to the composition model and provides the basis through which users

interact with the repository.

In order to isolate work in progress, users manipulate components in workspaces.

These workspaces are populated through the use of version selection rules. Based on the

hierarchy of components, these rules typically select a particular version of a component

at each level of the hierarchy. Consider, for example, the following set of rules.

GUI-lib --> Version == 1.1

GUI-lib/*.c --> Author == John.Doe@somewhere.net

These rules specify that a workspace should be populated with version 1.1 of the com-

ponent GUI-lib. By default, the versions of the content artifacts that are contained

by version 1.1 of the component GUI-lib are placed in the workspace as well, unless

the name of a content artifact has the extension \.c". For these content artifacts, the
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second selection rule states that it is preferred that the version authored by the user

John.Doe@somewhere.net is placed in the workspace. If no such version exists, the

selection rules revert to the default and populate the workspace with the contained ver-

sion of the content artifact. It should be noted that the selection rules do not have to

address each level of the hierarchy. It is possible, for example, to rely on the default rule

for components at the higher levels of the hierarchy while specifying particular versions

of components and content artifacts at the lower levels.

The level of sophistication of the selection rules varies within the CM systems

that adhere to the composition policy. In some, advanced pattern matching, uni�ca-

tion, and compositional capabilities are an integral part of the speci�cation. In others,

only one selection rule is used that speci�es the version of the top-level component to

be included in the workspace. All other artifacts are placed in the workspace based

on their (transitive) membership to that version of the top-level component. Despite

their di�erences, all types of selection rules rely on a precise and non-conicting use

of attributes to label particular versions of components and content artifacts. Without

proper labeling, ambiguous and incorrect con�guration speci�cations may result and

changes may be lost.

To store new versions of components and content artifacts in the repository, a

basic checkout/checkin policy is used by the composition policy: before a component or

content artifact can be modi�ed in a workspace, it has to be checked out and locked to

prevent concurrent modi�cations. Once an artifact has been modi�ed to satisfaction,

a new version of the component or content artifact is stored in the repository. One

variable aspect of this scheme is the decision when to store new versions of components.

In particular, if contained (versions of) components and content artifacts are changed,

some type of rule needs to govern when to create a new version of a component. Most

common is to leave this choice up to the user, such that an appropriate aggregate of

changes can be checked in as a single modi�cation to a component.
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5.1.2.1 Repository Design

Mapping the composition policy onto the repository model requires few modi�-

cations with respect to the repository design of the checkout/checkin policy. In fact,

many of the unique aspects of the composition policy reside in the complexities of the

construction of a workspace, a procedure that is discussed in the next section. The one

extension that needs to be made to the mapping presented in Figure 5.1 is the intro-

duction of collections to model components. Similar to the way atoms model content

artifacts, these collections are versioned and have an associated version tree artifact.

As shown in Figure 5.4a, this leads to the presence of two corresponding hierarchies,

one in the name space Artifacts and one in the name space Trees. The hierarchy in

the name space Artifacts is versioned to capture the evolution of the components and

content artifacts, but the hierarchy in the name space Trees is not, since the artifacts

in that hierarchy represent version trees that do not need to be versioned.

Attributes serve the same role for the artifacts in the composition policy as they

do for the artifacts in the checkout/checkin policy. For both components and content

artifacts they are used to: relate version numbers provided by the storage model to the

version numbers used by the composition policy; lock individual versions of a component

or content artifact; capture metadata; and represent version trees. Of particular im-

portance to the composition policy is their function of capturing metadata. Generally,

a speci�c scheme is set up to which users must adhere when checking in new versions

of components or content artifacts. For example, in Figure 5.4b it is illustrated that

each version of the component GUI-lib has an associated attribute called Label that

is used in a structured way to identify the release to which the particular version of the

component belongs.
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Figure 5.4: Example Repository Structure for the Composition Policy (a), and Typical
Attributes Associated with Individual Versions of a Component and its Version Tree
(b).
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5.1.2.2 Core Policy Design

Based on the repository design of Figure 5.4, Figure 5.5 presents the procedure

that forms the core of the composition policy, populateworkspace. This procedure

has three input parameters: workspace, which identi�es the location in the �le system

where the workspace is located; component, which determines the component that, in

addition to its contained artifacts, needs to be placed in the workspace; and rules,

which is a set of rules that govern which versions of the component (and contained

artifacts) are actually selected to be placed in the workspace. Following the structure of

the procedures checkout and checkin shown in Figures 5.2 and 5.3, respectively, the

�rst part of the procedure populateworkspace sets the values of some useful variables

for future use. In particular, the variable host is set to the name of the repository from

which artifacts should be retrieved; the variable artifact is set to the name of the

component with which the workspace should be populated; the variable filename is set

to just the last part of the component name; and the variable wsartifact is set to the

name of the component in the workspace.

Part two of the procedure determines whether the default version of the com-

ponent needs to be placed in the workspace or whether the rules prescribe a di�erent

version than this default. To do so, the procedure determineversion is used. In this

procedure, the name of an artifact is matched against rules that are of the following

generic form.

pathname --> attributename == attributevalue

If the rules do not contain a pathname that matches the name of the artifact, an empty

version is returned to indicate that the default version of the artifact should be used. If

the set of rules does contain a matching rule, the function nc selectversions is used

to determine the version number of the artifact for which the desired attribute has the

associated value. This version number is returned. If none of the artifact versions has
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the appropriate attribute value, the function nc selectversions returns an empty set,

which is conveniently used by the procedure determineversion to indicate that the

default version should be opened in the workspace.

Once the version to be opened has been determined, the component is placed

in the workspace using the function nc open. After that, the member artifacts of the

component are determined using the function nc list. For each of the member artifacts,

the procedure populateworkspace is then recursively invoked to place the contained

artifacts in the workspace as well. Note that the function nc list is applied to the

collection as opened in the workspace. This prevents any potential race conditions that

might be present if the function is applied, after the collection has been opened in the

workspace, to the collection in the repository.

Finally, the procedure concludes by informing the user that the workspace has

successfully been populated.

Three observations are in place about the details of the composition policy. First,

the procedure populateworkspace does not lock any of the artifacts in the workspace.

Instead, a simpli�ed version of the procedure checkout of the checkout/checkin policy

should be used to lock any of the artifacts that are going to be modi�ed. As compared to

the original procedure, the simpli�ed version of the procedure does not open the artifact

(since it already has been opened in the function populateworkspace), but only locks

it.

The second observation is that the rules that can be processed by the procedure

populateworkspace are rather simple. They are based on the equality of a single

attribute value. However, this is only a simpli�cation for presentation purposes. More

advanced rules can be evaluated as desired by changing the details of the procedure

determineversion.

The �nal observation regards the question as to how the membership of a com-

ponent is updated given that a checkin of a new version of a member artifact does not
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proc determineversion f artifact component rules g
f

set i [lsearch -glob $rules "$component*"]

if f $i == -1 g f
return fg

g
set rule [lindex $rules $i]

set attrname [lindex $rule 2]

set attrvalue [lindex $rule 4]

return [nc selectversions $artifact $attrname $attrvalue]

g

proc populateworkspace f workspace component rules g
f

#

# Part 1: set some useful variables.

#

set host $env(REPOSITORYHOME)

set artifact "//$host/Artifacts/$component"

set filename [file tail $component]

set wsartifact "$workspace/$filename"

#

# Part 2: determine the version to materialize.

#

set version [determineversion $artifact $component $rules]

if f $version != fg g f
set artifact "$artifact:$version"

g

#

# Part 3: recursively open the component.

#

nc open $artifact $workspace

set members [nc list $wsartifact]

foreach member $members f
set subcomponent "$component/$member"

populateworkspace $workspace $subcomponent $rules

g

#

# Part 4: done.

#

puts "workspace has been populated with component $component."

g

Figure 5.5: Populating a Workspace in the Composition Policy.
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update the component itself. Therefore, the procedure checkin needs to be modi�ed,

in case it checks in a component, to �rst update its membership with the versions of

the member artifacts in the workspace before the new version of the component is ac-

tually stored to the repository. This allows multiple changes to member artifacts to be

grouped into a single change at the component level.

5.1.2.3 Variations on the Composition Policy

Two common variations of the standard composition policy have been developed.

The �rst, recursive propagation, is an attempt to hide the intricacies and complications

that arise from versioning a hierarchy of components. The policy automatically creates

new versions of components when new versions of their contained artifacts are checked

in. Although resulting in a proliferation of the number of component versions at the

highest levels in the hierarchy, this policy is used by certain CM systems that manage

strictly hierarchical data while relying on linear evolution of the artifacts being versioned

(e.g., CoED [BLNP98] or Poem [LR96]). By using an appropriate user interface that

hides the details of the versioning policy, these CM systems shield their users from the

version explosion problem.

To modify the standard composition policy to provide recursive propagation of

changes, the procedure checkin needs to be extended. In particular, after the new arti-

fact has been checked in, the procedure needs to recursively move up in the containment

hierarchy of components, at each stage opening the latest version of the component using

the functions nc lastversion and nc open, updating the membership of the compo-

nent using the functions nc initiatechange and nc replaceversion, and storing the

new version of the component in the repository using the function nc commitchange.

Of course, to prevent race conditions, each update of a component should be protected

using a simple locking mechanism that is similar to the way the checkout/checkin policy

protects the version tree while it is being updated.
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The second variant of the standard composition policy is based on an attribute

selection mechanism that is not hierarchical in nature and disposes of the guards that

are present in each of the rules of the standard composition policy. Instead, the rules

solely rely on a pattern matching of attribute values: the attributes associated with

each version of an artifact determine the version that is placed in the workspace. Al-

though this policy requires a more stringent use of attributes to properly label artifact

versions, it has proven to be more generic than the standard composition policy (which

is demonstrated by the exibility provided by Adele [EC94] or ShapeTools [ML88]).

The plain attribute selection policy can easily be supported by the programmatic

logic of the procedure populateworkspace of Figure 5.5. The only modi�cation regards

the selection process that determines which version of an artifact needs to be opened,

i.e., the procedure determineversion. First, the procedure needs to be modi�ed to

not match pathnames against artifact names, since the selection process is solely based

on attributes and their values. Second, the procedure needs to be modi�ed to include

a uni�cation process that determines, based on a given set or rules, which (versions

of) artifacts are selected to be placed in the workspace. Although at �rst sight a

complicated change, implementations of uni�cation algorithms exist that simply can be

used as subroutines by the procedure determineversion.

5.1.3 Long Transaction

The long transaction policy was pioneered by NSE [FD90]. In its purest form it

has only been used by Vesta [CL93], but two common derivative policies, both of which

are discussed in Section 5.1.3.3, are in widespread use. As its name implies, the critical

contribution of the long transaction policy is its use of long transactions to encapsulate

changes. These long transactions are organized in a hierarchical tree and have versioning

capabilities that allow the evolution of artifacts within a long transaction. Artifacts

evolve within a long transaction until they have been modi�ed to satisfaction. Only
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then are they committed to the long transaction that is the logical parent within the

tree of long transactions. This scheme partitions changes among many lower-level long

transactions and utilizes higher-level long transactions to aggregate these changes. Of

note is the fact that long transactions last a long time as compared to traditional

database transactions. In particular, the longevity of the higher-level transactions,

which represent an aggregate of lower-level transactions, may be anywhere between a

few hours to months at a time.

The hierarchy of long transactions provides a form of isolation in which each long

transaction represents a certain stage within the development process. As an example of

how this feature of the policy can be used, consider three levels of long transactions. The

�rst and highest level consists of a single long transaction, which is the main repository

in which baselines are stored. The second level also consists of a single long transaction,

namely the long transaction that is used by a team of developers to collect and group

a number of related changes. At the third level, an arbitrary number of development

long transactions reside. Each one of those long transactions commits its changes to the

team long transaction. Once all desired changes have been collected in the team long

transaction, a single change is committed from the team long transaction to the main

long transaction in which the change is stored and labeled as a new baseline. This, and

other types of hierarchies, are typically created during the use of the long transaction

policy.

To support the staging process, the versioning capabilities of a long transaction

are essential. In particular, when changes are committed from a child long transaction to

its parent long transaction, a new con�guration is created in the parent long transaction.

This ensures the existence of a precise history of changes. Moreover, it provides users

with the ability to undo certain changes by reverting to an older con�guration in the

parent long transaction. Finally, because users can have private long transactions, the

presence of versioning capabilities gives them a checkpointing ability without having to
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store the checkpoints in a central storage facility where they are visible to all users.

Just like any other transaction mechanism, rules for resolving conicts are needed.

In the case of the long transaction policy an optimistic approach is taken. It is assumed

that changes made to artifacts in di�erent child long transactions do not conict and

that the artifacts can simply be updated in the parent long transaction. If conicts do

occur, a child long transaction is responsible for merging its artifacts with the latest

version of the artifacts as stored in the parent long transaction. In this scheme, any

long transaction can work on any artifact that is present in its parent long transaction.

Moreover, each long transaction does not have to lock any artifacts that it modi�es.

It should be noted that, in the same way the composition policy relies on a mod-

i�ed checkout/checkin policy, the long transaction policy uses a modi�ed composition

policy to provide parts of its functionality. Selection rules are used by developers to

gain access, in a workspace, to those artifacts in the long transaction on which they

operate. Furthermore, system models are used to create and version the hierarchy of

components that is managed by the long transaction policy.

5.1.3.1 Repository Design

To support the long transaction policy, one possible design represents each long

transaction as a separate physical repository. An instance of this design is presented in

Figure 5.6. One main long transaction and three child long transactions, all organized

in a tree, are shown. The �rst child long transaction is the team long transaction,

which contains a set of baseline artifacts copied from the main long transaction. In

the example, no new versions of these artifacts have been stored yet in the team long

transaction. Both developer long transactions are also based on the baseline, except

that each was originally copied from the team long transaction instead of the main

long transaction. Since the creation of both developer long transactions, developer A

has modi�ed and stored new versions of only two artifacts, whereas developer B has
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modi�ed all artifacts and already stored an intermediate con�guration as a checkpoint.

The structure of each physical repository in the long transaction policy is the

same as the structure of the repository that supports the composition policy (i.e., the

repository structure that is presented in Figure 5.4 is the repository structure used in

each of the long transactions shown in Figure 5.6). Although structurally the same, the

design of the repository structure for the long transaction policy requires one additional

attribute as compared to the design of the repository for the composition policy. This

attribute, attached to the top-level artifact in a long transaction, identi�es the corre-

sponding artifact in the parent long transaction to which changes are applied when the

child long transaction is committed. In essence, the additional attribute builds a bridge

between the two, otherwise separate, physical repositories.

Using a multitude of physical repositories instead of a single physical repository to

model long transactions has two distinct advantages in supporting the long transaction

policy.

� Clean separation of concerns.

Each physical repository represents a particular stage in the development pro-

cess and only contains the artifacts that are relevant to that stage. If only one

physical repository was used to represent all long transactions, that repository

needs to track which artifacts belong to which long transaction, hide private

\checkpoint" artifacts from other long transactions, and maintain the hierarchy

of long transactions as they relate to each other.

� Load balancing.

Instead of using a single physical repository in which all versions of all artifacts

are stored, multiple physical repositories are used that each are responsible for

managing changes to a part of the versioned graph of artifacts. This scheme

distributes the high load that is typically present in case of a single storage
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Figure 5.6: Example Repository Structure for the Long Transaction Policy.
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point to a multitude of physical repositories.

At the same time, though, the solution is heavy weight. Whereas an implementation

that is based on a single repository can take advantage of artifact sharing among long

transactions and thus save a lot of storage space, the disadvantage of mapping each

long transaction to a physical repository is that it requires copying of artifacts and an

considerable amount of extra storage space.

The workspaces as de�ned by the access model still play a role in the long trans-

action policy: they are used to gain access to the artifacts that are stored in the physical

repositories that represent the long transactions. In particular, both developer A and

developer B must use selection rules to gain access, via the �le system as de�ned by the

access model, to the artifacts that are stored in a physical repository. The procedure

populateworkspace as de�ned in the previous section can be used for this purpose.

5.1.3.2 Core Policy Design

To version artifacts according to the long transaction policy, four procedures are

needed. The �rst, createlongtransaction, creates a new child long transaction by

deriving it from an existing long transaction. Its details are discussed below. The

second and third procedures, checkout and checkin, respectively, are modi�ed copies

of the procedures used by the composition policy. Speci�cally, both procedures need

to be modi�ed to not lock any artifacts, since an optimistic approach underlies the

long transaction policy in which it is assumed that conicts do not occur. The �nal

procedure, commitlongtransaction, takes the latest version of the artifacts in a long

transaction and updates the parent long transaction with those versions. The details of

this procedure are also discussed below.

The programmatic logic of the procedure createlongtransaction is illustrated

in Figure 5.7. Once again, the �rst part of the procedure sets the values of some

useful variables. First, two workspaces are de�ned. The �rst workspace designates the
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location in which the artifacts from the parent long transaction are opened, while the

other workspace designates the location that is used for the creation of new artifacts

that will form the basis for the child long transaction. These workspace are called

parentws and childws, respectively. The variable parenttransaction is set to the

name of the physical repository in which the parent long transaction resides and the

variable childtransaction is set to the name of the physical repository that is going

to contain the contents of the newly created child long transaction. The last part of the

name of the component that forms the basis for the child long transaction is stored in the

variable filename, and the full name of the component in the parent long transaction

is stored in the variable artifact.

Part two of the procedure copies the component and its contained artifacts from

the physical repository that represents the parent long transaction to the physical repos-

itory that represents the child long transaction. To do so, it �rst uses the function

nc setmyserver to make sure that new artifacts are added to the physical repository

that represents the child long transaction. Then, the artifacts to be copied are, recur-

sively, placed in the workspace parentws by reusing the procedure populateworkspace

from the composition policy. After that, the artifacts are copied to the workspace

childws and added to the physical repository that represents the child long transac-

tion by using the procedure recursivecopyadd. It should be noted that this procedure

physically copies the artifacts from the workspace parentws to the workspace childws.

This form of copying is necessary to remove any connections that the artifacts have

with the physical repository in which they are stored. Without the removal of those

connections, the use of the function nc add would result in a link to the artifact in the

physical repository that contains the parent long transaction rather than the creation

of a physically separated artifact that is stored independently.

After the child long transaction has been created, the procedure attaches the

attribute parent to the copied component to identify the component in the parent
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proc recursivecopyadd f parentartifact childartifact g
f

file copy $parentartifact $childartifact

nc add $childartifact

if f [nc gettype $childartifact] == "collection" g f
nc initiatechange $childartifact

set members [nc list $childartifact]

foreach member $members f
set subparent "$parentartifact/$member"

set subchild "$childartifact/$member"

recursivecopyadd $subparent $subchild

g
nc commitchangeandreplace $childartifact

g
g

proc createlongtransaction f component g
f

#

# Part 1: set some useful variables.

#

set parentws "/tmp/parentws"

set childws "/tmp/childws"

set parenttransaction "$env(PARENTHOME)"

set childtransaction "$env(CHILDHOME)"

set filename [file tail $component]

set artifact "//$parenttransaction/Artifacts/$component"

#

# Part 2: copy the artifacts.

#

nc setmyserver $childtransaction

populateworkspace $parentws $artifact fg
recursivecopyadd "$parentws/$filename" "$childws/$filename

set newartifact "//$childtransaction/Artifacts/$component"

nc setattribute $newartifact "parent" $artifact

nc close "$parentws/$filename"

nc close "$childws/$filename"

#

# Part 3: done.

#

puts "A child long transaction has been created."

g

Figure 5.7: Creating a Child Long Transaction in the Long Transaction Policy.
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long transaction. Then, both the workspace parentws and the workspace childws are

closed.

The procedure concludes by informing its user that it has completed successfully

and that the new child long transaction is available for use.

The procedure createlongtransaction as presented in Figure 5.7 is simpli�ed

in two ways. First, it assumes that the physical repository that represents the child

long transaction has been initialized with the two name spaces, Artifacts and Trees,

respectively. The second simpli�cation regards the creation of the version tree artifacts

that are associated with the components and content artifacts that are being copied.

Because the creation of a new version tree artifact with a single entry is rather simple,

but requires additional workspaces and a slight duplication of code, the appropriate

pseudo code is omitted from the �gure. Both simpli�cations are merely omissions for

brevity, and their addition to the procedure as shown is straightforward.

Complementary to the functionality of the procedure createlongtransaction is

the procedure commitlongtransaction. This procedure updates a parent long trans-

action with the latest version of the artifacts that are stored in a child long transaction.

The procedure commitlongtransaction is presented in Figure 5.8. The pro-

cedure �rst sets the values of some variables. Two workspaces are de�ned, namely

childws and parentws. The �rst workspace is used to materialize the artifacts stored

in the physical repository that represents the child long transaction, whereas the sec-

ond workspace is used to materialize the artifacts stored in the physical repository that

represents the parent long transaction. After the workspaces are de�ned, the variables

childtransaction, filename, and artifact are set as in previous procedures. Their

values are set to the name of the physical repository that contains the artifacts of the

child long transaction, the last part of the name of the component that is being com-

mitted, and the full name of the component in the child long transaction, respectively.

The variable artifact is subsequently modi�ed to contain the full name of the latest
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proc commitlongtransaction f component g
f

#

# Part 1: set some useful variables.

#

set childws "/tmp/childws"

set parentws "/tmp/parentws"

set childtransaction "$env(CHILDHOME)"

set filename [file tail $component]

set artifact "$childtransaction/Artifacts/$component"

set version [nc lastversion $artifact]

set artifact "$artifact:$version"

#

# Part 2: determine the artifact in the parent transaction.

#

set parentartifact [nc getattributevalue $artifact "parent"]

set version [nc lastversion $parentartifact]

set parentartifact "$parentartifact:$version"

#

# Part 3: commit the workspace.

#

nc setmyserver [nc getlocation $parentartifact]

populateworkspace $childws $artifact

populateworkspace $parentws $parentartifact

recursivecommit "$childws/$filename" "$parentws/$filename"

nc close "$childws/$filename"

nc close "$parentws/$filename"

#

# Part 4: done.

#

puts "The child long transaction has been committed."

g

Figure 5.8: Committing Changes from a Child Long Transaction to a Parent Long
Transaction.
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version of the artifact in the child long transaction.

The second part of the procedure determines the latest version of the component

in the parent long transaction. It does so by �rst retrieving the value of the attribute

parent, which contains the full name of the component as it was stored by the procedure

createlongtransaction. Then the latest version of the component is determined, and

the full name of this version is constructed. It is this latest version of the component to

which the changes from the child long transaction are applied.

The third part of the procedure is the part that performs the actual update of

the physical repository that represent the parent long transaction. Because the child

long transaction may have added new artifacts that need to be copied to the par-

ent long transaction, the function nc setmyserver is �rst used to control the place-

ment of any new artifacts. Then both workspaces are populated, and the procedure

recursivecommit is used to update the parent long transaction. After that, both

workspaces are closed and the user is informed that the update of the parent long

transaction has concluded.

The details of the procedure recursivecommit are shown in Figure 5.9. The

procedure distinguishes collections from atoms. In case a collection is updated, the

collection is �rst initiated for change. Then, the procedure iterates over each of the

member artifacts of the collection. If the artifact is open in both the workspace that

contains the artifacts from the child long transaction and the workspace that contains

the artifacts from the parent long transaction, that artifact may have been changed and

the procedure recursively invokes itself to update the artifact.

If the artifact is open only in the workspace that contains the artifacts from the

child long transaction, it is a new artifact that has been added by the user of the child

long transaction. The new artifact (as well as its member artifacts if the new artifact is

a collection) needs to be added to the physical repository that contains the parent long

transaction. Depending on the type of artifact, either the procedure recursiveadd,
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proc recursivecommit f childartifact parentartifact g
f

set version -1

if f [nc gettype $childartifact] == "collection" g f
set changed "false"

nc initiatechange $parentartifact

set members [nc list $childartifact]

foreach member $members f
set subchildartifact "$childartifact/$member"

set subparentartifact "$parentartifact/$member"

if f [nc isopen $subchildartifact] &&

[nc isopen $subparentartifact] g f
set subversion [recursivecommit $subchildartifact $subparentartifact]

if f $subversion != -1 g f
nc replaceversion $subparentartifact $subversion

set changed "true"

g
g elseif f [nc isopen $subchildartifact] g f

file copy $subchildartifact $subparentartifact

if f [nc gettype $subchildartifact] == "collection" g f
recursiveadd $subparentartifact

g else f
nc add $subparentartifact

g
set changed "true"

g else f
nc remove $subparentartifact

set changed "true"

g
g
if f $changed == "true" g f

set version [nc commitchange $parentartifact]

g else f
nc abortchange $parentartifact

g
g else f

if f [diff $childartifact $parentartifact] != 0] g f
nc initiatechange $parentartifact

file copy $childartifact $parentartifact

set version [nc commitchange $parentartifact]

g
g
return $version

g

Figure 5.9: Recursively Committing a Collection.
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which is not further described, or the interface function nc add is used.

If the artifact is only open in the workspace that contains the artifacts from

the parent long transaction, then the artifact has been removed from the collection

in the child long transaction. Consequently, the artifact also has to be removed from

the collection in the parent long transaction. The function nc remove is used for this

purpose. Note that, unlike the addition of new artifacts, the removal does not require

recursive processing when operating on a collection. The semantics of the function

nc remove is such that once a collection has been removed, its member artifacts are no

longer reachable either.

Once the procedure recursivecommit has iterated over all members of the col-

lection, it is determined whether the actual membership of the collection has changed.

If so, a new version of the collection is stored using the function nc commitchange.

Otherwise, the collection is aborted for change.

If the procedure recursivecommit operates on an atom, a new version of the

atom is stored only if its contents in the workspace of the child long transaction is dif-

ferent than its contents in the workspace of the parent long transaction. The external

procedure diff is used to determine this. Implementations of this procedure are de-

pendent on the type of contents being versioned. However, at least for textual artifacts,

several implementations are readily available.

Three �nal observations are in place regarding the simpli�cation of the procedures

commitlongtransaction and recursivecommit. First, the procedure commitlong-

transaction ignores the fact that it may be invoked by multiple child long transactions

at the same time. Thus, a simple locking protocol, analogous to the protocol used in the

composition policy, should be used to avoid any conicts. Second, the procedures do not

update the version tree artifacts that are associated with the artifacts being managed.

Therefore, a full implementation of these procedures needs to include similar version

tree manipulations as those used in the procedure checkin of the checkout/checkin
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policy.

The last observation regards the detection of conicts. The current procedures

assume that no conicts exist. They simply obtain the latest version of the component in

the physical repository of the parent long transaction and apply the changes of the child

long transaction. This may lead to problems if that latest version of the component is not

the version upon which the child long transaction is based. In particular, it is possible

that one long transaction has removed an artifact that the current long transaction

has modi�ed. The current routines simply store a new version of this artifact, thereby

potentially restoring some problems that were solved by its removal. Unfortunately,

automated procedures that resolve these kinds of conicts are not available, since they

are highly dependent on the type of artifact being versioned. Moreover, since certain

kinds of conicts have multiple viable resolutions, users are typically made responsible

for resolving the conicts. Nonetheless, the CM policy should still detect when a conict

occurs. The information necessary to do so is available in the repository model. In

particular, the procedure resursivecommit can be modi�ed to not only open the latest

version of the component being updated, but also the version upon which the child long

transaction is based. Depending on the actual di�erences between these two versions,

conicts can be identi�ed. The example used above can, for example, be detected if

the latest version of the component does not contain the artifact, the actual component

upon which the child long transaction does include the artifact, and the child long

transaction includes the artifact as well.

5.1.3.3 Variations on the Long Transaction Policy

Two common variations of the long transaction policy exist. As opposed to the

optimistic approach employed by the standard long transaction policy, the �rst vari-

ation relies on a conservative approach and is based on the explicit use of locking.

In particular, each child long transaction workspace locks, in its parent long trans-
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action, those artifacts that it intends to change in the child long transaction. This

variant can easily be supported by the procedures as described. In fact, the procedure

createlongtransaction does not have to be changed. Only the procedure checkout

has to be modi�ed to lock, in the physical repository that represents the parent long

transaction, those artifacts that the user intends to change. Repeated use of this modi-

�ed procedure by various child long transactions results in a partioning scheme in which

the hierarchy of artifacts in the parent long transaction is divided among the child long

transactions.

Of course, once the artifacts are partitioned and locked, the procedure commit-

workspace no longer has to perform any conict detection. It can simply rely on the

existence of the locks and update each artifact in the parent long transaction by storing

its new version.

The second variation of the long transaction policy is the widely used change

package policy (e.g., Continuus [Con94], Perforce [Per98], and NeumaCM+ [Neu98]).

This policy relies on a precise and structured labeling of each of the changes that are

made such that the versions of the artifacts that are the result of a particular change can

be identi�ed with a single name. This name represents the change package. Although

strikingly similar to the composition policy, the change package policy provides one

additional capability, which is its ability to take a change package from one baseline

and merge it into another baseline.

With respect to the procedures that implement the long transaction policy, two

changes need to be made to achieve an implementation of the change package policy. The

�rst change is the same change that was previously made: each child long transaction

locks in its parent workspace those artifacts that it intends to change by using a modi�ed

version of the procedure checkout. The second change regards the hierarchy of long

transactions. Because the change package policy uses workspaces as in the composition

policy, the hierarchy of long transactions that can be constructed by repeatedly em-
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ploying the procedure createlongtransaction needs to restricted to be just one-level

deep. This change requires a simple addition to the procedure originateworkspace

that uses a standard attribute attached to the collection Trees to track the depth of

each long transaction in the hierarchy. The needed merge procedure that merges a com-

plete change package into another con�guration is a simple routine that iterates over

all the members of the change package and applies a standard merge algorithm [Buf95]

to each member.

5.1.4 Change Set

The change set policy is an outgrowth of the long transaction policy in which the

changes are the central entities. The policy was �rst implemented in TrueCHANGE (at

the time called Aide de Camp [Sof94b]) and EPOS [Mun93]. The critical contribution

of the policy is its abandonment of the version tree. As a consequence, the policy

does not store complete versions of artifacts. Instead, it stores a set of baselines and

a set of changes. A speci�c con�guration is constructed by applying a desired set of

changes to a particular baseline. Implementations of the policy are heavily based on

automated merge techniques, since a con�guration is constructed by merging changes

with a baseline.

Underlying the change set policy is the fundamental assumption that the changes

that are made by di�erent developers to the same baseline are relatively independent.

Shown to be true in practice [Sof94b], this assumption results in a relatively low num-

ber of merge conicts when changes are applied, which is an absolute necessity for the

policy to be usable on a day-to-day basis. Still, the frequent creation of new interme-

diate baselines is a recommended practice to even further reduce the number of merge

conicts.

Because of the assumption of independence of changes, the change set policy is

completely free of locks. Developers place a particular baseline in their workspace and
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make changes as desired. Upon completion of the changes, the contents of the workspace

are committed. However, in contrast to the long transaction policy, which stores new,

complete versions of artifacts in the repository, the change set policy calculates and

stores the di�erences between the original artifacts in the workspace and the current

artifacts in the workspace.

Even though the creation of merge algorithms is outside the scope of the testbed,

the importance of merging in the change set policy warrants that a mapping of the

policy onto the abstraction layer makes it easy to insert whatever merge algorithm is

desired. An easy integration mechanism that allows di�erent merge algorithms to be

inserted for di�erent kinds of artifacts is needed.

5.1.4.1 Repository Design

The mapping of the change set policy onto the repository model is remarkably

straightforward. Several reasons can be identi�ed.

� Because change sets are the basis for the policy, they do not themselves need

to be versioned.

� Since change sets are logically independent, they can simply be stored under

di�erent, unique names.

� Similar to change sets, baselines are the basis for the policy and do not need to

be versioned.

� Because baselines are logically independent entities, they can be stored under

di�erent, unique names.

This, then, leads to the repository structure that is shown in Figure 5.10. Two name

spaces exist, one for baselines and one for change sets. In the name space baselines,

uniquely named baselines are stored. It is important to realize that, to optimize access,
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all artifacts that are part of a baseline are stored in full. An alternative method could

have stored just a single baseline that represents the initial state of the repository. All

subsequent baselines would then have to be constructed by merging the appropriate

change sets each and every time, which is clearly an ineÆcient solution.

In the name space csets, uniquely named change sets are stored. Note that each

change set is stored as a single atom, even though it may apply to multiple artifacts.

This is due to the fact that change sets are stored in a manner similar to the way patch

�les are created: they contain sets of di�erences for a group of artifacts.

5.1.4.2 Core Policy Design

Two procedures implement the essential functionality of the change set policy,

getconfiguration and commitchangeset. The �rst procedure, getconfiguration,

is similar in intended functionality to the procedure populateworkspace in the com-

position policy. However, because the repository structure di�ers quite considerably

between the two policies, the details of the procedure getconfiguration are rather

unique. Shown in Figure 5.11, the procedure has two input parameters, baseline and

csets. The �rst parameter indicates the baseline to which the change sets that form

the list contained in the second parameter need to be applied. Each of the change sets

in the list is of the following form.

[+|-][change set name]

Since each change set is iteratively processed, a series of intermediate con�gurations is

constructed. Depending on whether a change set is preceded by a plus or minus sign, the

changes it encapsulates are either added to, or removed from, its preceding intermediate

con�guration, thereby forming the next intermediate con�guration in the series. Once

all change sets have been applied, the �nal con�guration is made available to the user.
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Figure 5.10: Example Repository Structure for the Change Set Policy.
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Note that each change set itself also contains additions and subtractions: lines

of code as well as artifacts can be added or removed. These changes, however, are

encapsulated by the merge algorithm that is applied and are of no further concern

of the mapping. It should be noted that preceding, with a minus sign, a change set

that removes certain lines of code results in the actual addition of those lines to the

intermediate con�guration that is being formed.

Both levels of changes are required. Within a change set, the changes captured

by the additions and removals de�ne the e�ects of the application of the change set.

At the level of the change set, the plus and minus signs decide whether the changes

captured by the change set need to be added to or removed from a baseline. This allows

changes that are committed to a baseline to be undone, an important capability in the

�eld of CM.

The procedure getconfiguration is structured like any of the other procedures

discussed so far. First, the values of a number of variables are de�ned. The �rst

variable, baselinews, is the workspace in which the baseline con�guration is opened.

The next two variables, stagingarea and finalarea, are also workspaces, but they

are not workspaces such as the ones de�ned by the abstraction layer. Instead, they are

workspaces that are used by the change set policy for two speci�c purposes: calculating

intermediate con�gurations and providing a user with a changeable copy of the �nal

con�guration, respectively.

The next two variables, host and artifact, are de�ned as before. They designate

the repository in which the baselines and change sets are stored and the full name of

the baseline to be opened, respectively.

Part two of the procedure populates the workspace baselinews with the desired

baseline. To do so, it reuses the procedure populateworkspace of the composition

policy. After that, a copy of the artifacts in the workspace baseline is placed in the

staging area so that the change sets can be applied to a fresh copy of the artifacts that
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are not restricted by the access model to be solely manipulated through the interface

functions. Subsequently, the workspace baseline is closed since it is no longer needed

in the remainder of the procedure.

Part three of the procedure applies each change set, in order, to the intermediate

con�guration in the staging area. The procedure applycset is used for this purpose.

This procedure �rst opens a change set in its own workspace called csetws. Then,

based on the type of operation that it needs to perform, it uses yet another procedure,

additivemerge or subtractivemerge, respectively, to apply the change set to the

intermediate con�guration in the staging area. Because the procedures additivemerge

and subtractivemerge depend on the type of artifact being versioned, and since neither

performs any operations that require the repository, their details are omitted here. It

should be noted, however, that these two procedures provide the necessary isolation of

the merge algorithm that is applied. Speci�cally, each procedure can be con�gured to

apply a di�erent merge algorithm depending on the type of artifact on which it operates.

The procedure applycset concludes by closing the workspace csetws after the

change set has been applied.

After the last change set has been applied, part four of the procedure getconfi-

guration continues by making a copy of the �nal intermediate con�guration. This

copy is essential for future use. In particular, once changes are made and need to

be committed to the repository, the procedure commitchangeset needs access to the

original con�guration to calculate a new change set. Instead of reconstructing this

original con�guration in the procedure commitchangeset, an alternative solution is

used: the procedure getconfiguration simply leaves the intermediate con�guration in

the staging area where it can be accessed later.

The procedure getconfiguration concludes by informing the user that a work-

space is available in which the desired con�guration has been instantiated.
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proc applycset f host stagingarea cset g
f

set csetws "/tmp/csetws"

set operation [string index $cset 0]

set csetname [string range $cset 1 end]

set artifact "//$host/csets/$csetname"

nc open $artifact $csetws

if f $operation == "+" g f
additivemerge $csetws/$csetname $stagingarea

g else f
subtractivemerge $csetws/$csetname $stagingarea

g
nc close $csetws/$csetname

g

proc getconfiguration f baseline csets g
f

#

# Part 1: set some useful variables.

#

set baselinews "/tmp/baselinews"

set stagingarea "/tmp/stagingarea"

set finalarea "/tmp/finalarea/"

set host "$env(REPOSITORYHOME)"

set artifact "//$host/baselines/$baseline"

#

# Part 2: copy the baseline.

#

populateworkspace $baselinews $artifact fg
file copy $baselinews/* $stagingarea

nc close $baselinews/$baseline

#

# Part 3: apply the change sets in order.

#

foreach cset $csets f
applycset $host $stagingarea $cset

g

#

# Part 4: make a separate copy.

#

file copy $stagingarea/* $finalarea

#

# Part 5: done.

#

puts "The workspace has been populated with the desired baseline."

g

Figure 5.11: Populating a Workspace in the Change Set Policy.
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The procedure commitchangeset is not further detailed here, since its implemen-

tation is rather trivial. The procedure uses an external di�erencing routine to create a

new artifact in which the change set is stored and then adds that artifact to the name

space csets in the repository.

5.1.4.3 Variation on the Change Set Policy

One variation on the change set policy exists. Implemented in the Asgard sys-

tem [MC96] and called activity-based con�guration management, this policy tracks

dependencies among change sets. In particular, it operates in such a way that if a

change set is included in a con�guration, all the change sets upon which it is based

are included as well. Consider a change set, cset-4, that was created based upon the

following con�guration.

baseline1 + cset-1 + cset-3

In addition, consider a new workspace that is created with the following rule.

baseline1 + cset-1 + cset-4

Asgard ensures that when the new workspace is constructed by iteratively applying the

speci�ed change sets to baseline baseline1, change set cset-3, although not speci�ed,

is applied before change set cset-4 is applied.

This variation is easily accommodated with a few changes to the procedures

getconfiguration and commitchangeset. In fact, only three changes are required.

The �rst change is that the procedure getconfiguration has to store the con�gu-

ration speci�cation in the stagingarea. The second change regards the procedure

commitchangeset which reads the con�guration speci�cation from the staging area and

attaches it as an attribute to the new change set that is stored. The �nal change again

regards the procedure getconfiguration. This procedure needs to be extended with
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an additional step before it executes part three. During this step, it reads the con�gu-

ration speci�cation attribute for each change set, and calculates the order in which the

potentially extended group of change sets should be applied.

5.2 Modeling Distributed Aspects of Traditional CM Policies

The testbed is meant to support not only the construction of the versioning

aspects of a CM policy, but also the construction of its distribution aspects. This

section demonstrates how the isolation of distribution within the abstraction layer aids

in the creation of distributed CM policies.

Four canonical distributed CM policies are discussed. Two of those, client-server

workspaces and peer-to-peer repositories, rely on a continuous connection among the

repositories and workspaces that make up the policy. That is, these policies expect to

have available to them a reliable network connection that allows their repositories and

workspaces to interoperate at all times. For example, each physical repository in the

peer-to-peer repositories policy should be able to request artifacts from other physical

repositories at all times.

The other two policies, distributed long transaction and repository replication,

support disconnected operation of physical repositories. That is, the physical reposi-

tories in which the artifacts are stored only need a network connection among them

at certain times. For example, the repository replication policy only needs a network

connection when the contents of the repositories are synchronized. At other times, the

contents of each repository evolve separately. Note that both the long transaction and

replicated repositories policy do require a continuous connection from each workspace

to the repository in which the artifacts are stored that are being manipulated in that

workspace. It is the particular separation of artifacts among physical repositories that

makes these policies operate in a disconnected setting.

Below, each distributed CM policy is mapped onto the repository model and
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programmatic interface. Note that the management of the resulting distributed system

is ignored in these policies. Typically, this kind of management depends on the type of

infrastructure used and is, thus, implementation dependent.

5.2.1 Client-Server Workspaces

The client-server workspaces policy is based on the application of a client-server

architecture to a particular CM policy. It was �rst introduced as an extension to the

popular RCS system [Tic85]. The extension, called Distributed RCS (DRCS) [OG90],

provides users of the RCS system with the ability to remotely access RCS archives stored

at a central server. Since the creation of DRCS, the simplicity with which workspaces can

be separated from a central storage facility has made the client-server workspaces policy

quite popular with existing CM systems, as evidenced by such distributed CM systems

as Distributed CVS [HK92], WWCM [HLRT97], Perforce [Per98], and StarTeam [Sta96].

The critical contribution of the client-server workspaces policy is its departure

from the assumption that the repository in which the artifacts are stored is always

collocated with its associated workspaces. Instead, the policy allows the physical sepa-

ration of a central repository (the server) from a multitude of potentially geographically

distributed workspaces (the clients). Typically, this separation is achieved through the

creation of two collaborating pieces of software: the server that manages the contents of

the central repository and the client through which users interact with the CM system.

When a user makes requests to the client, the client interacts with the central server to

provide the user with access to the artifacts that are stored in the repository.

The client-server workspaces policy can be used in combination with three of the

versioning policies discussed in the previous section, namely checkout/checkin, com-

position, and change set. In such a combination, all (versions of) artifacts, baselines,

con�gurations, change sets, locks, and attributes are stored in a central repository,

whereas the user manipulates the artifacts in a workspace that may be located at a
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geographically remote site. It is possible to use the client-server workspaces policy in

combination with the long transaction policy to allow users to obtain access to artifacts

that are managed by a remote long transaction. During the normal use of the long

transaction policy, however, each user obtains their own long transaction, that|in a

distributed setting|is stored locally. Therefore, the distributed long transaction policy

discussed in Section 5.2.3 should be used to create a distributed variant of the long

transaction policy.

In the discussion that follows, the composition policy is used as an example of

how the client-server workspaces policy can be applied. The conclusions, however, hold

for the checkout/checkin and change set policies as well.

5.2.1.1 Repository Design

The repository design presented in Figure 5.4 does not have to be altered to

accommodate the physical distribution of the workspaces that is prescribed by the

client-server policy. Two reasons can be identi�ed for this rather bene�cial fact.

� The client-server workspaces policy relies on the use of a single, central reposi-

tory.

� Workspaces as de�ned by the abstraction layer can inherently be located at a

di�erent location than the repository in which the artifacts are stored.

As a result, a one-to-one mapping exists between the architecture embedded in the

client-server workspaces policy and the actual architecture embedded in the abstraction

layer. Consequently, no special provisions have to be included in the repository design

of the composition policy to accommodate the client-server workspace policy.
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5.2.1.2 Core Policy Design

Similar to the way the client-server workspace policy is intrinsically supported by

the repository model of the abstraction layer, the policy is naturally supported by the

functions in the programmatic interface as well. Speci�cally, these functions operate

inherently in a distributed setting and interact with a remote physical repository as

needed. Therefore, the core policy design of the composition policy does not have

to be changed to accommodate the client-server workspaces policy. The pseudo code

presented in Figure 5.5 suÆces to support the composition policy in operating in a

client-server mode.

One observation should be made about the procedure populateworkspace. It is

parameterized via the environment variable REPOSITORYHOME. This environment vari-

able determines the physical repository with which the procedure interacts. Instead

of permanently de�ning that repository inside the procedure, which is a potential al-

ternative, the parameterization makes the procedure more versatile. In particular, a

single client can be used to interact with di�erent physical repositories, as long as those

repositories use the same versioning policy according to which the artifacts are managed.

5.2.2 Peer-to-Peer Repositories

The peer-to-peer repositories policy is a recent addition to the �eld of con�gura-

tion management. It was �rst employed by ScmEngine [CPT97]. With the exception

of DVS [Car98], a CM system that has been implemented using the NUCM prototype

implementation of the abstraction layer (see Section 7.1), the policy has not been used

since.

Similar to the client-server workspaces policy, the peer-to-peer repositories policy

is based on the existence of a multitude of geographically distributed client workspaces

that manage the artifacts that are stored in a central server repository. However, con-
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trary to the client-server workspaces policy, in which the server repository consists of

a single physical repository, the peer-to-peer repositories policy allows for the exis-

tence of a logical server repository that consists of multiple, potentially geographically

distributed physical repositories. As the name of the policy implies, the physical repos-

itories act as peers to each other and collaborate to provide the workspaces with access

to the artifacts that are stored in each of the physical repositories.

A requirement of the peer-to-peer repositories policy is that physical repositories

collaborate to provide client workspaces with the illusion that they interact with a single

storage location. This requirement of collaborating servers explains why the peer-to-peer

repositories policy has hardly been used in current con�guration management systems:

it leads to fundamental changes at the very core of a CM system, which, because of the

typically very tight integration between a CM repository and its associated CM policy,

has far-reaching consequences. Therefore, most existing CM systems have resorted to

using the client-server workspaces policy as their method of providing distribution.

Similar to the client-server workspaces policy, the peer-to-peer repositories pol-

icy can be combined with three of the CM policies discussed in Section 5.1, namely

checkout/checkin, composition, and change set. In particular, it is very well suited for

(variants of) the composition policy, since the peer-to-peer repositories policy naturally

supports the creation of con�gurations whose member artifacts may span multiple sites.

This provides for a partitioning of a set of artifacts among a set of interested parties,

thereby allowing each party quick access to the artifacts that are stored in its local

repository. The peer-to-peer repositories policy is not applicable to the long transaction

policy, since each long transaction is managed by a single physical repository and no

need exists to distribute those artifacts over multiple physical repositories.

In the remainder of the discussion the composition policy is used to illustrate the

application of the peer-to-peer repositories policy to an existing versioning policy. Once

again, however, the conclusions hold for the checkout/checkin and change set policies
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as well.

5.2.2.1 Repository Design

When applying the peer-to-peer repositories policy to the composition policy, the

repository design presented in Figure 5.4 does not have to be altered to provide client

workspaces with the illusion of operating on a single repository. As with the client-server

workspaces policy, this is caused by the fact that a one-to-one mapping exists between

the architecture embedded in the peer-to-peer repositories policy and the architecture

embedded in the abstraction layer. Two reasons can be identi�ed.

� The repository model inherently supports the storage of artifacts in multiple

physical repositories.

� Membership relations to collections can span multiple physical repositories.

It should be observed that the peer-to-peer repositories policy utilizes multiple

instances of the repository design presented in Figure 5.4. These instances are all active

at the same time and collections in one physical repository may contain artifacts in

another physical repository.

5.2.2.2 Core Policy Design

In order for the composition policy to operate in a distributed setting and accord-

ing to the peer-to-peer repositories policy, one procedure needs to be added to the set of

procedures that make up the composition policy. This procedure, createfederation,

builds a connection between two physical repositories. Speci�cally, it allows the in-

corporation, in the logical repository with artifacts that are being manipulated, of an

artifact from another physical repository. If this physical repository is currently not

part of the logical repository, the logical repository is extended. Not only is it extended

with the physical repository in which the incorporated artifact resides, but it is also
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extended with any other physical repositories that store artifacts transitively accessible

from the newly incorporated artifact. If, on the other hand, the physical repository in

which the newly incorporated artifact resides is already a part of the logical repository,

the set of physical repositories that make up the logical repository remains the same.

The connectivity among these repositories, however, is increased.

Figure 5.12 illustrates the details of the procedure createfederation. Its be-

havior is as de�ned by ScmEngine [CPT97]: the artifact is added to a collection and a

new version of that collection is created. The procedure createfederation is rather

straightforward. The �rst part sets the values of several variables: user is set to the

name of the user employing the procedure; ws is set to the location in the �le system

where the artifacts are manipulated; filename is set to just the last part of the name

of the collection; artifact is set to the full name of the collection in the repository;

and wsartifact is set to the name of the collection in the workspace.

The second part of the procedure borrows from the procedure checkout and locks

the collection in the repository. The pseudo code is exactly the same as presented in

Figure 5.2, and is not further discussed here.

The collection is actually modi�ed in the third part of the procedure. First, it is

opened and initiated for change in the workspace. Then, the new artifact is added. Af-

ter a new version of the collection is stored in the repository, the workspace is closed. It

should be noted that the behavior of the function nc add as used in this procedure is dif-

ferent than the behavior that is exploited in the procedure createlongtransactionpre-

sented in Figure 5.7. A new artifact is added in the procedure createlongtransaction,

which results in the creation of a new physical artifact in the repository. In the proce-

dure createfederation, on the other hand, an existing artifact is added and no new

artifact is created in the repository. Instead, a membership relation is put in place that,

in this case, crosses the boundary that exists between the physical repository in which

the collection is stored and the physical repository in which the artifact is stored. This
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proc createfederation f myhost collection itshost theartifact g
f

#

# Part 1: set some useful variables.

#

set user "$env(USER)"

set ws "/tmp/workws"

set filename [file tail $collection]

set artifact "//$myhost/Artifacts/$collection"

set wsartifact "$ws/$filename"

#

# Part 2: lock the collection.

#

set locked [nc testandsetattribute $artifact "Lock" $user]

if f $locked == "false" g f
set lockuser [nc getattributevalue $artifact "Lock"]

if f $lockuser == $user g f
puts "$artifact $version is already checked out."

exit

g else f
puts "$artifact $version is checked out by $lockuser."

exit

g
g

#

# Part 3: add the artifact to the collection.

#

nc open $artifact $ws

nc initiatechange $wsartifact

nc add //$itshost/theartifact

nc commitchange $wsartifact

nc close $wsartifact

#

# Part 4: unlock the collection and inform the user.

#

nc removeattribute $artifact "Lock"

puts "$theartifact has been added to $collection."

g

Figure 5.12: Forming a Logical Repository in the Peer-to-Peer Repositories Policy.
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part of the procedure creates the logical repository that is formed by combining the

contents of the two participating physical repositories.

The last part of the procedure createfederation concludes by unlocking the

collection and informing the user that the procedure has �nished successfully.

Note that the procedure ignores any modi�cations that need to be made to the

version tree artifact that is associated to the collection that is being changed. Since

these modi�cations are exactly the same as those used by the procedure checkin (as

presented in Figure 5.3), they are omitted.

An important distinction exists between the core policy design of the client-server

workspaces policy and the core policy design of the peer-to-peer repositories policy. Al-

though the pseudo code for the client-server workspaces policy is parameterized, such

that it can operate on artifacts stored in di�erent physical repositories, a workspace

can only interact with a single physical repository at a time. Therefore, even though

a workspace may contain artifacts that stem from di�erent physical repositories, these

repositories cannot be integrated into a single logical repository and each physical repos-

itory remains independent. Workspaces in the peer-to-peer repositories policy, on the

other hand, are not only capable of simultaneously containing artifacts that stem from

multiple physical repositories, but can also interact with multiple physical repositories

at the same time. Therefore, logical repositories can be formed and artifacts can be

related across the physical repositories that form these logical repositories.

5.2.3 Distributed Long Transaction

The distributed long transaction policy is, as its name implies, speci�cally tar-

geted at making the long transaction policy operate in a distributed setting. Pioneered

by NSE [FD90], the distributed long transaction policy has been rarely used since, most

notably in PCMS [SQL98]. Compared to the client-server workspaces and peer-to-peer

repositories policies, the distributed long transaction is unique in that it facilitates dis-
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connected operation. In particular, di�erent long transactions may reside in di�erent

locations that are only intermittently connected. The key to this limited connectivity

requirement is provided by the fact that the distributed long transaction policy main-

tains a repository with long transactions in each location. Thus, only when a child long

transaction is created that resides at a di�erent location than its parent long trans-

action, or when a parent long transaction is updated with changes from a child long

transaction that resides at a di�erent location, connectivity is required between the

repositories residing at each of these locations. At other times, when a long transac-

tion evolves through user updates, no connectivity is required among the various long

transactions. Of course, connectivity between a physical repository that contains the

artifacts of a long transaction and the workspaces through which the long transaction

is advanced, is still needed at all times.

Not surprisingly, the distributed long transaction policy utilizes the same basic

principles as the long transaction policy. Child long transactions are created based

on existing long transactions, long transactions have versioning capabilities, and new

con�gurations are committed from child long transactions to parent long transactions.

Except for the distribution that may exist among di�erent long transactions, the only

other di�erence between the long transaction policy and the distributed long transac-

tion policy is the mechanism used for concurrency control. The long transaction policy

can be used in two variants: one that is based on an optimistic, merging-based protocol

and one that is based on a pessimistic, locking-based protocol. Since the goal of the

distributed long transaction policy is to be able to operate even when long transac-

tions are not connected, only the optimistic, merging-based protocol is supported. The

pessimistic, locking-based protocol cannot be supported since it requires a continuous

connectivity among long transactions in order to be able to lock artifacts in their parent

long transactions.
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5.2.3.1 Repository Design

To support the distributed long transaction policy, the same repository design

that is used for the long transaction policy can be used. In fact, the repository design

that is described in Section 5.1.3.1 and illustrated in Figure 5.6 can be used as is. Key

to this reusability are two factors.

� The repository design for the long transaction policy stores each long transac-

tion in a separate physical repository, thereby providing the distributed long

transaction policy with the ability to divide the long transactions over various

geographically distributed sites.

� Each long transaction in the distributed long transaction policy is self-contained

and only needs to interact with other long transactions when changes are com-

mitted at the end of a transaction.

Combined with the fact that the abstraction layer isolates the details of low-level dis-

tribution, these two important design characteristics allow for the exact reuse of the

repository model of the long transaction policy in a distributed setting.

Similar to the long transaction policy, the repository design for the distributed

long transaction policy is still a rather heavy-weight solution. Storing each long trans-

action in a di�erent physical repository typically leads to the creation of more physical

repositories than the actual number of physical locations participating in the develop-

ment e�ort. Nonetheless, the bene�ts of a clean separation of concern and a distribution

of workload remain.

5.2.3.2 Core Policy Design

Similar to the way the repository design of the long transaction policy is able

to support the distributed long transaction policy without any modi�cations, the core

policy design of the long transaction policy can also be reused as is. Because the
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design of the repository already partitions di�erent long transactions in di�erent phys-

ical repositories, and because the interface functions in the programmatic interface in-

herently operate in a distributed setting, no changes are necessary to the procedures

createlongtransaction and commitlongtransaction as described in Section 5.1.3.2.

5.2.4 Repository Replication

The �nal distributed CM policy is called repository replication. It was �rst used

in the domain of con�guration management by Adele [EC94], which was enhanced

with a tool called Mistral [Gad95], and ClearCase [Atr92], which was enhanced with a

tool called MultiSite [AFK+95]. Both enhancements provide users with the ability to

keep multiple, replicated repositories synchronized. Second in popularity only to the

client-server workspaces policy, the repository replication policy has been used exten-

sively in existing CM systems, as evidenced by Continuus DCM [Con98], PVCS Site-

Sync [INT98a], NeumaCM+ MultiSite [Neu98], Gradient [BKR96], and DSCS [Mil97].

Similar to the distributed long transaction policy, the repository replication policy

supports disconnected operation in that each of the participating repositories has to be

connected to the other repositories only at certain times. However, di�erent principles

underlie the repository replication policy. Speci�cally, its key feature is that all versions

of all artifacts are independently available in all of the participating repositories. Each

repository operates in a stand-alone manner and evolves its artifacts without interaction

with the other repositories. Periodically, however, the contents of all repositories are

synchronized by propagating new versions of artifacts created in each of the repositories

to all of the other participating repositories.

The synchronization process is based on the assumption that the changes that are

made in each of the replicated repositories are non-conicting. Nonetheless, conicts do

occur. To deal with those conicts, a three-part solution is adopted by the repository

replication policy.
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(1) Each artifact is assigned a master repository.

(2) Each repository makes its changes on a logically separate branch of artifacts.

(3) All branches are represented in all of the participating repositories.

The synchronization process, then, consists of two separate steps. In the �rst, each

of the branches is synchronized throughout the set of replicated repositories. Because

each repository is represented by a unique branch in the other repositories, all this step

requires is a simple copying of the new (versions of) artifacts. The second step takes

care of resolving potential conicts. If no conicts exist, each repository simply copies

the changes from each branch to its main branch. If a conict exists, however, the

master repository of the conicting artifact is responsible for resolving the conict and

rebroadcasting the resulting artifact to each of the replicas. After these two steps have

completed, the contents of all replicated repositories are, once again, exactly the same.

To avoid the occurrence of conicts as much as possible, it is recommended that

an appropriate partitioning of the artifacts is created among the users of the various

replicas. Users of a particular replica should be responsible for updating and advancing

a particular and unique set of artifacts. In addition, it is recommended that synchro-

nizations take place often to help minimize the number of conicts, as well as to reduce

the e�ort required to resolve the conicts.

The repository replication policy can be used with either the checkout/checkin

or the composition policy. Below, the checkout/checkin policy is used to illustrate the

application of the replicated repositories policy to an existing versioning policy.

5.2.4.1 Repository Design

To support the repository replication policy as applied to the checkout/checkin

policy, all of the physical repositories in the federation of replicated repositories have the

same structure. Speci�cally, they all have the structure that is presented in Figure 5.13.
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This structure is an extension to the checkout/checkin repository design presented in

Figure 5.1. It inserts another level in the hierarchy of artifacts. This level partitions

each of the participating repositories into several separate name spaces, each of which is

responsible for representing the branch of one of the participating replicated repositories.

An alternative design could have used a single name space and represented the branches

within the regular version trees instead. However, a desire for a clean separation of

concerns governs that the solution of separate name spaces is favorable.

As an example, consider a replication architecture with two physical repositories:

one in Boulder and one in Rotterdam. Both physical repositories adhere to the same

structure, namely the one presented in Figure 5.13. Because of the disconnected oper-

ation of the policy, users of the physical repository in Rotterdam locally advance the

artifacts in the collection Rotterdam/Artifacts and users of the physical repository in

Boulder locally advance the artifacts in the collection Boulder/Artifacts. During this

process, the replicas become out of date.

When the repositories are synchronized, the �rst step is to propagate the changes

from the collection Rotterdam/Artifacts located in the physical repository of Rot-

terdam to the collection Rotterdam/Artifacts located in the physical repository of

Boulder. Similarly, the collection Boulder/Artifacts in Rotterdam is updated with

the changes from the collection Boulder/Artifacts in Boulder. Once this update has

been performed, and the version tree artifacts have been updated in a similar fashion,

the contents of all physical repositories are the same. A �nal step, however, propagates

the changes from the various branches within each repository to create an integrated

view at the main branch.

5.2.4.2 Core Policy Design

To synchronize the contents of a series of replicated repositories, two procedures

are needed. The �rst procedure, syncreplica, updates the contents of a branch at a
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Figure 5.13: Example Repository Structure for Each of the Replicas in the Repository
Replication Policy.
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particular replica with the changes that have been made at the original repository that

\owns" the branch. Although the procedure updates only a single branch in a single

replica, when used in a simple nested iteration over all branches within all participating

repositories, the contents of all branches in all replicated repositories will be identical.

The second procedure takes care of merging the contents of the various branches. The

core of this procedure can be reused from the long transaction policy. Speci�cally,

repeatedly applying a modi�ed version of the procedure commitlongtransaction (as

presented in Figure 5.8) to each of the branches that are stored within a single replica,

eventually updates the main branch of that replica. By applying the same kind of

iteration to each of the replicated repositories, all changes are merged into all main

branches. After this step, the contents of all repositories are synchronized and normal

operations may resume.

Since the procedure commitlongtransaction is discussed in Section 5.8, the re-

mainder of this section focuses on the details of the procedure syncreplica. Shown in

Figure 5.14, this procedure is similar in structure to the procedure recursivecommit

shown in Figure 5.9. First, the values of some variables are set. In particular, sourcews

is set to the workspace in which the artifacts from the original repository are opened;

destinationws is set to the workspace in which artifacts from the replica are opened;

sourcecollection is set to the full name of the collection Artifacts in the original

physical repository; destinationcollection is set to the full name of the collection

Artifacts in the physical repository that contains the replica; sourceartifact is set

to the name of the collection Artifacts in the workspace sourcews; and destination-

artifact is set to the name of the collection Artifacts in the workspace destination-

ws.

To start the synchronization process, each workspace is populated with the arti-

facts from their respective physical repository. After that, the complete set of artifacts

in the original repository is determined using the function nc list, and each artifact is
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individually synchronized.

To synchronize an artifact, it is �rst determined whether the artifact has been

opened in both the workspace sourcews and the workspace destinationws. If that is

the case, only the new versions of the artifact need to be copied to the replica. The

procedure addversions is used for this purpose. After the range of versions that need

to be copied has been determined, this procedure is used to update, version-by-version,

the replica.

If the artifact is only open in the workspace sourcews, it represents an artifact

that has been added to the repository that contains the original copy, but that has

not been propagated yet to the physical repository that contains the replica. In this

case, the procedure syncreplica copies the �rst version of the artifact to the workspace

destinationws, then adds that version as a new artifact to the physical repository that

contains the replica, and concludes by reusing the procedure addversions to add the

remaining versions.

Finally, if the artifact is only open in the workspace destinationws, it represents

an artifact that has been removed from the original physical repository. To synchronize,

the procedure syncreplica simply removes the artifact from the collection Artifacts

in the workspace destinationws. As a result, the artifact is not only removed from

that collection, but also from the physical repository that contains the replica. This

last removal is triggered by the storage reclamation mechanism of the abstraction layer:

once none of the versions of an artifact are contained, the storage space for all of those

versions is reclaimed.

Although straightforward, several important observations need to be made about

the repository replication policy and its use of the procedure syncreplica.

� The procedure is independent of the relations among the versions of

the artifacts.



135

proc addversions f startversion endversion sourceartifact destinationartifact sourcews g
f

set version $startversion

while f $version <= $endversion g f
nc initiatechange $destinationartifact

nc close $sourceartifact

nc open "$sourceartifact:$version" $sourcews

file copy $sourceartifact $destinationartifact

nc commitchange $destinationartifact

set version [expr $version + 1]

g
g

proc syncreplica f destinationhost sourcehost g
f

set sourcews "/tmp/sourcews"

set destinationws "/tmp/destinationws"

set sourcecollection "//$sourcehost/Artifacts"

set destinationcollection "//$destinationhost/Artifacts"

set sourceartifact "$sourcews/Artifacts"

set destinationartifact "$destinationws/Artifacts"

populateworkspace $sourcews $sourcecollection

populateworkspace $destinationws $destinationcollection

set members [nc list $sourceartifact]

foreach member $members f
set subsourceartifact "$sourceartifact/$member"

set subdestinationartifact "$destinationartifact/$member"

if f [nc isopen $subsourceartifact] &&

[nc isopen $subdestinationartifact] g f
set lastsourceversion [nc lastversion $subsourceartifact]

set lastdestinationversion [nc lastversion $subdestinationartifact]

if f $lastsourceversion > $lastdestinationversion g f
set startversion [expr $lastdestinationversion + 1]

addversions $startversion $lastsourceversion $subsourceartifact \

$subdestinationartifact $sourcews

g
g elseif f [nc isopen $subsourceartifact] g f

nc initiatechange $destinationartifact

nc close $subsourceartifact

nc open "$subsourceartifact:1" $sourcews

file copy $subsourceartifact $subdestinationartifact

nc setmyserver $destinationhost

nc add $subdestinationartifact

nc commitchangeandreplace $destinationartifact

set startversion 2

set lastversion [nc lastversion $subsourceartifact]

addversions $startversion $lastversion $subsourceartifact \

$subdestinationartifact $sourcews

g else f
nc initiatechange $destinationartifact

nc remove "$subdestinationartifact"

nc commitchangeandreplace $destinationartifact

g
g

g

Figure 5.14: Synchronizing a Branch in a Replica.
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In particular, the various artifact versions are copied without the need to pay

attention to the predecessor relationships that exist among them. All that

matters is the fact that version numbers are preserved during the copying from

the original to the replica physical repository. This simpli�cation is a bene�t

that results from the separation of the storage of the artifact from the storage

of its relations in an independent version tree artifact.

� The procedure could have been written using the function nc copy.

Instead of incrementally updating a replica, the function could have been sim-

pli�ed considerably by changing its logic to �rst remove all artifacts from the

collection Artifacts in the physical repository that contains the replica, and

then using the function nc copy to copy the version history of each artifact from

the original physical repository to the replica. Although clearly ineÆcient, the

simplicity of this variant of the procedure can be bene�cial if rapid prototyping

is needed.

� The procedure is simpli�ed in that it ignores the synchronization of

the attributes and version trees.

This is not a problem, since synchronization of attributes and version tree ar-

tifacts can easily be added. Attributes are synchronized by using a series of in-

vocations to the functions nc getattributevalue and nc setattribute, and

version tree artifacts are synchronized by using a series of invocations to the

functions nc remove and nc copy. As opposed to the actual artifacts, the use

of the strategy of removing and copying version tree artifacts is reasonable since

only a single version of each version tree artifact exists and the contents of that

version tends to be small in size.

� The procedure syncreplica is often used by itself for the purpose of
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vendor-code management.

In particular, the procedure can be used to control and manage the evolution of

source code libraries that, although an integral part of a system being created,

are authored and released by external vendors. Because it is typical that the

receiving party does not modify the vendor code, this result in a simple uni-

directional replication scenario for which only the procedure syncreplica is

needed.

� To apply the replicated repositories policy to the change set policy,

a much simpler strategy can be used.

Because change sets are independent, they can be propagated among reposito-

ries without a potential source of conict. The only requirement is a naming

scheme that uniquely identi�es, while avoiding naming conicts, change sets

in di�erent physical repositories. Pre�xing each change set with the name of

the repository in which it is �rst stored is suÆcient for this purpose. When

the contents of physical repositories are synchronized, it is guaranteed that no

naming conicts will occur. The procedure syncreplica, modi�ed to operate

with the repository structure presented in Figure 5.10, can then be used for the

replication of baselines and change sets.

5.3 Modeling Non-Traditional CM Policies

In addition to being able to support the creation of existing CM policies, the

testbed is capable of supporting the creation of new CM policies. This section intro-

duces two of those new CM policies. Together with the three new CM policies that are

presented in Chapter 7, these two new policies illustrate that the breadth and applica-

bility of the testbed reaches beyond that of traditional CM functionality.

Discussed below, each of the two policies modeled in this section illustrates a
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unique aspect of the testbed. The �rst, movement upon checkout, illustrates how the

orthogonality embedded in the abstraction layer can be exploited in adjusting the be-

havior of an existing distributed CM policy. The second, product family architectures,

illustrates how the abstraction layer can be applied to support the management of ar-

tifacts other than source code.

5.3.1 Movement Upon Checkout

The movement upon checkout policy is a new CM policy, neither previously mod-

eled nor implemented, that solves a potential weakness of the peer-to-peer repositories

policy. This weakness regards the placement of a new artifact in a logical repository.

A common practice in the peer-to-peer repositories policy is to store a new artifact in

the physical repository that is \owned" by the person or organization that �rst checks

in the new artifact. Typically, this physical repository is also the one that is closest in

proximity to that person. Although a straightforward solution, the policy may lead to

situations that are undesirable. Consider a collaborative scenario between an organiza-

tion in the Netherlands and an organization in Colorado. The organization in Colorado

has recognized the need for a series of new artifacts and has checked in, as a reminder,

stubs for those artifacts. In reality, however, the organization in the Netherlands is

responsible for actually creating and maintaining the contents of the artifacts. In the

peer-to-peer repositories policy, this leads to rather ineÆcient access to the new arti-

facts: a large amount of traÆc is induced from the client workspaces in the Netherlands

to the physical repository in Colorado.

The movement upon checkout policy aims to remedy this situation. Instead of

artifacts being permanently stored in the repository to which they were �rst added, the

policy|as its name implies|moves artifacts from physical repository to physical repos-

itory to obtain proximity and speedier access. The policy is based on the assumption

that a person who checks out an artifact is likely to access versions of that artifact more
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often in the near future. Therefore, it physically moves all of the versions of a remote

artifact to a local repository when it is checked out by a user. It is expected that,

because of the movement of artifacts to locations of closer proximity, the average access

time to artifacts will improve over the peer-to-peer repositories policy. Note, however,

that the cost of moving an artifact is dependent upon the length of its version history,

since moving an artifact does not involve just moving a single version, but all versions.

5.3.1.1 Repository Design

To modify the peer-to-peer repositories policy to attain movement upon checkout,

its repository design does not have to be changed. Due to the orthogonality embed-

ded in the abstraction layer, the actual distribution of the artifacts in the peer-to-peer

repositories policy has no inuence on its versioning and containment mechanisms. Con-

sequently, an artifact can simply be moved to a di�erent physical repository (as long

as, of course, that physical repository adheres to the same repository design).

5.3.1.2 Core Policy Design

The core policy design employed by the peer-to-peer repositories policy also un-

dergoes very little change to support the movement upon checkout policy. In fact, only

one procedure, checkout, has to be changed to attain movement of artifacts. This proce-

dure, presented in Figure 5.2, needs to be modi�ed into the procedure movingcheckout

shown in Figure 5.15. As compared to the original version of the procedure checkout,

the new procedure has only three additional lines of code. The �rst additional line

identi�es the version tree artifact that corresponds to the artifact being checked out.

The second and third additional lines, respectively, move the artifact and its associated

version tree artifact to the repository that is identi�ed by the variable host.

Two observations are in place about this modi�cation. First, it should be noted

that the procedure contains no explicit reference to the physical repository in which the
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proc movingcheckout f workspace content version g
f

#

# Part 1: set some useful variables.

#

set user $env(USER)

set host $env(REPOSITORYHOME)

set artifact "//$host/Artifacts/$content"

set tree "//$host/Trees/$content"

set filename [file tail $content]

set wsartifact "$workspace/$filename"

set storageversion [lindex [nc selectversions $artifact "Version" $version] 0]

set artifact "$artifact:$storageversion"

#

# Part 2: attempt to lock the appropriate artifact version.

#

set locked [nc testandsetattribute $artifact "Lock" $user]

if f $locked == "false" g f
set lockuser [nc getattributevalue $artifact "Lock"]

if f $lockuser == $user g f
puts "$artifact $version is already checked out."

exit

g else f
puts "$artifact $version is checked out by $lockuser."

exit

g
g

#

# Part 3: retrieve the locked artifact.

#

nc open $artifact $workspace

nc initiatechange $wsartifact

nc move $artifact $host

nc move $tree $host

puts "$artifact $version has been checked out."

g

Figure 5.15: Checking Out an Artifact Version while Moving it to Closer Proximity.
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artifact that is being checked out is stored. This omission is not accidental, since the

name of an artifact may cross boundaries among physical repositories. Combined with

the fact that the function nc move does not move an artifact if it is already located

in the physical repository to which it is supposed to be moved, this powerful naming

mechanism results in the simplicity of being able to use the function nc move directly

on the full name of the artifact.

The second observation is the fact that, of course, both the artifact and its asso-

ciated version tree artifact have to be moved. They are intrinsically tied together, and

each being located in a di�erent location would not have the same bene�cial e�ect as

both being collocated.

5.3.1.3 Variations

Two possible variations on the movement upon checkout policy can be created,

namely movement upon multiple checkout and user-controlled movement. The �rst

variation is based on the observation that the movement upon checkout policy does not

always provide the most eÆcient behavior. Consider a setting in which two developers,

each located at a di�erent geographical location, collaborate and intermittently check

out the same artifact. If �rst developer A checks out the artifact, then developer B,

and then developer A again, the artifact and its associated version tree would be copied

three times, incurring far more overhead than if the artifact simply had remained in

the physical repository in which it was originally stored. The movement upon multiple

checkout variant is designed to avoid such extraneous copying. Instead of always copying

an artifact upon checkout, the policy only copies the artifact if it has been checked out

by the same developer some consecutive number of times. Although not foolproof with

respect to other series of invocations that may lead to other kinds of ineÆciencies, the

policy is more conservative than the movement upon checkout policy and likely will

avoid excessive copying of artifacts.
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To support the movement upon multiple checkout policy, the only change with

respect to the movement upon checkout policy regards the use of an additional attribute

that keeps track of the number of times a user has consecutively checked out a partic-

ular artifact. Because this counter is independent of the versions of an artifact, it is

attached to the version tree artifact that is associated with each artifact. The procedure

movingcheckout has to be modi�ed accordingly to decide whether or not an artifact

is moved when it is checked out. Illustrated in Figure 5.16, the resulting procedure,

movingmultiplecheckout, contains an extra part, namely part four. This part �rst

retrieves the value of the attribute and splits it into its two parts: the user who last

checked out the artifact and the number of times that the user has consecutively checked

out the artifact. If the user stored in the counter is the user of the procedure and the

counter has a value greater than the trigger value of three, the artifact is moved. If

the user is unequal to the user that previously checked out the artifact, the counter is

reset. In both cases, the new value, consisting of the name of the user and the number

of consecutive times the user has invoked the procedure to check out the same artifact

is stored using the function nc setattribute.

The second variation on the movement upon checkout policy completely abandons

automation. Instead, it places the responsibility for artifact movement solely in the

hands of a user. To do so, the procedure checkout should be restored to its original

version as discussed in Figure 5.2. In its place is a single new procedure, recursivemove,

that recursively moves an artifact and any of its potential member artifacts. Shown in

Figure 5.17, the second part of the procedure forms its core. In order to avoid the

in�nite recursion that may occur because of the potential existence of cycles in the

versioned graph, it �rst determines whether the artifact has been moved already. If so,

the procedure does nothing. If the artifact has not yet been moved, it and its associated

version tree artifact are moved. Then, in case of collections, the procedure recursively

moves each of the member artifacts of the collection. It should be noted that this
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proc movingmultiplecheckout f workspace content version g
f

#

# Part 1: set some useful variables.

#

set user $env(USER)

set host $env(REPOSITORYHOME)

set artifact "//$host/Artifacts/$content"

set tree "//$host/Trees/$content"

set filename [file tail $content]

set wsartifact "$workspace/$filename"

set storageversion [lindex [nc selectversions $artifact "Version" $version] 0]

set artifact "$artifact:$storageversion"

#

# Part 2: attempt to lock the appropriate artifact version.

#

set locked [nc testandsetattribute $artifact "Lock" $user]

if f $locked == "false" g f
set lockuser [nc getattributevalue $artifact "Lock"]

if f $lockuser == $user g f
puts "$artifact $version is already checked out."

exit

g else f
puts "$artifact $version is checked out by $lockuser."

exit

g
g

#

# Part 3: retrieve the locked artifact.

#

nc open $artifact $workspace

nc initiatechange $wsartifact

#

# Part 4: decide whether to move the artifact or not.

#

set counter [nc getattributevalue $tree "COUNTER"]

set counteruser [lindex [split $counter ":"] 0]

set counternumber [lindex [split $counter ":"] 1]

set counternumber [expr $counternumber + 1]

if f "$user" == "$counteruser" && $counter >= 3 g f
nc move $artifact $host

nc move $tree $host

g elseif f "$user" != "$counteruser" g f
set counternumber 1

g
nc setattribute $tree "COUNTER" "$user:$counternumber"

puts "$artifact $version has been checked out."

g

Figure 5.16: Checking Out an Artifact Version while Conditionally Moving it to Closer
Proximity.
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proc recursivemove f component destinationhost g
f

#

# Part 1: set some useful variables.

#

set host $env(REPOSITORYHOME)

set artifact "//$host/Artifacts/$component"

set tree "//$host/Trees/$component"

#

# Part 2: prevent infinite recursion.

#

set hasmoved [nc getattributevalue $tree "hasmoved"]

if f "$hasmoved" == "false" g f
nc move $artifact $destinationhost

nc move $tree $destinationhost

if f [nc gettype $artifact] == "collection" g f
nc setattribute $tree "hasmoved" "true"

set members [nc list $artifact]

foreach member $members f
set subcomponent "$artifact/$member"

recursivemove $subcomponent $destinationhost

g
nc removeattribute $tree "hasmoved"

g
g

#

# Part 3: done.

#

puts "$component has been moved."

g

Figure 5.17: Recursively Moving an Artifact and Its Members.
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recursion is protected by the attribute hasmoved, which is used at the beginning of the

procedure to check for in�nite recursion.

5.3.2 Product Family Architectures

A rather di�erent application of con�guration management arises in the �eld of

software architecture [PW92, GS93]. In its simplest form, a software architecture is

a speci�cation of the high-level structure of a system in terms of the components and

the connections among the components. As an example, consider a word processor

that consists of three separate components, a user interface, a storage facility, and a

spell checker. To facilitate their interaction, these components are connected via several

mechanisms. Speci�cally, both the user interface and spell checker use a pipe to interact

with the storage facility, whereas the user interface uses a software bus to interact with

the spell checker.

To precisely capture a software architecture, architecture description languages

are used (e.g., UniCon [SDK+95], C2 [TMA+96], Wright [AG97]). These languages

typically include a typing mechanism, as well as facilities to describe behaviors and

constraints, to ensure that components and connections can only be combined into

proper con�gurations.

Similar to source code, the components and connections that make up a software

architecture may exist in multiple revisions and multiple variants. For example, the

storage facility may exist in several revisions that each add additional primitives to its

interface. Similarly, the spell checker component may exist in multiple variants that

each operate on a di�erent language. In addition, certain components or connections

may be optional in a software architecture. For instance, the word processor can usefully

be applied, regardless of whether or not a spell checker is present. The structure that

results when all revisions, variants, and options of all components and connections are

put together is called a product family architecture [CW98a].
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As of yet, no CM system addresses the management of product family architec-

tures. This is due to the fact that, as compared to the management of source code,

a product family architecture has certain characteristics that make it rather unique.

Speci�cally, the structure to be managed includes typing and contains a rather odd

composition capability in which types are constructed in terms of speci�c instances.

Therefore, highly speci�c relationships and semantics have to be put in place by a CM

policy that manages a product family architecture.

Although alternative approaches are certainly feasible, the remainder of this sec-

tion introduces one particular approach to the creation of a CM policy that is speci�cally

designed to manage product family architectures.

5.3.2.1 Repository Design

Product family architectures are closely related to the system model as tradition-

ally used in con�guration management by the composition policy [vdHHW98]. Although

a system model is actually used to manage source code rather than itself being the objec-

tive of the management, its resemblance to a product family architecture indicates that

a CM policy that manages a product family architecture can be based on an adaptation

of the composition policy. That is the approach taken here.

Of course, to manage a product family architecture, a number of changes are re-

quired to the repository design of the composition policy as described in Section 5.1.2.1.

The �rst change concerns the nature of the artifacts being stored. Whereas the composi-

tion model only stores a hierarchy of instances, capturing a product family architecture

requires the storage of a hierarchy in which types and instances alternate. In partic-

ular, types of components (or connections) are composed of instances of other types

of components and connections. One solution to this complication represents, in the

compositional hierarchy, types as collections and instances as membership relations of

collections to other collections. A problem with this kind of solution, however, is that
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instances have private data and that the repository model as de�ned by the abstraction

layer does not support the association of attributes with membership relations. Due to

this limitation, an alternative solution is applied that, in essence, unrolls the hierarchy.

Partly illustrated in Figure 5.18, this solution stores each type as a collection, each

instance as an atom, and the relationship from an instance to its type as an attribute

to the instance. As a result, the repository design no longer forms an explicit hierarchy

such as the one employed by the composition policy. Instead, the hierarchy is implicit in

the traversal from collections (types), to atoms (instances), to attributes (instance-type

relations), back to collections (types).

Note that the repository design as displayed in Figure 5.18 is not complete. Addi-

tional top-level collections are present in the overall design, that capture, among others,

connection types, version trees associated with component types, and version trees as-

sociated with connection types. Moreover, each collection that represents a (component

or connection) type contains three additional atoms: one that captures its behavior,

one that captures its constraints, and one that captures its architectural speci�cation

in a particular architecture description language.

As an example of how the repository design stores a particular product family

architecture, consider the component type WordProcessor as shown in Figure 5.18.

This component type consists of three component instances, that are represented by

the atoms storage, spell, and gui. In addition, it contains three connection in-

stances, that are represented by the atoms pipe-1, pipe-2, and bus. Every com-

ponent or connection instance has an associated attribute that identi�es their type.

For example, the atom spell is labeled with the attribute componenttype that has the

value ComponentTypes/SpellChecker:2 and the atom bus is labeled with the attribute

connectiontype that has the value ConnectionTypes/Bus:3.

The repository design represents variants of components (and connections analo-

gously) using a special kind of component, namely the variant component. The member



148

1
2

1

ComponentTypes

GUI−libSpellCheckerWordProcessor

......
storage spell gui pipe−1 pipe−2 bus

1 11 1 1 1

2

1

1
2

3

.........

Figure 5.18: Partial Example Repository Structure for the Product Family Architectures
Policy.
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atoms of a variant component are restricted to only be instances of component types

and cannot be instances of connection types. In addition, each atom has an associ-

ated attribute that has a unique value as compared to the values associated with the

other atoms. This attribute, the variant property, is used in the traversal of the variant

component to decide which particular instance is chosen to be part of an architectural

con�guration.

Options are also represented using properties. Each instance that is optional is

guarded by an attribute and an associated value. Only if the property value as assigned

by a higher-level component matches the attribute value of the optional instance, that

instance is included in the architecture.

5.3.2.2 Core Policy Design

To manage product family architectures, the design of the repository as used

in the composition policy was changed signi�cantly. As a result, one would expect a

major change in the procedures that form the core of the composition policy for those

procedures to function properly in managing a product family architecture. However,

an examination of the functionality of M�enage, a graphical environment designed to

manage product family architectures [vdHHW99], leads to the result that none of the

procedures would need to be changed in order to be used by M�enage.

� The procedure populateworkspace does not need to be modi�ed, since a work-

space only needs to be populated with a particular type of component (connec-

tion) and all of its associated instances. Simply instantiating the procedure with

an empty set of rules and the name of a component (connection) type provides

the desired result.

� The procedure checkout does not need to be modi�ed, since its current pro-

grammatic logic simply changes the component (connection) type in the work-
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space to allow a user to modify it. Because M�enage only modi�es one particular

type at a time, and can only change it by adding or removing instances, this is

exactly the functionality that is needed.

� The procedure checkin does not need to be changed, since its current program-

matic logic simply checks in a new version of a component (connection) type,

which, once again, is exactly the functionality that is needed by M�enage.

Of course, many other auxiliary procedures are utilized by a CM policy such as the one

employed by M�enage. In particular, as new instances are added to a type, atoms need

to be created in the workspace to represent those instances. Similarly, when instances

are removed from a type, corresponding atoms should be removed from the workspace.

Thus, even though the core of the policy remains the same, auxiliary procedures still

need to be created to produce a fully functional policy that is capable of managing

product family architectures.

5.4 Lessons Learned

Demonstrating the expressiveness of the testbed, this chapter has presented how

a large variety of well-known and representative CM policies, ranging from the sim-

ple centralized checkout/checkin policy to the more complicated distributed replicated

repositories policy, can be mapped onto the repository model and programmatic inter-

face. The ten policies described in detail, as well as all of their variants discussed, show

how the four objectives for the abstraction layer are met.

� The fact that the abstraction layer is able to support a wide range of di�erent

versioning policies, both new and existing, illustrates that it has satis�ed the

objective of being policy independent.

� The fact that the abstraction layer is able to support a wide range of di�erent

distribution policies, ranging from simple client-server workspaces to peer-to-
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peer replicated repositories, illustrates that it has satis�ed the objective of being

able to support distributed operation.

� The fact that the abstraction layer is able to support the storage of both source

code as well as product family architectures, together with the policies dis-

cussed in Chapter 7 that store documents, software packages, and Web pages,

illustrates that it has satis�ed the objective of being able to support the man-

agement of a wide variety of di�erent kinds of artifacts.

� The fact that the abstraction layer is able to support the creation of existing

CM policies, including the full spectrum identi�ed by Feiler [Fei91a], illustrates

that it has satis�ed the objective of being able to support traditional CM func-

tionality.

Based on these observations, the de�nition of the abstraction layer as given in Chapters 3

and 4 can be considered a success: the goals that were set for the abstraction layer are

met. However, the bene�ts provided by the abstraction layer rise beyond just those four

goals. In particular, the following two additional bene�ts are identi�ed.

� The abstraction layer supports the incremental construction of CM

policies.

Observe how the long transaction policy builds upon the composition policy

and how the composition policy builds upon the checkout/checkin policy. Even

the change set policy, which is based on a radically di�erent paradigm, reuses

pieces of the core policy design of the composition policy. Another particularly

illuminating example is the movement upon checkout policy. It is created by

adding three lines of pseudo code to one of the procedures in the composition

policy. Similarly, the user-controlled artifact movement policy is created by

adding a new, separate procedure to the composition policy. In both cases,
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the rest of the core policy design of the composition policy remains the same.

These examples illustrate that the abstraction layer supports a powerful model

of evolution and experimentation with respect to the creation of CM policies.

� The abstraction layer supports a great amount of exibility in the

way CM policies use the repository model.

Observe how the checkout/checkin policy stores its most important relation-

ships (the version tree) in atoms, how the composition policy captures its most

important relationships (the system model) as a compositional hierarchy of col-

lections and atoms, and how the product family architectures policy captures

its most important relationships (the type-instance relationships) as attributes.

The abstraction layer supports either type of use, and its mechanisms can thus

be utilized to match the type of access needed by a CM policy.

Of course, it should also be observed that the policies that are constructed with

the abstraction layer are not necessarily as optimized and polished as their counterparts

that are developed from scratch. Consider the long transaction policy. Representing its

workspaces as physical repositories is a heavy-weight solution that incurs more copying

and uses more storage space than an optimized implementation such as NSE [FD90].

Similarly, the repository synchronization routines included in such commercial systems

as ClearCase [AFK+95] or Continuus [Con98] are far more eÆcient than the one de-

veloped in this chapter. This is not a serious drawback, since optimality is not a goal

of the testbed. Instead, the testbed focuses on facilitating the experimentation with,

and creation of new, potentially distributed CM policies. Once a desired policy has

been developed, the policy can be reimplemented from scratch if the performance pro-

vided by the testbed is not suÆcient. In the mean time, though, the availability of the

testbed facilitates the rapid exploration and evolution of CM policies that are tailored

to a speci�c situation, a capability that, until now, was non-existent.



Chapter 6

Prototype Implementation

To demonstrate the feasibility of the testbed, this chapter describes how the ab-

straction layer is realized in a prototype implementation. The prototype, NUCM (Net-

work-Uni�ed Con�guration Management), faithfully implements the complete reposi-

tory model as de�ned in Chapter 3 and all but one of the functions in the programmatic

interface that is de�ned in Chapter 4.

An important aspect of the prototype is that its internal architecture continues

the theme set forth by the abstraction layer: it is based on a separation of concerns

that isolates distribution from other aspects of the implementation. This isolation is

achieved through an incremental layering of functionality in which a particular layer

is responsible for building speci�c pieces of functionality on top of the layers residing

underneath it.

As a prototype, the testbed does not contain all of the functionality that one

might expect in an industrial-strength implementation. Missing is such functionality as

caching, compression, and delta storage. Still, this omission from the prototype should

not prevent an industrial-strength implementation from incorporating those kinds of

functionality. Therefore, the last part of this chapter shows that the semantics de�ned

by the abstraction layer does not prevent the inclusion of caching, compression, and

delta storage in a full implementation of the testbed.

The remainder of this chapter is organized as follows. First, it discusses a map-
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ping of the high-level architecture of the prototype onto the abstraction layer. Then, it

introduces the internal architecture of the prototype. The chapter concludes by briey

discussing how the orthogonality underlying the abstraction layer facilitates an imple-

mentation that includes caching, compression, and delta storage.

6.1 High-Level Architecture

Figure 6.1 illustrates the high-level architecture of NUCM in terms of an example

repository structure. Shown are six types of entities that, combined, implement the

abstraction layer as de�ned in Chapters 3 and 4: artifacts, NUCM servers, a logical

repository, NUCM clients, workspaces, and CM policies. Sets of artifacts represent a

physical repository. In the �gure, three such physical repositories are present. Access

to each one of those is provided by an associated NUCM server. Each NUCM server

manages a single physical repository, but all NUCM servers collaborate in providing

the illusion of a single logical repository. Note that the NUCM servers are not fully

connected. This is due to the fact that a logical repository is not de�ned as a permanent

structure. Instead, the contents of the collections that are stored in each physical

repository de�ne which NUCM servers interact with which other NUCM servers.

A CM system that uses a NUCM repository consists of three parts: the NUCM

client, one or more workspaces, and the speci�cs of the CM policy that is used by the

CM system. The NUCM client implements the programmatic interface and thus is the

foundation upon which particular CM policies are implemented. The NUCM client

interacts with one or more NUCM servers to provide, via a workspace, a CM policy

with access to the artifacts that are stored in a logical repository. The CM policy, in

turn, manipulates the artifacts in the workspace and further uses the generic NUCM

client to store the modi�ed artifacts back in the logical repository.

All CM policies are built upon the same, generic NUCM client. This is illustrated

in Figure 6.1, where two CM policies, namely policy X and policy Y, both use the generic
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NUCM client to store and version the artifacts that they manage. In general, a single

(logical or physical) repository can store artifacts that are managed by di�erent CM

policies, as long as the policies partition the artifacts in separate name spaces within

the repository. If di�erent policies operate on the same artifacts, it is the responsibility

of the CM policies to resolve any conicts.

6.2 Implementation Architecture

Presented in Figure 6.2, the internal design of the prototype implementation of

the testbed consists of nine layers. Five of those layers, namely Persistent Storage,

Concurrency Control, Reference Counting & Storage Reclamation, Server, and Server

Communication & Access Control, constitute the NUCM server. The remaining four

layers, which are Client Communication, Moved Artifact Handling, Name Interpreta-

tion & Workspace Management, and Client Interface, constitute the generic NUCM

client. Communicating via TCP/IP, instances of the NUCM client and server combine

to provide a CM policy with access to the artifacts that are stored in a logical repository.

The remainder of this section discusses the functionality that is provided by each

of the layers in the implementation architecture. Since the functionality of each layer

builds upon the functionality provided by the layers underneath it, the layers are dis-

cussed bottom up.

6.2.1 Persistent Storage

The lowest layer in the implementation architecture implements the persistence

of artifacts in a physical repository. The layer is responsible for storing di�erent kinds

of information, but it does not interpret any of the information. Such interpretation is

left to higher-level layers in the architecture. Nonetheless, the persistent storage layer

has to de�ne an appropriate schema that can be used by the higher-level layers. Shown

in Figure 6.3, this schema is implemented as a hierarchical structure in the �le system.
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The schema is based upon the use of consecutively numbered directories, guaranteeing

a unique location each and every time a new (version of an) artifact is stored. To

facilitate the creation of uniquely numbered artifacts, a persistent counter is stored in

the �le artifactcntr. This counter tracks the number of artifacts that have been

created over time and is updated each time a new directory is created. Located within

each artifact directory, the �le versioncntr contains a similar persistent counter to

keep track of the number of versions that have been created.

Two special �les reside within each artifact directory. The �rst �le, forward,

is present when the artifact has been moved to a di�erent physical repository. The

contents of this �le is a forwarding address (see Section 6.2.4). The other �le, type,

contains a designation as to whether the artifact is a collection or an atom. Regardless

of whether a collection or an atom is stored, though, the actual structure of the artifact

directory remains the same. It is the interpretation of the stored information at the

higher levels in the architecture that distinguishes collections from atoms.

Within each numbered version directory, the actual contents of an artifact are

stored in the �le contents, whereas the �le refcount contains a counter that keeps

track of the number of times the particular version of the artifact is contained by a

collection (see Section 6.2.3). Once again, the persistent storage layer does not interpret

any of the information and consequently has no knowledge as to whether a collection or

an atom is stored in the �le contents, or as to whether the storage space of an artifact

needs to be reclaimed since the artifact is no longer contained.

As de�ned by the abstraction layer, attributes are speci�c to a version of an

artifact. Because, in addition, the value of an attribute can be of arbitrary length,

attributes are stored as a series of �les in a separate directory instead of all being stored

in a single �le. The directory in which the attributes are stored is called attributes.

Each �le in this directory is uniquely named and contains the value of a single attribute.

Because attribute names are unique per de�nition of the abstraction layer, it suÆces to
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name each �le after the name of the attribute it contains.

The �nal part of the physical repository structure is a series of lock �les. These

�les are associated with each artifact, each version of an artifact, and the contents of

each version of an artifact. They provide the basics for the higher-level layers in the

architecture to perform concurrency control (see Section 6.2.2).

Two observations are in place about the persistent storage layer. First it should be

noted that the layer, just like any of the other layers, provides an internal programmatic

interface to the higher-level layers. This interface contains functions that, for each type

of �le in the directory structure, allow its contents to be set and retrieved. In addition,

the presence of various directories and �les can be tested (e.g., it is possible to verify

whether a particular artifact version or attribute exists).

The second observation regards the choice of the �le system as the basis for the

persistent storage layer. Although suÆcient for purposes of prototyping, an industrial-

strength implementation should use a database as its fundamental infrastructure to

gain such advantages as increased reliability, transaction functionality, and rollback

capabilities.

6.2.2 Concurrency Control

Because a NUCM server is capable of handling multiple requests from multiple

NUCM clients at the same time, the second layer of the implementation architecture

utilizes the locks provided by the persistent storage layer to perform concurrency control.

Whereas some operations performed by a NUCM server (see Section 6.2.4) require

exclusive access to a whole artifact (e.g., moving an artifact), other operations only

require exclusive access to a version of an artifact (e.g., removing a version of an artifact

or adding new attributes to an artifact). Yet other operations only require exclusive

access to the contents of a version or to an attribute value (e.g., storing new contents

for an artifact version or removing an attribute). To support this rather complex style
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of concurrency control, an incremental style of locking is provided by the concurrency

layer. Based on the use of a combination of exclusive and shared locks, each server

operation uses the concurrency layer to prevent any potential conicts.

In the incremental locking scheme, each server operation �rst locks the artifact to

which it needs access. Depending on whether the operation needs shared or exclusive

access, and depending on the type of lock that may already be present, access may or

may not be granted. For example, when one NUCM client instructs a NUCM server to

move an artifact, the server uses an exclusive lock to prevent any other NUCM client

from simultaneously performing an operation on the artifact being moved. On the other

hand, if the operation is one that can be shared at the artifact level, such as setting or

retrieving an attribute, a shared lock is placed on the artifact. For such a shared lock,

a �ner-grained exclusive lock is still required. This �ner-grained lock is provided in the

form of a version lock or, at an even �ner grain, a content lock. Similar to the lock at

the artifact level, these locks are either exclusive or shared and their use depends on the

needs of each particular type of server operation.

As an example of how the incremental locking scheme is used, consider the server

operation that sets new contents for a particular version of an artifact. This operation

�rst acquires a shared lock at the artifact level, then a shared lock at the version level,

and �nally an exclusive lock at the content level. As another example, the operation

that removes a complete version of an artifact �rst acquires a shared lock at the artifact

level and then an exclusive lock at the version level.

Like these two examples, all other server operations incrementally use the appro-

priate set of locks for their needs. This proper use of locking guarantees the serializability

of the NUCM server operations.
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6.2.3 Reference Counting & Storage Reclamation

To facilitate the reclamation of storage space occupied by artifacts that are no

longer contained by any collection, the third layer in the implementation architecture

uses a reference counting mechanism to guard all server operations that manipulate

collections. In particular, when a new (version of a) collection is added, the functions in

the reference counting and storage reclamation layer increment the reference counters

of all artifact versions that are a member of the collection. Similarly, when a version

of a collection is removed, the reference counters of all member artifact versions are

decremented.

If, after being decremented, the reference counter for a particular artifact version

has the value of zero, it is attempted to reclaim the storage space of the artifact by

verifying whether the reference counters for all of its versions are zero. If that is the

case, all versions of the artifact are physically removed from the repository. Of course, if

the artifact is a collection, each removal of a version triggers the same process: reference

counters for contained artifact versions are decremented. Therefore, it is possible that

the removal of a single artifact from a physical repository triggers the recursive removal

of a whole tree of artifacts.

Three observations can be made about the mechanism used to reclaim storage

space. First, it should be noted that it is necessary to associate multiple reference

counters with an artifact. Instead of a single reference counter at the artifact level,

the use of a reference counter per version allows the implementation to rapidly verify

whether an artifact version is contained or not. This is an essential capability for

the interface function nc destroyversion, which is only allowed to remove an artifact

version if that version is no longer contained (i.e., the reference counter for that version

of the artifact is zero).

The second observation regards the potentially cyclic nature of the versioned
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directed graph of artifacts. Speci�cally, if some number of collections form a cycle, the

algorithm as described fails. This is a limitation of the current prototype. However, the

isolation of the reference counting mechanism in a single architectural layer facilitates

the insertion of more advanced algorithms that do account for cycles.

Finally, it should be noted that, to implement the reference counting mechanism,

NUCM servers act as clients of each other. In particular, since membership of a col-

lection can span multiple physical repositories, increments and decrements in reference

counters may result in communication among NUCM servers. Although potentially ex-

pensive when a collection contains many artifacts that are located in a di�erent physical

repository than that of the collection itself, the use of reference counting is required to

support storage reclamation as well as to prohibit the removal of artifact versions that

are still contained.

6.2.4 Server

Similar to the way the NUCM client provides a programmatic interface upon

which CM policies are built, the NUCM server provides a programmatic interface upon

which the NUCM client is implemented. This interface is implemented by the server

layer and contains a set of functions that represent a middle level between the high-

level functions provided by the NUCM client and the low-level functions provided by

the persistent storage layer. Forming the core of the NUCM server, the most important

functions in the server layer are those that store and retrieve versions of artifacts,

manipulate attributes, move and copy artifact histories, and provide information about

the type and existence of artifact versions.

In providing its functionality, a NUCM server interacts with other NUCM servers.

In particular, when artifacts are moved from one physical repository to another physi-

cal repository, the two NUCM servers that manage both of these physical repositories

collaborate to transfer the artifact, the versions, and the attributes.
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An important consequence of moving an artifact is that all the references stored

in collections that contain a version of the artifact become out of date. To avoid a

repository-wide search for these references, the NUCM implementation is based on the

use of a forwarding address. After an artifact has been moved, a forwarding address is

stored in the original repository. When a request is made by a NUCM client to access

the moved artifact, the NUCM server does not carry out the request. Instead, it locates

the artifact by following its trail of forwarding addresses and returns, to the NUCM

client, the physical repository in which the artifact is actually stored. The client, in

turn, updates the reference in the collection and continues its operations by interacting

with the physical repository that contains the moved artifact (see also Section 6.2.7).

Because each of the references to the original location of the moved artifact is updated

over time, it can be expected that eventually all old references disappear and all access

to the artifact takes place directly via the NUCM server that manages the physical

repository in which it is actually stored.

6.2.5 Server Communication & Access Control

The server communication and access control layer is that part of the architecture

that makes the NUCM server accessible from remote workspaces. It wraps each of the

functions provided by the NUCM server with a TCP/IP-enabled companion function.

Each of those companion functions is responsible for parsing incoming requests, invoking

the appropriate server function, and transferring the response from that function to the

remote NUCM client.

This layer is also responsible for implementing two additional capabilities of the

prototype: concurrent access and access control. Concurrent access is provided by

processing each request that is made to the server in a separate thread. Since each of

the functions in the previous layer utilizes the functions in the concurrency control layer

to properly lock those parts of an artifact to which it needs access, simply handing each
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incoming request in a separate processing thread suÆces.

The second responsibility is access control. To prevent a situation in which any

NUCM client can request artifacts from any NUCM server, each NUCM server can be

protected by an access control list that speci�es those IP addresses from which requests

may originate. If a request is made from an IP address that is not in the list, the request

is denied and the NUCM client is informed that it is not allowed to access the desired

artifact.

6.2.6 Client Communication

The client communication layer of the architecture complements the functionality

of the server communication and access control layer. It is the bottom layer of the

NUCM client and takes care of establishing a connection with a desired NUCM server,

forwarding the request to be made, and receiving and parsing the response from the

NUCM server. Aside from communicating with a NUCM server, this layer has no

further responsibilities.

6.2.7 Moved Artifact Handling

A NUCM server does not perform a client request when an artifact has moved.

Instead, a NUCM server returns the new location of the artifact, forcing a NUCM client

to repeat its request to a di�erent NUCM server. It is the responsibility of the functions

in the moved artifact handling layer to do so: if an artifact has moved, these functions

repeat the particular request to the NUCM server that manages the physical repository

to which the artifact has been moved. In this scheme it is possible that, in between the

return of the new location and the request to the new physical repository, an artifact

moves again. Therefore, the functions in this layer keep repeating a request to di�erent

physical repositories until the request completes.

At �rst sight this solution is ineÆcient, since it involves more channels of commu-
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nication than a solution in which the NUCM servers themselves carry out a request by

forwarding and returning the necessary information. However, two reasons exist that

justify the use of a solution in which the NUCM client, in essence, \chases" an artifact

that moves repeatedly.

(1) The situation in which an artifact continuously moves is unlikely to occur fre-

quently, since the movement of artifacts is a relatively expensive operation that

should only be performed when absolutely necessary.

(2) Since a response is only transferred once (e.g., from a physical repository to a

NUCM client) rather than multiple times (e.g., repeatedly from one physical

repository to another physical repository until the response eventually reaches

a NUCM client), it is likely that less overall traÆc is incurred. Especially when

large artifacts are transferred, the solution in which the client request is repeated

is more eÆcient, since a direct connection is established.

6.2.8 Name Interpretation & Workspace Management

The NUCM prototype uses an internal naming scheme that uniquely identi�es

each version of an artifact with an associated \NUCM id". It is the responsibility of

the �rst part of the name interpretation and workspace management layer to transform

a name that is given to the NUCM client by a user (a name that follows the struc-

ture as de�ned by the naming model in Section 3.3) to an internal NUCM id. Highly

specialized name interpretation rules govern this part of the architecture. These rules

interpret each part of the name by walking down the versioned directed graph of ar-

tifacts. Depending on the nature of the versioned directed graph and its distribution

among physical repositories, this may require communication among a NUCM client

and several NUCM servers to obtain the NUCM id. Oftentimes, however, name inter-

pretation can be performed locally within a workspace, and no communication overhead
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is incurred.

The second part of the name interpretation and workspace management layer is

responsible for the management of the contents of a workspace. Special, hidden �les are

used to track which artifacts have been opened or initiated. In particular, each directory

in a workspace contains a �le called .workspace that maintains, in a concise format,

for each contained artifact its name, its type, an indicator as to whether it has been

opened, and an indicator as to whether it has been initiated. In addition, a workspace

caches the membership relations of a collection to not have to repeatedly request this

information from a remote NUCM server. Again, special, hidden �les are used for this

purpose. In particular, each directory that represents a materialized collection contains

a �le called .collection. This �le contains, for each member artifact, its name and its

internal NUCM id.

The name interpretation and workspace management tasks are grouped into a

single architectural layer on purpose. Both tasks access the same type of information,

and their collocation in a single architectural layer facilitates the sharing and caching

of this information.

6.2.9 Client Interface

The �nal layer in the architecture of NUCM is the layer that implements the

interface functions that form the NUCM client. Except for the function nc select-

versions, all of the functions in the programmatic interface (as described in Chapter 4)

are implemented. The only reason the function nc selectversions is not implemented

is that it represents a utility function that optimizes network traÆc. Its functionality can

still be achieved using a combination of the other interface functions that are available.

None of the other functions fall into this class. They are all essential and contribute

a unique piece of functionality to the programmatic interface. Therefore, all other

functions are implemented in the prototype.
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The precise details of each function in terms of its parameters, error codes, and

return values, are presented in Appendix A.

6.3 Implementing Optimizations

The current NUCM prototype contains a few optimizations for operation in a dis-

tributed setting. The most important of those are the fact that collection membership

is cached inside a workspace, that NUCM clients follow artifacts that have been moved,

and that the membership of collections is updated when artifacts have been moved.

An industrial-strength implementation of NUCM, however, should also fully exploit the

bene�ts of other optimization techniques such as caching, delta storage, and compres-

sion. Therefore, neither the repository model nor the programmatic interface prohibits

incorporation of these techniques in NUCM. The layering that forms the backbone of

the implementation architecture of NUCM facilitates their incorporation without the

need for widespread changes throughout the whole architecture. In fact, each optimiza-

tion can be localized in one or two layers, thereby signi�cantly reducing its impact on

the implementation. The remainder of this section discusses how the incorporation of

caching, delta storage, and compression can be achieved in the NUCM prototype.

6.3.1 Caching

The workspaces de�ned by the abstraction layer already provide a rudimentary

form of caching: artifacts are cached in a workspace while they are being manipulated

by a CM policy. Even so, an additional form of caching can|and should|be incor-

porated in the implementation of the testbed. This form of caching relies on each of

the NUCM servers that are part of a logical repository to cache those artifacts that

are regularly requested but reside at a di�erent physical repository. In its simplest

form, such caching becomes a variant of an automated, read-only replication mecha-

nism. Frequently used artifacts are cached by local NUCM servers to facilitate quick
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materialization in a workspace, but changes are still committed directly to the remote

physical repositories in which the actual version histories of the cached artifacts are

kept.

Due to the layered structure of the NUCM prototype, caching can be added by

simply changing one layer in the architecture. Speci�cally, the server layer can be

changed to perform a few additional tasks. These tasks are based on an adaptation of

the forwarding mechanism. Speci�cally, after a NUCM server has decided to cache an

artifact, it copies the version history of that artifact to the local physical repository.

However, it also attaches a forwarding address to the local copy that points to the

remote copy of the artifact. Once this process has completed, a NUCM client interacts

with the NUCM server as usual, with the exception that the NUCM server intercepts

certain requests. These requests, all of a read-only nature, are satis�ed by returning

the local copy of the artifact instead of the remote one. When a write request is made,

however, the request is not intercepted and the forwarding mechanism is leveraged to

make sure that the original copy of the artifact is updated and not the cached version.

Of course, cache consistency needs to be enforced. For this purpose, the server

layer should be modi�ed to associate an extra attribute with each version of an artifact.

The value of the attribute is a unique hash value that is based on the contents of

the artifact. Before a cached copy of an artifact is returned to a NUCM client, the

cached attribute value is compared to the attribute value stored at the original physical

repository. If both values are equal, the cached copy is returned. Otherwise, the cached

copy is inconsistent and needs to be updated before the response to the NUCM client

is given.

Two observations can be made about this method of adding caching to the NUCM

implementation. First, it should be noted that the mechanism is completely transparent

to the NUCM client and only involves modi�cations to the NUCM server. The second

observation is that it is conceivable that a more advanced caching mechanism can be
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devised in which NUCM servers detect patterns of access to the artifacts that are stored

in a logical repository (e.g., each time the function nc getattributevalue is used on

some artifact, it is followed by a use of the function nc open on the same artifact).

These patterns can be used to predict and prefetch those artifacts that are expected to

be used in the near future.

6.3.2 Delta Storage

An important technique that is used by CM systems to conserve storage space is

delta storage. Rather than storing each version of an artifact in its entirety, di�erences

among versions are calculated and stored. When a particular version of an artifact is

needed, it is constructed by applying the necessary di�erences to some base version of

the artifact. Some systems use forward deltas, a scheme in which the original version

of an artifact is the baseline. All future versions are constructed by applying a series

of changes to that baseline [Roc75]. To speed up access to later versions of an artifact,

other systems use backward deltas, a scheme in which the latest version of an artifact is

the baseline. All previous versions are constructed by undoing a series of changes from

that baseline [Tic85].

The addition of a delta storage mechanism to the NUCM prototype is rather

straightforward. Once again, only one layer in the architecture is a�ected, namely the

persistent storage layer. In particular, the directory layout utilized by this layer to

store versions of artifacts has to change from a series of numbered version directories

to a single archive �le in which all versions are stored. To manage such an archive �le,

several reusable libraries are available. For example, vdelta [FKR+95] or bdi� [Tic84]

can be used for this purpose.

Because the abstraction layer is based on a linear versioning scheme that does not

track the derived-from relationship that is necessary to perform di�erence calculations,

one additional part is required for the solution to be complete. The information that
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is kept in a workspace can be leveraged for this purpose. In particular, a workspace

keeps track of which version of an artifact is initiated for change. This information can

be used by a delta algorithm to keep track of the derived-from relationship when a new

version of an artifact is committed to a repository. Of course, to do so, this information

needs to be transferred from the name interpretation and workspace management layer

to the persistent storage layer, which requires the addition of a parameter to each of

the functions in the series that commit a change from a workspace to persistent storage.

The isolation of changes that is provided by the architectural layering of functionality

is indeed broken by this solution. Yet, each of the intermediate layers is only minimally

a�ected in that a single parameter needs to be passed through a series of functions.

Of course, it is not always desirable that delta storage be applied to artifacts. In

fact, it is known that for some artifacts certain delta algorithms produce results that pro-

vide hardly any storage improvement despite being computationally expensive [HVT98].

Moreover, the way a CM policy uses the storage model may prohibit the application of

a delta algorithm. In general, therefore, a CM policy should decide whether or not a

delta algorithm is applied to the artifacts that it manages. Thus, for delta storage to be

properly added to the NUCM prototype, the function nc add should be enhanced with

a parameter that allows a CM policy to control whether the storage of the artifact being

added should use a delta mechanism or not (which, in fact, is similar to the solution

being applied in Continuus [Con94]).

6.3.3 Compression

Another important optimization in the presence of wide-area distribution is the

use of compression. Rather than shipping, as is, an artifact back and forth over long

distances, it is often advantageous to compress an artifact before transmission. De-

pending on the trade-o� between computational expenses and network delay, the use

of compression can be bene�cial in improving the overall performance of a distributed
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system.

To add compression to the NUCM prototype, two layers of the architecture are af-

fected: the server communication and access control layer and the client communication

layer. Both of these need to be modi�ed to incorporate a compression and decompres-

sion algorithm that is used whenever a large chunk of data needs to be transported.

Any of the available compression algorithms can be used for this purpose.

The same argument that is made for delta storage can be made for compression:

for certain types of artifacts, the trade-o� between computational expense and actual

gain is very low. A CM policy must, therefore, indicate whether or not compression

should be used. Again, the solution to this problem is to parameterize the function

nc add to provide this type of control to a CM policy programmer.

An interesting avenue to explore is the use of deltas as a compression mechanism.

In the same way that they can be used to provide eÆcient storage, the di�erence between

the version of an artifact that is initiated for change in a workspace and the version

of the artifact that is committed to a physical repository can be calculated. Rather

than transmitting the new artifact in its entirety, NUCM could instead transmit the

di�erence between the original and new version. Combined with compression of the

di�erences, this solution may provide signi�cant performance gains.

Implementing this solution in NUCM is more complicated than incorporating one

of the previous optimizations. On top of a change that incorporates delta storage in the

primitive storage layer and compression in the two communication layers, this optimiza-

tion requires another change to be made. Speci�cally, a workspace has to preserve the

original copy when an artifact is initiated for change. Moreover, the namespace interpre-

tation and workspace management layer of the architecture also needs to be enhanced

with the same delta algorithm as employed by the persistent storage layer. Overall, this

optimization would lead to changes in the name interpretation and workspace manage-

ment, client communication, server communication and access control, and persistent



173

storage layers. Although impacting many layers, this optimization is the most advan-

tageous one, and can build upon the solutions created for the previous optimizations.



Chapter 7

Experience

Based on the NUCM prototype, three novel CM systems have been implemented.

These three CM systems demonstrate the utility and validity of the testbed. In par-

ticular, the utility is demonstrated by the fact that all three systems are actually im-

plemented using the prototype and the validity is demonstrated by the fact that all

three systems were constructed relatively quickly and exhibit unique functionality with

respect to other CM systems.

Two of the CM systems that have been implemented using the NUCM prototype,

namely DVS [Car98] and SRM [vdHHHW97], are presently in everyday use, whereas

the third system, WebDAV, represents an experimental implementation of an emerging

standard in Web versioning [Whi97]. Characteristics of all three systems are that they

have evolved over time, operate in a distributed setting, and manage artifacts of kinds

other than traditional source code.

Below, we discuss each system in more detail and use parts of their implementa-

tion to illustrate how the NUCM prototype can be used to program particular CM poli-

cies. It should, of course, be noted that the policies themselves are not the contribution.

Instead, the contribution lies in the ease with which these policies were constructed, in

the ability to version di�erent kinds of artifacts, and in the limited amount of e�ort

needed to make them suitable for use in a wide-area setting.
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7.1 DVS

DVS (Distributed Versioning System) [Car98] is a versioning system developed

by Antonio Carzaniga that is focused on providing a distributed environment in which

documents can be authored collaboratively. DVS is centered around the notion of

workspaces. Speci�cally, individual users populate their workspace with the artifacts

needed, lock the artifacts they intend to change, modify these artifacts using the ap-

propriate tools, and commit the modi�ed artifacts from the workspace to a storage

facility.

DVS is a tool that was developed in response to a need for a distributed group of

collaborators to jointly author documents. Combined with the collaborators' familiarity

with RCS [Tic85], this domain placed some stringent requirements upon the design and

implementation of DVS.

� DVS should strictly avoid conicts.

Due to the importance of the documents being versioned, each author should

be guaranteed exclusive access to the artifacts that they change.

� DVS should capture the evolution of an artifact in a linear fashion.

The nature of the documents being versioned is such that almost all changes are

based on the latest version available. Therefore, linear evolution is desired and

the creation of branches is not required. Nonetheless, it should still be possible

to base changes on a version older than the latest. Even in this case, however,

the version that results should supersede the current latest version and form

the basis upon which any subsequent changes are made.

� DVS should support private workspaces.

Each user should be able to make their changes in a private workspace, without

being disrupted by changes that other users make simultaneously.
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� DVS should shield a user from the potential distributed storage of

artifacts.

Of course, network delays and other types of inherent network behavior are

always visible, but preferably most, if not all, details of distributed operation

are hidden from the users of DVS.

� DVS should be simple to use.

Preferably, the operations, ags, and syntax of DVS should be similar to the

operations, ags, and syntax used by RCS.

7.1.1 Design

DVS was created before any of the core policy designs discussed in Chapter 5 were

developed. Despite this independence, an examination of the similarities between DVS

and those policies reveals that DVS can be characterized as combining the peer-to-peer

repositories policy with a variation of the composition policy. In particular, the ability

of DVS to compose a document out of many parts while allowing those parts to be

stored in di�erent physical repositories warrants this characterization.

DVS is normally used in a setting that resembles the client-server workspaces

policy: one centralized server stores the documents that are authored by a series of

DVS clients. Nonetheless, DVS is based on the peer-to-peer repositories policy in order

to support the exible placement of artifacts. Typically, a group of collocated authors

is responsible for the content of certain parts of a document. For performance reasons

it makes sense to locate those parts of the document in a physical repository that is

close in proximity to the authors. Particularly when the use of a single, central, physical

repository leads to unsatisfactory performance, using DVS with a logical repository that

consists of two or more physical repositories can be extremely bene�cial.

DVS is centered around the composition policy in order for its users to be able to
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decompose a single document into multiple parts. Such a decomposition allows many

concurrent modi�cations, each to a di�erent part of the document. Meanwhile, the use

of locking ensures that conicts are avoided.

The standard composition policy discussed in Section 5.1.2 is based on the stan-

dard checkout/checkin policy discussed in Section 5.1.1. The composition policy used

by DVS, however, uses the variant of the checkout/checkin policy that disallows the

creation of branches (see Section 5.1.1.3). This deviation is deliberate in order to sup-

port the linear evolution that is desired for both the individual parts of the document

as well as the document itself.

7.1.2 Implementation

DVS is fully implemented in roughly 3; 000 lines of C source code.1 Its func-

tionality is shown in Figure 7.1. Thirteen commands are supported. Given the desired

similarity of DVS to RCS, it should not be surprising that the core of DVS is formed by

the commands co and ci. These two commands check out and check in, respectively,

a (part of a) document. Compared to RCS, these commands are modi�ed in two ways.

First, DVS versions collections. Therefore, both the commands co and ci operate in

the context of collections. For example, before a collection is checked in, its membership

is updated with any new versions of its member artifacts that may have been created.

In addition, the use of the ag -R allows a user to recursively check out (or check in) a

collection and its member artifacts.

The second modi�cation regards the fact that no version trees are used by DVS.

Instead, when a new version of an artifact is checked in, it is automatically checked in

as the latest version of the artifact. Of course, when a new version that is being checked

in is not based on the latest version of the artifact, DVS issues a warning and requests

1 In this chapter, all counts of source code lines are total counts. This includes empty lines and
comments.
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a con�rmation to avoid the possibility of inadvertently breaking the linear chain of

evolution.

The command link allows a user of DVS to add an already existing artifact

to a collection that is checked out. Compared to an addition through the use of the

command ci, which stores a new artifact in the repository, an addition through the use

of the command link does not create such a new artifact. Instead, the membership of

the collection is updated to include the existing artifact. Typically, this command is

used to include an artifact that is stored in a remote physical repository. As a result, a

logical repository with artifacts is created (or extended).

The next �ve commands are rather trivial. The command unlink removes an

artifact from a collection. The command lock locks an artifact, while the command

unlock unlocks an artifact. The command list presents an organized view of the

membership of a collection. The view can be con�gured to include auxiliary types of

information. Speci�cally, it is possible to view whether a member artifact is locked and

whether a member artifact is a collection or an atom. The command close, �nally, can

be used to remove artifacts from a workspace.

The next two commands, log and setlog, can be used to manage the audit trail

of an artifact that is being versioned by DVS. The command log displays the series

of comments that have been associated with each subsequent version of an artifact.

These comments typically have been associated by the command ci, which records the

log message that it requests from a user upon checkin. Alternatively, the command

setlog can be used. After an artifact has been checked in, this command can be used

to explicitly attach or update a log message.

The commands printlocks and whatsnew can be used to obtain information

about the artifacts that are being versioned. Speci�cally, the command printlocks,

when used on a collection, searches the repository to determine which versions of the

member artifacts of the collection are locked. If the ag -R is speci�ed, the command
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ANDRE -- serl 138% dvs

DVS v. 1.3.1

Copyright (c) 1997-1999 Software Engineering Research Laboratory

Department of Computer Science, University of Colorado at Boulder.

Usage: dvs <command> [options...]

commands and options:

co [-R] [-f] [-l] [-last] path [path ...]

ci [-R] [-l] [-m message] path [path ...]

link [-last] path [path ...]

unlink [-f] path [path ...]

lock [-last] path [path ...]

unlock [-last] [-f] path [path ...]

list [-v] [-o <filter>] [path ...]

<filter>=[cwbo]+ (collection workspace both(w+c) other)

close [-f] path [path...]

log [-n <num>] path [path ...]

setlog [-m message] path [path ...]

printlocks [-R] [-v] path [path...]

whatsnew [-R] [-v] path [path...]

sync [-R] [-f] path [path...]

To specify your NUCM server, set NUCMHOST and NUCMPORT appropriately.

The default values are localhost and 1234 respectively.

You can also tell DVS to redirect its requests through a proxy by setting

DVS PROXY MAP to point to a proxy map file.

Figure 7.1: DVS Functionality.
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operates recursively. This makes it possible for a user to obtain an overview of all the

artifacts that are locked, either by the user itself or by any of the other users. The

command whatsnew is complementary to the command printlocks. It provides a user

with an overview of those artifacts that are open in the workspace but that are outdated

with respect to the current state of the artifacts in the repository. This occurs when

another user has checked in a new version of an artifact that has not yet been placed in

the workspace.

The last command, sync, allows a user to synchronize a workspace with the

contents of the repository. Speci�cally, if new versions of artifacts have been checked

in, or artifacts have been added to or deleted from a collection, this command should

be used to make sure that the contents of the user workspace are up to date. To avoid

the loss of changes, the command does not overwrite artifacts that have been checked

out by the user.

The set of thirteen commands satis�es the requirements laid out for DVS in

Section 7.1. Conicts are avoided, since DVS uses locking to guarantee exclusive access

to an artifact. Still, parallel work is facilitated, because a document can be partitioned

into multiple parts that each can be manipulated and evolved separately. Moreover, the

policy of DVS enforces a linear evolution of artifacts while still allowing, as an informed

and conscious exception, to base a new version of an artifact on an earlier version than

the latest.

By providing each user with a private workspace, users can make changes in

isolation. Because of the nature of the workspaces as de�ned by the abstraction layer, it

is possible for workspaces to operate in a disconnected setting. Speci�cally, a workspace

can be placed on a machine that is not continuously connected to the set of machines on

which the logical repository with artifacts resides. Only when new versions of an artifact

are checked in, or when a workspace is synchronized, is network connectivity required

between the machine that contains the workspace and the machines that contain the
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logical repository.

DVS shields a user from operation in a distributed environment. With the ex-

ception of potential network delays, a user is typically not aware of the physical distri-

bution and location of the artifacts on which it operates. Only two occasions warrant

user awareness. First, when a workspace is initially constructed using the command

co, a user needs to supply the full name of the top-level artifact that populates the

workspace. This name includes the physical location of the repository where the arti-

fact resides. The second occasion regards the command link. Since it adds an existing

artifact, the full name of the artifact to be added is, once again, required. All of the

other commands provide transparent distribution to the user. If needed, the commands

locate and operate on artifacts in remote physical repositories. No user intervention or

direction is necessary.

The �nal requirement, ease of use, is also satis�ed by DVS. Typical use has a user

synchronizing their workspace in the morning, checking out and checking in artifacts

throughout the day, and repeating the same sequence the next day. With the exception

of the synchronization step, this kind of use closely resembles the model provided by

RCS.

7.1.3 Observations

DVS has been used on a number of occasions over a time frame of two years.

In some cases, it has been used to manage the authoring of grant proposals by collab-

orators located in Colorado, California, and Hawaii. In other cases, it has been used

to manage research papers authored by collaborators located in Italy, California, and

Colorado. In fact, on some occasions collaborators have traveled, with their workspace,

from location to location, while periodically checking in new artifacts and synchronizing

their workspace. Throughout these experiences, DVS has proven to be reliable in use,

even while managing thousands of checkins, checkouts, and synchronizations.
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DVS possesses some characteristics that illustrate the power of the abstraction

layer. First, no special code needed to be developed for DVS to operate in a wide-area

setting. To provide for its distribution, DVS relies entirely on the mechanisms de�ned

by the abstraction layer and included in the NUCM client implementation. Speci�cally,

to store di�erent artifacts in di�erent physical locations, DVS fully leverages the peer-

to-peer facilities that are provided by NUCM servers.

The second advantage in using the abstraction layer in the construction of DVS

shows itself in the number of lines of source code needed to develop DVS. Approximately

3; 000 new lines were needed to create the full functionality of DVS. The newly written

source code mostly deals with the text-based user interface, the recursive operations

on workspaces, the proper locking of artifacts, and the storage of metadata about the

artifacts that are versioned. Other functionality, such as distribution, collections, and

versioning, is inherited from the NUCM implementation.

The third and �nal advantage in using the abstraction layer demonstrated itself

in the evolution of the functionality of DVS. The initial set of functionality of DVS did

not quite ful�ll all desired needs. Therefore, DVS needed to evolve. New commands

were added and ags and default behavior of commands were changed. It turned out

that these additions and changes could be made easily. No complete redesigns or over-

hauls were needed. In fact, because of the storage compatibility among versions of

DVS, it even turned out that the changes could be deployed in an incremental fashion.

While some collaborators still used an older version of DVS, others experimented with

the functionality provided by the new version. In this process, the NUCM repository

required no downtime and slightly di�erent policies could be used by multiple authors

at the same time. Clearly, the separation of storage from policy proved to be invaluable

in this situation.
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7.2 SRM

SRM (Software Release Manager) [vdHHHW97] is a tool that was developed

to address a need for multiple, collaborating organizations to coordinate their release

process. Speci�cally, systems built at one organization depended on other systems built

at other organizations. Using the Web or FTP as the release mechanism led to a rather

laborious and error-prone release process. Speci�cally, an inability to properly and

consistently track dependencies among systems was the source of a large number of

mistakes. SRM addresses this problem. It supports the release of \systems of systems"

from multiple distributed sites. In particular, SRM tracks dependency information to

automate and optimize the retrieval of system releases. Developers are supported by a

simple release process that hides distribution. Users are supported by a simple retrieval

process that allows the retrieval, via the Web, of a system of systems in a single step as

a single package.

Although SRM is not a traditional CM system that stores and versions source

code, it has many similarities to a CM system: it needs to manage multiple (versions of)

releases, it needs to manage dependencies among these releases, and it needs to store

metadata about the releases. Combined with the need for a distributed repository that

allows multiple sites to collaborate in the release process, these similarities led to the

choice of NUCM as the platform upon which to build SRM.

Similar to DVS, the creation of SRM was guided by a number of requirements.

Speci�cally, its distributed operation has to adhere to the following.

� The federation of physical repositories that form the logical repository

used by SRM should be easy to change.

Since new organizations may join the federation or existing organizations may

leave the federation, it should be easy to add or remove a physical repository.

� SRM should hide distribution.
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Speci�cally, SRM should hide distribution from developers when they specify

dependencies and it should hide distribution from interested parties when they

retrieve a system release and its dependencies.

� SRM should store the systems that are released by a particular orga-

nization at the physical repository maintained by that organization.

Speci�cally, since the storage space required by certain system releases may

be rather large, and since it is likely that a system released by a particular

organization is most often retrieved via the Web pages of that organization, a

system release should be managed and stored in the physical repository that

belongs to the organization.

7.2.1 Design

To address these requirements, a rather unique design is employed by SRM. A

part of this design is illustrated in Figure 7.2. Shown are three sites, namely Boulder,

Rotterdam, and Milano. Only the sites in Boulder and Rotterdam are currently part of

the SRM repository. Key to the design is the presence of two types of collections. The

�rst type is called my releases and is present in each physical repository. In this type

of collection, local releases are stored. For example, the site at Boulder has released

a system called WordProcessor, which is stored in the collection my releases at that

site. Similarly, the site at Milano has released a system called GUI-lib that is stored in

its local collection my releases. This kind of use of a local collection addresses the last

requirement of SRM, which regards the placement of system releases in the appropriate

physical repositories.

The second type of collection addresses the second requirement for SRM. This

collection, called all releases, is stored in the master repository of the SRM federation

and has as its members all system releases at all participating sites. The availability of
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Figure 7.2: Federated SRM Repository Before Milano Joins the Federation.
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this collection provides each user of SRM with an overview of, and access to, all systems

that have been released without having to know where these systems reside.

The combination of the collections my releases and the collection all releases

addresses the �rst requirement. Speci�cally, when a new organization or site joins the

SRM federation, all it needs to do is create a local collection my releases and link to

the global collection all releases. The result of these actions is shown in Figure 7.3

after the repository in Milano has joined the federation. Dashed lines indicate the new

relationships and artifacts that have been put in place as compared to the repository

presented in Figure 7.2.

To leave a federation, once again two steps are required. First, an organization

has to remove its system releases from the collection all releases. Subsequently, the

collection all releases itself has to be removed from the physical repository that leaves

the federation. Of course, consistency constraints must be enforced in this process. In

particular, dependencies cannot be broken when a site leaves the federation. Therefore,

the full design of the repository used by SRM maintains dependency counters to enforce

a consistent state. The details of this full design, which includes many other features

not presented here, are discussed by Smith [Smi99].

Note that the essence of the repository design of SRM is similar to the creation

of a federation in the peer-to-peer repositories policy (discussed in Section 5.2.2). One

important di�erence exists. Whereas the peer-to-peer repositories policy allows any

collection in any repository to contain any artifact in any other repository, the repository

design of SRM is based on the creation of a very speci�c federation in which connectivity

is limited to a few places in the federation of repositories. In e�ect, the repository design

of SRM can be viewed as a special case of the peer-to-peer repositories policy in which a

number of rules de�ne a precise schema. This schema restricts which kinds of artifacts

may be stored, how these artifacts may relate, and how they can evolve. The rules, of

course, are encoded in the policy that is implemented by SRM.
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7.2.2 Implementation

The implementation of SRM hides all details of the presented repository design

and its associated versioning policy. In fact, SRM operates in such a manner that all

its user actions are based on simple forms. Speci�cally, developers �ll out a form that

describes the system to be released. On this form, system releases are identi�ed by a

name and release number. This release number is mapped, by SRM, onto a version

number in the repository.

The fact that dependencies may span multiple sites is also hidden from the de-

velopers. They simply choose the desired set of dependencies from the list of systems

that have been released so far. SRM obtains this list using the function nc list on the

collection all releases in the logical repository.

User interested in obtaining a system of systems are similarly unaware of the

physical distribution of artifacts. They are presented with a Web page from which they

can select the system in which they are interested. SRM then takes care of retrieving

the system and all of its transitively dependent systems from the appropriate physical

repositories, packs up the system of systems in a single archive, and hands the archive

to the user.

To achieve the high-level interface, the architecture of SRM is based on an inter-

nal storage layer that translates such entities as system releases and dependencies (as

well as many others de�ned by the full design of SRM [Smi99]) into collections, atoms,

and attributes. This storage layer consists of about 10 percent of the approximately

17; 000 lines of source code that constitute SRM. Of this 10 percent, only about 200 lines

explicitly manage the distributed nature of an SRM repository. Speci�cally, these lines

implement the joining and leaving of a physical repository. The rest of the code imple-

menting the storage layer constitute the rules that govern the repository contents. The

remaining 90 percent of the source code of SRM is concerned with the implementation
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of an appropriate user interface.

7.2.3 Observations

SRM has been in actual use since 1997. Its primary use has been as the soft-

ware release manager for the software created by the Software Engineering Research

Laboratory of the University of Colorado. This represents a local use of SRM, since all

participants reside at the same site. In an alternative setting, SRM has served for over a

year as the central release site for the participants in the DARPA EDCS (Evolutionary

Design of Complex Software) program. In this setting, participants from all over the

United States have released artifacts to a single, central SRM repository located at the

Software Engineering Institute. Although neither use takes advantage of the full power

of the design of SRM, both have shown the applicability of SRM and the reliability of

NUCM, even in a widely distributed setting.

Although SRM is not a traditional CM system, it still uses the functionality pro-

vided by the abstraction layer to the fullest. Collections, versioning, advanced naming,

and peer-to-peer distribution are all used in the design and implementation of SRM. As

such, SRM is an excellent example of a system that uses many of the features of the

abstraction layer.

The main advantage in using the abstraction layer to construct SRM is the fact

that distribution could be isolated. Only a small part of the complete implementation

explicitly deals with distribution. The remainder of the implementation is concerned

with the actual functionality of SRM itself and, in fact, relies on the distribution trans-

parency provided by the internal storage layer of SRM. This particularly exhibits itself

in the functionality of adding a release to the SRM repository. This can simply be pro-

grammed as an addition to the local collection my releases and the global collection

all releases. Since NUCM tracks the physical location of these collections, the addi-

tion can be programmed completely in terms of interaction with just the local physical
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repository.

7.3 WebDAV

WebDAV [Whi97] is an emerging standard that proposes to add authoring and

versioning primitives to the HTTP protocol [FGM+98]. In particular, the standard

proposes extensions in the following �ve areas.

� Properties. To be able to describe Web resources, WebDAV proposes the

creation of new HTTP methods that add properties (or attributes) to Web

resources, as well as methods to query and retrieve the properties.

� Collections. To be able to structure Web resources into higher-level constructs,

WebDAV proposes the creation of new HTTP methods that allowWeb resources

to be grouped into collections, as well as methods that change the membership

of collections.

� Name space management. To be able to eÆciently move, copy, and delete

Web resources, WebDAV proposes the creation of new HTTP methods that

manipulate the Web name space.

� Locking. To avoid multiple entities updating a single Web resource in parallel

and consequently losing changes, WebDAV proposes the creation of new HTTP

methods that allow Web resources to be locked and unlocked for exclusive write

access.

� Version management. To be able to keep a history of Web resources, Web-

DAV proposes the creation of new HTTP methods that allow Web resources to

be versioned.

Two observations can be made with respect to WebDAV and the abstraction layer. A

�rst observation is that, although the objective of WebDAV (providing an infrastructure
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for distributed authoring and versioning) is slightly di�erent than the objective of the

abstraction layer (providing a distributed repository to construct con�guration manage-

ment policies), the interface methods that have been proposed by both are strikingly

similar. Only two major di�erences exist. First, the abstraction layer includes a naming

model that uses version quali�ers to navigate in the version space, whereas WebDAV

leaves the versioning aspects of naming unde�ned. Second, WebDAV speci�es a par-

ticular versioning policy, namely the version tree that is modi�ed by checking out and

checking in artifacts, whereas the abstraction layer is generic with respect to versioning

policies.

The second observation is that, because of the similarity between the abstraction

layer and WebDAV, it seems advantageous to implement WebDAV using the abstraction

layer. Properties and locking can be mapped onto attributes, collections are identical,

name space management maps onto collections and the physical distribution of artifacts,

and version management can be implemented as a CM policy.

The remainder of this section describes the details of a prototype of WebDAV

as implemented with the testbed. It should be noted, however, that the prototype

implements a subset of the functionality prescribed by an earlier version of the standard

and is clearly out of date with respect to its current version.

7.3.1 Design

The high-level design of the WebDAV prototype is shown in Figure 7.4. The core

of the design is formed by an integration of an HTTP server with the NUCM client. As

WebDAV requests come in from WebDAV-enabled browsers, the HTTP server either

handles a request itself (in case a regular HTTP request is made) or interprets a request

and uses the NUCM client to implement the versioning policy (in case a WebDAV

request is made). Note that the NUCM client interacts with only a single NUCM

server. Since each HTTP server is responsible for managing its own name space and
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does not interact with any other HTTP servers, the underlying storage mechanism (in

this case NUCM) does not have to be distributed.

Most of the new HTTP methods translate into direct calls to the programmatic

interface, but some require additional work. In particular, the versioning routines of

WebDAV prescribe a policy that is based on a version tree. For this part, a basic

checkout/checkin policy like the one described in Section 5.1.1 is adopted. The only

change regards the use of workspaces. Whereas in the standard checkout/checkin policy

these are used as the working area for a user, in the WebDAV prototype the workspace

is used to communicate between the NUCM client and the HTTP server. Since artifacts

are further forwarded by the HTTP server to the WebDAV-enabled browser in which the

user manipulates the artifacts, no need exists for the artifacts to remain in the workspace

after a WebDAV operation. Therefore, the workspace management mechanism of the

standard checkout/checkin policy is adjusted to remove artifacts after a checkout and

open artifacts before a checkin.

7.3.2 Implementation

Because WebDAV is an evolving standard [GWF+99] and the prototype was built

almost two years ago, the implementation described here is outdated with respect to

the current version of the standard. Nonetheless, the prototype can be used for the

purpose of illustrating the strength of the abstraction layer.

The actual prototype implementation only addresses the locking, versioning, and

collection aspects of the WebDAV standard. Properties are ignored, since they map eas-

ily onto the attributes of the abstraction layer. The name space management functions

are not included since they did not exist at the time.

The WebDAV prototype consists of about 1; 500 lines of source code that not

only implement the policy, but also a very simple WebDAV-aware HTTP server and

a WebDAV client. Speci�cally, the WebDAV client is implemented as a Java applet
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that can be loaded into a standard Web browser. The Java applet makes requests

to the WebDAV-aware HTTP server. This server, in turn, implements collection and

checkout/checkin functions to provide the desired behavior prescribed by the standard.

The functionality provided by the WebDAV-aware HTTP server is by far not

complete. It is only an implementation for the purpose of demonstrating the prototype

and leaves out almost all of functionality that is typically provided by an industrial-

strength version.

7.3.3 Observations

Unlike DVS and SRM, the WebDAV prototype has not been used other than for

simple demonstrations. Nonetheless, the prototype still o�ers two valuable lessons with

respect to the value of the abstraction layer. The �rst lesson lies in the fact that the

checkout/checkin policy incorporated in the prototype actually represents a reuse of an

earlier implementation of the checkout/checkin policy [vdHHW96]. Since only a few

modi�cations needed to be made with respect to the handling of workspaces, the policy

aspects of the prototype could be completed within a single day.

The remainder of the prototype was implemented within a few weeks. Admittedly,

the experimental implementation does not cover all the functionality of the WebDAV

standard. However, the limited amount of code that needed to be developed and the

rapid development time demonstrate an important aspect of the abstraction layer: it can

be used to support the rapid development of prototype CM policies. The development

of a standard like WebDAV can particularly bene�t from such an approach, since the

rami�cations of speci�c policy decisions can almost instantly be tried out with an actual

implementation.
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7.4 Summary

This chapter has demonstrated the utility and validity of the abstraction layer.

The utility is demonstrated by the fact that the NUCM prototype can actually be

employed as a useful basis upon which particular CM systems are constructed. Char-

acteristics of these CM systems are that they operate in a distributed nature, store

di�erent kinds of artifacts, and all utilize a di�erent kind of CM policy. The presence of

these characteristics shows that the abstraction layer indeed provides support in those

areas that it is meant to support.

The validity of the abstraction layer is demonstrated by the fact that all three

CM systems could easily be implemented. The e�ort required was small. In particular,

the e�ort required to create those parts that implement the various CM policies was

relatively small when compared to existing CM systems. DVS consists of only about

3; 000 lines of source code, the policy of SRM is roughly 1; 700 lines, and the prototype

of the WebDAV standard is only 1; 500 lines. This represents a signi�cant reduction

when compared to other CM systems.

The most important advantage, however, is the fact that this reduced e�ort facil-

itates the exploration of new CM policies that can rapidly be tailored to the situation at

hand. The WebDAV prototype represents an excellent example. As a particular stan-

dard was being de�ned, a prototype implementation of the standard could be rapidly

constructed. Potential evaluations resulting in adjustments and re�nements to the pol-

icy could have been performed had the NUCM prototype been available to the group

de�ning the standard. DVS provides another example. Although its �rst implemen-

tation did facilitate a group of distributed collaborators to jointly author a document,

its evolution over time has resulted in a complete CM system that fully addresses its

requirements.
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Related Work

In its many years of existence the discipline of con�guration management has

produced numerous industrial and research systems. Some provide only version con-

trol facilities, (e.g., RCS [Tic85], SCCS [Roc75], Sablime [Bel97]). Others provide more

complete con�guration management solutions (e.g., CVS [Ber90], CoED [BLNP98], Per-

force [Per98]). Yet others provide integrated environments that incorporate process

management and/or problem tracking facilities (e.g., Adele [EC94], ClearCase [Atr92],

Continuus [Con94]). A similar categorization can be made with respect to distribution.

Some of the CM systems are only suited for use at a single site (e.g., EPOS [Mun93],

ShapeTools [ML88], SourceSafe [Mic97]). Others incorporate a simple (sometimes Web-

based) client-server interface (e.g., DCVS [Ber90], Perforce [Per98], WWCM [HLRT97]).

Yet others provide more advanced distribution mechanisms such as replication or work-

space distribution (e.g., ClearCase Multisite [AFK+95], Continuus DCM [Con98], Neu-

maCM+ MultiSite [Neu98], PVCS SiteSync [INT98a]).

To understand the position of the testbed in the large spectrum formed by all

these systems, this chapter presents related work from three di�erent points of view.

First, the chapter examines the architectural evolution of CM systems, culminating

in the architecture imposed by the testbed introduced in this dissertation. Then, the

chapter discusses some other research systems that can be considered alternatives to the

testbed. Finally, the chapter briey contrasts the testbed to several other approaches
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not originating in the �eld of con�guration management.

8.1 Architectural Evolution

Figure 8.1 shows the evolution over time of the high-level architecture embedded

in CM systems. The earliest architecture, shown in Figure 8.1a, distinguishes itself by

the fact that it tightly integrates the storage mechanism employed by the CM system

with the CM policy that is presented to the user. First utilized by such CM systems

as SCCS [Roc75] and RCS [Tic85], this architecture is still the most popular to date.

Such well-known and widely-used systems as PVCS [INT98b], SourceSafe [Mic97], and

Perforce [Per98] have been constructed this way. Certainly, an advantage of the archi-

tecture is that it allows a CM system adhering to it to optimize the storage for the

needs of the CM policy. Perforce, for example, is known and actually marketed for

its fast operation, which can be attributed to a storage facility that is highly tuned to

its change package policy. A disadvantage of the architecture, however, is that a CM

system that is based on it tends to be rather inexible [Dar96]. For example, PVCS

and SourceSafe have been on the market for a long time, but the functionality provided

by each is stagnant and has not changed signi�cantly for several years now. In today's

market, this can be a serious competitive disadvantage.

Another disadvantage is that the creation of a CM system adhering to the mono-

lithic architecture requires an implementation completely from scratch. Typically, the

storage requirements are unique and must be tailored to the CM policy. It is likely,

therefore, that no suitable infrastructure can be reused. Consequently, the implemen-

tation of all the infrastructure has to be performed by the development organization.

The e�ort involved in this process may range from several months for a relatively simple

CM system to a number of years for a full-edged, feature-rich CM system.

Despite these two disadvantages, most CM systems are still built with a mono-

lithic architecture. This is exempli�ed by both CoED [BLNP98] and DSCS [Mil97],
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each of which was (recently) developed in this manner.

As CM systems have become more mature and advanced, some have turned to-

wards using a commercial, generic database as the underlying storage mechanism (e.g.,

ClearCase [Atr92], Continuus [Con94], TrueCHANGE [Sof94b]). Illustrated in Fig-

ure 8.1b, the advantage of this architecture is that a database provides a reliable and

reusable platform that o�ers such services as schema de�nition, constraint enforcement,

transactions, concurrency control, and rollbacks. These services no longer have to be

implemented by the organization that develops the CM system. Generally, a reduction

in development e�ort and an increase in reliability result from the adoption of this type

of solution.

Disadvantages of the use of a database as the storage mechanism are not imme-

diately visible. However, circumstantial evidence seems to suggest that they do not

necessarily provide a truly reusable platform. First, many of the new CM systems

that have recently been developed have chosen not to use a database. Instead, they

have opted to develop proprietary storage mechanisms. Second, the databases used by

ClearCase and TrueCHANGE are heavily modi�ed versions that provide optimized and

tailored access. Some unknown set of problems caused the vendors of these CM systems

to actually acquire the rights to the source code of the respective database used in order

to solve these problems.

Continuing the evolutionary pattern, the testbed contributed by this dissertation

represents the next step. Instead of providing just generic database services, Figure 8.1c

illustrates that the testbed provides a repository that is highly specialized towards con-

�guration management. CM policies are constructed by reusing the implementation of

a repository model and programmatic interface that are speci�cally designed to support

con�guration management policy programming. As compared to the use of a generic

database, the model and interface de�ned by the abstraction layer raise the level of ab-

straction with which CM policies can be constructed and thereby facilitate their rapid



199

CM−specific,
distributed
repository

(a) (b) (c)

Complete

implementation
CM system

CM policy

via
implementation

CM−specific API
via

CM policy

generic API

implementation

Generic
database

Figure 8.1: Evolution of the Architecture Embedded in CM Systems.



200

implementation. Still, a disadvantage of the testbed is that a CM system built on top

of it may not be as highly tailored and optimized as a solution that is completely de-

signed and build from scratch. Additionally, the testbed lacks exactly the functionality

that makes the use of a database as the storage mechanism so attractive. In particular,

missing are such services as transactions, rollbacks, and caching. It is hoped that most

of this functionality will eventually be incorporated into an industrial-strength imple-

mentation of the testbed. Actual CM systems can then be implemented based on the

abstraction layer de�ned in this dissertation. At this point in time, however, the testbed

is primarily suited for CM system prototyping and experimentation.

Since the �rst inception of the testbed [vdHHW96], several other papers have

recognized and advocated the use of a CM-speci�c repository as an architectural layer

upon which CM systems are build. Conradi and Westfechtel identify the availability of

an instrumentable version engine, supporting both a locking-based and a merging-based

versioning style, as an important requirement for further advances in the �eld of con-

�guration management [CW97]. Similarly, Zeller identi�es a three-tiered architecture,

consisting of CM primitives, CM protocol, and CM policy, as the pivotal basis upon

which further CM research and development should take place [Zel97].

The layered architecture proposed by Conradi and Westfechtel is closest in nature

to the testbed. In fact, its six architectural layers (i.e., basic delta storage, version rules

and/or version graphs, change-based and state-based version model, product model

and data model, transaction support and model, uni-version workspace and virtual �le

system) are remarkably similar in incremental functionality to the nine layers identi�ed

in Figure 6.2. The only di�erence is that Conradi and Westfechtel incorporate a richer

generic versioning model, consisting of the product model and data model, instead of

the versioned directed graph upon which the testbed is based. Unfortunately, their

architecture has not been implemented and only remains a sketch.

The approach taken by Zeller is rather di�erent from that of the testbed discussed
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in this dissertation. Based on feature logic, a single uni�ed formalism is proposed in

which a variety of CM policies are implemented [ZS97]. Although the formalism is pow-

erful enough to unify and integrate all four CM policies identi�ed by Feiler [Fei91a], it

lacks a high-level programmatic interface and does not provide any support for distri-

bution.

An important observation that should be made is that no single architecture is

right for all situations. For example, in certain cases a monolithic architecture is de-

sired over the use of a database or even over the use of the testbed introduced in this

dissertation. Perforce [Per98] provides an excellent example of this situation. Perforce

is designed and implemented for speed and leverages the close connection between the

storage mechanism and CM policy to its fullest advantage in obtaining as fast a perfor-

mance as possible. Given the generic nature of the testbed, building Perforce on top of

it would be an unwise decision.

Nonetheless, for the purposes that the testbed was designed it is by far the best

choice of the three architectures. The high-level programmatic interface, combined with

the generic repository model, facilitates rapid exploration of new CM policies that man-

age arbitrary kinds of artifacts and operate in a distributed setting. Additionally, these

CM policies may evolve as requirements or desired functionalities change. It should also

be noted that, based on the experience with NUCM, it turns out that the performance

of a CM policy that uses NUCM oftentimes is satisfactory. Only when the performance

becomes a bottleneck, the �nal CM policy that results after all experimentation has

�nished should be reimplemented in order to optimize the performance as much as

possible.

8.2 Alternative Abstractions

A small number of CM systems are actually built on top of an existing CM system.

The two most prominent systems exemplifying this kind of reuse are Asgard [MC96],
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which extends ClearCase [Atr92] with an activity-based software change management

process, and Ragnarok [Chr98], which uses RCS [Tic85] as the underlying storage mech-

anism for its architecture-based CM system. However, neither ClearCase nor RCS can

be considered a reusable platform upon which to build a wide variety of CM policies.

ClearCase is a CM system itself, and its policy and implementation are far too restric-

tive to be generic. The creation of Asgard concerns a very speci�c, ClearCase-oriented

solution to a problem that is complementary to the functionality already provided by

ClearCase.

For di�erent reasons RCS can be dismissed as a generic platform. Although it

provides parts of the functionality de�ned by the testbed , RCS only addresses a small

subset of that functionality. Moreover, its original implementation lacks a programmatic

interface. RCE [HT97] solves that problem but still only provides an interface that is

RCS-speci�c and does not include such facilities as collections and distribution.

For similar kinds of reasons, most other CM systems are not suitable as a reusable

platform for con�guration management programming. The testbed de�ned in this dis-

sertation is unique in providing this kind of functionality. Nonetheless, several ap-

proaches deserve to be mentioned because they also fall into the category of Figure 8.1c.

These systems are CME, CoMa, Gradient, and ScmEngine. CME [HLRT97] is an ex-

tension that adds collection management to RCE [HT97]. CME is similar to the testbed

in that it provides an architectural separation of the repository from the actual system

that stores and versions the artifacts. However, two signi�cant di�erences exist. First

of all, the programmatic interface of CME is not generic with respect to CM policies. It

only contains functions that implement a simple variant of the composition policy. The

second di�erence is that CME is not distributed. It only interfaces to a single repository

at a single site. Thus, whereas the testbed provides support for the construction of a

large variety of distributed CM policies, CME only provides support for the construction

of centralized CM policies that are based on composition.
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CoMa [Wes96] is perhaps the one system that is closest in nature to the func-

tionality provided by the testbed. CoMa introduces graph rewriting as a method of

constructing speci�c CM policies. Based on a composition model, it utilizes graph

rewriting rules to assert and enforce constraints. These constraints govern the evolution

of the artifacts that are managed. The goal of CoMa is to evolve the interrelated sets of

heterogeneous artifacts that are created throughout the software life cycle. Naturally,

it therefore shares some of its goals with the testbed. Speci�cally, it needs to manage

di�erent kinds of artifacts and it needs to tailor its CM policy to the artifacts that

are managed. As compared to the testbed, however, CoMa is limited in that it only

supports the construction of variations of the composition policy. Moreover, it does not

support the distribution of artifacts over multiple physical locations. Finally, CoMa

does not incorporate a workspace model. It is solely a speci�cation of the storage model

that is involved. Thus, even though CoMa is more generically applicable than CME, it

is similarly limited in that it only supports centralized CM policies that are based on

composition.

Gradient [BKR96] is a CM repository that is based on automatic replication. Each

update that is made to an artifact is broadcasted instantly as a delta to all replicas.

Because Gradient only allows incremental modi�cations to the artifacts it manages,

and furthermore assumes that modi�cations are independent of each other, it permits

simultaneous updates to a single artifact at multiple sites. Gradient is similar in spirit

to the testbed. It provides an architectural separation of the storage mechanism from

the CM system that uses it. But, as with CME, Gradient only supports a speci�c policy,

both with respect to distribution (where it only supports replicated repositories) as well

as with respect to CM policy (where it only supports the checkout/checkin policy).

ScmEngine [CPT97] is a distributed CM repository based on the X.500 direc-

tory protocol. X.500 directory entries contain metadata describing the artifacts that

are stored in physical repositories. Access servers leverage the standard X.500 directory
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protocol to create a logical repository that can be accessed by client CM programs. This

distribution mechanism is, in essence, the same as the one de�ned by the distribution

model of the testbed. However, the remainder of the repository model and the program-

matic interface provided by ScmEngine are signi�cantly weaker than the ones de�ned

in this dissertation. Speci�cally, the repository model does not include collections and

lacks the concept of version quali�ers to navigate in the version space. Similarly, the

programmatic interface is very speci�c and lacks support for the construction of a wide

variety of CM policies, only supporting the traditional checkout/checkin policy.

8.3 Other Domains

Outside the domain of con�guration management two important lines of work

can be identi�ed that are closely related to the work presented in this dissertation.

Speci�cally, the �elds of groupware and versioned databases share many of the concerns

of the testbed. In groupware, the need for distribution, versioning, and workspaces

seems to imply that the testbed layer could be useful in supporting the construction of a

groupware system. However, this is not so. Whereas the testbed is based on the principle

that workspaces provide isolation from changes made by other users in other workspaces,

groupware systems tend to focus on collaborative workspaces (e.g., WebRC [FN97], the

generic model of version management for cooperative applications [DRS96]). Especially

in the case of distribution, the set of issues involved in supporting each type of workspace

is rather di�erent. Consequently, groupware, even though closely related, falls outside

of the domain of the testbed.

Versioned databases (e.g., Ode [ABGS91], TVOO [ROY99]) are related to the

testbed since the testbed itself can be viewed as a versioned database. In fact, many

of the features of the testbed are shared by versioned databases. Nonetheless, an im-

portant di�erence exists, which is the presence of a speci�c repository model and an

associated programmatic interface in the testbed. Whereas these are generic in nature
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in a versioned database (e.g., an entity relationship model with SQL), both are highly

specialized by the testbed towards con�guration management. In essence, one could

consider the testbed to be a layer on top of a versioned database that implements a

particular schema (the repository model) and provides a number of standard views and

operations (the programmatic interface).



Chapter 9

Conclusions

This dissertation addresses the problem of CM system development. Speci�cally,

it presents a �rst step towards the creation of a reusable platform that facilitates the

rapid construction of, and experimentation with, new|potentially distributed|CM

systems. Although only a �rst step, the testbed provides two important bene�ts to a

CM system developer.

� New, prototype, CM systems can be rapidly developed, even if they need to

operate in a distributed setting.

� New CM policies can be exibly explored, even if they depart from traditional

assumptions and limitations.

It is expected that, in the short term, the testbed leads to the creation of design methods

for CM systems that use an implementation of the testbed in prototyping the desired

functionality. Due to the limited reliability and optimization of the current implementa-

tion, this prototyping phase would then be followed by a reconstruction of the eventual

CM system from scratch. In the long term, it is expected that the implementation

of the testbed will evolve into a fully functional, highly reliable, and highly optimized

platform that no longer requires such a costly reimplementation phase.

The critical contribution of the testbed is its architectural separation of CM repos-

itories from CM policies. To do so, a precise abstraction layer is de�ned that consists of
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a generic model of a distributed repository and a programmatic interface for implement-

ing, on top of the repository, speci�c CM policies. Characteristics of the abstraction

layer are its policy independence, its ability to manage a wide variety of di�erent kinds

of artifacts, its inherent distributed operation, and its ability to support traditional CM

functionality.

A prototype implementation of the testbed, called NUCM, is in actual use. Al-

though primarily used by the members of the Software Engineering Research Laboratory

at the University of Colorado, some of the policies that are implemented with this pro-

totype are used by others as well. Additionally, the testbed seems to have already

inuenced some other ongoing e�orts. In particular, evidence seems to suggest that

Perforce [Per98] has adopted an old version of the distribution model [vdHHW96], that

TrueCHANGE (formerly Aide de Camp [Sof94b]) has adopted software release manage-

ment as part of its suite of CM products, and that WebDAV [Whi97] has adopted the

collection mechanism provided by the abstraction layer.

The remainder of this chapter is structured as follows. First, the strengths and

weaknesses of the testbed are summarized. Then, the chapter concludes with a brief

discussion of future work.

9.1 Strengths

The strength of the abstraction layer lies in its ability to support the rapid cre-

ation of prototype CM systems, as well as in its ability to support the exible exploration

of CM policies. A comprehensive evaluation, consisting of mappings of ten CM policies

onto the testbed, as well as implementations of three CM policies onto the implemen-

tation of the testbed, demonstrates that the testbed achieves its goals. Speci�cally,

characteristics of the example CM policies are that they operate in a distributed set-

ting, store and manage di�erent kinds of artifacts, and all utilize a di�erent kind of CM

policy.
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Two additional bene�ts are identi�ed. First, not only can the testbed itself be

reused in the programming of CM policies, but, as it turns out, most of the CM policies

that are created with the testbed possess a certain amount of extensibility as well.

Therefore, new CM policies can often reuse parts of repository designs and programmatic

logic from other, existing CM policies. Closely related to this observation is the second

additional bene�t. The ease with which variants of example policies can be mapped,

as well as the ease with which the CM policies that are actually implemented can

be evolved, indicates that the testbed not only provides a reusable abstraction upon

which to construct prototype CM systems, but also possesses properties that allow

these prototype CM systems to evolve as the required functionality changes. This

represents an important bene�t that warrants further exploration beyond the scope of

this dissertation.

9.2 Weaknesses

Of course, to achieve its strengths, any generic abstraction layer typically sacri-

�ces certain properties, leading to the possibility that the abstraction layer may not be

applicable in certain situations. The testbed, naturally, also has some of these weak-

nesses. In particular, the following three weaknesses can be identi�ed.

� The testbed is not applicable to the management of �ne-grained ar-

tifacts.

In particular, the current access model prescribes that artifacts be accessed via

the �le system. Clearly, this is an undesirable situation if a multitude of �ne-

grained artifacts are managed. The overhead of accessing these artifacts via the

�le system is simply too high.

� The testbed leads, at times, to heavy-weight solutions.

An example of this undesirable e�ect is provided by the long transaction pol-
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icy discussed in Section 5.1.3. The simplest way to create this policy with

the testbed is to store each long transaction in a separate physical repository.

Clearly, this is a solution that requires additional storage space and a multi-

tude of NUCM servers running simultaneously if implemented with the NUCM

prototype. Compared to a proprietary implementation that optimally stores

and manages long transactions, the eÆciency of the solution with the testbed

is inferior.

� Certain experiments may not be possible with the testbed.

The testbed and its prototype implementation hide certain aspects from the de-

veloper of a CM policy. For example, the current implementation of the testbed

does not optimize any of its communication among clients and servers. As a

result, an experiment in which a communication-intensive CM policy is placed

on a large number of widely distributed clients may simply not be achievable.

These and other limitations, caused by the fact that the testbed and its imple-

mentation simply do not allow a developer to tune communication parameters,

may prohibit the applicability of the testbed in certain situations.

9.3 Future Work

The work discussed in this dissertation only represents the beginnings of a new

and promising approach to the creation of CM systems. Much work remains to be done.

In particular, immediate research questions can be identi�ed in investigating whether

the abstraction level provided by the testbed can be raised even further, whether the

functionality provided by the testbed can be broadened, whether the testbed can be

applied to di�erent domains, and whether extensions can be made that improve the

functionality of the testbed without changing its model or interface. Each one of those

questions is briey discussed below.



210

� Can the level of abstraction provided by the testbed be raised?

Even though the testbed provides signi�cant bene�ts in creating new CM poli-

cies, an examination of the policies that have been constructed seems to indicate

that it might be possible to further raise the level of abstraction with which

CM policies are programmed. In particular, as evidenced by the descriptions,

repository models, and core policy designs discussed in Chapter 5, the example

policies share some parts of their repository designs as well as pieces of their

functionality. Therefore, a question that is worth considering is whether it is

possible to create a high-level CM policy programming language in which con-

structs encapsulate parts of the example CM policies introduced in Chapters 5

and 7. Such a language might be declarative (e.g., a CM policy is created by

specifying desired sets of properties, such as \locking" or \composition") or

programmatic in nature (e.g., a CM policy is created by programming in terms

of high-level constructs, such as \lock" or \compose"), but it is unclear at this

moment what the exact nature of such a language will be or even whether such

a language can actually be constructed.

� Can the functionality provided by the testbed be broadened?

The testbed does not cover the full spectrum of functionality that was intro-

duced by Dart [Dar91]. Instead, the testbed concentrates on providing only

storage, distribution, versioning, and access facilities. An interesting question

to explore is whether the facilities provided by the testbed can be broadened to

include some of the functionality that was intentionally left out. If successful,

this would further enhance the usability of the testbed. For example, consider

the construction, with the testbed, of a CM policy that also incorporates a

distributed Make-like facility. Currently, the latter requirement would involve

incorporating a solution that is created outside of the testbed. This results in
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the complication that a CM policy has to use both the programmatic interface

provided by the testbed and a di�erent interface that is provided by the imple-

mentation of the distributed derivation process. A more desirable solution uses

a single interface encompassing both types of functionality. Important questions

to be raised in the creation of such a uni�ed interface regard the kinds of func-

tionality that can be generically added to the testbed (e.g., derivation processes,

process engines, merge interfaces) and whether the orthogonality that currently

underlies the testbed can be maintained.

� Can the testbed be applied to other domains?

Currently, the testbed is exclusively focused on the creation of prototype CM

systems. Obviously, an interesting avenue to explore is the application of the

principles and techniques developed within the testbed to other domains. For

instance, consider the domain of groupware. Although quite di�erent from the

domain of con�guration management, the two domains share such characteris-

tics as a multitude of artifacts, distribution, evolution, and versioning. Research

questions arise as to whether the same principles and techniques|or even the

current incarnation of the testbed itself|can be applied to the construction of

groupware systems. Additional questions arise as to whether the orthogonality

of the functional categories can be preserved while being extended with other

categories, such as access rights or artifact sharing facilities.

� Can the functionality provided by the testbed be improved without

changing its model or interface?

The research questions discussed above are primarily focused on the use and ap-

plicability of the testbed itself. Another research question arises if we consider

the way the testbed is actually implemented. For example, as sets of physical

repositories interact to provide CM clients access to the artifacts they maintain,
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it might be possible to improve the overall access time of these clients by employ-

ing an advanced caching mechanism. Of course, given the fact that the testbed

itself is policy independent, such a caching mechanism must be policy indepen-

dent as well. A potential avenue to explore is the application of access pattern

detection techniques (e.g., each time the function nc getattributevalue is

used on some artifact, it is followed by a use of the function nc open on the

same artifact, or each time the function nc open is used on a collection, it is

followed by the repeated use of the function nc open on all of the member arti-

facts of the collection). These patterns could be used to predict, prefetch, and

cache those artifacts that are expected to be used in the near future. Potential

techniques to be adapted may be found in the �eld of process discovery [CW98c].
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Appendix A

Details of the Programmatic Interface

A.1 Access Functions

A.1.1 nc open

A.1.1.1 Signature

int nc open(const char* path,
const char* p cwd,
const char* pre�x target,
const char* t cwd)

A.1.1.2 Functionality

Gains access to the artifact determined by the parameters path and p cwd and places its contents in the
workspace determined by the parameters prefix target and t cwd. The contents of the artifact is always
retrieved from a NUCM logical repository, even if the parameters path and p cwd point to an artifact already
existing in another workspace.

A.1.1.3 Return Values

0 : everything went ok
-1 : an error occurred

A.1.1.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbOpen : the artifact is already open in the workspace
NdbExist : a di�erent artifact with the same name already exists in the workspace
NdbUnequal : the path and target represent two di�erent artifacts that have the same name
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.1.2 nc close

A.1.2.1 Signature

int nc close(const char* target,
const char* t cwd,
int forced)

A.1.2.2 Functionality

Relinquishes access to an artifact. The artifact is removed from the workspace. If the artifact is a collection,
all members of the collection are removed as well. If the artifact is a collection and itself or one or more of
its members is initiated, the close does not succeed unless the close is forced. A close is forced if the value
of the parameter forced is 1, a close is not forced if the value of the parameter forced is 0.

A.1.2.3 Return Values

0 : everything went ok
-1 : an error occurred

A.1.2.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbInitiated : the artifact is a collection and itself or one or more of its members is initiated

and the close is not forced
NdbNoClose : the artifact cannot be closed because the current working directory is (part of)

this artifact
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A.2 Versioning Functions

A.2.1 nc initiatechange

A.2.1.1 Signature

int nc initiatechange(const char* target,
const char* t cwd)

A.2.1.2 Functionality

Initiates change on the artifact determined by the interpretation of the parameters target and t cwd. Only
artifacts in a workspace can be initiated. Once the artifact is initiated, it can be modi�ed. However, it
cannot be initiated again until either nc commitchange, nc commitchange, or nc commitchangeandreplace

has been called for the artifact. It is possible for a single artifact to be initiated multiple times as long as
each initiation takes place in a di�erent workspace.

A.2.1.3 Return Values

0 : everything went ok
-1 : an error occurred

A.2.1.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbInitiated : the artifact is already initiated in the workspace
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A.2.2 nc abortchange

A.2.2.1 Signature

int nc abortchange(const char* target,
const char* t cwd,
int forced)

A.2.2.2 Functionality

Aborts change on the artifact determined by the interpretation of the parameters target and t cwd. The
contents of the artifact is restored to the contents of the version that was initiated, and the artifact can no
longer be modi�ed. If the artifact is a collection, all members of the collection are closed. If the artifact
is a collection and one or more of its members is initiated, the abort does not succeed unless the abort is
forced. An abort is forced if the value of the parameter forced is 1, an abort is not forced if the value of
the parameter forced is 0.

A.2.2.3 Return Values

0 : everything went ok
-1 : an error occurred

A.2.2.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbInitiated : the artifact is a collection and one or more of its members is initiated and the

abort is not forced
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
NdbNoClose : the change cannot be aborted because the current working directory is (part

of) this artifact
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A.2.3 nc commitchange

A.2.3.1 Signature

int nc commitchange(const char* target,
const char* t cwd,
char* version)

A.2.3.2 Functionality

Commits change on the artifact determined by the interpretation of the parameters target and t cwd. A
new version of the artifact is created in a logical NUCM repository and the contents of the new version is
set to the current contents of the artifact. The previous version of the artifact in the repository remains
unchanged. After committing change, the artifact can no longer be modi�ed. The parameter version is
set to the version number of the newly created artifact. It is assumed that the parameter version holds
enough space to place the version number in. The resulting value is NULL-terminated.

A.2.3.3 Return Values

0 : everything went ok
-1 : an error occurred

A.2.3.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbNotInit : the artifact is not initiated
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.2.4 nc commitchangeandreplace

A.2.4.1 Signature

int nc commitchangeandreplace(const char* target,
const char* t cwd)

A.2.4.2 Functionality

Commits change on the artifact determined by the interpretation of the parameters target and t cwd. No
new version of the artifact is created in a NUCM logical repository. Instead, the contents of the initiated
version of the artifact is set to the current contents of the artifact. After committing change, the artifact
can no longer be modi�ed.

A.2.4.3 Return Values

0 : everything went ok
-1 : an error occurred

A.2.4.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbNotInit : the artifact is not initiated
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.3 Collection Functions

A.3.1 nc add

A.3.1.1 Signature

int nc add(const char* path,
const char* p cwd,
const char* pre�x target,
const char* t cwd)

A.3.1.2 Functionality

Adds the artifact determined by the parameters path and p cwd to the collection determined by the path
prefix target and t cwd. The collection to which the artifact is added has to be initiated. Three types of
additions are possible:

� addition of a new artifact: the artifact is a �le or directory in the �le system that is currently
not maintained by NUCM. If the artifact is not present in the current workspace, it is copied
there. A new artifact is created in the NUCM logical repository, and its contents is set to the
current contents of the artifact in the workspace. A new collection is by de�nition empty when
added.

� import of an existing artifact in another workspace: the artifact is an artifact that is
already maintained by NUCM and has been opened in another workspace. The artifact is copied
into the current workspace. No new artifact is created in the NUCM logical repository, instead
both the collection where the artifact came from and the collection to which it has been added
reference the same artifact.

� mount of an existing artifact in a NUCM logical repository: the artifact is an artifact
that is maintained by a NUCM logical repository. The artifact is copied from the NUCM logical
repository into the current workspace. No new artifact is created in the NUCM logical repository,
instead the collection references the existing artifact. This variant of the addition interface
function is the function that is capable of combining artifacts from various NUCM physical
repositories into a NUCM logical repository.

The initial version of the artifact that is created is 1.

A.3.1.3 Return Values

0 : everything went ok
-1 : an error occurred

A.3.1.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbLonely : no collection present in the workspace to which the artifact can be added
NdbNotInit : the collection to which to add the artifact is not initiated
NdbExist : a di�erent artifact with the same name already exists in the workspace
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.3.2 nc remove

A.3.2.1 Signature

int nc remove(const char* target,
const char* t cwd,
int forced)

A.3.2.2 Functionality

Removes the artifact determined by the parameters target and t cwd from the collection in the workspace.
If the artifact has been opened, the artifact is removed from the workspace. If the artifact is a collection,
its members are removed from the workspace as well. If the artifact is a collection and itself or one or more
of its members is initiated, the remove does not succeed unless the remove is forced. A remove is forced if
the value of the parameter forced is 1, a remove is not forced if the value of the parameter forced is 0.
The collection from which the artifact is removed has to be initiated.

A.3.2.3 Return Values

0 : everything went ok
-1 : an error occurred

A.3.2.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbLonely : no collection present in the workspace from which the artifact can be removed
NdbNotInit : the collection from which to remove the artifact is not initiated
NdbInitiated : the artifact is a collection and itself or one or more of its members is initiated

and the remove is not forced
NdbNoClose : the artifact cannot be removed because the current working directory is (part

of) this artifact
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A.3.3 nc rename

A.3.3.1 Signature

int nc rename(const char* target,
const char* t cwd,
const char* new name)

A.3.3.2 Functionality

Renames the artifact determined by the parameters target and t cwd in the collection in the workspace
to the name given in the parameter new name. If the artifact has been opened, it is also renamed in the
workspace. The collection in which the artifact is renamed has to be initiated.

A.3.3.3 Return Values

0 : everything went ok
-1 : an error occurred

A.3.3.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbLonely : no collection present in the workspace in which the artifact can be renamed
NdbNotInit : the collection in which to rename the artifact is not initiated
NdbExist : a di�erent artifact with the same name already exists in the workspace
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A.3.4 nc replaceversion

A.3.4.1 Signature

int nc replaceversion(const char* target,
const char* t cwd,
const char* new version,
int forced)

A.3.4.2 Functionality

Replaces the current version of the artifact determined by the parameters target and t cwd in the collection
in the workspace with the version determined by the parameter version. If the artifact has been opened, it
is also replaced in the workspace. If the artifact is a collection, all members of the collection are closed. If
the artifact is a collection and one or more of its members are initiated, the replacement does not succeed
unless the replacement is forced. A replacement is forced if the value of the parameter forced is 1, a
replacement is not forced if the value of the parameter forced is 0. The collection in which the version of
the artifact is replaced has to be initiated.

A.3.4.3 Return Values

0 : everything went ok
-1 : an error occurred

A.3.4.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbLonely : no collection present in the workspace in which the artifact can be replaced
NdbNotInit : the collection in which to replace the artifact is not initiated
NdbInitiated : the artifact is a collection and one or more of its members is initiated and the

replace is not forced
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
NdbNoClose : the version of the artifact cannot be replaced because the current working

directory is (part of) this artifact
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A.3.5 nc copy

A.3.5.1 Signature

int nc copy(const char* path,
const char* p cwd,
const char* pre�x target,
const char* t cwd,
const t server* server)

A.3.5.2 Functionality

Copies the history of the artifact determined by the parameters path and p cwd to the NUCM server
determined by the parameter server, and then adds this newly created artifact to the collection determined
by the path prefix target and t cwd. The new artifact is opened in the workspace. The collection has to
be initiated.

A.3.5.3 Return Values

0 : everything went ok
-1 : an error occurred

A.3.5.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbLonely : no collection present in the workspace to which the artifact can be added
NdbNotInit : the collection to which to add the artifact is not initiated
NdbExist : a di�erent artifact with the same name already exists in the workspace
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.3.6 nc list

A.3.6.1 Signature

int nc list(const char* path,
const char* p cwd,
const t memberlist* memberlist)

A.3.6.2 Functionality

Sets the value of the parameter memberlist to the list of artifacts contained in the NUCM collection
determined by the interpretation of the parameters path and p cwd. Each member in the list contains the
name and version of an artifact contained in the NUCM collection. The type t memberlist is de�ned as:

typedef struct memberlist f
char name[MAXPATHLEN + 1];
char version[MAX VERSION LENGTH];
struct memberlist* next;

g t memberlist;

The resulting list of members is allocated for the caller, but needs to be de-allocated by the caller by using
the function nc destroy memberlist.

A.3.6.3 Return Values

0 : everything went ok
-1 : an error occurred

A.3.6.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbAtomList : the artifact is an atom and cannot be listed
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.4 Distribution Functions

A.4.1 nc setmyserver

A.4.1.1 Signature

void nc setmyserver(const t server* server)

A.4.1.2 Functionality

Sets the default NUCM server that serves this client to the server addressed by the parameter server. This
default NUCM server is the server where newly created artifacts are stored, and needs to be set before
nc add can be used. The type t server is de�ned as:

typedef struct f
char name[MAXHOSTNAMELEN + 1];
char version[MAX PORT LENGTH + 1];

g t server;

A.4.1.3 Return Values

None

A.4.1.4 Error Codes

None
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A.4.2 nc getlocation

A.4.2.1 Signature

int nc getlocation(const char* path,
const char* p cwd,
t server* server)

A.4.2.2 Functionality

Determines the address of the NUCM server where the history of the NUCM artifact determined by the
interpretation of the parameters path and p cwd is physically located, and places the resulting server address
in the parameter server.

A.4.2.3 Return Values

0 : everything went ok
-1 : an error occurred

A.4.2.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.4.3 nc move

A.4.3.1 Signature

int nc move(const char* path,
const char* p cwd,
const t server* server)

A.4.3.2 Functionality

Physically moves the history of the NUCM artifact determined by the interpretation of the parameters
path and p cwd to the NUCM server addressed by the parameter server. The move has no e�ect other
than that the history of the artifact is moved to a di�erent physical location, all operations on the artifact
continue to operate as normal.

A.4.3.3 Return Values

0 : everything went ok
-1 : an error occurred

A.4.3.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.5 Deletion Function

A.5.1 nc destroyversion

A.5.1.1 Signature

int nc destroyversion(const char* path,
const char* p cwd,
const char* version)

A.5.1.2 Functionality

Physically removes a single version of the NUCM artifact determined by the interpretation of the parameters
path and p cwd from a NUCM logical repository. The version that is removed is determined by the parameter
version, and is only removed if it is not referenced by any collections.

A.5.1.3 Return Values

0 : everything went ok
-1 : an error occurred

A.5.1.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbRefcount : the version of the artifact cannot be removed because it is still referenced by

one or more collections
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.6 Query Functions

A.6.1 nc gettype

A.6.1.1 Signature

int nc gettype(const char* path,
const char* p cwd)

A.6.1.2 Functionality

Determines the type of the NUCM artifact determined by the interpretation of the parameters path and
p cwd.

A.6.1.3 Return Values

COLLECTION : everything went ok and the artifact is a collection
ATOM : everything went ok and the artifact is an atom
-1 : an error occurred

A.6.1.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.6.2 nc version

A.6.2.1 Signature

int nc version(const char* path,
const char* p cwd,
char* version)

A.6.2.2 Functionality

Sets the value of the parameter version to the version number of the artifact determined by the inter-
pretation of the parameters path and p cwd. It is assumed that the parameter version holds enough
space to place the version number in, i.e., is at least MAX VERSION LENGTH in size. The resulting value is
NULL-terminated.

A.6.2.3 Return Values

0 : everything went ok
-1 : an error occurred

A.6.2.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.6.3 nc lastversion

A.6.3.1 Signature

int nc lastversion(const char* path,
const char* p cwd,
char* version)

A.6.3.2 Functionality

Sets the value of the parameter version to the version number of the last created version of the artifact
determined by the interpretation of the parameters path and p cwd. It is assumed that the parameter
version holds enough space to place the version number in, i.e., is at least MAX VERSION LENGTH in size. The
resulting value is NULL-terminated.

A.6.3.3 Return Values

0 : everything went ok
-1 : an error occurred

A.6.3.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.6.4 nc existsversion

A.6.4.1 Signature

int nc existsversion(const char* path,
const char* p cwd,
const char* version)

A.6.4.2 Functionality

Determines whether the version determined by the parameter version of the artifact determined by the
interpretation of the parameters path and p cwd exists.

A.6.4.3 Return Values

1 : everything went ok and the version exists
0 : everything went ok and the version does not exist
-1 : an error occurred

A.6.4.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.6.5 nc isinitiated

A.6.5.1 Signature

int nc isinitiated(const char* target,
const char* t cwd)

A.6.5.2 Functionality

Determines whether the artifact determined by the interpretation of the parameters target and t cwd is
initiated.

A.6.5.3 Return Values

1 : everything went ok and the artifact is initiated
0 : everything went ok and the artifact is not initiated
-1 : an error occurred

A.6.5.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
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A.6.6 nc isopen

A.6.6.1 Signature

int nc isopen(const char* target,
const char* t cwd)

A.6.6.2 Functionality

Determines whether the artifact determined by the interpretation of the parameters target and t cwd has
been opened in the workspace.

A.6.6.3 Return Values

1 : everything went ok and the artifact is open
0 : everything went ok and the artifact is not open
-1 : an error occurred

A.6.6.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
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A.7 Attribute Functions

A.7.1 nc testandsetattribute

A.7.1.1 Signature

int nc testandsetattribute(const char* path,
const char* p cwd,
const char* attrname,
const char* value)

A.7.1.2 Functionality

If and only if the attribute determined by the parameter attrname does not exist for the NUCM artifact
determined by the interpretation of the parameters path and p cwd, creates this attribute in a NUCM
logical repository and sets its value to the value of the parameter value.

A.7.1.3 Return Values

0 : everything went ok
-1 : an error occurred

A.7.1.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbExist : the attribute exists already and cannot be overwritten
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.7.2 nc setattribute

A.7.2.1 Signature

int nc setattribute(const char* path,
const char* p cwd,
const char* attrname,
const char* value)

A.7.2.2 Functionality

Always sets the value of the attribute determined by the value of the parameter attrname for the NUCM
artifact determined by the interpretation of the parameters path and p cwd to the value of the parameter
value. If the attribute does not exist, it is created. If the attribute does exist, its value is overwritten.

A.7.2.3 Return Values

0 : everything went ok
-1 : an error occurred

A.7.2.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.7.3 nc getattributevalue

A.7.3.1 Signature

int nc getattributevalue(const char* path,
const char* p cwd,
const char* attrname,
char* value)

A.7.3.2 Functionality

Returns the value of the attribute attrname for the NUCM artifact determined by the interpretation of the
parameters path and p cwd. It is assumed that the parameter value holds enough space to place the value
of the attribute in. The resulting value is NULL-terminated.

A.7.3.3 Return Values

0 : everything went ok
-1 : an error occurred

A.7.3.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbNonExist : the attribute does not exist
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available
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A.7.4 nc removeattribute

A.7.4.1 Signature

int nc removeattribute(const char* path,
const char* p cwd,
const char* attrname)

A.7.4.2 Functionality

Physically removes the attribute determined by the parameter attrname for the NUCM artifact determined
by the interpretation of the parameters path and p cwd from a NUCM logical repository.

A.7.4.3 Return Values

0 : everything went ok
-1 : an error occurred

A.7.4.4 Error Codes

NdbOk : everything went ok
NdbUnknown : the path does not represent a NUCM artifact
NdbNotOpen : the artifact exists in the workspace but is not an artifact that is managed by

NUCM and was therefore not opened by NUCM
NdbNonExist : the attribute does not exist
NdbConnect : the server is down or not reachable
NdbComm : a communication error occurred
NdbProtocol : a failure occurred in the NUCM protocol
NdbNotAvail : service is not available


