
Imperial College London

Department of Computing

Fault Localization in Service-Based

Systems hosted in Mobile Ad Hoc

Networks

Petr Novotny

July 2013

Supervised by Alexander L. Wolf

Submitted in part ful�lment of the requirements for the degree of

Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London

Declaration

I herewith certify that all material in this dissertation which is not my own work has been

properly acknowledged.

Throughout the text of this thesis is used the term �We� referring to the author of the

work described in this thesis. Although the work was carried out solely by the author, it

was under the supervision and advice of Alexander L. Wolf and with additional advice and

guidance from Bong Jun Ko.

Petr Novotny

3

Dedication

I would like to dedicate this Doctoral thesis to my parents, Milo² and Ji°ina. I would

not have contemplated this road if not for the inspiration I have received early in my life

from my father who instilled within me the passion for science and technology as well as

love of creative pursuits. At the same time, only the love, continued care, support and

encouragement of my mother allowed me to endeavor in this process. To my parents, thank

you.

5

Acknowledgements

Completing my PhD degree is without a doubt the most challenging activity of my life

to date. The best and worst moments of my doctoral journey have been shared with

many people. It has been a great privilege to spend several years in the Department of

Computing at Imperial College London, and people I have met here will always remain

dear to me.

First and foremost I wish to thank my advisor, professor Alexander L. Wolf, for all the

academic as well as personal support I have received from him. His friendly attitude and

sense of humor has been of great help in overcoming many of the di�culties which arose

throughout my doctoral training. The transformation one has to go through to become a

researcher is not an easy one, however, with his enthusiasm, his inspiration, and his great

e�orts to explain things clearly and simply, he helped to make the process fun for me.

Throughout my training, he provided encouragement, sound advice, good teaching, good

company, and lots of good ideas. I would have been lost without him.

A special thank goes to Bong Jun Ko, for his un�agging friendly support and for always

keeping his door open. Without his help my work would not be of the same quality. He

has been a strong and supportive guide, source of knowledge as well as role model to

me throughout my doctoral training, his guidance has served me well and I owe him my

heartfelt appreciation.

This research was sponsored by the U.S. Army Research Laboratory and the U.K. Min-

istry of Defence and was accomplished under Agreement Number W911NF-06-3-0001. The

views and conclusions contained in this document are those of the author(s) and should not

be interpreted as representing the o�cial policies, either expressed or implied, of the U.S.

Army Research Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K.

Government. The U.S. and U.K. Governments are authorized to reproduce and distribute

reprints for Government purposes notwithstanding any copyright notation hereon.

7

Related Publications

Publications arising from work in this thesis:

Novotny, P. and Wolf, A.L. and Bong Jun Ko. Fault Localization in MANET-Hosted

Service-Based Systems. 2012 IEEE 31st Symposium on Reliable Distributed Systems

(SRDS) 243 - 248.

Novotny, Petr and Wolf, Alexander L. and Ko, Bong Jun. Discovering Service Dependen-

cies in Mobile Ad hoc Networks. 2013 IFIP/IEEE International Symposium on Integrated

Network Management (IM 2013) 527 - 533.

9

Abstract

Fault localization in general refers to a technique for identifying the likely root causes

of failures observed in systems formed from components. Fault localization in systems

deployed on mobile ad hoc networks (MANETs) is a particularly challenging task because

those systems are subject to a wider variety and higher incidence of faults than those

deployed in �xed networks, the resources available to track fault symptoms are severely

limited, and many of the sources of faults in MANETs are by their nature transient.

We present a suite of three methods, each responsible for part of the overall task of

localizing the faults occurring in service-based systems hosted on MANETs. First, we de-

scribe a dependence discovery method, designed speci�cally for this environment, yielding

dynamic snapshots of dependence relationships discovered through decentralized observa-

tions of service interactions. Next, we present a method for localizing the faults occurring

in service-based systems hosted on MANETs. We employ both Bayesian and timing-based

reasoning techniques to analyze the dependence data produced by the dependence discov-

ery method in the context of a speci�c fault propagation model, deriving a ranked list of

candidate fault locations. In the third method, we present an epidemic protocol designed

for transferring the dependence and symptom data between nodes of MANET networks

with low connectivity. The protocol creates network wide synchronization overlay and

transfers the data over intermediate nodes in periodic synchronization cycles.

We introduce a new tool for simulation of service-based systems hosted on MANETs and

use the tool for evaluation of several operational aspects of the methods. Next, we present

implementation of the methods in Java EE and use emulation environment to evaluate the

methods. We present the results of an extensive set of experiments exploring a wide range

of operational conditions to evaluate the accuracy and performance of our methods.

11

Contents

1. Introduction 21

2. Related Work 29

2.1. Dependence Discovery . 29

2.2. Fault Localization . 31

2.3. Distributed Data Harvesting . 33

3. Dependence Discovery 36

3.1. Introduction . 36

3.2. Discovering Dependencies . 38

3.3. Storage of Dependence Data . 40

3.4. Dependence Graph . 42

3.5. Dependence Graph Construction . 43

3.6. Summary . 46

4. Fault Localization 47

4.1. Introduction . 47

4.1.1. Terminology . 48

4.2. System Architecture and Assumptions . 49

4.3. Fault Localization Technique . 51

4.3.1. Fault propagation pattern (FPP) 52

4.3.2. Fault propagation model (FPM) . 53

4.3.3. Ranking candidate faults . 56

4.4. Summary . 58

5. Distributed Data Harvesting 60

5.1. Introduction . 60

5.2. Time Series Data Structures . 61

13

Contents

5.3. System Architecture . 62

5.4. Data Synchronization Algorithm . 62

5.4.1. Peer selection . 64

5.4.2. Calculation of dataset . 66

5.4.3. Transfer of dataset . 69

5.4.4. Reception of dataset . 69

5.4.5. Synchronization cycle . 70

5.5. Summary . 70

6. Experimental Toolset 71

6.1. Service-based Systems Simulator . 71

6.1.1. Architecture . 72

6.1.2. Messaging layer . 72

6.1.3. Service layer . 77

6.1.4. Simulation scenarios . 84

6.1.5. Methodology of evaluation of dependence discovery method 87

6.1.6. Methodology of evaluation of fault localization method 88

6.2. Service-based Systems Emulator . 90

6.2.1. Architecture . 90

6.2.2. Implementation of the dependence discovery 92

6.2.3. Implementation of the fault localization 94

6.2.4. Implementation of the distributed data harvesting 95

6.3. Summary . 96

7. Evaluation 98

7.1. Evaluation of Dependence Discovery . 98

7.1.1. Evaluation metrics and parameters 100

7.1.2. Impact of time window size and service connectivity 104

7.1.3. Impact of dynamic service rebinding 107

7.1.4. Impact of the client workload . 108

7.1.5. Impact of the mobility speed . 110

7.1.6. Comparison with existing methods 112

7.1.7. Estimates of data storage and data transfer needs 114

7.1.8. Discussion of the results . 114

14

Contents

7.2. Evaluation of Fault Localization . 116

7.2.1. Methodology and evaluation criteria 116

7.2.2. Comparison of ranking algorithms 121

7.2.3. Impact of dependence graph accuracy 123

7.2.4. Impact of service connectivity . 124

7.2.5. Impact of service fault rate . 125

7.2.6. Estimates of data storage and data transfer needs 127

7.2.7. Discussion of results . 128

7.3. Evaluation of Dependence Discovery with Distributed Data Harvesting . . 130

7.3.1. Evaluation metrics and parameters 132

7.3.2. Reachability of nodes in MANETs 135

7.3.3. Impact of synchronization frequency 137

7.3.4. Impact of number of peers . 139

7.3.5. Comparison of harvesting methods 141

7.3.6. Network overhead and data storage needs 142

7.3.7. Discussion of results . 144

7.4. Evaluation of Fault Localization with Distributed Data Harvesting 145

7.4.1. Impact of size of synchronization time slot 146

7.4.2. Network overhead and data storage requirements 148

7.4.3. Discussion of results . 149

7.5. Threats to Experimental Validity . 150

8. Conclusion 151

8.1. Applicability of the Method . 152

8.2. Current and Future Work . 153

9. Appendices 155

Appendix A. Algorithms 156

A.1. Dependence Discovery: Construction of Dependence Graph 156

A.2. Fault Localization: Construction of Fault Propagation Model 157

A.3. Fault Localization: Reduction of Fault Propagation Model 159

A.4. Fault Localization: Timing Based Ranking 162

A.5. Fault Localization: Bayesian Network Based Ranking 163

A.6. Distributed Data Harvesting: Peer Selection 166

15

Contents

A.7. Distributed Data Harvesting: Dataset Calculation 168

A.8. Distributed Data Harvesting: Transfer of Dataset 170

16

List of Tables

6.1. Main simulator con�guration parameters of a scenario 86

7.1. Network-layer parameters . 102

7.2. Service-layer parameters . 102

7.3. Service-connectivity parameter . 102

7.4. Dependencies induced by connectivity . 102

7.5. Dependencies and faults induced by connectivity 118

7.6. Scenario speci�c parameters . 133

7.7. Network-layer parameters . 133

7.8. Service-layer parameters . 133

17

List of Figures

3.1. Inter-dependencies of service-based system in MANET 37

3.2. Intra-dependencies of service S13 . 37

3.3. Setting of the bit �ags in corresponding time slots maintained by monitor . 41

3.4. Architecture of dependence discovery . 44

3.5. Activity diagram of dependence discovery algorithm 45

4.1. Architecture of fault localization . 49

4.2. Dependence graph rooted at a client . 50

4.3. Fault localization method . 52

4.4. Fault propagation pattern re�ned into modes 53

4.5. Fault propagation model constructed from exception modes 54

5.1. Architecture of distributed data harvesting 63

5.2. The data synchronization algorithm . 64

5.3. Selection of peer in two subsequent synchronization cycles 65

5.4. Selection of time slots to include in the dataset to transfer 68

6.1. Architecture of the NS-3 based service-based system simulator 73

6.2. Class diagram of the messaging layer . 74

6.3. State-machine diagram of the UDP client end-point protocol 76

6.4. State-machine disgram of the UDP server end-point protocol 77

6.5. Class diagram of the con�guration elements of the service-based system entities 78

6.6. Class diagram of the runtime elements of the service-based system entities 79

6.7. Class diagram of the service discovery components of the service-based system 80

6.8. Class diagram of the fault model components of the service-based system . 81

6.9. State-machine of the client workload algorithm 82

6.10. State-machine of the service workload algorithm 83

6.11. Class diagram of the simulator con�guration and runtime components . . . 85

18

List of Figures

6.12. Experimental framework used in evaluation of the dependence discovery

method . 87

6.13. Experimental framework used in evaluation of the fault localization method 88

6.14. Architecture of the CORE and EMANE based service-based system emulator 92

6.15. Architecture of the dependence discovery implementation in Java EE . . . 92

6.16. Architecture of the dependence discovery monitor implemented as a tube in

the Glass�sh Metro and Java EE . 94

6.17. Architecture of the fault localization implementation in the Java EE 95

6.18. Architecture of the Distributed Data Harvesting implementation in the Java

EE . 96

7.1. Cumulative distribution of conversation lengths 103

7.2. Accuracy of inter- and intra-dependence discovery methods for di�erent time

window sizes given as TP ratios . 105

7.3. Accuracy of inter- and intra-dependence discovery methods for di�erent time

window sizes given as FP ratios . 106

7.4. Accuracy of inter- and intra-dependence discovery methods for di�erent time

window sizes given as a trade o� between TP and FP ratios 106

7.5. FP ratio for intra-dependence discovery under medium connectivity for var-

ious switching-time periods and time window sizes 108

7.6. TP ratios for inter-dependence discovery under four di�erent workloads . . 109

7.7. FP ratios for inter-dependence discovery under four di�erent workloads . . 109

7.8. FP ratios for intra-dependence discovery under four di�erent workloads . . 110

7.9. TP ratios for inter-dependence discovery under four mobility speeds 111

7.10. FP ratios for inter-dependence discovery under four mobility speeds 111

7.11. FP ratios for intra-dependence discovery under four mobility speeds 112

7.12. Comparison of methods in medium connectivity scenario 113

7.13. Cumulative distribution of time between occurrence of root-cause faults and

when clients witness exception messages 119

7.14. Cumulative distribution of time between occurrence of root-cause faults and

when clients witness timeouts . 119

7.15. Accuracy of ranking algorithms for exception faults in high connectivity

scenario . 122

7.16. Accuracy of ranking algorithms for timeout faults in high connectivity scenario122

19

List of Figures

7.17. Impact of dependence graph false positive ratio on mean ranking position

of correct root-cause fault . 124

7.18. Impact of service connectivity on mean ranking position of correct root-cause

fault . 125

7.19. Impact of service fault rate on mean position of correct root-cause exception

faults . 126

7.20. Impact of service fault rate on mean position of correct root-cause timeout

faults . 127

7.21. Contribution of fault localization method steps to exception fault analysis . 129

7.22. Contribution of fault localization method steps to timeout fault analysis . . 129

7.23. Reachability of nodes in the �re�ghting and military scenarios 136

7.24. Reachability of dependencies in the military scenario 137

7.25. Reachability of dependencies in the �re�ghting scenario 137

7.26. Availability of dependence data with di�erent number of synchronization

cycles given as TP ratios . 139

7.27. Availability of dependence data with di�erent number of peers per synchro-

nization cycle given as TP ratios . 140

7.28. Precision of dependence graph with di�erent size of synchronization time

slot given as FP ratio . 142

7.29. The size of data transfered between source and target nodes with di�erent

number of synchronization peers per cycle 144

7.30. Accuracy of ranking algorithms in ranking exceptions with variable time slot

size . 147

7.31. Accuracy of ranking algorithms in ranking timeouts with variable time slot

size . 148

7.32. Impact of size of synchronization time slot on amount of data transferred in

synchronization cycle between pair of nodes 149

20

1. Introduction

Mobile ad hoc networks (MANETs) are used in di�cult or remote situations, such as

emergency response or forest-�re �ghting, where a reliable, �xed-network communication

infrastructure may be absent. However, the applications deployed upon MANETs are

increasingly expected to exhibit sophisticated features, mimicking the availability of rich

applications in �normal� network environments.

It is no surprise, then, that MANETs are now hosting applications that are architected

as �exible and dynamic collections of software services. In service-based systems, such

as those based on the Service-Oriented Architecture (SOA) or Web Services frameworks,

computations are structured as sets of services that respond to requests, where a request

typically originates at a user-facing client. The computation required to ful�ll each request

results in a cascade of further requests across some subset of the services; services make

requests on other services in order to ful�ll the requests made upon them. The set of

messages exchanged during the processing of a single client request is referred to as a

conversation.

Our work is carried out in a context of a defense research project. Hence, we primarily

focus on dependability of service-based systems supporting operations of army units on

missions in terrain conditions as well as on emergency response missions such as search

and rescue and forest �re�ghting. The goal of our work presented in this thesis is to allow

localization of faults experienced by members of mobile units while using mobile computer

devices with client applications of service-based systems hosted in the MANETs.

Fault Localization

We are concerned with a crucial operational aspect of service-based systems deployed

on MANETs: fault localization (also called fault identi�cation). This is a particularly

challenging management task because the systems are subject to a wider variety and higher

incidence of faults than those deployed in �xed networks, the resources available to track

fault symptoms are severely limited, and many of the causes of failures in MANETs are by

their nature transient (e.g., a mobile host that temporarily moves out of radio range).

21

CHAPTER 1. INTRODUCTION

Further complicating the situation is that faults at the network level may not manifest

themselves as failures at the service level, since some of those faults may occur outside of

the time during which the relevant services are communicating, or involve communication

outside of the relevant faulty conversation. Moreover, service-based systems are designed

to mask certain kinds of faults through mechanisms for dynamic service discovery and

(re)binding. Therefore, a fault localization method suitable for MANET-hosted service-

based systems must be adept at sifting through noisy data.

We have designed fault localization method that makes use of two kinds of basic informa-

tion: (1) a service dependence graph rooted at the client that initiated the conversation and

reported the failure, and (2) various network- and service-level fault symptoms recorded in

host-local logs. The dependence graph is discovered at run time by a decentralized moni-

toring system deployed in the network. The monitoring system also collects the symptoms

from the local logs. The graph and symptoms are used to carry out a centralized fault

propagation analysis based on a fault propagation pattern, which indicates how faults can

be propagated through the system from root causes to clients. The result of the analysis

is a fault propagation model that relates possible root causes to the failure reported by the

client. Finally, the faults are ranked for their likelihood of causing the failure.

Existing fault localization methods designed for the MANET environment [14, 18, 22,

23, 26, 47, 48] focus on network-level identi�cation of individual faulty hosts and/or the

links between them. The methods are limited to low-level observations and measurements

of packet �ows and host failures, and therefore are blind to the end-to-end context of the

service-level conversations a�ected or una�ected by those faults. Our fault localization

method instead makes use of both service- and network-level information. This enables a

decoding of the fault propagation through the hosted services via the network. The client

is therefore a good entry point for fault localization, tracing failures back to their sources

using information that is unavailable from observations at the network level alone.

Dependence Discovery

A critical aspect of our fault localization method is understanding the dependencies

among the services of the service-based system. The importance of dependence information

increases with the complexity of the system, both in terms of the number of interacting

components required to carry out a given computation and the nature of the environment

in which the system operates.

Obtaining dependence information in the service-based system is made di�cult by the

inherent loose coupling of services, as many dependencies are unknown at design time,

22

and only established at run time through a dynamic service binding mechanism (so-called

�service discovery�). The consequence is that the dependencies among run-time instances

of services are not something that can be reliably speci�ed before execution, but instead

must be discovered during or after execution.

Existing dependence discovery methods focus on statically structured systems operated

in �xed networks [5, 6, 7, 8, 9, 17, 19, 43, 53, 66]. The motivation for these methods is

the absence of an accurate speci�cation of dependencies, so a map of those dependencies

must be discovered by observing the executing system. A critical assumption made by

these methods is that the dependence data, although changing, is relatively stable over

time. The signi�cance of the stability assumption is that the methods can make use of

statistical techniques based on data collected over long execution periods. Furthermore,

by operating in the context of a �xed-network environment, the methods can assume no

practical limits on the storage, computational, and communication resources needed to

support those statistical techniques.

The context for our work is instead service-based systems deployed on mobile ad hoc

networks (MANETs). Mobility and ad hoc networking bring increased dynamicity to

service dependencies, beyond those caused by the basic service-binding regime of SOA or

Web Services. Moreover, the MANET environment is typically characterized by severe

limitations on the resources available for dependence discovery. Existing methods based

on the stability assumption cannot adequately cope with such high levels of dynamicity

nor stringent resource constraints.

We have formulated a dependence discovery method that is more suitable for services

operating in the challenging MANET environment. Our intuition is that dependence dis-

covery must be focused on capturing snapshots of dependence data relevant to each service

request of concern, rather than on the tradition of determining statistical averages for long-

term, system-wide dependencies as a whole. Furthermore, the method must be lightweight

in its resource usage, which to our thinking means that dependence data should be col-

lected locally, aggregated locally, and drawn to some central location only when and if

needed to carry out the fault localization tasks.

Our approach is based on the use of monitors deployed onto the mobile hosts. The

monitors collect dependence data by observing the message tra�c between services and

extracting relevant information. The data collected by the monitors provide only a local

view of the dependence information. When a dependence graph capturing the dependence

relationships among the services is required to carry out fault localization, the monitors are

23

CHAPTER 1. INTRODUCTION

contacted by a central discovery element charged with integrating the data. Importantly,

only the monitors relevant to a particular analysis question typically need to be contacted,

and therefore communication can be reduced. Moreover, the monitors can aggregate the

data they collect, and can impose limits on the amount of data they store.

In order to employ our dependence discovery method, three basic prerequisites must be

met. First, to obtain complete dependence information, the monitors should be deployed

on the mobile hosts that are either the source or the target of service messages; interme-

diate hosts in the network used only to store and forward network-level messages are not

involved in data collection. Second, the monitors need access to synchronized clocks to

allow consistent time-stamping of the collected dependence data. Clock synchronization in

MANETs is a well-researched topic, with techniques available to achieve precision of tens

or even single microseconds [45, 68] The shortest time period we use to time stamp aggre-

gated data is 6 milliseconds, well within this precision. Third, the monitors must be able

to observe service messages and obtain certain information from those messages, including

such things as client and service identi�ers. On the other hand, there is no need for the

monitors to have access to the payload of messages. This kind of general information is

typically available and visible, since it is used by the underlying service infrastructure to

manage service interactions.

Distributed Data Harvesting

The distinguishing aspect of the MANET environment is the limited connectivity be-

tween network nodes induced by the dynamism of the network topology. In traditional net-

works end-to-end path needs to be established before communication can occur. However,

networks with dynamic topology are characterized by lack of these paths. The end-to-end

path requires series of links between two nodes. In wireless networks such as MANETs, the

quality of links is a�ected by behavioral properties of the nodes (such as nodes getting in

and out of range of other nodes), by the nodes resources (such as battery life and transmit

power), and by the link properties (such as interference and noise). The links thus can be

connected or disconnected at any time.

Ad hoc routing protocols enable network communication in the dynamic environment,

however, they have certain limitations and they cannot overcome the limits of the network

links. Thus, the network may temporarily partition into several segments with reduced or

nonexistent connectivity between them. Moreover, currently used ad hoc routing protocols

such as OLSR, have certain limitations which make routing over multiple links unreliable

(i.e. latency in synchronization of topology database or disparities in data rates used in

24

neighbor discovery and actual data tra�c) [40].

The limited connectivity is further exaggerated in runtime analysis of service-based sys-

tems deployed on MANETs. The fault localization and the dependence discovery methods

require access to the monitoring data of nodes hosting services involved in the analyzed

conversation. However, the required nodes might be several hops away from nodes col-

lecting the monitoring data and thus the connectivity might be insu�cient. Moreover,

the collection of the data may start sometime after the conversation ended and thus the

physical topology may have changed and further decreased the connectivity.

Several distributed algorithms and delay-tolerant networking protocols were proposed for

the transfer of data in networks with limited connectivity. However, the methods either do

not increase availability of the data su�ciently such as data replication techniques [36, 28,

29, 30, 11, 10, 50, 46, 44, 56, 65, 35, 32] or the use of distributed hash table [34, 49, 41, 38,

21, 42], or they lack the capacity to maintain consistency and integrity of the transferred

data such as existing epidemic protocols [44, 55, 67]

We have designed new type of epidemic protocol with several distinctive features, suit-

able for transferring monitoring data between MANET nodes with low connectivity. The

algorithm uses �gossiping� to create a network wide data synchronization overlay. Hence,

instead of attempting to pass data on direct end-to-end paths between source and destina-

tion nodes, the data are transferred over intermediate nodes in successive synchronization

cycles.

On nodes hosting services, monitoring data are continuously collected as the services

are processing clients' requests. The fault localization and dependence discovery methods

require access into this continuous data in order to extract occurrences of dependencies

and symptoms relevant to the analyzed conversation. Our method transfers data from

the nodes hosting services into backup stores on nodes analyzing conversations. The fault

localization and dependence discovery methods then access the local backup stores instead

of to request the data on-demand from the remote monitors. The method is based on the

use of synchronization agents deployed onto the mobile hosts. The synchronization agents

repeatedly in cycles synchronize with neighbor peers incremental changes in the monitoring

data. The selection of the peers is designed to take into account the peculiarities of the

dynamic topology and selects nodes based on connectivity metrics. The agents keep track

of past synchronizations with each peer and in successive cycles only accumulated changes

are passed on. In each cycle, all new locally collected data as well as all new data received

from neighbor peers are synchronized. The method imposes limits on age of the transferred

25

CHAPTER 1. INTRODUCTION

data to minimize the network overhead of the method. Moreover, the transferred data can

be aggregated to further reduce the network overhead.

This thesis makes the following speci�c contributions:

• A dependence discovery method

� that allows the engineer to trade accuracy against cost;

� yielding probabilistically accurate dependence graphs.

• A fault localization method

� to synergistically analyze fault symptom data gathered at both the service and

network levels;

� a fault propagation model based on propagation patterns devised speci�cally

for the operational environment;

� timing-based and probabilistic root-cause ranking algorithms.

• A distributed data harvesting method

� a delay-tolerant algorithm;

� to transfer data between MANET nodes without direct connectivity;

• We have developed experimental toolset to validate our methods

� a simulator that closely replicates behaviors of service-based systems running

on MANETs. The simulator is an extension to popular accurate packet based

network simulator.

� generic Web Service system implemented in Java EE, designed for analysis of

service-based systems.

• An extensive, experimental analysis

� an simulation-based, experimental analysis of dependence discovery and fault

localization methods;

� an implementation of all of our methods in Java EE; and

� an emulation-based, experimental analysis of the implemented methods.

26

Clearly, our dependence discovery and fault localization methods are subject to inaccu-

racies due to e�ects such as the delay between data collection and data analysis, storage

constraints that might require monitors to �forget� some data, failures in hosts and links,

and inaccuracies in the discovered dependencies representing the system structure. The

essence of our work is to understand how these and other factors impact the accuracy of

our dependence discovery and fault localization methods, subject to various tuning and

environmental parameters. Moreover, we study how accuracy of the produced dependence

graphs impacts accuracy of the fault localization.

In this theses we introduce a new simulation tool for service-based systems hosted on

MANETs. With the system and behavioral models of services built on top of a packet-based

simulator, our approach allows the replication of various critical aspects, such as the cas-

cading �ows of messages in complex conversations, comprehensive client-driven workload

pro�les, and the propagation of faults through services. Furthermore, the simulator pro-

vides generic and easily extended models that can be used to capture modern service-based

platforms, such as SOA, operating in MANET or hybrid networks.

We carry out the evaluation of our methods in two series of experiments. In the �rst

series, based on our simulation tool for service-based systems, we focus on the dependence

discovery and fault localizations methods and evaluate their sensitivity to a distinguishing

aspect of the MANET environment, namely time-dependent behavior. The evaluation is

carried out through a series of simulation-based experiments under various scenarios that

represent a range of mobile-network dynamics, service connectivity and dynamics, and

critical parameter settings. Because no benchmarks yet exist for MANET-hosted service-

based systems, we develop synthetic data to explore the space of independent variables.

In evaluation of the dependence discovery, the dependent variables in these experiments

are the true positives and false positives in the discovered dependence relationships. In

evaluation of the fault localization, the primary dependent variable is the mean position of

correct fault in the ranked list of candidates.

In the second series of experiments, we focus on the distributed data harvesting method

and its capacity to transfer monitoring data between nodes. We provide implementation

of our methods in Java EE and we evaluate the implemented methods in emulation-based

experiments. The evaluation centers on impact of availability of the data transferred by

the distributed data harvesting method on accuracy of the dependence discovery and the

fault localization methods.

The thesis is structured as follows. We next review prior and related work in Chapter 2.

27

CHAPTER 1. INTRODUCTION

In Chapter 3 we present our dependence discovery method and its underlying depen-

dence model. In Chapter 4 we describe our fault localization method, including its fault

propagation model and ranking algorithms. In Chapter 5 we present our distributed data

harvesting method as a means of transferring of monitoring data within MANETs, required

by the dependence discovery and fault localization methods. In Chapter 6, we describe in

detail the experimental tools we have used to evaluate our methods. Moreover, we also

describe the implementation of our methods in Java EE. We then present our experimental

evaluation of the methods in Section 7. Finally, we conclude with a summary of the thesis

and a look at on-going and future work in Section 8.

28

2. Related Work

In this chapter we review the related work. We begin by looking at the techniques of the

dependence discovery forming the basis of our fault localization method by providing a

model of a system. Next, we look at the existing fault localization approaches designed

for distributed systems. At the end, we review methods used in transferring of data across

networks with dynamic topology.

2.1. Dependence Discovery

Existing dependence discovery methods can be generally classi�ed as to whether they

operate at the network level or at the (application) service level. Network-level discovery [5,

6, 7, 8, 19, 43] focuses on coarse-grained dependencies between network hosts. Network-

level dependencies are usually described in terms of IP addresses and port numbers. They

can be augmented with additional information, such as port mappings [17] or a classi�cation

of client applications [53]. On the other hand, service-level discovery [9, 16, 66, 15] focuses

on the detection of �ne-grained relationships between services. Services are hosted in

application containers, such as J2EE and .NET, and typically associated with application

identi�ers, such as URLs.

Our dependence discovery method, although informed by the network level, operates at

the service level in the sense that we wish to discover service dependencies that can be

used for fault localization in service-based software systems. In particular, we focus on

discovering service-level dependencies in MANETs, where depedencies may change at a

rapid rate. It is important to point out that we do not assume the availability of prior

information, such as a port mapping, application categories, or even a speci�cation of the

services, nor do we require changes in existing software components to support discovery

as found in other methods [8, 16].

Many of the service-level discovery methods apply statistical techniques to tra�c traces

collected by network hosts and monitors. The statistical techniques correlate network

29

CHAPTER 2. RELATED WORK

packets or service-level messages and identify co-occurrences of messages across di�erent

services. While the particular statistical techniques may di�er (e.g., correlation based on a

time window [5, 6, 7], delay distribution [17], time di�erence of messages [9], or timing and

frequency of packet �ows [19]), all of the methods share the same limitation: they require

a long period of time to collect statistically stable data and, therefore, are inappropriate

in highly dynamic environments such as MANETs.

Alternatives to statistical approaches do exist. For example, in Macroscope [53] a sub-

set of packets and network connections is sampled and analyzed to identify relationships

between network �ow data and applications. Lu et al. [43] collect system log data and

correlate the events in the logs using data-mining techniques. Magpie [8] instead correlates

the events based on input from (human) network operators. These methods, however,

require the transfer of large amounts of trace data from the collection points to a central

analysis element, which is prohibitive in resource-constrained MANETs. In contrast, our

method transfers dependence information selectively and on demand, contacting only the

monitors that are potentially relevant to the events of interest (e.g., the possible receivers

of a failed service request). In addition, the monitors actively summarize and aggregate

dependence information before that information is transferred to the analysis node (e.g.,

they may transfer only the number of messages exchanged between two services, rather

than sending the content of those messages).

Pinpoint [16] uses a technique for correlating messages that is similar to the one found

in our method. The technique makes use of identi�ers to uncover �ows of end-to-end

processing through servers in a �xed network. Pinpoint requires application servers to

insert the identi�ers into the headers of messages sent over extensible protocols such HTTP

or SOAP. The identi�er is passed in processing threads within components and inserted into

messages sent in the �ow of processing. Monitors deployed in the network record requests

into traces from which the paths are reconstructed, post hoc, and further aggregated into

dependencies. Their technique is a general one, not restricted to service-based systems.

Similarly, we make use of what are called conversation identi�ers in service-based sys-

tems. In service-based systems, a conversation is the set of all messages exchanged during

the processing of a single client request. Typically, the conversation is identi�ed across the

messages using tags inserted into message headers; the tags contain a unique conversation

identi�er. Of course, conversation identi�ers must be implemented by service program-

mers. Fortunately, this is a relatively routine task, as there are several existing standards

30

2.2. FAULT LOCALIZATION

for doing so, including WS-Addressing,1 WS-SecureConversation,2 and WS-Coordination,3

that are increasingly used in current-day applications. We assume here that conversation

identi�ers are available for inspection by our monitors.

2.2. Fault Localization

Although fault localization has been studied extensively for wired network environments

(see Steinder and Sethi [60] for a survey), attempts to solve the problem for wireless

networks are only more recent. Some of these newer approaches address the issue in the

context of stationary, infrastructure-based wireless networks [1, 52, 54], but are not able

to handle the dynamics of mobile ad hoc networks.

The few existing approaches to fault localization in MANETs can be generally classi�ed

into two broad categories.

In the �rst category fall those seeking to identify a set of fault-free hosts, for which

methods based on output comparison have been proposed. In the basic method, pre-

de�ned tasks are assigned to network hosts and their outputs are compared to ones de�ned

a priori ; a hosts is considered fault free if the results match. This approach was introduced

into MANETs by Chessa and Santi [18]. In their approach, hosts continuously diagnose the

status of their immediate neighbors and learn the status of all other hosts in the network

via dissemination protocols. Variations and improvements, using di�erent task assignment

strategies and/or state dissemination techniques, have also been developed [22, 23]. Be-

cause these approaches focus on the identi�cation of fault-free hosts through continuous

monitoring and dissemination, they are indirect (and ine�cient) methods for fault local-

ization.

In the second category, more relevant to the subject of this thesis, are methods seeking

to identify individual faulty hosts and links in MANETs. Natu and Sethi [47, 48] use a tem-

poral event-correlation approach with dynamic discovery of the network topology. Their

method periodically identi�es the end-to-end paths and the states of hosts based on corre-

lations of measurements, identifying faulty hosts and links through active probing of paths.

Fecko and Steinder [26] use a combinatorial approach and variance analysis to correlate

the occurrences of multiple failures in a network. Their approach is based on probabilistic

dependence graphs obtained from expert knowledge of the intended system structure and

1http://www.w3.org/2002/ws/addr/
2http://www.ibm.com/developerworks/library/specification/ws-secon/
3http://www.ibm.com/developerworks/library/specification/ws-tx/

31

CHAPTER 2. RELATED WORK

the history of system faults. Cavalcante and Grajzer [14] propose a form of probabilistic

fault propagation model based on Bayesian probability for a speci�c architectural model

of dependable networks [63]. All these methods are limited by the fact that they focus on

identifying the faults at low-level network components (hosts and links), not taking into

account the applications actually making use of the MANET. Because network-level faults

do not necessarily manifest themselves as failures in the application layer and (obviously)

vice versa, there is a conceptual disconnect that severely reduces the e�ectiveness and use-

fulness of these methods. Our approach, by contrast, leverages information available at

both levels.

Our fault localization method falls into the category of graph theoretical approaches.

These approaches use model of a system to describe a set of symptoms which can be

observed if a speci�c fault occurs. The fault localization algorithm then analyzes the model

to identify explanations of the observed failures. These techniques [37, 58, 31, 39, 59, 13] are

particularly suited for fault localization of distributed systems (e.g. service-based systems),

because they allow to represent the complex hierarchical and multi-level structure of these

systems.

The graph theoretical approaches can be classi�ed into two categories based on the type

of a system model they use.

The �rst category uses a dependence graph of the system to represent a set of system

components and their dependencies [37, 58]. Although dependence graph provides natural

representation of the analyzed system, this type of methods is usually limited to modeling

only single type of failure per system component.

The second category uses a fault propagation model (FPM) which is a type of causality

graph to represent various types of events occurring in the system components and the

cause and e�ect relationships between these events [31, 39]. The FPM thus represents

detailed model of the analyzed system that allows the fault localization to analyze system

events (i.e. symptoms) rather than the complex multi-state system components as in the

dependence graph based approaches. The fault localization approaches based on the FPM

provide a set of candidate root-causes explaining the observed symptoms. It have been

demonstrated that the analysis of the FPM is an NP hard problem [13, 37].

In order to manage the complexity of the fault localization analysis based on the FPM,

the existing approaches typically impose certain limitations on the FPM. The shape of the

FPM may be restricted to bipartite graph such as in [14, 39, 59]. Other approaches restrict

the number or types of faults included in the FPM, such as [39, 13].

32

2.3. DISTRIBUTED DATA HARVESTING

Our fault localization method does not impose any limitations on the size of the FPM or

on the number of included symptoms. Instead, the FPM is constructed from dependencies

and symptoms occurring in period of time relevant to the analyzed fault. In this way,

only relevant services and symptoms are included in the FPM. Moreover, prior to the

fault localization, irrelevant root-cause candidates are eliminated from the FPM based on

analysis of cause and e�ect of fault symptoms.

2.3. Distributed Data Harvesting

The problem of transfer of data between nodes with low connectivity in MANETs has been

studied extensively. The domains of existing research can be classi�ed into the following

three categories.

A Distributed Hash Table (DHT) based techniques are frequently used to facilitate data

transfer in MANETs. Number of adaptations of DHT for MANET has been proposed

(see Heer et al. [34] and Oliveira et al. [49] for a review and comparison). In general

the DHT provides hash-table like distributed lookup service, which uses hashed keys to

index and search for network resources such as IP addresses of nodes or �les stored on

network nodes. The DHT is used in content sharing methods such as in P2P �le sharing

in MANETs [41, 38, 21]. The DHT is also used in several routing algorithms to enable

routing in MANETs as well as to manage real time data streaming in MANETs [42].

Although these techniques facilitate transfer of data in MANETs, they do not address the

fundamental problem of limited connectivity between nodes in MANETs and thus are not

relevant for transfer of monitoring data.

The second category includes number of data replication techniques proposed for

MANETs (see Padmanabhan et al. [51] for a survey). The goal of the data replication

is to increase availability of the data by creating and maintaining replicas of databases on

multiple nodes in the network. The data are replicated from its originating source nodes

closer to the nodes consuming the data. In order to maintain high availability of the data

in the replicas, the data have to be regularly updated. However, the process of the data

update is subject to the same network limitations as any other data transfer mechanism

in the MANET. Therefore, due to the mobility and partitioning of the MANETs, the

data replication techniques face challenges in maintaining consistency and availably of the

data. The data replication techniques thus make tradeo�s between some of the replication

constraints.

33

CHAPTER 2. RELATED WORK

Number of techniques focuses on placement and maintenance of replicas based on infor-

mation provided by or known in advance about the consumers of the data. Karumanchi

et al. [36] address problems of network partitioning by creating multiple replicas of data

based on consumers advertising about which data and where will be needed. Although

this approach provides high data availability, the technique may cause signi�cant network

overhead depending on the mobility and size of the network. Our method has to cause

minimal network overhead because it is an additional network management tool rather

than the primary functionality of the system. Hara [28] designed several techniques for

replication of static read only data, and in following work [29, 30] of data with incremental

updates. The techniques optimize placement of replicas based on various types of in ad-

vance knowledge such as where, which type of data and how frequently will be consumed.

Bellavista et al. [11] presented technique which requires similar in advance input, designed

for optimal dynamic placement of replicas in MANETs with dense topology. Furthermore,

in [10] is presented algorithm for e�cient data retrieval from multiple replicas holding

partial data. These techniques increase availability of the data in the network, however, do

not address problems of the network partitioning. Furthermore, in the fault localization

and dependence discovery, the information about where and when the monitoring data will

be needed is not known in advance.

Another type of data replication techniques optimizes placement of replicas such to

minimize the overall amount of data transferred in network [50, 46, 44, 56]. The techniques

minimize the amount of data transferred either by limiting the locations where data can be

created [50], or by transferring infrequently large amount of changes in bulk messages [46,

44], or by optimizing the locking of data for read and write operations [56]. The limitation

of these techniques is the inability to address the network partitioning and thus they do

not provide su�cient data availability.

Another type of data replication techniques focuses on placement and maintenance of

replicas in order to address the MANET networks partitioning. These techniques are

designed to maintain high data availability on possibly frequently disconnected nodes.

Wang et al. [65] identi�es patterns in mobility and data use of groups of nodes. Once the

nodes are categorized into the groups, the replicas are placed such to increase availability to

members of the groups. Huang et al. [35] identi�es patterns in mobility of groups of nodes

to periodically redistribute replicas of data. Hauspie et al. [32] attempts to predict the

network partitioning by measuring quality of links and end-to-end paths and proactively

creates replicas. Although these techniques increase availability of data in the partitioned

34

2.3. DISTRIBUTED DATA HARVESTING

networks, they frequently cause high data overload. Furthermore, these approaches tend

to rely on patterns in mobility and data use of the nodes. However, in the fault localization

and dependence discovery such patterns do not emerge.

The aforementioned data replication techniques display certain common properties, such

as the classi�cation of the network nodes into clients consuming and creating data and

servers storing data in databases and maintaining replicas. This classi�cation is not suit-

able for the monitoring data because in the service-based systems, every node is poten-

tially creating data (i.e. monitoring the locally hosted services) and consuming data from

other nodes (i.e. symptoms and dependencies). Furthermore, most of the data replication

techniques focus on transaction oriented data access control. These mechanisms increase

complexity and data overhead and are not useful in the management of monitoring data

because the data are always created on single node and consumed on multiple other nodes,

thus removing the need for transaction management altogether.

The third category of data transfer approaches designed for MANETs are epidemic

protocols (see Dimakis et al. [20] and Birman et al. [12] for surveys). The epidemic protocols

(or gossip protocols) are a category of distributed algorithms which use periodic interactions

between nodes to propagate data in the network. Particularly relevant to the problem of

data transfer in MANETs is that the protocols do not require reliable communication links.

The peers in interactions are usually chosen randomly and there is a certain delay between

the start of the data transfer from the source node and the reception of the data at the

target nodes.

In context of the MANETs, the epidemic protocols are frequently used for in-network

data processing such as in distributed signal processing [67, 55]. In these techniques, the

epidemic protocols are used to decrease the overall network overhead by creating overlay

network layer which allows computation of an intermediate values and passing on ag-

gregated data. Other approaches were proposed for data replication purposes [44] with

limitations listed above.

Our method makes use of the ability of the epidemic protocols to create overlay net-

work to pass on data on the unreliable links similarly as the distributed signal processing

approaches. However, instead of to transfer only aggregates, our method passes on incre-

mental changes in similar fashion as some of the data synchronization approaches.

35

3. Dependence Discovery

In this chapter we present our dependence discovery method. We begin by describing the

two types of dependencies in which we are interested. We then describe how we discover

dependencies, represent dependencies, and construct the representation.

3.1. Introduction

In service-based systems, a dependence is a relation between services de�ned by the message

�ow induced by a client request. (As an edge case, a dependence is also the relation between

a client and a service. Without loss of generality, we mainly focus here on relations among

services.) When a dependence relation exists between two services S1 and S2, one service

is considered the source and the other the target. In general, sources issue requests on

targets, thus de�ning a directionality to the dependence.

We are concerned with two types of dependencies over a given set of services: inter-

dependencies and intra-dependencies. An inter-dependence is the basic dependence relation

that exists between the requester of a service and the receiver of that request. Figure 3.1

illustrates logial set of inter-dependencies in a system, where the arrows indicate the direc-

tionality of the dependencies, from sources to targets. For instance, service S3 is directly

dependent upon services S9, S11 and S20, and indirectly dependent upon services S10,

S12, S15, S21, S22, S23, and S25. Each inter-dependence in which a particular service

is engaged can be classi�ed as either incoming or outgoing. Service S9 has an incoming

inter-dependencies with S2 and S3 and outgoing inter-dependencies with S10 and S12. The

�gure further exposes highlighted subset of services and dependencies involved in single

conversation of client C3. In this conversation service S3 uses services S9 and S20 to

complete the request while service S11 is used by S3 in processing of other coversations.

36

3.1. INTRODUCTION

Figure 3.1.: Inter-dependencies of service-based system in MANET, with highlighted single

conversation of client C3

Figure 3.2.: Intra-dependencies of service S13

An intra-dependence is a more complex relation between services that relates an incoming

inter-dependence to an outgoing inter-dependence. In this sense, intra-dependencies re�ect

more detailed insight into the nature of the dependencies between services than do the basic

inter-dependencies. This is illustrated in Figure 3.2, which shows the dependencies among

S2, S3, S9, S10, and S12 resulting from the four given inter-dependencies (solid arrows)

and the three given intra-dependencies (dashed arrows). It is instructive to compare the

information gained from Figure 3.2 to that available in Figure 3.1. We can see that S2 is

(indirectly) dependent upon S10 and S12, while S3 is only (indirectly) dependent upon S12.

37

CHAPTER 3. DEPENDENCE DISCOVERY

This is not evident from Figure 3.1.

3.2. Discovering Dependencies

As mentioned above, dependencies arise from the �ow of messages among services. To

discover dependencies, we must therefore track these �ows. Because our aim is to be min-

imally intrusive, we restrict ourselves to observing the message tra�c (i.e., messages that

contain service requests and responses) as it occurs. Our method makes use of monitors

deployed within the network to observe messages and record information about the �ows.

A convenient place to deploy a monitor is within a service's container. The monitor is

then easily aware of the associated service's identity, as well as being provided a context

in which to execute.

The main advantage of an approach based on monitors is that it allows us to discover

dependencies instantaneously and precisely, with minimal delays between dependence oc-

currence, detection, and the availability of the dependence information. Moreover, we can

do so without having to modify the services themselves. Monitors can also minimize data

storage and communication requirements, since they can actively aggregate and summarize

the information. Thus, our approach can be thought of as a process for collecting evidence

of dependencies, which is in sharp contrast to methods that require storage and transfer

of large amounts of data for later statistical analysis.

In basing our method on monitors, we assume that they can be deployed into service

containers and are able interpret the messages they observe. Important system requirement

is correctly synchronized system time on nodes with monitoring agents, which is required

for correct marking and matching of detected dependencies.

Inter-Dependence Discovery Pairs of source and target services that induce inter-

dependencies can be identi�ed from the �ow of messages exchanged between the services.

In a service-based system, services are uniquely identi�ed by application-speci�c identi�ers,

such as the URIs of the Web Services framework. Although the speci�c type of information

provided within messages di�ers with the service platform and standard used, request

messages always contain identi�ers for the requested services.

Since a monitor is aware of the identity of the service with which it shares a container,

it can record outgoing inter-dependencies simply by extracting the identi�ers of target

services from any outgoing request messages originating at the service. The target service

identi�er is an essential �eld present in all request messages, such as plain HTTP or SOAP

38

3.2. DISCOVERING DEPENDENCIES

requests. The inter-dependencies are therefore easily discoverable in all existing service

invocation protocols such as SOAP, REST or even from plain HTTP requests without

requiring any modi�cations to existing systems.

Intra-Dependence Discovery Intra-dependence discovery requires knowledge of both

outgoing as well as incoming inter-dependencies. However, discovering incoming inter-

dependencies is a bit more involved, as it requires request messages to contain the unique

identi�er of the requesting service. This is satis�ed by most service standards (e.g., the

WS-Addressing standard provides the �elds wsa:To and wsa:From). Alternatively, when

�eld containing identi�er of the requesting service is not present in the request messages,

the monitor can insert such a �eld into a request message's header when the message

is being sent from the requesting service. With source and target identi�ers present in

messages, monitors can detect all incoming and outgoing inter-dependencies.

To expose the correspondence between the incoming and outgoing inter-dependencies of

a service, we rely on the presence of conversation identi�ers within messages. In service-

based systems, a conversation is the set of all messages exchanged during the processing of a

single client request. Typically, the conversation is identi�ed across the messages using tags

inserted into message headers; the tags contain a unique conversation identi�er. Of course,

conversation identi�ers must be implemented by service programmers. Fortunately, this

is a relatively routine task, as there are several existing standards for doing so, including

WS-Addressing,1 WS-SecureConversation,2 and WS-Coordination,3 that are increasingly

used in current-day applications. Discovering an intra-dependence then reduces to having a

monitor relate incoming and outgoing messages using the conversation identi�ers appearing

in both.

Alternatives to our dynamic approach of the intra-dependence discovery exist. For ex-

ample, in early stages of our work we have also explored possibility to use static code

analysis [25]. In a stable environment of a �xed networks, the information about the intra-

dependencies can be �statically� hardcoded into the source code of a service or the service

may have associated stable con�guration �les. The static code analysis may discover de-

pendencies by examining either source code, compiled output and/or con�guration of the

service. However, in an environment with a dynamic topology, the information about tar-

get services has to be dynamically obtained from a service discovery mechanism and thus

the service code or the con�guration �les cannot contain enough information to identify
1http://www.w3.org/2002/ws/addr/
2http://www.ibm.com/developerworks/library/specification/ws-secon/
3http://www.ibm.com/developerworks/library/specification/ws-tx/

39

CHAPTER 3. DEPENDENCE DISCOVERY

the target services.

3.3. Storage of Dependence Data

Extracting the source and target �elds of messages in the service container is a simple

read-only operation causing minimal computational overhead. However, in the resource

constrained environment of MANETs, crucial aspect of the monitor is the data storage

requirements.

A monitor will maintain the history of the dependencies it has seen for some bounded

period of time, and in some storage data structure. The dependence data are stored within

the data structure such that only a limited history is maintained. The data structure can

be designed to either store individual timestamps of the dependence occurrences or divide

the dependence occurrences into time slots.

Timestamp based data structure When individual timestamps of dependence occur-

rences are stored, the size of the stored data is dependent on workload generated in the

system. Thus the size of the storage might be signi�cant in high workload environments.

Yet, this mechanism is highly precise because all of the dependence data are maintained.

Therefore, this option is suitable when high data precision is desired and when higher

amount of stored data can be tolerated such as for system testing purposes. Conversely, in

standard production environment the occurrences are stored in space e�cient data struc-

ture.

Time slot based data structure In production environment, a monitor will maintain

the history of the dependencies divided into time slots. The dependence data are stored

with a sliding expiration window such that only a limited history is maintained, using a

data structure representing sliding time slots. Entries for each time slot maintain Boolean

data about whether or not a given dependence occurred within that time slot. Each de-

pendence is associated with a set of those time slots, such that when the monitor detects

the occurrence of a dependence, it signi�es this by setting a 1-bit �ag in the correspond-

ing time slot. It also records identifying information about the source and target of the

dependence. Figure 3.3 illustrates the setting of the bit �ags in corresponding time slots

in the represented time period.

Of course, the size of the time slot a�ects the precision of the data maintained. For

example, a slot size of 0.1 seconds will provide up to 10 times more data compared to a

slot size of 1 second, but will require 10 times more space to store those data. Beyond the

40

3.3. STORAGE OF DEPENDENCE DATA

Figure 3.3.: Setting of the bit �ags in corresponding time slots maintained by monitor

slot size, the size of the whole history can be controlled through the pruning of expired

time slots.

The length which each time slot represents can be con�gured according to a desired level

of resolution. When combined with the time period and the size of each dependence entry,

the data storage needs for each monitor is determined. The estimated number of bytes of

storage space S per monitor is as follows:

S =
Th

Ts

× (Ninter +Nintra)

8
+ (BinterNinter +BintraNintra)

where Th is the length in seconds of the time period, Ts is the length in seconds of a

time slot, Ninter and Nintra are the average number of inter-dependencies (both incoming

41

CHAPTER 3. DEPENDENCE DISCOVERY

and outgoing) and intra-dependencies recorded by an monitor during the time period, and

Binter and Bintra are the maximum sizes of the identi�ers of inter- and intra-dependencies.

We provide example of estimation of the data storage costs in the evaluation section.

The aggregation of observed service interactions into dependencies can cause the mon-

itors to �forget� some of the details necessary to reconstruct accurate dependence infor-

mation. This is the case when internal behaviors of a service that are not visible to the

monitor can generate seemingly identical interactions in aggregate. As an example, con-

sider the incoming inter-dependence of S2 on S9, and the outgoing inter-dependencies on

S10 and S12, shown in Figure 3.2. The incoming inter-dependence could in fact be the

result of aggregating two separate conversations between S2 and S9, where the �rst re-

sulted in a message to S10 and the second resulted in a message to S12. The aggregated

dependence information held by the monitor will not, in our current approach, record the

true dependencies regarding these individual conversations.

The tradeo� between storing timestamps or time slots is a loss of precision of the depen-

dence data caused by the aggregation of the dependence occurrences into single Boolean

value per time slot. However, unlike storing occurrence timestamps where the size of the

stored data depends on number of stored occurrences and thus is sensitive to system work-

load, the time slot algorithm requires �xed amount of memory to store the data regardless

of the system workload. Thus for example to store data of single dependence with 10

occurrences within one minute; the timestamp based storage will require 80 bytes of data

(with 8 bytes required to store one timestamp of millisecond precision in Java) and the

time slot based algorithm will require 75 bytes of data with 0.1 second resolution of the

time slots. However, with 10x higher workload of 100 dependence occurrences over same

period of time the data requirements will increase to 800 bytes for the timestamps and

stay same at 75 bytes for the time slots.

3.4. Dependence Graph

A dependence graph (DG) is a directed acyclic graph constructed from a set of nodes rep-

resenting services and a set of edges representing direct inter-dependencies. The direction

of an edge represents the direction of the inter-dependence, from source to target. Each

node can be annotated with intra-dependence information, conceptually adding directed

edges between the incoming and outgoing inter-dependencies of the service.

The DG maintains information concerning a speci�c time window, re�ecting only the

42

3.5. DEPENDENCE GRAPH CONSTRUCTION

dependence information collected by (or perhaps available from) monitors during that

period. The time window is a property of the interaction between the application behavior,

the network behavior, and the information accessible to monitors. The size of the time

window has many e�ects on the results of analysis. For example, a small time window

serves to reduce the size of the DG, but some critical service interactions might be missed.

A large time window provides a more complete record of dependencies, but might include

stale or irrelevant interactions (e.g., those belong to conversations other than the target

conversation for the analysis).

Conceptually, a DG could be used to represent the full set of dependencies of an entire

application system. In practice, many analysis techniques only require a subgraph of the

full dependence graph related to a speci�c node or subset of nodes. For example, a failure

impact analysis might examine only the nodes that can reach (i.e., are dependent upon)

a given node, and a fault localization analysis might examine only the nodes that are

reachable from a given node.

3.5. Dependence Graph Construction

Our method uses a set of distributed monitors that provide information to a dependence

discovery element, as illustrated in Figure 3.4. The intent of this architecture is to minimize

resource utilization, while still providing timely data. The monitors perform continuous

dependence discovery and maintain aggregated dependence data (unless in exceptional

cases timestamps of dependence occurrences are maintained as described in 3.3).

The availability of the dependence data during the construction of the DG is subject to

reachability of nodes hosting the monitors from nodes conducting the dependence discovery

and data harvesting. Typically in MANETs, the reachability between various nodes is

limited due to network spatial-temporal partitioning as well as due to variable quality of

the network links. Thus the availability of the dependence data must be considered as an

important design aspect of the dependence discovery method.

We have designed two alternative data harvesting algorithms each suitable for di�erent

scenario of reachability between network nodes. In this chapter we describe an approach,

which is based on the assumption of full reachability of the network nodes and thus on full

availability of the dependence data on demand from monitors. In Chapter 5 we provide

distributed approach of data transmission suitable for scenarios in which the reachability

of nodes is limited and thus the availability of the dependence data on demand is not

43

CHAPTER 3. DEPENDENCE DISCOVERY

guaranteed.

Figure 3.4.: Architecture of dependence discovery

The discovery element will construct a DG on demand, querying the relevant monitors

to harvest their local dependence data for the time window of interest. The harvesting

algorithm may either attempt to transmit the requested data on demand at the time when

the dependence graph is being constructed or it may use some distributed algorithm to

transmit the data before the dependence graph construction has started. The construction

algorithm is designed to incrementally construct the DG�typically a subgraph of the full

application dependence graph�by visiting only the monitors considered relevant based on

the data seen to that point. In this way, the amount of data transmitted over the network

can be signi�cantly reduced compared to existing methods. Of course, the most common

case of DG construction is for a particular client, revealing the services upon which that

client depends directly or indirectly. Conceptually, the data are harvested by a walk rooted

at the monitor associated with the client.

For certain analyses, we may additionally want to limit the dependence discovery to

a speci�c conversation, something particularly useful in fault localization. This can be

performed by adjusting the time window of the DG.

In Figure 3.5 is shown an activity diagram conceptually representing the dependence dis-

covery algorithm. In the �rst step, the algorithm adds root dependencies into the DG. The

root dependencies might be limited to a single root dependence. This is useful when dis-

covering DG of particular conversation such as in the fault localization. Alternatively, the

root dependencies include all of the root dependencies occurring within the time window.

44

3.5. DEPENDENCE GRAPH CONSTRUCTION

This is useful when discovering set of all services involved in requests in particular time

period such as in composition analysis. In the following steps, recursively, the algorithm

sends request for outgoing dependencies of each of the services added into the DG.

Figure 3.5.: Activity diagram of dependence discovery algorithm

Finally, in Appendix A.1 is shown an example of the dependence discovery algorithm

implemented in Java. The algorithm has input parameters of identi�er of a root node

(i.e. client) and timestamps of beginning and end of the time window. The algorithm

uses function which queries monitors in network for outgoing dependencies of services and

constructs DG in breadth-�rst search sequence. The algorithm initially creates new object

representing the DG with single root node representing the client's node. Subsequently, in

45

CHAPTER 3. DEPENDENCE DISCOVERY

loop for each node in the DG is invoked the method getDependenciesForNode. Based on the

node parameter, the method either queries the local monitor for the client's dependencies

or sends request to monitor hosted on another network node. For every dependence added

into the DG, a new node representing the dependence's target service is created in the

DG. For each node in the DG is invoked the method getDependenciesForNode to get its

outgoing dependencies within the time window.

The dependence discovery element can be hosted on any node of the network. Moreover,

since the dependence discovery element is a small software component, it can be hosted

on multiple nodes of the network. For example, every node which hosts some client appli-

cation is also a good candidate for hosting the dependence discovery element, either as a

component of fault localization or as a component of other analytical methods.

3.6. Summary

In this chapter we have presented our dependence discovery method. We have described

the two types of dependencies the method discovers, the techniques used to discover the

dependencies, the dependence graph the method builds, and the architecture of the method.

In Section 6.1.5 we describe the experimental tools we used to evaluate the method,

followed by description of the implementation of the method in Java EE provided in Sec-

tion 6.2.2.

The accuracy of the dependence graph construction mostly depends on the time window

and workload. With a short time window and a small workload (i.e., infrequent interac-

tions among services), we may not observe some critical dependencies. With a long time

window and a large workload, we may include obsolete and irrelevant interactions (e.g.,

dependencies belonging to conversations that are not of our interest).

In Section 7.1, we investigate the impact of these and other factors on the accuracy of

the DG obtained by our method. We then suggest ways to select parameter values to

optimize the discovery process.

46

4. Fault Localization

In this chapter we present our fault localization method. We begin by describing how

faults propagate within service-based systems. We then describe the architecture and

assumptions of our method, followed by description of the fault localization technique and

the two types of ranking algorithms.

4.1. Introduction

In service-based systems, a fault is an exceptional condition occurring in a software (i.e.

service) or a hardware (i.e. network link or node) components. A fault which occurs in

processing of a conversation propagates in a series of failures of services back to the client

which initiated the conversation. The client receives noti�cation of failed conversation

instead of the requested functionality. Typically, failure does not carry any information

about its cause or source. Thus, upon receiving the failure, the client is left without any

explanation about the cause of the failure.

The failures received by the clients of the service-based systems can be categorized into

exceptions which represent explicit noti�cations of failures received in response messages

and timeouts which represent implicit noti�cations of failures caused by response messages

not arrived within a speci�ed period of time.

The goal of our fault localization method is to �nd the root cause (i.e. the root cause

fault) of a failure in a conversation initiated by a client of a service-based system. The

conversation failure received by the client is hence an entry point of our fault localization

method. The method makes use of both service- and network-level information and traces

the failure back to its source.

When fault or failure occurs in a system component it manifests as a symptom and

thus can be intercepted and recorded into a system log. To trace the propagation of

failures through the system components (i.e. the services, nodes, links and others), we

therefore track these symptoms. In order to be minimally intrusive, we restrict ourselves

47

CHAPTER 4. FAULT LOCALIZATION

to extracting the records of the symptoms from the system logs.

The particular type of the root cause (i.e. fail-stop, Byzantine, or any other) is not

signi�cant from the point of view of the analysis. As long as the conversation failed and

the root cause fault caused propagation of the faults through services and issuance of the

associated symptoms, the method can be used to trace the source. However, the method

is not designed to address localization of faults which do not cause the conversation to fail

(e.g. Byzantine faults causing incorrect results).

4.1.1. Terminology

Before describing our technique in detail, we �rst introduce the terminology used through-

out the description.

Fault: An exceptional condition occurring in a software or hardware component. A fault

may or may not cause a failure in another component.

Failure: An external and visible manifestation of a fault as a deviation from the expected

behavior of a component.

Fault propagation: A failure in one component may cause failures in dependent compo-

nents that are otherwise fault free. Thus, a fault may propagate via a cascade of failures.

Root cause: The apparent origin of a fault propagation. We use the more speci�c terms

root-cause fault and root-cause failure interchangeably, where the latter is the �rst visible

(and, hence, observable) manifestation of the former.

Transitive failure: A failure occurring in dependent components due to propagation of

the fault from its root cause to the client application through system components. The

failure experienced by client is a case of transitive failure at the end of the fault propagation.

Symptom: An observable manifestation of a fault or failure. Symptoms are typically

recorded in a system log and include ancillary descriptive information. We consider here

following two speci�c kinds of symptoms:

• Exceptions are explicit noti�cations of failures carried in response messages sent

from target services back to source services. They are initiated by software com-

ponents of services which failed to accomplish some task e.g. were unable to send

request to another service. The cause of the exception can be any failure, whether

originating in the network, hardware or software components.

Note: The exception are propagating through software components (by the standard

throw-try-catch mechanism) and through response messages (as a speci�c type of

48

4.2. SYSTEM ARCHITECTURE AND ASSUMPTIONS

response message de�ned and managed by the platform, standard and technologies

used in the system).

• Timeouts are implicit noti�cations of failures caused when an expected response

message has not arrived within a speci�ed period of time. They are caused by either

the network failing to transfer responses back to source of requests or by software or

hardware components failing to send response message.

4.2. System Architecture and Assumptions

The architecture of the fault localization method is built upon the architecture of the

dependence discovery method presented in Section 3.5. The fault localization method uses

a set of distributed monitors, as illustrated in Figure 4.1. The monitors are deployed in

service components (e.g., in a service container) and are responsible for extracting the

symptoms of service failures from system logs. The monitors provide the symptoms, on

demand, to a fault localization element (e.g., located at an operator's station) that runs

the fault localization method.

Figure 4.1.: Architecture of fault localization

An essential input to our method is a dependence graph (DG) that captures the run-time

dependencies among services. In the previous Chapter 3, we have presented a method to

49

CHAPTER 4. FAULT LOCALIZATION

obtain probabilistically accurate DGs in a MANET-hosted, service-based system.

A DG can be used to represent the full set of dependence relations in the system, or

can be restricted to a subset of those relations. For our purposes, we restrict the DG to

the dependencies rooted at a particular client and for a particular time period. Figure 4.2

shows a simple example of a DG rooted at a particular client.

Figure 4.2.: Dependence graph rooted at a client

The dependence discovery method is designed to take account of the peculiarities of

that environment, speci�cally the dynamic nature of service-level binding and host-level

mobility, combined with the general lack of resources for tracking dependencies. The

method works by building (i.e., �discovering�) the DG for a client on demand, which is

an approach that is particularly well suited to fault localization because it allows us to

obtain the DG for the client that has reported a failed conversation. Of course, due to the

di�cult operational environment, the resulting DG can be expected to contain some false

dependencies, as well as miss some true dependencies, although the discovery method is

designed to minimize the occurrence of such inaccuracies. We must therefore take account

of this in the design of the fault localization method. Later in our experimental results, we

evaluate the impact of the accuracy of the DG's on the performance of our fault localization

method.

Besides the availability of dependence information, we make the following assumptions.

1. Each service records all failure symptoms in a local log, and the local monitor has

access to the log.

50

4.3. FAULT LOCALIZATION TECHNIQUE

2. The log entries include information such as a time stamp, an identi�er for the relevant

service instance, and the type of symptom.

3. Time stamps are globally consistent due to synchronized clocks. Clock synchro-

nization in MANETs is a well-researched topic, with techniques available to achieve

precision of tens or even single microseconds [68]. The smallest time period we use

to distinguish time stamps is on the order of several milliseconds, well within this

precision. The cost of the time synchronization required may be none or very small.

The time synchronization functionality is an integral part of a system management

and is usually required by a low level network protocols and thus in place by default.

In case when time synchronization must be introduced due to our method, the cost

will be negligible. The overhead imposed on the network by the time synchroniza-

tion is related to the precision required. Since our method requires low precision, the

overhead will be very small.

4. Finally, there is a global timeout parameter shared by all clients and services. The

timeout parameter de�nes the maximum waiting period for responses to requests.

This is easily achieved in systems that use a common application platform, such as

.NET or J2EE, which have a prede�ned default value. In systems that use a mix of

platforms, explicit enforcement would be required.

4.3. Fault Localization Technique

The previous section introduces the general architecture we envision for recording and gath-

ering the information needed for fault localization. Assuming this information is available

to the fault localization element shown in Figure 4.1, our method for analyzing the infor-

mation shown in Figure 4.3 consists of the following high-level steps:

1. Mapping : A fault propagation pattern (describes how faults can propagate as fail-

ures from one component in a system to another, Section 4.3.1) is mapped onto the

dependence graph associated with a failed conversation, resulting in a fault propa-

gation model (represents the causality relations between failure events in a system,

Section 4.3.2) that represents how speci�c faults might propagate through the indi-

vidual services involved in the conversation.

2. Reduction: The fault propagation model is combined with the occurrence times of

relevant symptoms. This assignment allows the method to reconstruct the possible

51

CHAPTER 4. FAULT LOCALIZATION

Figure 4.3.: Fault localization method

propagation paths for the fault, both in time and in space, and thus to form a set of

plausible candidates for the root cause of the failure.

3. Ranking : A ranking (Section 4.3.3) is applied to the elements of the candidate set

based on their likelihood of being the root cause of the failure. We have devised two

alternative ranking algorithms based on established fault localization techniques. The

�rst is a timing-based approach that ranks hypotheses based on the time di�erence

between possible root causes and the client's fault. The second is a probabilistic

method that uses a Bayesian network to infer independent probabilities of individual

root-cause hypotheses. We present a comparative evaluation of the e�ectiveness of

these two alternatives in a later section.

4.3.1. Fault propagation pattern (FPP)

We describe how faults can propagate as failures from one component in a system to

another by de�ning a fault propagation pattern (FPP). More precisely, an FPP is a recursive

description of how di�erent kinds of failures can cause further failures, where the �rst failure

in the propagation chain is the failure manifesting the root-cause fault. In service-based

systems, the propagation �ows upstream from target services back to source services in the

service dependence structure.

To enable a �ne-grained analysis using propagation patterns, we classify the observable

failure symptoms�exceptions and timeouts�into failure modes.

A propagated exception (Figure 4.4a) can be generated as a result of one of the following

modes: (1) a send failure (SENDF), which represents a service that is unable to send a

message to another service due to a network-level fault; (2) a software failure (SF), which

represents any internal software or data fault that throws an exception; and (3) an exception

52

4.3. FAULT LOCALIZATION TECHNIQUE

(EX), which is itself generated by a service in response to a failure in a downstream service.

Notice that the �rst two are (manifestations of) actual root causes, while the third is the

recursive behavior that leads to propagation .

(a) (b)

Figure 4.4.: Fault propagation pattern re�ned into modes for exception failures (a) and
timeout failures (b) in service-based systems. Faults propagate upstream from
targets back to sources in the service dependence structure

A propagated timeout can be caused only by some other timeout. This is because the

timeout event is an implicit symptom of a fault whose real cause is not directly observable

and, hence, not itself recordable as a symptom. Examples include a network host that

moves out of communication range or the physical failure of a host. We identify two timeout

modes (Figure 4.4b) that can cause further upstream timeout failures: (1) a root-cause

timeout mode (RC_TO), which results implicitly from a network-level fault, and (2) a

transitive timeout mode (TO), which results from a timeout occurring in some downstream

service.

A subtle and counter-intuitive point: A timeout failure is consistently witnessed by

a client before the root-cause RC_TO failure occurs. This is because the client starts

its response timer when it initiates the conversation, and all downstream timers in the

conversation are also set to this same default value, as mentioned in Section 1. Thus, the

client's timer would actually be the �rst to expire in the conversation.

4.3.2. Fault propagation model (FPM)

Our technique makes use of a graph, called a fault propagation model (FPM), representing

the causality relations between failure events in a system. An FPM is the result of mapping

the fault propagation pattern (FPP) described above onto the service dependence graph

(DG) of a given client. It is a rooted reverse-directed acyclic graph whose nodes and edges

53

CHAPTER 4. FAULT LOCALIZATION

correspond to the client, services, and dependencies of the DG. More precisely, the graph

contains a single node at its root to represent the failure mode witnessed by the client,

and a set of nodes at its leaves to represent the failure modes of the candidate root causes.

The internal nodes represent transitive failure modes. The edges signify possible failure

propagation paths, which follow the reverse dependence edges in the DG. Figure 4.5a shows

an example constructed by mapping the FPP of exception of Figure 4.4a onto the DG of

Figure 4.2.

(a)

(b)

Figure 4.5.: Fault propagation model constructed from exception modes of Figure 4.4a
mapped onto dependence graph of Figure 4.2. The full FPM (a) is reduced
(b) by considering actual symptoms recorded in a given time window

Faults tend to be temporary in MANETs and can a�ect the clients only for a limited

period of time. In order to capture this temporal aspect of the problem, an FPM typi-

54

4.3. FAULT LOCALIZATION TECHNIQUE

cally maintains information concerning a speci�c time window, re�ecting only the failure

symptoms collected by monitors during that period. The time window is a property of the

interaction between the application behavior, the network behavior, and the information

accessible to monitors. The selection of the time window size is critical in the construction

of the FPM. For example, a small time window serves to reduce the size of the FPM, but

some critical service interactions and symptoms might be missed. A large time window

provides a more complete record of dependencies and symptoms, but might include stale

or irrelevant interactions and symptoms (i.e, those belonging to conversations other than

the conversation of concern to the analysis). In principle, one needs to consider how long it

would take all potential root-cause faults to propagate to a client. Ideally, the time period

should be long enough to cover the longest such propagation, but no longer, so as not to

include considerable noise in the data. We examine this issue carefully in the context of

our experimental evaluation (Section 7.2.1).

Operationally, upon receiving a failure report from a client, the fault localization element

builds the FPM with respect to the reported failure. To do so, the dependence discovery

element is queried for the DG associated with the failed conversation. The DG is then

combined with the FPP and transformed into an FPM for the speci�c kind of failure,

according to the following steps:

1. Every leaf service of the DG is transformed into the root-cause failure modes of

the FPP; every intermediate node of the DG is transformed into root-cause and

transitive failure modes; and the client node is transformed into a single transitive

mode representing the client failure.

2. The edges representing cause-and-e�ect relations between modes are assigned based

on the dependencies in the DG such that every mode of a target service is connected

to the respective mode of a source service. The resulting FPM represents all possible

root-cause modes with respective propagation paths, given the structure of the DG.

3. The fault localization element contacts the monitors of the services included in the

DG/FPM in order to harvest locally aggregated symptom data for the time window

of interest. The aggregation applied depends on the kind of failure mode associated

with the recorded symptom: For exceptions it is the latest in the time window, while

for timeouts it is the earliest. (The justi�cation for these aggregations is given in

Section 4.3.3.) The data are then assigned to the relevant modes of the FPM.

55

CHAPTER 4. FAULT LOCALIZATION

4. The FPM is reduced to a set of candidate root-cause failure modes based on the actual

symptoms recorded within the given time window. To do so, any modes (whether

transitive or root cause) without associated symptoms are removed from the FPM,

as they (probabilistically) could not have either caused or propagated to the client.

The FPM is then further reduced to the set of candidate root-cause modes, which is

connected to the client failure mode either directly or by propagation paths through

the remaining transitive modes. The reduction repeatedly removes all modes which

do not have following (parent) transitive mode as well as it removes all transitive

modes which do not have any preceding (child) mode.

Appendices A.2 and A.3 show example pseudocode of the construction of the FPM and

of the reduction of the FPM algorithms respectively.

The resulting FPM contains the set of candidate root-cause failure modes that are reach-

able to the client directly or through transitive modes. The FPM also contains the set of

transitive modes that are on propagation paths between at least one root-cause mode and

the client. For example, the FPM of Figure 4.5a can be reduced to the FPM of Figure 4.5b

if we assume the following symptoms are recorded in the given time window: services S6

and S7 experienced software failures (SF); services S2, S3, S7, and S8 experienced message

send failures (SENDF); and services S1, S2, S3, and S4 received exception messages (EX).

The client, which presumably triggered the analysis, also received an exception message

(EX).

The harvesting of the symptom data used in FPM is closely related to harvesting of the

dependence data introduced in Section 3.5 because the symptom data are harvested from

all nodes of the analyzed DG. Hence the symptom data harvesting mechanism is designed

as an extension of the dependence data harvesting mechanism such that the symptom

data are transmitted along with the dependence data. In this way, the amount of data

transmitted over the network is reduced to minimum and availability of the symptom data

matches the analyzed DG.

4.3.3. Ranking candidate faults

Given an FPM that consists of possible root-cause failure modes, the next step is to rank

the candidate root-cause faults in the order of their likelihood of being the actual root

cause of the client failure. We consider two approaches to ranking the candidates: one

based on occurrence time and the other based on Bayesian probabilities. We compare the

two approaches in our experimental evaluation (Section 7.2.2).

56

4.3. FAULT LOCALIZATION TECHNIQUE

Timing-based ranking

The timing-based ranking approach follows from the following observation: Although

conversations might last a long time, failures will propagate relatively quickly from root

causes to clients. For instance, intermediate services typically generate exception responses

immediately upon receiving an exception response from a downstream service in the con-

versation, ultimately causing the client to see the exception within a relatively short time

after the root cause fault has occurred. Similarly, timeout events in the services involved

in a conversation tend to occur within a relatively short period. This is due to the fact

that services set their timeout timers when they send service requests, and the forward

propagation of those requests through the system is typically much quicker than the time

it takes for the conversation as a whole to complete.

Based on this observation, our timing-based algorithm ranks the candidate root-cause

failures appearing in the reduced FPM in increasing order (from shortest down to longest)

in terms of the di�erence between the time stamp of the client failure symptom and the

time of occurrence of the candidate, which is itself determined by the time stamp of:

• the latest symptom of the failure, in the case of an exception, and

• the earliest symptom of the failure, in the case of a timeout.

This aggregation ensures that the ranking favors the candidate that occurs closest in time

to the failure witnessed by the client.

Appendix A.4 provides example pseudocode of the Timing-based ranking algorithm.

Bayesian-based ranking

Our second algorithm assigns the ranks to the candidates in the order of probability that

the candidate is the root cause. The probabilities are inferred on the Bayesian network

(BNet) constructed from the FPM. We use a multi-level BNet model, where each node

of the graph is a binary valued random variable that describes the state of a single FPM

mode.

The BNet is an isomorphic transformation of the reduced FPM. However, the direction of

the BNet edges is reversed from FPM edges because in the BNet we measure the probability

of each candidate node to be a root cause, given the evidence that the client witnessed a

failure. Thus, we measure the probability of propagation in reverse order.

For the failure propagation probabilities in the BNet, we use the noisy-OR gate distri-

bution model of the conditional probability distribution (CPD), due to its computational

57

CHAPTER 4. FAULT LOCALIZATION

and space e�ciency [33]. The CPDs are calculated based on two assumptions concerning

fault propagation.

• First, given that the reduced FPM only provides the relevant subset of candidate root

causes, the probability of the antecedent mode to propagate to a dependent mode is

equal for all transitions.

• Second, the probability of a candidate to be the root cause decreases with the in-

creasing number of transitions through which the fault propagates to the client.

Therefore, we calculate the CPD of a node in the BNet such that the conditional prob-

ability of a parent node in CPD given the occurrence of the mode in a child node (i.e., the

probability of propagation from parent to child node) is equal to the proportional fraction

that the parent represents in the set of all parents of the particular child node in the FPM.

For example, a child node with two parents has a CPD of 50% propagation probability

of/from each parent. Furthermore, in order to re�ect the decreasing e�ect of each transi-

tion on the probability of the mode to be the root cause, the conditional probability of each

parent is modi�ed with the constant 0.99. This constant is su�cient to distinguish between

the candidate modes at di�erent levels of the FPM, yet small enough not to interfere with

the parent probabilities.

For the inference of the posterior probability of the root cause modes, we use the junction-

tree algorithm [61, 64], which is an exact inference algorithm suitable for small-to-medium

sized, multi-level directed acyclic graph models such as those we expect in our analysis

context.

Appendix A.5 provides example pseudocode of the Bayesian-based ranking algorithm.

4.4. Summary

In this chapter we have presented our fault localization method. We have described how

faults propagate within the service-based systems and how our fault localization method

traces the faults in order to localize the root causes. We have presented our fault localiza-

tion technique, including the fault propagation model and the two ranking algorithms.

In Section 6.1.6 we describe the experimental tools we used to evaluate the method,

followed by description of the implementation of the method in Java EE provided in Sec-

tion 6.2.3.

58

4.4. SUMMARY

The two ranking algorithms provide alternative ways in which the root cause candidates

might be ordered. In Section 7.2, we investigate the impact of these, as well as impact of

the accuracy of the dependence graph produced by the dependence discovery method and

other factors on the accuracy of the fault localization.

59

5. Distributed Data Harvesting

In this chapter we present our distributed data harvesting method. We begin by describing

the type of data the method transfers over the network. We then describe the architec-

ture of the method, the synchronization algorithm and how it transfers the data over the

network.

5.1. Introduction

The dependence discovery and the fault localization methods presented in Sections 4 and 3

respectively, require capability to harvest the monitoring data from nodes hosting services

involved in the analyzed conversations. In these methods, we have taken the assumption

of full availability of the monitoring data on demand over the network. However, in real

world MANET networks, the methods cannot rely on availability of the data on demand

due to the low connectivity (i.e. lack of end-to-end paths) between the network nodes.

The monitoring data are usually hosted on nodes several hops away from nodes collecting

the monitoring data. Thus, by attempting to harvest the data directly on demand, the

methods would receive only incomplete subset of the data needed to build the dependence

graphs and to perform the fault localization. In Section 7.2 we examine the availability of

the monitoring data on demand in MANETs.

In what follows, we present our distributed data harvesting method. The goal of the

method is to transfer monitoring data between nodes which cannot communicate directly

on end-to-end paths in networks with dynamic topology. To transfer the data, we use an

epidemic protocol to create network wide data synchronization overlay.

An epidemic protocol is a type of algorithms inspired by spread of virus in a biological

community. The protocol entities periodically interact with one another and by doing

so they exchange piece of bounded size information. In general, each entity periodically

chooses randomly one peer with whom it will initiate interaction. During the interaction,

either one or both of the entities will receive some new piece of information.

60

5.2. TIME SERIES DATA STRUCTURES

The epidemic protocol possesses qualities which make it good candidate for transfer of

data in networks with dynamic topology such as MANETs. Most notably, the protocol

does not assume reliable communication links. As we have presented in Section 2, the

existing epidemic protocol techniques do not provide the functionality required for transfer

of the dependence and symptom data of our dependence discovery and fault localization

methods. Hence, in this chapter we describe new type of epidemic protocol capable to

transfer such a type of data.

5.2. Time Series Data Structures

In the dependence discovery method, the occurrence of dependencies is captured by the

monitor. The monitor intercepts messages and maintains dependence data representing

occurrences of the dependencies. The monitor maintains the history of the dependencies

divided into time slots. The dependence data are stored with a sliding expiration window

such that only a limited history is maintained, using a data structure representing sliding

time slots. Entries for each time slot maintain Boolean data about whether or not a given

dependence occurred within that time slot. Each dependence is associated with a set of

those time slots, such that when the monitor detects the occurrence of a dependence, it

signi�es this by setting a 1-bit �ag in the corresponding time slot. It also records identifying

information about the source and target of the dependence. The set of the time slots is

thus representing aggregated time series of dependence occurrence events. As shown in

Figure 3.3, the set of time slots is shifting with system run-time as new time slots are

added and obsolete removed.

Similarly to the dependence discovery method, the fault localization method uses a set of

distributed monitors. The monitors are deployed in service components (e.g., in a service

container) and are responsible for extracting the symptoms of service failures from system

logs. In the fault localization method, the symptoms of faults extracted from logs are

classi�ed into several failure modes (such as send failure or software failure). The set of

various symptoms of one failure mode can be represented as a single time series of events

same as the time series of dependence occurrences. The failure mode's time series can be

thus aggregated into single set of time slots same as the dependence occurrence data.

The distributed data harvesting method uses the time slot data structure to transfer the

aggregated time series data between nodes. The advantage of using the time slots is the

e�ciency of the data storage and transfer. A time slot requires only one bit to represent

61

CHAPTER 5. DISTRIBUTED DATA HARVESTING

any number of events occurring within the time slot period. However, the negative side

e�ect is certain loss of precision due to the aggregation of the data leading to a higher rate

of false positives. The size of the time slot is thus controlling the rate of false positives as

well as it a�ects the network overhead caused by transferring the data.

5.3. System Architecture

The goal of our distributed data harvesting method is to transfer data between nodes which

cannot communicate directly on end-to-end paths. The method uses set of distributed syn-

chronization agents, as illustrated in Figure 5.1. The synchronization agents are deployed

on network nodes and are responsible for synchronization of data in epidemic fashion (i.e.

by gossiping) with neighbouring nodes and for maintaining backups of received data. The

agents pass on local dependence and symptom data to its neighbours, maintain backups

of data received from other agents and pass on data received from other agents. Thus

creating network wide data synchronization overlay. The dependence discovery and the

fault localization methods use the local backup stores instead of to request dependence or

symptom data on demand.

5.4. Data Synchronization Algorithm

The distributed data harvesting method employs a synchronization algorithm to propagate

the data throughout the network. The synchronization algorithm is shown in Figure 5.2

and consists of the following high-level steps:

1. Synchronization cycle. On each node, the data synchronization is executed repeatedly

in cycles. In each cycle, all data synchronization steps are executed. In the the

Figure 5.2 the cycle starts with the �Start synchronization cycle� and ends with the

�Wait till next cycle�.

2. Peer selection. First step of the synchronization cycle is to select peer to which data

will be sent. The algorithm uses certain criteria in selection of the peers, in order

to maintain high success rate of sending the data over unreliable links as well as to

maintain randomness in the selection process which is an important aspect of e�cient

data dispersion.

62

5.4. DATA SYNCHRONIZATION ALGORITHM

Figure 5.1.: Architecture of distributed data harvesting

3. Calculation of dataset to transfer. For each peer, dataset to be sent is calculated

based on changes in the data since the last successful synchronization with the peer.

4. Send dataset. The dataset is stored into a space e�cient data structure and sent over

the network to the peer.

5. Update last synchronization timestamp. The network links are unreliable and re-

ception of the dataset by the peer is not guaranteed. Therefore, for each peer the

algorithm maintains information about which data were already successfully sent.

Hence, in next round only new changes (since the last successful synchronization)

are send to the peer.

In the following sections, we describe the steps of the synchronizaiton cycle in detail.

63

CHAPTER 5. DISTRIBUTED DATA HARVESTING

Figure 5.2.: The data synchronization algorithm

5.4.1. Peer selection

The goal of the peer selection is to ensure the even dispersion of the data across the

network in a simple yet e�ective manner. To this goal, we use a random, memory-less

peer selection process, i.e., the peers are selected randomly by each agent regardless of to

whom and when the data were sent before. The random selection is employed because, in

mobile networks, it is impractical to maintain a structured overlay topology to disseminate

information across the network; such a random strategy has been proven e�ective for

information dissemination in dynamic networks [44]. Furthermore, it is a memory-less

process since, when data are disseminated in a fully distributed manner, keeping track of

who has received which piece of data in the network is very costly (if not impossible),

particularly in dynamic networks like MANETs.

Speci�cally, at the beginning of each synchronization cycle, each agent �rst determines

a candidate set of agents for the targets of the data synchronization in that cycle. The

candidate set is determined such that it contains those with high probability of successful

data transfer. In MANETs, as the hop-distance between two nodes increases in the network,

64

5.4. DATA SYNCHRONIZATION ALGORITHM

the packet delivery ratio between those nodes decreases dramatically. Hence, we use the

hop distance, which can be conveniently obtained from the local routing table, as the

criteria for selecting the candidate set, i.e., a peer agent is put in the candidate set if the

hop distance from the source is within a certain threshold (we use 1-hop threshold in our

experimental results). Once the candidate set is determined, then a random subset of

nodes from the candidates is selected as the actual peers to be sent the data by the source

agent. The number of the peers selected is bounded by a con�guraton parameter.

The selection mechanism is illustrated in Figures 5.3 a and b. In this example, the

distance threshold for nodes to be included in the candidate set is set to 1 hop. The upper

bound of the number of peers is set to 2.

In the �rst cycle shown in Figure 5.3a, the candidate set will contain all nodes directly

reachable from the center node. The direct reachability is shown with the dashed circle.

The candidate set will thus contain nodes 1,2,3,4. From this candidate set 2 peers 1,2 are

randomly selected. In the next synchronization cycle shown in Figure 5.3b, the positions

of the nodes changed and now the candidate set contains nodes 2,3,7,5,8 and the randomly

selected 2 peers are 3,8. The changing topology and the random selection process ensure

that the peers are selected randomly.

Appendix A.6 provides example pseudocode of the peer selection algorithm.

(a) (b)

Figure 5.3.: Selection of peer in two subsequent synchronization cycles. First cycle (a) and
subsequent second cycle (b)

65

CHAPTER 5. DISTRIBUTED DATA HARVESTING

5.4.2. Calculation of dataset

For each peer in synchronization cycle, a dataset containing all data to be sent to the peer

is calculated individually. The dataset contains only incremental data changes since the

last successful synchronization with the peer. The dataset includes both the data from the

local monitors as well as the data from the locally maintained backup store. Unlike data

from the local monitors, which are available up to date, the backup data originating at

the other nodes are received with some delay. The agent therefore maintains information

about the latest successfully synchronized time slot of each time series with the peer. In

this way, when the dataset is calculated the agent can determine changes in the data since

the last successful synchronization with given peer.

The time slots to be included in the dataset are selected based on the following criteria:

1. The set of time slots of each time series (representing either single dependence or

failure mode) is examined individually.

2. Included are only time slots, which were not yet successfully sent to the peer. This is

ensured by recording timestamp of the latest time slot of each time series successfully

sent to the peer. Thus in each synchronization cycle are included only incremental

changes since latest previous successful synchronization.

3. The included time slots must be no older than certain maximum limit. The limit

is an con�guration parameter of the method. When �rst synchronization between

pair of nodes occurs, this parameter limits the inclusion to only relevant recent data.

Moreover, due to dynamic network topology as well as due to the randomness of

the peer selection, the period of time between subsequent synchronizations of any

given pair of nodes may be long enough to lead to potential inclusion of obsolete

data. Hence, this parameter ensures than only recent data are propagated across the

network. In this way, the parameter minimizes the network overhead by eliminating

obsolete data from the synchronization process.

4. Only time slots with value 1 are important to be transferred. The goal of the method

is to transfer evidence about occurrence of events. The evidence of lack of events is

not needed to be transferred since it is implied by lack of data. Thus, only time slots

with value 1 are targeted for the transfer. Nevertheless, not all time slots with value 0

can be eliminated from the transferred dataset; instead, the transferred data include

all time slots with value 1 and time slots with value 0 occurring between them in order

66

5.4. DATA SYNCHRONIZATION ALGORITHM

to allow correct reconstruction of the set of time slots at the peer. This mechanism

is a from of data compression and further decreases network overhead by minimizing

the amount of data to transfer.

In Figures 5.4 a and b is ilustrated example of selection of time slots to include in the

dataset. In the Figure 5.4a is a set of 5 dependencies, each consisting of set of time slots.

The grey color marks time slots which were successfully sent to the peer in some of the

previous synchronization cycles. The timing of the previous synchronization cycles is shown

as a horizontal line across the set of time slots depicting the time of the synchronization

relatively to the start and end of the time slots.

In the Figure 5.4b is shown the set of dependencies and time slots extracted from the

Figure 5.4a based on the selection criteria. The dependence D1 has three time slots, �rst

and last with values 1 (X) and the middle time slot with value 0 is included in order to

allow the correct set reconstruction. The dependence D2 contains slots from which some are

older than the last synchronization cycle. This is because the data, although representing

events older then when the synchronization cycle occurred, were received from some other

node later after the synchronization cycle. The dependence D3 consists only of slots older

than the last synchronization cycle. The dependence D4 does not contain any new time

slots with value 1 and thus no data are transferred. The dependence D5 does not contain

any time slots to transfer because the data not synchronized yet are already older than

the con�gured maximum limit for the data to transfer and thus are eliminated from the

synchronization.

Appendix A.7 provides example pseudocode of the dataset calculation algorithm.

67

CHAPTER 5. DISTRIBUTED DATA HARVESTING

(a)

(b)

Figure 5.4.: Selection of time slots to include in the dataset to transfer. Locally stored

data (a) and extracted dataset to transfer (b)

68

5.4. DATA SYNCHRONIZATION ALGORITHM

For each time series of the transferred data, the dataset contains two pieces of informa-

tion. First is a timestamp of latest time slot of the transferred set of time slots. Second is

a series of bits representing values of the time slots. These two pieces of information allow

the peer to reconstruct the set of the time slots and to merge it with the backup store.

5.4.3. Transfer of dataset

After the dataset is calculated, it is sent to the peer. The dataset is transferred in a

single message or transaction. Since the network links are unreliable, the agent waits for

response message con�rming successful reception of the data. Only when con�rmation

of the successful reception is received, the agent updates the timestamps of the latest

successfully synchronized time slots with the peer.

If network failure prevents sending the dataset or if the con�rmation is not received on

time and the response timeout expires, the agent stops waiting for the response and does

not update the timestamps of the latest successfully synchronized time slots. Consequently,

in the next synchronization cycle with the peer, the data, which were not successfully sent

will be included in the new dataset and sent again.

The response timeout period of the con�rmation is a parameter of the method. The

response timeout should not be longer than the frequency of the synchronization cycle. If

so, it may lead to race condition and overwriting of the timestamps of the latest successfully

synchronized time slots. The agent may then repeatedly attempt to send data which could

have been already received and thus will increase the network overhead.

Appendix A.8 provides example pseudocode of the dataset transfer algorithm.

5.4.4. Reception of dataset

When the agent receives the dataset, it stores the data into its local backup store. The

received data of each time series are combined with the corresponding locally stored time

series backup data. The data are combined such that all received time slots with value 1

are copied into a corresponding time slot. The time slots with value 0 are disregarded as

explained above in Secion 5.4.2. The backup store data structure maintains all data for

limited period of time. Obsolete data are regularly pruned. In this way the amount of

data stored is limited to minimum.

69

CHAPTER 5. DISTRIBUTED DATA HARVESTING

5.4.5. Synchronization cycle

The synchronization cycle is repeatedly started by the agent. The start of one cycle does

not depend on the time of end of the previous cycle. Thus even though each cycle has

certain duration of time the agent will start all cycles in precise time intervals. In this way

the agent ensures that the data are dispersed at regular time intervals regardless of the

amount of data passed on, quality of network links and other variables which may cause

delays.

In this chapter we present our distributed data harvesting method. We begin by de-

scribing the type of data the method transfers over the network. We then describe the

architecture of the method, the synchronization algorithm and how it transfers the data

over the network.

5.5. Summary

In this chapter we have presented our distributed data harvesting method. We have de-

scribed the type of data the method transfers over the network, the architecture of the

method and the epidemic protocol which transfers the data over the network.

In Section 6.2.4 we describe the implementation of the method in Java EE.

The distributed data harvesting method is not useful in and of itself, but rather as

a mechanism of data transfer used by other methods. Thus, in Section 7.3 we evaluate

the method in conjunction with the dependence discovery method, and in Section 7.4 we

evaluate the method in conjunction with the fault localization method. In particular, we

will examine the capacity of the method to transfer data from nodes hosting monitors

to nodes performing the dependence discovery and fault localization, and we investigate

how the aggregation of the dependence and symptom data impacts accuracy of the two

methods.

70

6. Experimental Toolset

In this chapter we present the experimental tools we used in the evaluation of our methods.

For an initial evaluation of the dependence discovery and fault localization methods we have

developed extension of a standard network simulator and analyzed the output in a database

engine. In later and more advanced series of experiments, we have implemented all of our

methods in Java language and Java EE platform, and used accurate emulation toolset

to perform the experiments. In what follows we describe the design of the service-based

system simulator used in the early evaluation, followed by description of the emulation

tools and architecture of the implementation of our methods used in the later evaluation.

6.1. Service-based Systems Simulator

For an evaluation of our dependence discovery and fault localization methods, simulator

which can closely replicate the behaviors of service-based systems running on MANETs

is required. However, simulation of service-based system is a di�cult task because of the

inherent complexity of the service-based systems as well as of the mobile networks. Service-

based systems consist of some number of services that interact with one another in order to

complete client requests. Each service provides a set of methods for use by other services

or clients. A method may use any number of other methods provided by other services to

carry out its functionality. Thus, services are interconnected with each other. Furthermore,

clients and services discover other services to invoke dynamically at runtime. Thus, service

interconnections are unstable, particularly in mobile networks. Clients initiate the �ow of

service requests by sending messages that request method executions, and then wait for

some response.

Existing simulation tools fall short of providing such capabilities. Packet-level network

simulators, such as NS-31 and QualNet2 provide detailed implementations of mobile, wire-

1http://www.nsnam.org/
2http://www.scalable-networks.com/products/qualnet/

71

CHAPTER 6. EXPERIMENTAL TOOLSET

less networks, but lack the ability to replicate complex behavioral aspects of service-based

systems. These aspects are addressed in high-level service simulators [57], which unfortu-

nately do not provide a means to simulate a complex network layer.

In this section we introduce our new tool for simulation of service-based systems hosted

on MANETs. With the system and behavioral models of services built on top of a packet-

based simulator, our approach allows the replication of various critical aspects, such as the

cascading �ows of messages in complex conversations, comprehensive client-driven work-

load pro�les, and the propagation of faults through services. Furthermore, the simulator

provides generic and easily extended models that can be used to capture modern service-

based platforms, such as SOA, operating in MANET or hybrid networks.

6.1.1. Architecture

The simulator engine is built on top of the discrete event network simulator NS-3, ex-

tended with additional higher-level abstraction layers and components for simulating ser-

vice entities and their interactions. NS-3 provides a comprehensive network simulation

with detailed implementation of low-level network protocols. However, NS-3 provides only

a simple mechanism for simulating the �ow of packets from point to point. At the high-

est abstraction level, NS-3 provides sockets and packets as a basic network data transfer

mechanism.

Figure 6.1 illustrates the architecture of our simulator engine. The simulation engine en-

capsulates the socket layer into a messaging layer that provides the abstraction of messages

exchanged between end-points. The messaging layer is then encapsulated into a service

layer that provides abstractions for entities (services and clients) and their interconnection

models. Finally, the simulator provides methods for engineers to con�gure the simulation

scenarios and their parameters, to run the simulation, and to generate output traces. In

what follows, we describe these layers, models and the current implementation.

6.1.2. Messaging layer

The messaging layer provides abstractions for exchange of messages between end-points

used by service-based system entities. The messaging layer is built directly on top of the

socket layer of NS-3.

The abstractions provided by NS-3 for transferring data over the network are that of

sockets and packets. The NS-3 socket is an asynchronous implementation of BSD socket

72

6.1. SERVICE-BASED SYSTEMS SIMULATOR

Figure 6.1.: Architecture of the NS-3 based service-based system simulator

API. The sockets are used to send and receive data in NS-3 packets. The NS-3 packet is

transferred over the network in series of network packets. The NS-3 provides suit of socket

types including one for each transport layer protocol implemented in NS-3 (i.e. TCP and

UDP). The messaging layer encapsulates the sockets of the speci�c transport protocol and

provides abstractions for exchange of messages.

Figure 6.2 illustrates the high level structure of the messaging layer. The messaging

layer has two main objectives.

First, the messaging layer de�nes the abstractions used for exchange of messages over the

network in unicast mode. A message represents remote method invocation mechanism such

as a message in SOAP protocol. The message caries reference to the service and method to

invoke and additional identi�cation data. Additionally, the message caries certain amount

of dummy data to represent the size the message would have in a real system. The messages

are exchanged over the network between two types of end-points. A client end-point is used

to send messages and a server end-point is used to receive messages. The client-end point is

73

CHAPTER 6. EXPERIMENTAL TOOLSET

thus used by the client applications and services to send request messages to other services

and to receive response messages. Furthermore, the client-end point is also used to send

response messages from services back to clients and services. The server end-point is used

by services to listen for and to receive invocation request messages.

Figure 6.2.: Class diagram of the messaging layer

The messaging layer further introduces semantics into the message exchange. The end-

points thus support two message exchange patterns; namely the request-response pattern

and the send-only pattern. In order to support these exchange patterns the end-points

report on whether a message was successfully sent between end-points or failed (i.e. send

failure) and whether a response message was received on time or not (i.e. response timeout).

The second objective of the messaging layer is to provide implementation of the speci�c

transport protocols for exchanging messages over the dynamic networks. In our current

implementation, the messaging layer provides implementation of the UDP transport layer

protocol. The UDP is commonly used in MANET environments because it is a lightweight

stateless protocol. Thus, it allows sending data between nodes without maintaining con-

nection or other mechanisms which are problematic or ine�ective in networks with dynamic

74

6.1. SERVICE-BASED SYSTEMS SIMULATOR

topology. However, the UDP protocol is unreliable because it does not guarantee delivery of

packets or noti�cation of failure. Thus, the UDP based end-point implementation provides

additional lightweight mechanism for semi-reliable message delivery. This mechanism also

provides the necessary functionality for the end-point reporting of status of message ex-

change. The protocol uses acknowledgement messages (ACK) to verify if payload message

was successfully received.

The acknowledgement protocol works as following: an end-point will wait for certain

period of time after it sent payload message to receive ACK message. If the ACK message

is received in prede�ned period of time, the end-point will con�rm successful sending of

the payload message. However, if the ACK message was not received, the end-point will

re-send the payload message again and again wait of the ACK message. The re-send cycle

will be repeated for certain number of times. On the receiving side, as a response to

any payload message received, the end-point will automatically send ACK message. The

acknowledgement protocol is illustrated in Figure 6.3 for client end-point and Figure 6.4

for server end-point. The client end-point is used for either to send request message and

wait for response or to send single message without response.

Due to peculiarities of the dynamic networks, the messages get frequently lost between

nodes. Hence, using the acknowledgement and re-send mechanism may lead to repeated

sending and receiving of the same messages. To eliminate consequences of such a condi-

tion, the UDP end-points use two strategies. First, whenever end-point receives payload

message, it always sends back ACK message to con�rm reception of the payload message

(even if the message was already received before). Second, the end-point uses mechanism

of dropping redundant payload messages already received i.e. preventing redundant invo-

cation of services. This is an important feature ensuring integrity of the computations,

required in environment built on top of non-reliable transport protocols.

75

CHAPTER 6. EXPERIMENTAL TOOLSET

Figure 6.3.: State-machine diagram of the UDP client end-point protocol

76

6.1. SERVICE-BASED SYSTEMS SIMULATOR

Figure 6.4.: State-machine disgram of the UDP server end-point protocol

6.1.3. Service layer

The service layer of the simulator consists of several abstraction models: entities, intercon-

nections, workloads, faults, messages and deployment.

(1) Entity model: Entity models provide the building blocks of the service-based system

simulation.

• Clients represent applications used by end users. Each client behaves as an au-

tonomous entity that contacts a set of services at times (random or deterministic)

con�gured by the engineer.

• Contracts represent de�nitions of interfaces of services. Each contract de�nes an

interface of a type of service as a set of methods. A contract is provided by (i.e.

implemented by) one or more services.

• Services represent autonomous self-contained functional units. Each service adheres

to (i.e. implements) one contract and has a set of methods that are available to be

used by clients and other services. Each method contains an abstract de�nition of

its computation consisting of delays to simulate processing time, and a set of steps

that send requests to other services.

77

CHAPTER 6. EXPERIMENTAL TOOLSET

In the Figure 6.5 are illustrated the con�guration elements of the service-based system

entities. Furthermore, in the Figure 6.6 are shown the runtime elements of the service-

based system entities. In the Table 6.1 are provided typical values used in con�guration of

the Entity model in our experiments.

Figure 6.5.: Class diagram of the con�guration elements of the service-based system entities

78

6.1. SERVICE-BASED SYSTEMS SIMULATOR

Figure 6.6.: Class diagram of the runtime elements of the service-based system entities

(2) Interconnection model: The interconnection model de�nes the methods in other ser-

vice contracts with which each entity in the service-based system interacts (i.e., sends

service requests and receives responses). Two types of interconnections are de�ned: client-

to-service, and service-to-service. The simulator provides probabilistic as well as determin-

istic generators of the service-based system interconnections. The probabilistic generator

creates a randomized con�guration with prede�ned connection probabilities. The deter-

ministic generator allows the engineer to have control over the speci�c interactions in the

system.

The interconnection model also de�nes the service discovery mechanism used during the

system runtime. The service discovery mechanism provides functionality to the clients

and services to discover service instances to send messages to during the system runtime.

It is an essential component in service-based system where interconnections are de�ned

between entities and contracts (i.e. types of services) but not services themselves. Thus,

during the system runtime, the entities have to discover which actual service instance

they should interact with based on the contract the service instance provides. This task

79

CHAPTER 6. EXPERIMENTAL TOOLSET

is particularly important in MANETs with the dynamic topology continuously altering

connectivity between nodes and consequently the availability of services.

In general, before every request, service-based system entity will query a service registry

for a service instance to send the request to. The service registry will select the most

appropriate service instance based on its availability or some other metric. The simulator

provides three types of service discovery mechanisms; based on physical distance, based on

metric from routing tables (i.e. hop distance) and based on �xed con�guration. Figure 6.7

illustrates the service discovery components.

The interconnection model allows con�guring speci�c system topologies. For example, a

frequently used topology in the service-based systems is a 2-tiered topology. In this type of

system, the �rst tier consists of the connections between the clients and a set of �front-end�

services, while the second tier consists of the connections between the services themselves.

In our experiments we make frequently use of the speci�c service topologies.

In the Table 6.1 are provided typical values used in con�guration of the Interconnection

model in our experiments. In this example con�guration, the interconnections are de�ned

probabilistically.

Figure 6.7.: Class diagram of the service discovery components of the service-based system

(3) Message model : There are three types of messages exchanged between entities: re-

quests, responses, and exceptions. Request messages are used to invoke methods in other

services, while response messages are sent by services back to the requesting entity upon

80

6.1. SERVICE-BASED SYSTEMS SIMULATOR

the completion of the requested method. Exception messages are used to propagate fault

symptoms caused by network or service faults. The �ow of messages exchanged between

services during the processing of a client request is called a conversation. In the simula-

tor, all messages contain information about the conversation to which they belong. The

conversation information is designed to replicate the behavior of WS-* standards such as

WS-Addressing.3

(4) Fault model : Services running on MANETs are exposed to potentially frequent faults

in the network due to network instability and in the services themselves due to resource

constraints (and bugs). While network failures are immediately captured by the network

simulation layer, we must include a service fault model that de�nes the failure behavior of

the services.

The network faults are con�gured directly within con�guration of the physical network.

In MANETs, the essential con�guration of the network includes the propagation loss model

which de�nes the quality of wireless links between nodes. The simulator provides series of

deterministic and probabilistic service fault models as well as the capability to con�gure

composite fault model behavior. The fault models are injected into the services and into

the service methods to allow �ne grained con�guration of the fault behavior. Figure 6.8

illustrates the components of the fault model.

Figure 6.8.: Class diagram of the fault model components of the service-based system

3http://www.w3.org/Submission/ws-addressing/

81

CHAPTER 6. EXPERIMENTAL TOOLSET

In the Table 6.1 are provided typical values used in con�guration of the Fault model in

our experiments. In this example con�guration, we use a probabilistic On/O� fault model

to fail the services.

(5)Workload model : In service-based systems the workload is initiated by clients sending

requests to services. The workload model de�nes the rates of such requests. In our current

implementation, clients repeatedly, and at pre-con�gured random times select one method

to request out of the set of available service methods, and then waits for a response.

In Figure 6.9 is shown client workload algorithm. The simulator provides two techniques

to select a method to send the request to. The method is either selected randomly from

set of available methods or the method is selected based on individual probability of each

method to be invoked. For each client, the set of the available service methods is de�ned

by the interconnection model.

Upon reception of a request, the requested service method is invoked and depending on

the con�guration of interconnections, further messages will be sent to other services. In

Figure 6.10 is shown the processing of a request by a service.

Figure 6.9.: State-machine of the client workload algorithm

82

6.1. SERVICE-BASED SYSTEMS SIMULATOR

Figure 6.10.: State-machine of the service workload algorithm

83

CHAPTER 6. EXPERIMENTAL TOOLSET

In the Table 6.1 are provided typical values used in con�guration of the Workload model

in our experiments. In section Workload model - client are de�ned parameters of client

request rate and the selection of the service method to send request to. In sectionWorkload

model - service are de�ned parameters of delays representing con�guration of processing

of requests by services.

(6) Deployment model: The deployment model speci�es the mapping between physi-

cal network nodes and the instances of entities of the service-based system (i.e. clients

and services). The simulator provides probabilistic as well as deterministic deployment

methods.

In the Table 6.1 are provided typical values used in con�guration of the Deployment

model in our experiments. In this example, on each node is deployed one client and the

services are distributed randomly across all of the nodes.

6.1.4. Simulation scenarios

The simulation scenarios are created by a con�guration generator that creates scenario

con�gurations based on a set of parameters of system characteristics. In addition to the

network parameters con�gured through NS-3's con�guration (e.g., number of nodes, mo-

bility, wireless link characteristics, etc.), the services, clients, and their interactions and

behaviors, including how and where the services are hosted, are con�gured for the above

models. During the simulation run, the simulator records events, such as service message

exchanges and fault symptoms, into trace �les for analysis. Figure 6.11 illustrates the

con�guration and runtime components of the simulator.

84

6.1. SERVICE-BASED SYSTEMS SIMULATOR

Figure 6.11.: Class diagram of the simulator con�guration and runtime components

In the Table 6.1 are provided typical values used in con�guration of our experiments.

Aside of con�guration parameters of the service layer models, the table also contains con-

�guration parameters of NS-3 de�ning the underlying network layer.

85

CHAPTER 6. EXPERIMENTAL TOOLSET

Entity model

Number of clients 50

Number of contracts 30

Number of methods in contract 2

Number of services per contract 5

Message model

Request message size 500-1500 bytes

Response message size 500-1500 bytes

Response timeout 60 000 ms

End-point - transport protocol UDP

ACK timeout 1000 ms

Message retransmission limit 5x

Interconnection model

Service topology type 2-tier

Number of front-end contracts 5

Client to front-end contract method connectivity probability 0.5

Service method to contract method connectivity probability 0.01 - 0.1

Service discovery method hop count

Workload model - client

Request rate 5000-15000 ms

Next request after conversation fails 5000 ms

Step selection method based on step probability

Step invocation probability 0.01 to 1

Workload model - service

Method start delay 20

Method end delay 20

Method step delay 10

Method error delay 10

Fault model

Service fault model OnO�Rate

Deployment model

Client to node 1 on 1

Service to node random

Network layer

Number of nodes 50

Spatial bounds 75m x 75m

Mobility speed 10 m/s

Mobility model RandomDirection2dMobility

Propagation delay model ConstantSpeedPropagationDelay

Propagation loss model LogDistancePropagationLoss/α3

WiFi standard 80211b

WiFi rate 11Mbps

Routing protocol OLSR and Ipv4StaticRouting

Protocol stack UDP/IPv4

Table 6.1.: Main simulator con�guration parameters of a scenario
86

6.1. SERVICE-BASED SYSTEMS SIMULATOR

6.1.5. Methodology of evaluation of dependence discovery method

The evaluation of our dependence discovery method is based on the simulation framework

for service-based systems operated in MANETs. As shown in Figure 6.12, the framework

�rst generates message and fault traces according to various simulation parameters and

scenario con�gurations. These traces are stored in a database to hold the results of the

simulation runs. The dependence discovery is prototyped as a query over this database.

In addition, we derive the �ground truth� used in Section 7.1 to evaluate our method.

Figure 6.12.: Experimental framework used in evaluation of the dependence discovery

method

The database used for prototyping of the dependence discovery is a MS SQL Server

database engine. The evaluation of the dependence discovery method is implemented as

a series of stored procedures which analyze records from the output trace �les produced

by the simulation engine. In analysis of a scenario, the output trace �les are loaded into

the database and ground truth of all conversations is calculated from complete record of

messages exchanged between all entities within the service-based system. In next step, the

prototype of the dependence discovery calculates dependence graphs for the conversations

of interest. Finally, the dependence graphs are compared against the ground truth to

calculate metrics used to evaluate the dependence discovery method.

Without loss of generality, in the evaluation of the dependence discovery method, we

make the assumption that faults occur only at the network level, and that the services

themselves are error free. From an observational point of view, any non-Byzantine service-

level fault can be simulated by a corresponding network-level fault (e.g., whether the

absence of a response message is due to a service fault or a network fault is indistinguishable

87

CHAPTER 6. EXPERIMENTAL TOOLSET

to a service waiting for that response). Therefore, this assumption does not materially

impact our results, but does allow us to concentrate on simulating the e�ect of the network

on service interactions.

6.1.6. Methodology of evaluation of fault localization method

The evaluation of the fault localization method is built upon the evaluation of the depen-

dence discovery method. As shown in Figure 6.13, same as in the dependence discovery

evaluation, the engine �rst generates message and fault traces according to various sim-

ulation parameters and scenario con�gurations. These traces are stored in a database to

hold the results of the simulation runs. Initially, dependence graphs are constructed by

the dependence discovery method. Subsequently, upon the dependence graphs, the causal-

ity analysis that contributes to an FPM, and the timing-based ranking are prototyped as

queries over the database. In addition, we derive the root-cause �ground truth� used in

Section 7.2 to evaluate our method.

Figure 6.13.: Experimental framework used in evaluation of the fault localization method

For the Bayesian-network ranking we use MATLAB4 with the Bayes Net Toolbox.5 The

Bayes Net Toolbox is widely used tool in experiments concerning Bayesian-networks and

4http://www.mathworks.com/products/matlab/
5http://code.google.com/p/bnt/

88

6.1. SERVICE-BASED SYSTEMS SIMULATOR

it provides e�cient implementation of the junction-tree algorithm used in the BNet rank-

ing algorithm described in Section 4. The failure propagation probabilities modeled in

the BNet ranking algorithm are implemented as a transformation of the noisy-OR gate

distribution model of the conditional probability distribution into a deterministic condi-

tional probability tables. In this way, the inference is spatially as well as computationally

e�cient.

89

CHAPTER 6. EXPERIMENTAL TOOLSET

6.2. Service-based Systems Emulator

The NS-3 network simulator, underpinning the service-based system simulator described

above in the Section 6.1, uses approximations of many aspects of the network behavior,

components and protocols, and thus is missing some of the important network charac-

teristics and details. The Distributed Data Harvesting method addresses problems of

connectivity between nodes in MANETs and consequently its performance is sensitive

to the details of the network environment. However, the connectivity between nodes in

MANETs depends on combination of several network aspects, each playing important part

in the overall outcome. Hence, experimental tool closely replicating the peculiarities of

the MANETs is required in order to provide accurate environment for evaluation of the

method.

In this section we describe the experimental tools we have used to evaluate the Dis-

tributed Data Harvesting method in conjunction with the dependence discovery and fault

localization methods. The experimental tools used provide accurate and realistic envi-

ronment for hosting real world service-based systems components such as the Java EE

platform. In order to evaluate our methods, we have implemented the methods in Java EE

and we have designed and implemented generic web services system which we use in our

experiments.

6.2.1. Architecture

For evaluation of the Distributed Data Harvesting method, we have opted for combination

of two tools; Common Open Research Emulator (CORE) 6 and Extendable Mobile Ad-hoc

Network Emulator (EMANE)7.

The CORE is a virtualization tool for emulation of computer networks [3, 2]. The CORE

runs on Linux platform and uses native Linux mechanism of process isolation (namespace

isolation) to create low overhead virtual machines. Within the CORE virtual machines

is provided standard Linux operating system environment with all of the native system

functionalities. The virtual machines are connected to the network provided and managed

by the EMANE.

The EMANE provides real-time modeling of link and physical layer connectivity so that

network protocol and application software can be experimentally subjected to the same

6http://cs.itd.nrl.navy.mil/work/core/index.php
7http://cs.itd.nrl.navy.mil/work/emane/index.php

90

6.2. SERVICE-BASED SYSTEMS EMULATOR

conditions that are expected to occur in real MANETs. In the EMANE, only the two

lowest levels of the OSI model stack are emulated (i.e. the physical layer and the data

link layer) and on all layers above are used real network protocols provided by the Linux

operating system.

The combination of these two tools provides high �delity real-time emulation environ-

ment for evaluation of distributed systems. The setup and integration of the CORE and

EMANE is a complex matter discussed by Ahrenholz et al. [4].

The emulation tools provide bare Linux operating system environment of nodes con-

nected into the MANET network. Within the Linux environment we have built two sets

of components, a generic web service system and an implementation of our methods. Fig-

ure 6.14 illustrates the architecture of our emulator toolset.

The generic web services system is built on Java platform. As an application platform

we use reference implementation of Java EE, Glass�sh 8. The Glass�sh is open-source

software and provides full implementation of the Java application server environment. The

Glass�sh server is a container within which additional server components are installed.

For the hosting of the web services, we use Glass�sh Metro 9. The Metro is a reference

implementation of a standard Java web services stack.

The generic web services system is composed of two con�gurable components, a generic

client application and a generic web service. The client and the web service are basic build-

ing blocks of any web services system. The functionality provided by these components

is same as the functionality of the service-based system described in Section 6.1. Thus,

they contain implementation of the entity, interconnection, fault, messaging, workload and

deployment models. The system also stores into trace �les detailed record of activities and

events of the clients and web services. From this record, ground truth of dependencies and

faults can be extracted in posterior system analysis.

8https://glassfish.java.net/
9https://metro.java.net/

91

CHAPTER 6. EXPERIMENTAL TOOLSET

Figure 6.14.: Architecture of the CORE and EMANE based service-based system emulator

6.2.2. Implementation of the dependence discovery

The dependence discovery method is implemented in several physical components deployed

on the mobile nodes. Figure 6.15 illustrates the architecture of the implementation.

Figure 6.15.: Architecture of the dependence discovery implementation in Java EE

92

6.2. SERVICE-BASED SYSTEMS EMULATOR

The monitor is implemented as a Tube of the Metro web services framework. The Tube

is a component which is inserted into a chain of tubes which intercept and process incoming

and outgoing messages of the web services and client applications. Each tube is responsible

for some aspect of processing of messages between web service and network. Figure 6.16

illustrated the architecture of the monitor tube and its placement within the chain of

other tubes. The monitor extracts the dependence �elds from the intercepted messages

and records occurrences of dependencies into a storage data structure located in a shared

process memory.

The dependence data are made available for harvesting by a monitor web service. The

monitor web service upon request for dependencies of a service inspects the dependence

data structure located in the shared process memory and responds with list of outgoing

dependencies of the service.

The dependence discovery element is implemented as a Java library. The element is

used by the generic client to discover dependence graphs for conversations initiated by

the client. The element uses dynamic web service end-point binding to send messages to

the monitor web service hosted on the mobile nodes. The element harvests data from the

monitor web services and builds dependence graphs which are stored into a trace �le for

further analysis.

The trace �les of the generic system and of the dependence discovery produced during

the scenario runtime are loaded into a database for further analysis. The analysis of the

dependence discovery is prototyped as a query over this database.

93

CHAPTER 6. EXPERIMENTAL TOOLSET

Figure 6.16.: Architecture of the dependence discovery monitor implemented as a tube in

the Glass�sh Metro and Java EE

6.2.3. Implementation of the fault localization

The implementation of the fault localization method is built upon the components of the

dependence discovery method. Figure 6.17 illustrates the architecture of the implementa-

tion.

The generic web services report symptoms of faults into a standard Java EE server log.

The symptom monitor implemented as a Java library upon request accesses the log, parses

the log records and extracts the symptoms of relevant faults. The monitor web service

is extended to provide the symptom data along the dependence data on demand. In this

way, the network overhead is minimized.

Upon request, the dependence discovery element harvests dependencies and symptom

data from the monitor web services and builds dependence graph. The dependence graph

is annotated with the symptom data. The annotated dependence graphs are stored into

94

6.2. SERVICE-BASED SYSTEMS EMULATOR

a trace �les for further fault localization analysis. After the experiment ends, the trace

�les are loaded into a database to hold the results of the simulation runs. Similarly as in

analysis of the service-based system simulator, the fault localization is implemented as a

query over the database. For the Bayesian-network ranking we use the MATLAB with the

Bayes Net Toolbox.

Figure 6.17.: Architecture of the fault localization implementation in the Java EE

6.2.4. Implementation of the distributed data harvesting

The distributed data harvesting method replaces the direct data harvesting mechanism and

introduces new components which deliver the data synchronization functionality. The data

synchronization functionality is divided between synchronization agent (SA) and synchro-

nization web service (sws). Figure 6.18 illustrates the architecture of the implementation.

The SWS is a passive component implemented as a Java web service which resides within

the Java EE server and exposes its functionality to the SA. The SWS receives data from

SAs hosted on other nodes, maintains backup store and provides data to the locally hosted

SA. The data received from other nodes are merged and stored into the backup store. Upon

request for data from the local SA, the SWS provides combined data from the backup store

(data received from other nodes) as well as data from the local monitors.

The SA is an active component implemented as a standard Java application running as

an independent process on the mobile nodes. The SA is executing repeatedly the synchro-

nization of data with other nodes. For each target node, the SA maintains information

95

CHAPTER 6. EXPERIMENTAL TOOLSET

about the last successful synchronization and with this information queries the local SWS

for data to be sent to neighbor nodes. The SA uses dynamic web service end-point binding

to send messages to the SWS hosted on the mobile nodes.

Both of the components also record information about their activities into a trace �les

for analysis of their behavior and performance (such as analysis of the network overhead,

success rate of synchronization attempts and others).

Figure 6.18.: Architecture of the Distributed Data Harvesting implementation in the Java

EE

6.3. Summary

In Section 6.1 we have introduced our simulator of service-based systems hosted in

MANETs. The simulator is built as an extension of a standard packet based network

simulator NS-3. The simulator thus closely replicates the complex network behavior as

well as the service-based system entities and models. We have used the simulator for eval-

uation of our dependence discovery and fault localization methods. The results of these

experiments are presented in Sections 7.1 and 7.2 in the Evaluation chapter.

To our knowledge, there is currently no other comparable tool providing functionality

of network and service layers simulation. Therefore, we believe that the simulator can be

valuable tool for many other researchers as well. Aside of the work presented in this thesis,

96

6.3. SUMMARY

we have used the simulator in analysis of behavior of hybrid wireless networks presented

in [62].

In Section 6.2 we have presented the experimental toolset we have used for evaluation of

the distributed data harvesting method used in conjunction with the dependence discovery

and fault localization methods. The toolset provides realistic emulation environment for

hosting real world system components. In order to evaluate the methods, we have designed

and implemented generic web service system, and implemented all of our methods in Java

EE. The results of experiments based on these tools and components are presented in

Sections 7.3 and 7.4 in the Evaluation chapter.

97

7. Evaluation

In this chapter we present an evaluation of our methods. In the �rst section we provide

evaluation of the Dependence Discovery method. This evaluation provides understanding

of how the various system properties impact the accuracy of the discovered DGs. In the

following section, we present evaluation of the Fault Localization method. We examine the

precision of the two ranking algorithms and show how the accuracy of DGs impacts the

precision of the ranking algorithms. In the next two sections, we evaluate the two methods

in conjunction with the Distributed Data Harvesting method applied in environment with

limited reachability between network nodes. Hence, in each section we built upon �ndings

in the previous sections. At the end of each section we provide summary of the main

�nding of the section.

7.1. Evaluation of Dependence Discovery

In our dependence discovery method, dependence graphs are constructed on demand by

a discovery element. The graphs are rooted at a given client, beginning at a given time

instant, and for some time window. The data provided to the discovery element include

both relevant and irrelevant information, since any given monitor will provide data about

all interactions traversing its associated service during the time window. These interactions

involve not just those of the given conversation of interest, but also those of others.

Under such circumstances it would be di�cult for a dependence discovery method to

provide a perfect result. Moreover, the method by design loses information (e.g., monitors

retain only aggregate data, not individual messages) and is sensitive to the dynamics of

the operational environment.

Thus, the evaluation questions of interest center mainly on the accuracy of the resulting

dependence graph. In particular, we examine the following factors that should in�uence

accuracy in this setting and we look at few additional aspects of our method:

1. Time window size: The size of the time window is the main parameter of the

98

7.1. EVALUATION OF DEPENDENCE DISCOVERY

method. With a short time window we may not observe some critical dependencies

and with a long time window we may include obsolete and irrelevant dependencies.

We explore the impact of the size of the time window on the ratios of false positive

and true positive dependencies in the discovered DG.

2. Degree of service connectivity: We examine the impact of the degree of service

connectivity, which represents the complexity of a service-based system. The higher

the degree of interconnection between the services, the larger the number of services

and overlap among conversations, and the more noise in the dependence data.

3. Dynamics of service interconnection: We examine the sensitivity of the method

to a range of rates at which service dependencies change as services adapt to the

network dynamics. We would expect that the higher the rate of change of the service

dependencies, the more irrelevant dependencies will be included in the discovered

dependence graph.

4. Client workload rate: We examine the sensitivity of the method to a range of rates

at which clients issue service requests. We would expect that as the rate increases,

the higher the overlap among conversations, and the more noise in the dependence

data.

5. Mobility speed: We examine the sensitivity of the method to a range of mobility

speeds of the network nodes. We would expect that as the mobility speed increases,

the method might have di�culty maintaining consistent results.

6. Inter vs. intra dependence: Throughout the experiments, we explore whether

the intra-dependence based discovery produces more accurate results when compared

to the inter-dependence based discovery.

7. Comparison with other method: We compare our method to other methods.

8. Data storage and transfer requirements: We examine the data storage and data

transfer requirements of our method.

Notice that the degree of service connectivity, the dynamics of service interconnections

and the client workload rate are application properties, the mobility speed is an operating

environment property, and the time window size is a tuning parameter for the method.

99

CHAPTER 7. EVALUATION

In our experiments we envision military collaborative application providing complex ser-

vice environment to support mission activities. We consider an army unit of 50 personnel

which operates in densely populated area among buildings either on the ground or in vehi-

cles. Each member is equipped with mobile computer device providing mission applications

which are consuming range of services hosted either locally or on other devices in the net-

work. The service topologies range from simple services accumulating information from all

clients (e.g.: immediate unit status service) occasionally using some other services to com-

plex services using several other services to complete each client request (e.g.: operational

command services) which require services such as map, positioning, status of unit members,

and others. Other complex composite services use multiple sensors carried out by members

of the unit. Topology of this type of service composition is explored in [27]. Because of the

wide range of possible service topologies, we explore various degree of service connectivity

(i.e. complexity of service interconnections) later in detail in ours experiments.

7.1.1. Evaluation metrics and parameters

Our experiments focus on a particular hypothetical conversation C. A good result for our

method would be that it can discover as many dependencies of C as possible, while not

including the dependencies of other conversations. We use two metrics to characterize the

quality of our results, namely the ratio of true positives (TP) and the ratio of false positives

(FP), de�ned as follows:

TP ratio =
|D(C)

⋂
GT (C)|

|GT (C)|

FP ratio =
|D(C)−GT (C)|

|D(C)|

where D(C) is the set of discovered dependencies, GT (C) is the set of ground-truth de-

pendencies, true positives are in the intersection of these two sets, and false positives are

in the set di�erence. The TP ratio represents the fraction of discovered dependencies as

compared to the actual dependencies in the conversation, and is therefore equivalent to the

recall metric of information retrieval (taking �ground truth� as �relevance�). The FP ratio

represents the fraction of discovered dependencies not belonging to C, and is therefore the

complement of precision. We assume D(C) and GT (C) are non-empty.

A high TP ratio indicates that most of the dependencies in C have been discovered.

100

7.1. EVALUATION OF DEPENDENCE DISCOVERY

A high FP ratio indicates that the discovery result mistakenly includes a large number

of dependencies of conversations other than C. These irrelevant dependencies need to be

minimized in order to improve the accuracy of the DG.

We use the service-based system simulator described in the Section 6.1 in the evaluation

of the method. Table 7.1 summarizes the basic network-layer parameters used in our

simulations. These are standard settings used widely in the networking community and

embodied in the NS-3 simulator. Speci�cally, we use the log distance model with path-

loss exponent 3 for wireless signal propagation, reproducing a network operated in an

urban area [24]. We set the spatial mobility bounds to a 75 meter square, which is a

limitation imposed by the chosenWiFi standard, as larger regions induce long-term network

partitioning. Another important parameter is the mobility speed of the mobile hosts. For

most of the experiments we set the mobility speed of all nodes to 10 m/s. This is a

challenging scenario that allows us to simulate environments in which message exchanges

between the nodes are materially a�ected by the temporary disruptions in communication

at the network layer. In Section 7.1.5 we report results in which we vary this parameter

from 0 m/s (i.e., a �stationary� wireless network) to 15 m/s.

Table 7.2 summarizes the basic service-level parameters used in our simulations. The

message sizes and timeouts are derived from standard values found in SOA and Web Ser-

vices implementations. Note that the number of methods in each service is not signi�cant

from a simulation point of view, as long as we have at least two methods available so that

we can examine the impact of intra-dependence information on dependence discovery.

For the interconnection model, we use a 2-tiered topology. The �rst tier consists of

the connections between the clients and a set of �front end� services, while the second

tier consists of the connections between the services themselves. In our simulations, we use

50 clients, �ve front-end services, and 25 �back end� services. When starting a conversation,

each client invokes a method selected uniformly at random from all methods provided by

the �ve front-end services. We experimented with other topologies, including a single-tier

topology in which there are no designated front-end services, and with di�erent numbers

of clients and services, but found that the results were consistent. We therefore only report

results based on the 2-tier topology.

Of particular importance is the degree of connectivity among the services. Table 7.3

shows how we con�gure the simulations to capture three di�erent connectivity scenarios,

denoted as �Low�, �Medium�, and �High�. The connectivity degree is induced by the prob-

ability that a method in one service invokes a method in another service; the higher the

101

CHAPTER 7. EVALUATION

Number of nodes 50
Spatial bounds 75m x 75m
Mobility speed 10 m/s
Mobility model RandomDirection2dMobility
Propagation delay model ConstantSpeedPropagationDelay
Propagation loss model LogDistancePropagationLoss/α3
WiFi standard 80211b
WiFi rate 11Mbps
Routing protocol OLSR and Ipv4StaticRouting
Protocol stack UDP/IPv4

Table 7.1.: Network-layer parameters

Number of clients 50 (one per node)
Number of services 30
Invokable methods per service 2
Workload (client request rate) 10s � 80s
Service dependence switch rate 5 minutes � 15 minutes
Message size 500 bytes � 1500 bytes
Response timeout 60s

Table 7.2.: Service-layer parameters

Low Medium High

Inter-service, method-to-method connectivity probability 0.0125 0.025 0.05

Table 7.3.: Service-connectivity parameter

Low Medium High

Client-to-service dependencies 250 250 250
Service-to-service dependencies 30 59 130
Dependencies in graph (avg.) 2.03 3.21 7.9
Dependencies in graph (std. dev.) 1.2 2.28 3.63

Table 7.4.: Dependencies induced by connectivity

102

7.1. EVALUATION OF DEPENDENCE DISCOVERY

probability, the denser the interconnection topology.

The e�ect of di�erent connectivities on the resulting ground-truth dependencies for each

scenario is shown in Table 7.4. Because the 50 clients will always invoke the �ve front-end

services over the course of an experimental run, there will be 250 client-to-service dependen-

cies in all scenarios. However, the total number of unique service-to-service dependencies

increases with the connectivity probability, from 30 dependencies for low connectivity to

130 dependencies for high connectivity. Also increasing with the connectivity probability is

the resulting number of dependencies per conversation (i.e., the number of arcs appearing

in the ground-truth dependence graph rooted at a given client). The average and standard

deviation for the conversations occurring in the three scenarios are given in the table. No-

tice that a high standard deviation in this case indicates a good mix of di�erent kinds of

conversations.

An artifact of having more services involved in a conversation due to a higher degree of

connectivity is that it increases the time it takes to complete the conversation. This is borne

out by Figure 7.1, which gives the cumulative distribution of the conversation lengths in

our simulations for the three connectivity scenarios. For example, 80% of the conversations

in the low connectivity scenario are completed in under 0.2 seconds, whereas the top 20%

of the conversations in the high connectivity scenario take longer than 4 seconds.

Figure 7.1.: Cumulative distribution of conversation lengths (based on request messages)
for three connectivity scenarios

Service dependencies may change not only due to normal computational progress, but

also to optimize the use of otherwise equivalent services. In this way the service system

103

CHAPTER 7. EVALUATION

adapts to the network dynamics, such as large �uctuation in communication quality and

the availability. The services may be categorized into a stateless or stateful according

to the model of their internal state management. The stateless services do not maintain

any internal state between invocations requested either by a same client or by di�erent

clients. This model allows the services to select antecedent services needed for completion

of invocations, based on current availability rather than on state or history. The stateful

services are more likely to use previously used antecedent services already holding state

arising from previous invocations. Thus, the stateless model leads to higher dynamicity in

the services� bindings and dependencies than the stateful model. To see the impact of this

form of dynamic service rebinding, we introduce into our experiments a service-switching

behavior. Every service is given two designated alternative services, and every dependent

service then switches among these three services after a randomly selected time period. In

Section 7.1.3 we report results in which we vary the switching-time parameter in increments

between 10 seconds on average (representing an extremely dynamic behavior) and in�nite

(representing a non-switching behavior).

We collect our results from 30 minutes of simulated execution time after excluding 30 sec-

onds of warm up. Each combination of parameters in our experiments results in thousands

of conversations occurring during the simulated 30-minute execution. For instance, the

low, medium, and high connectivites combined with 10-minute switching-time periods and

10 m/s mobility speeds result in 8440, 8139, and 7165 conversations, respectively. The

results given below are averages over the data collected from these conversations, where

each conversation is then a statistical sample subject to the random variables.

7.1.2. Impact of time window size and service connectivity

We �rst look at the impact of the time window size and connectivity degree on the accuracy

of the results. We hypothesize that as the time window size grows, so too should the TP

ratio, since more dependencies will be captured. However, increasing the time window size

should also increase the FP ratio, since there is a greater chance that messages belonging

to other conversations are included in the dependence graph. For a given time window size,

we expect the TP ratio to be negatively correlated with the connectivity degree, since a

higher connectivity increases the conversation length, which in turn increases the chances

that some dependencies are missed. Similarly, we would expect the FP ratio to be higher

in densely connected service con�gurations, since dependencies in other conversations are

more likely to overlap those of the subject conversation.

104

7.1. EVALUATION OF DEPENDENCE DISCOVERY

We calculate the TP and FP ratios for both inter- and intra-dependence discovery sep-

arately. Figures 7.2, 7.3 and 7.4 depict the results, where each data point is the ratio

averaged over all conversations. Here we consider only �xed service bindings (i.e., non-

switching behavior). The variances of the TP and FP ratios are small, and therefore

omitted from the �gures. For example, the largest 95-percentile con�dence intervals for

TP and FP ratios in the medium connectivity scenario are 0.006 and 0.0053, respectively.

Figure 7.2.: Accuracy of inter- and intra-dependence discovery methods for di�erent time

window sizes given as TP ratios

105

CHAPTER 7. EVALUATION

Figure 7.3.: Accuracy of inter- and intra-dependence discovery methods for di�erent time

window sizes given as FP ratios

Figure 7.4.: Accuracy of inter- and intra-dependence discovery methods for di�erent time

window sizes given as a trade o� between TP and FP ratios

As shown in Figure 7.2, increasing the time window size increases the TP ratio, both

for inter- and intra-dependencies. A larger window will include more messages and thus

discover more dependencies. However, increasing the time window size also increases the

FP ratio, as shown in Figure 7.3. A larger window will include more messages from

other conversations. The same �gures also con�rm our hypotheses about the impact of

106

7.1. EVALUATION OF DEPENDENCE DISCOVERY

the connectivity degree: the TP ratio decreases and the FP ratio increases as the service

topology becomes denser. Notice, too, that intra-dependence discovery has a signi�cantly

lower FP ratio than inter-dependence discovery. This is due to the fact that it can precisely

correlate incoming and outgoing inter-dependencies, something to which inter-dependence

discovery is blind (recall Figure 3.2). To directly display the tradeo� between the TP and

FP ratios under various time window sizes, we plot them against each other in Figure 7.4,

where each point represents the given time window size.

7.1.3. Impact of dynamic service rebinding

We now investigate the sensitivity of the method to dynamic service rebinding (i.e. the

dynamics of service interconnections). For a given time window size, we would expect

a high switching rate to cause many dependencies belonging to irrelevant conversations

to be included in the discovered dependence graph, thereby increasing the FP ratio. In

contrast, we would expect the TP ratio to be insensitive to the switching rate because once

a message is seen, any additional messages, relevant or irrelevant, should not increase that

ratio.

We ran experiments using seven di�erent average switching-time periods, from 10 seconds

up to a case in which no switching occurs; a lower value results in a faster switching rate.

Figure 7.5 shows the intra-dependence FP ratio in the medium connectivity scenario. (As

hypothesized, the TP ratio is essentially una�ected by the switching rate, so we do not

show that result here.) The e�ect on FP ratio is most noticeable when the switching-time

period is on the same order as the time window size, which indicates possibly many service

switches happen within the time window, rendering the resulting dependencies irrelevant

from the discovery element's point of view.

107

CHAPTER 7. EVALUATION

Figure 7.5.: FP ratio for intra-dependence discovery under medium connectivity for various

switching-time periods and time window sizes

7.1.4. Impact of the client workload

We now investigate the impact of the client workload on the TP and FP ratios. We de�ne

the workload to be the rate at which clients issue service requests. We hypothesize that the

workload has a positive correlation with the FP ratio, since a high workload will generate

more messages that are part of irrelevant conversations. In contrast, we expect the TP

ratio to be insensitive to the workload. This is because the TP ratio is related to the fact of

messages being exchanged between services, rather than to the volume of those messages.

In other words, once a message is seen to have been exchanged between two services, any

additional messages, relevant or irrelevant, should not increase the TP ratio.

Using the high dependence scenario, we experiment with four di�erent workload rates:

10s, 20s, 40s, and 80s. Each rate represents the average of a uniformly random waiting

time from the completion of a given service request by a client to the issuance of the next

request by that client. A lower value therefore indicates a higher workload.

Figures 7.6, 7.7 and 7.8 present our results. Overall, the e�ect of the workload appears

to be minor, with only slight di�erences in TP and FP ratios evident as the length of the

time window increases. This is what we expected to see for the TP ratio, but the very

weak correlation for the FP ratio is a somewhat surprising result. We hypothesize that

this is an artifact of the particular service con�guration used in the experiments

108

7.1. EVALUATION OF DEPENDENCE DISCOVERY

Figure 7.6.: TP ratios for inter-dependence discovery under four di�erent workloads. As

the time window length increases, the TP ratio di�erences are negligible

Figure 7.7.: FP ratios for inter-dependence discovery under four di�erent workloads. As

the time window length increases, the FP ratio di�erences are small

109

CHAPTER 7. EVALUATION

Figure 7.8.: FP ratios for intra-dependence discovery under four di�erent workloads. As

the time window length increases, the FP ratio di�erences are small

7.1.5. Impact of the mobility speed

The next set of experiments investigate the impact of the mobility speed on the inter-

dependence discovery TP and FP ratios. We work with four di�erent mobility speeds:

0 m/s (amounting to a �xed network), 5 m/s, 10 m/s, and 15 m/s.

We would expect that as the speed of the mobile hosts increases, the quality of the links

between them should deteriorate and, consequently, the failure rate of message exchanges

should increase. Higher message failure rates should in turn increase conversation lengths,

as more messages must be resent in an attempt to complete the conversations. Therefore,

increasing the mobility speed should have the e�ect of decreasing the TP ratio, since

messages require longer time periods to be exchanged and detected. This, however, should

not impact the FP ratio, since the proportions of relevant and irrelevant messages remain

una�ected.

The results are reported in Figures 7.9, 7.10 and 7.11. As expected, the TP ratio

generally has a positive correlation with mobility speed, with the �xed network (0 m/s)

exhibiting the highest ratio. Furthermore, we observe that the lengths of the conversations

increase with mobility speed (and network failure rate), which is visible in the TP ratios

between the 0.006s to 0.6s time windows. However, for longer conversations, the time

windows of 6s and 60s are long enough to capture all cases. The FP ratios are virtually

una�ected. This coincides with our understanding that the ratio of relevant and irrelevant

110

7.1. EVALUATION OF DEPENDENCE DISCOVERY

messages remains the same.

Figure 7.9.: TP ratios for inter-dependence discovery under four mobility speeds

Figure 7.10.: FP ratios for inter-dependence discovery under four mobility speeds

111

CHAPTER 7. EVALUATION

Figure 7.11.: FP ratios for intra-dependence discovery under four mobility speeds

7.1.6. Comparison with existing methods

We now compare the accuracy of our dependence discovery method to that of existing

methods. We make this comparison by implementing two alternative methods to represent

the two major classes of existing approaches: those that perform discovery at the service

level [9, 16] and those that perform discovery at the network level [5, 6, 7, 8, 19, 43]. These

implementations are, like our own method, prototyped as queries over the trace database

(see Section 6). The service-level alternative discovers a global system dependence graph

by observing all the service messages exchanged over the whole execution period and,

from this, builds dependence graphs for the individual client conversations. The network-

level alternative works similarly, but only observes the �ow of messages by inspecting the

information contained in the headers of packets exchanged over the relevant IP ports.

It then builds dependence graphs using external information provided to it about the

deployment of clients and services on hosts.

We compare our method against the two alternatives using the medium connectivity

scenario, a 10 minute service-switching time period, and a 10 m/s mobility speed. The

average number of ground-truth dependencies is 3.21 (see Table 7.4). We con�gure our

method to use a 60s time window size, which is large enough to capture all such dependen-

cies (see Figure 7.1). The comparison then reduces to one based on the false dependencies

appearing in the discovered dependence graphs.

As we discuss in Section 2, the existing service- and network-level methods are designed

112

7.1. EVALUATION OF DEPENDENCE DISCOVERY

for use in �xed networks and for relatively stable service con�gurations. Therefore, since

both these alternative methods build dependence graphs from long-term observations, we

do not expect them to adequately �lter out stale dependencies caused by the dynamics of

the scenarios, resulting in higher false positives than with our discovery method. Moreover,

the network-level method should include even more false positives than the service-level

method because it builds dependence graphs from coarser-grained information.

The results are reported in Figure 7.12, where a vertical line is used to separate the results

for our method on the left from the results for the alternative methods on the right. We

give the FP ratio, as well as a count of the false dependencies appearing in the dependence

graph. Both are computed as the average over the total number of conversations (8139)

occurring in the 30-minute execution period. As expected, our method provides dependence

graphs having a signi�cantly lower FP ratio than the alternative methods. Furthermore,

although the FP ratio for our inter-dependence discovery is similar to that of the alternative

methods, the actual number of false dependencies is signi�cantly lower.

Note that FP dependencies is number of false dependencies in resultant graph whereas

FP ratio is the proportion of FP dependencies in the resultant graph as de�ned in section

7.3.1.

Figure 7.12.: Comparison of methods in medium connectivity scenario. Results for existing
methods are to right of dashed line

113

CHAPTER 7. EVALUATION

7.1.7. Estimates of data storage and data transfer needs

We conclude our evaluation of the dependence discovery method by investigating the data

storage requirements placed on the monitors, and the data transfer requirements placed

on the network. We do this by positing a representation for the data, analyzing the space

requirements of that representation, and computing the total for a particular experimental

scenario.

Consider the medium connectivity scenario, where the average number of inter- and intra-

dependencies per service is 12 and 53, respectively. Assume a maximum size for identi�ers

of 256 single-byte characters, which corresponds to the Web Services framework's use of

the maximum URL length. With a time slot length of 0.01 seconds (an especially precise

con�guration) maintained for a time period of 10 minutes, using formula from Section 3.2

the required data storage will amount to approximately 506 kilobytes per monitor.

The estimates above are in some sense worst case. In practice the identi�ers will be

smaller (certainly smaller than the maximum allowed URL length). Moreover, the storage

used for intra-dependence identi�ers can be signi�cantly reduced, simply by maintaining

them as references to the corresponding incoming and outgoing inter-dependencies.

While the monitors locally store data describing all dependencies detected during the

time period, the data transferred over the network to the discovery element contains only

the data for the desired time window. This time window is typically much shorter than

the stored time period.

Consider again the medium connectivity scenario. The typical data bundle transferred

by an individual monitor contains data for approximately one outgoing inter-dependence

and one intra-dependence. This amounts to a maximum of 512 bytes of data per service.

The average number of services involved in a client request is 3.21, so the discovery element

will issue on average 4.21 requests (including the initial request to the client's monitor)

for dependence data in order to construct the dependence graph. This results in a total

of approximately 1.6 kilobytes of data transferred over the network, which is substantially

less than the total amount of dependence data stored by the monitors.

7.1.8. Discussion of the results

The experiments presented above establish how the time window size, degree of service

connectivity, dynamics of service interconnection, client workload rate and mobility speed

a�ect the accuracy of our dependence discovery method. Connectivity, interconnection

114

7.1. EVALUATION OF DEPENDENCE DISCOVERY

dynamics, workload and mobility speed are properties of the application and network, while

time window size is an operator's tuning parameter. This represents a broad exploration

of the behavioral characteristics of our method.

In addition to the results reported here, we have experimented with several other pa-

rameters such as rates of service faults. However, these parameters do not seem to have a

signi�cant impact on the accuracy of the method.

In general, the results for intra- and inter-dependence discovery indicate consistently

equivalent accuracy as measured in terms of TP ratio. On the other hand, the FP ratio is

signi�cantly lower for intra-dependence discovery compared to that for inter-dependence

discovery. Both the TP and FP ratios are signi�cantly a�ected by the selection of the time

window size: as the time window size increases, so do the TP and FP ratios. The TP ratio,

however, tends to reach a maximum value at a certain time window size, whereas the FP

ratio degrades (i.e., increases) unabated beyond that value. This implies that the time

window can be selected such that it will yield a discovery result striking a good balance

between true positives and false positives.

We can also see that the FP ratio is signi�cantly a�ected by the service-switching time

period. This factor depends on the service discovery and selection technique used in the

system. In general, however, as TP ratio is relatively insensitive to the service intercon-

nection dynamics, one can select the time window size after taking into account the service

switching rate, which in a MANET is typically related to the dynamics of the network.

In contrast to time window size, the accuracy of the dependence results appears to be less

sensitive to network mobility and workload factors, assuming the service interconnection

dynamics are at a given level. This implies that our method is relatively robust to variations

in operational conditions.

The comparison with existing methods validates our hypothesis that MANET-hosted

service-based systems require a fundamentally di�erent approach to dependence discovery.

Particularly striking is the di�erence in FP ratio between our method's intra-dependence

and the other methods. While our method provides approximately one false dependence

on average per dependence graph, the existing approaches yield dependence graphs signi�-

cantly larger and constructed mostly from false dependencies. This is especially evident in

the network-level approach, which yields dependence graphs containing almost whole the

entire set of services, rendering dependence discovery virtually useless.

Finally, our estimates for the method's storage requirements fall well within the capa-

bilities of today's mobile hosts. Moreover, the method's aggregation of data results in an

115

CHAPTER 7. EVALUATION

extremely low requirement for data transport.

7.2. Evaluation of Fault Localization

In the evaluation of the fault localization method, the questions of interest center mainly on

the accuracy of the resulting candidate set, speci�cally the ranking of root-cause candidates.

A good result, of course, would be that our method consistently ranks the correct root-

cause candidate at or near the top. We examine the following factors that might in�uence

accuracy:

1. Ranking algorithm: We compare the two ranking algorithms, timing and BNet,

in terms of the position at which they place the correct root-cause failure.

2. Dependence graph accuracy: The dependence graph (DG) that results from the

dependence discovery mechanism may contain some services that are irrelevant to the

conversation of interest, causing the FPM induced from the DG to include failure

symptoms irrelevant to the failure observed by the client. We examine the e�ects of

DG accuracy�more precisely, the ratio of false positives�used in the construction

of an FPM.

3. Service connectivity: We examine the impact of service connectivity, which rep-

resents the complexity of a service-based system. The higher the degree of intercon-

nection between the services, the larger the number of services and overlap among

conversations, and the more noise in the dependence and symptom data.

4. Service fault rate: We examine the sensitivity of the ranking algorithms to a range

of service fault rates. We would expect that as the rate increases, the algorithms

might have di�culty maintaining consistent results.

5. Data storage and transfer requirements: We examine the data storage and data

transfer requirements of our method.

7.2.1. Methodology and evaluation criteria

In the evaluation experiments we use similar setup of the Service-based system simulator

as in the evaluation of the dependence discovery method. For the network-level behaviors,

such as wireless signal propagation models, we use standard settings used widely in the

116

7.2. EVALUATION OF FAULT LOCALIZATION

networking community and embodied in the NS-3 simulator. We con�gure a network of

50 hosts, and simulate the random mobility of the hosts at a fairly high speed (10 m/s).

The signi�cance of high mobility is that the hosts are frequently disconnected from each

other and, as a result, the message exchanges between the services fail frequently, causing

message send failures (SENDF) and timeout failures (RC_TO) in the context of our fault

models.

The service-level parameters used in our simulations are derived from standard values

found in SOA and Web Services implementations. We generate a system of 50 clients and

30 services, with the services arranged into �ve �front end� (client facing) and 25 �back

end� services. In addition to the network-level faults, we also cause two kinds of service-

level faults: In the �rst kind, the service fails to generate proper responses to the service

requests and instead generates exceptions, while in the second, the service itself fails due

to, for example, a host failure, and does not generate any response. In our context, a

failure of the �rst kind corresponds to the root cause of an EX failure, while the second

results in the root cause of a TO failure. All but the last of our experiments use a service

fault rate of 0.5%, which means 5 out of every 1000 service requests fail. We con�gure

the simulations such 90% constitute exception root-cause faults (SENDF or SF) and 10%

timeout root-cause faults (RC_TO).

We collect our results from 30 minutes of simulated execution time after excluding a

30 second warm-up period. Each combination of parameters results in thousands of con-

versations occurring during the simulation, among which the failed conversations consti-

tute the statistical samples of our analysis subject to the randomness in the service request

times, host mobility, wireless signal fading, and the like.

Table 7.5 summarizes the failure symptoms observed in our simulations, where the

columns �Low� and �High� represent sparse and dense service connectivity scenarios, re-

spectively. For instance, the low connectivity con�guration (combined with 0.5% service

fault rate and 10 m/s mobility speed) results in 8541 conversations. The average number of

services in the dependence graph of each conversation is larger in highly connected service

con�gurations, as is the ratio of the failed conversations: about 21% of all conversations

fail in the high connectivity scenario, compared to about 5% in the low connectivity sce-

nario. Of all root-cause failures, SENDFs constitute about 75%. These are caused by

faulty network links, rendering services unable to successfully send request messages to

other services. In comparison, timeout failures occupy a small portion of only about 7%.

The rest of root-cause failures, about 16% are caused by the injected software failures.

117

CHAPTER 7. EVALUATION

Low High

Services in dependence graph (avg.) 2.03 7.9
Services in dependence graph (std. dev.) 1.2 3.63
Number of conversations in scenario 8541 6810
Ratio of failed conversations 5.01% 20.88%
Proportion of SF root causes 16.6% 16.0%
Proportion of SENDF root causes 75.7% 76.8%
Proportion of TO root causes 7.7% 7.2%
Root cause symptoms in timewindow per client fault EX
(avg.)

34.88 102.66

Transitive symptoms in timewindow per client fault EX
(avg.)

13.41 125.69

Symptoms in timewindow per client TO failure (avg.) 2 8.36

Table 7.5.: Dependencies and faults induced by connectivity

A secondary e�ect of the ratio of failed conversations is the number of faults occurring

in given time period. For example in Table 7.5, the average number of faults occurring

in all services of the scenario in relevant time window prior client exception is 34.88 root-

cause faults and 13.41 transitive faults, whereas, in high connectivity scenario the number

increases to 102.66 root-cause faults and 125.69 transitive faults.

The increasing number of faults in time window increases number of irrelevant symptoms

involved in fault localization of given conversation. Irrelevant symptoms are eliminated

from analysis with use of DG which limits the number of services from which symptoms

are included in analysis. However, with increasing connectivity is increasing size of DG

and thus the increasing connectivity has combined negative impact on fault localization

due to increasing rate of faults as well as due to increasing portion of system from which

the faults are included in analysis. In Section 7.2.4 we report results in which we vary the

connectivity parameter.

The impact of having more services involved in a conversation is the increasing time of

propagation of faults from root-causes to clients. This is borne out by Figures 7.13 and 7.14,

which gives the cumulative distribution of the period between root-cause occurrence and

client receiving exception and period between client failing due to timeout and occurrence

of root-cause timeout. For example, 92% of the exception faults in the low connectivity

scenario propagates in under 0.03 second, whereas only about 50% in the high connectivity

scenario.

118

7.2. EVALUATION OF FAULT LOCALIZATION

Figure 7.13.: Cumulative distribution of time between occurrence of root-cause faults and

when clients witness exception messages

Figure 7.14.: Cumulative distribution of time between occurrence of root-cause faults and

when clients witness timeouts

The ratio of fault types in scenario is an outcome of several system properties such as

the behavior of the network, con�guration of services and the characteristics of message

exchanges. When link between services is broken usually request message fails to be sent

and the resultant fault will propagate as an exception back to client. However, in some

cases, the quality of the link deteriorates after request was sent and later response message

119

CHAPTER 7. EVALUATION

fails to arrive back which causes timeout fault. Aside of these network induced faults,

services may fail due to software or data problems. Hence, in order to simulate this

behavior, we insert software faults into the services such that every service invocation has

certain probability to fail drawn from con�gured probability distribution.

Similar to network, service can fail and respond with exception message which is a com-

mon reaction to service fault handled either by the service itself or by the host environment

of the service. However, in some cases the service may fail without sending any response

exception. This is particularly common fault in MANETs where nodes have limited re-

liability (i.e. due to limited battery time). We model this fault behavior such that 10%

of service faults does not produce response message and thus causes timeout fault. Ta-

ble 7.5 contains resultant ratios of root-cause faults of failed conversations, in scenarios

with service fault rate 0.5%. In all scenarios most of the faults are caused by inability of

services to send request message to another service (SENDF) i.e. over 70%. Send faults

along with service faults (SF) propagate as exceptions and thus over 90% of all faults in

all scenarios cause clients to fail with exception. We have experimented with various ratios

of the SENDF and SF root-cause faults; however, the ratios have no impact on precision

of the fault localization. Timeout faults represent only about 7% of all client faults. This

is a signi�cant observation because the localization of timeout faults is less precise (due

to root cause as well as transitive symptoms being indistinguishable). However, because

the fraction of timeouts is relatively small it has thus small negative impact on overall

precision of the fault localization.

Note, that the various system variables (i.e. mobility speed, Clients workload or dynamic

dependencies) impact the fault localization as a variation of the ratio of FP dependencies

in DG. We have explored the impact of these variables on FP ratio in the evaluation of

the dependence discovery method in section 7.1. In this section we are concerned with

the overall impact of the FP ratio on the fault localization regardless of origin of the false

dependencies and thus we do not explore impact of each individual variable independently.

Selection of time window size

As mentioned in Section 4.3.2, the time window is an important tuning parameter for our

method, as it a�ects which failure symptoms are included in the FPM. When selecting

the size of the time window, one needs to consider how long it would take for root-cause

faults to propagate to clients. A naïve approach would be to set the value equal to the

longest duration that a conversation can last, which in turn is limited by the service

120

7.2. EVALUATION OF FAULT LOCALIZATION

response timeout parameter, since any failure in the system should occur within this period.

Following standard .NET and similar implementations, the timeout parameter is set to 60

seconds in our experiments. In practice, however, the failure propagation time can be much

shorter than the duration of the entire conversation, and hence the time window size also

needs to be selected accordingly.

Figures 7.13 and 7.14 give the cumulative distribution of the propagation time for excep-

tion and timeout root-cause faults to reach clients in each of the two service connectivity

scenarios. We can see from the distributions, regardless of the kind of failure and ser-

vice connectivity, that the time di�erence between the failure seen by the client and the

root-cause failure is fairly small: in almost all cases, the failures are propagated within a

few seconds. This result suggests that the time window size indeed needs to be set much

smaller than the maximum duration for the conversation so as not to include too many

irrelevant symptoms in the analysis. In the results below, we generally use a 6-second time

window for this purpose. Note, however, this value is chosen based on empirical results,

and hence should be considered as one that is close to ideal choice. To re�ect the cases

when such an empirical basis is not available, results with the 60-second time window are

also shown whenever applicable.

7.2.2. Comparison of ranking algorithms

We �rst compare the accuracy of the two ranking algorithms. To isolate their e�ect from

those of other parameters, we show the results for high service connectivity with 0.5%

service fault rates, using 100% accurate dependence graphs (referred to as �ground truth�

in Figure 6.13), which contain exactly the services involved in each conversation.

Accuracy is measured in terms of the ranking position of the correct root-cause fault for

each failed conversation in the experiment. The results are given in Figures 7.15 and 7.16,

which shows the cumulative distribution of those positions. For purposes of comparison,

we include the results for the BNet-based algorithm under both 6- and 60-second time

windows; The results by the timing-based algorithm are virtually the same for both time

window sizes. Notice that the average sizes of the candidate sets under the 6-second time

window are 1.5 for exceptions and 2.6 for timeouts, and 5 and 3.5, respectively, under the

60-second window.

121

CHAPTER 7. EVALUATION

Figure 7.15.: Accuracy of ranking algorithms for exception faults in high connectivity sce-

nario. The FPM is constructed from the ground-truth dependence graph

Figure 7.16.: Accuracy of ranking algorithms for timeout faults in high connectivity sce-

nario. The FPM is constructed from the ground-truth dependence graph

We can see that the timing-based method is very e�ective for exception failures, resulting

in more than 90% of correct root causes placed in the �rst position of the ranking, under

both 6-second and 60-second time windows. Compare this with an ordering of candidates

by random guess, which would do so only for 66% and 20% under 6- and 60-second time

windows, respectively. This good result is due to the fact that exception failures are

122

7.2. EVALUATION OF FAULT LOCALIZATION

propagated through a quick succession of explicit messages, which makes a ranking based

on the time proximity particularly suitable for such failures.

On the other hand, the BNet-based algorithm is more e�ective in ranking the root causes

of timeout failures. Under a 6-second time window size, the BNet algorithm places the

correct root causes in the �rst position for more than 95% of the failures, and for nearly

60% under 60-second time window. Compare this again with a random ordering, which

would achieve the same only for 38% and 28% of the cases under the two time window

sizes, respectively. The accuracy of the timing-based algorithm is not nearly so good for

the timeout failures.

The results also show the importance of the time window size for the BNet algorithm.

Using the extreme case of 60 seconds, the algorithm produces relatively poor rankings. This

is because the data include a substantial amount of noise: extraneous symptoms, irrelevant

to the failure witnessed by the client. In fact, the candidate sets are much larger, with

on average 10 timeout and 19 exception candidates, about three times more than for a

6-second time window in these experiments. Nevertheless, BNet-ranking performs much

better by placing the correct root cause at the �rst position for about 60% of timeouts;

compare it with the results by a random guess, which would do so only for 28% out of 3.5

candidates.

7.2.3. Impact of dependence graph accuracy

We next investigate the sensitivity of our method to the accuracy of the dependence graph

(DG) rooted at a client. Recall that the DG is created using a run-time discovery facility

that produces probabilistically correct results. Its accuracy can be measured in terms of

any extraneous dependencies included in the graph. An extra dependence is a false positive

(FP) drawn from some other, irrelevant conversation. The ratio of false positives to true

positives (the FP ratio) is in�uenced by various factors, such as mobility speed, service

workload, and most signi�cantly the particular technique used for dependence discovery.

Here we make use of the intra- and inter-dependence discovery techniques. They are

represented here, respectively, by the FP ratios 3% and 46% in our experiments. We also

include in our experiments the ground-truth DG that contains no false positives. Again,

we show results for the high connectivity scenario and 6-second time window.

Figure 7.17 shows the impact of the FP ratio on the accuracy of our method under 6-

second time window. The average ranking positions of correct root causes for exception and

timeout faults are plotted against each other and shown for the two ranking algorithms.

123

CHAPTER 7. EVALUATION

Figure 7.17.: Impact of dependence graph false positive ratio on mean ranking position of
correct root-cause fault. Ratio of 0% represents the ground truth.

Consistent with the results in Section 7.2.2, the algorithms behave di�erently for the two

kinds of faults. Notice that the timing-based algorithm is essentially insensitive to the

accuracy of the DG, which reinforces our conclusion that its e�ectiveness at localizing

exception faults is dominated by the time proximity of the fault occurrence. The BNet

algorithm also exhibits only some small sensitivity to the DG's accuracy.

7.2.4. Impact of service connectivity

We now turn to the impact of service connectivity (i.e., system complexity) on the accuracy

of our method. It is important to investigate this factor because it in�uences many other

contributing factors, such as the size and false positive ratios of dependence graphs, the

duration of conversations (and, consequently, the amount of overlap between separate

conversations), and the overall failure rate exhibited by the system. We hypothesize that

the accuracy of the fault localization method will su�er under highly connected services,

since the combined e�ect of the increases in the above factors should have a negative impact

on the ranking position.

We present our results in Figure 7.18, where we compare the low and high connectivity

scenarios using the same sort of plot as in Section 7.2.3. These results con�rm our hypoth-

esis: In the low-connectivity scenario, our method achieves signi�cantly better accuracy for

both ranking algorithms than in the high-connectivity scenario. The better result for low

124

7.2. EVALUATION OF FAULT LOCALIZATION

connectivity is due to the relatively small number of services involved in each conversation

(on average, 2.03 versus 7.9), the relatively low degree of overlap between conversations,

the relatively low dependence graph FP ratio (0.2% versus 3%). and a lower inherent

failure rate (5.01% versus 20.88%). The reverse is true for the high-connectivity scenario.

Figure 7.18.: Impact of service connectivity on mean ranking position of correct root-cause
fault

Notice that in our other experiments we use the settings for a high service connectivity.

This means that those results are based on a substantially more challenging scenario.

Note that we have also experimented with medium connectivity scenario having double

the connectivity of low connectivity scenario and half connectivity of the high connectivity

scenario (same as in the evaluation of the dependence discovery 7.1), however, the precision

of the fault localization was almost the same as in the low connectivity scenario.

7.2.5. Impact of service fault rate

In our �nal experiment, we investigate the accuracy of our method under a range of service

fault rates. In order to show impact of various fault rates we vary the rate at which services

fail when invoked (i.e. receive request message). Unlike the failures caused by network

faults, which re�ect the underlying network conditions, the service fault rate allows us

for a controlled experiment to see the performance of our fault localization method under

wider range of the frequency that faults occur in the system. Recall that we con�gure the

simulations such that when a client experiences a failure, 90% of the time the root cause

125

CHAPTER 7. EVALUATION

is an exception and 10% of the time the root cause is a timeout. Note that it is important

to maintain reasonable ratio of timeout faults in order to simulate the decreased reliability

of mobile nodes. We expect that increasing fault rate should be negatively correlated with

precision of localization of both types of faults.

The results are shown in Figures 7.19 and 7.20 for both ranking algorithms, under the

high connectivity scenario, and a 6-second time window. The service fault rate is varied

in the x-axis from 0% to 2%. For each rate, we also give the total number of failed

conversations. Note that even with a 0% service fault rate, the scenario re�ects failed

conversations caused by network faults during the entire simulation.

Figure 7.19.: Impact of service fault rate on mean position of correct root-cause exception
faults. Both the fault rate and the total number of failed conversations for
each rate are shown

The results demonstrate that the timing-based ranking algorithm is fairly robust in a

wide range of service fault rates, maintaining consistently high accuracy even under high

fault rates. The accuracy of BNet-based ranking, however, deteriorates as the service fault

rate increases. This is because the BNet algorithm is sensitive to the size of the FPM, which

increases not only due to inclusion of irrelevant dependencies (recall Figure 7.17), but also

due to the increase in the fault rate, causing some irrelevant failures from overlapping

conversations to be included in the FPM.

The Timing-based ranking deteriorates as well, however, in signi�cantly lower rate since

the e�ect of the much lower 10% proportion of timeout faults is minimal.

126

7.2. EVALUATION OF FAULT LOCALIZATION

Figure 7.20.: Impact of service fault rate on mean position of correct root-cause timeout
faults. Both the fault rate and the total number of failed conversations for
each rate are shown

7.2.6. Estimates of data storage and data transfer needs

In this section we investigate the data storage requirements placed on the monitors, and the

data transfer requirements placed on the network. (We do this by positing a representation

for the data, analyzing the space requirements of that representation, and computing the

total for a particular experimental scenario.)

A monitor does not require any storage space for data since the monitor is only inspecting

system log for symptoms recorded by services and does not maintain any data on its

own. The data transferred over the network to a fault localization element contains only

aggregated data for the desired time window.

The data bundle transferred by an individual monitor contains data for one service and

status of root cause modes relevant to the client's fault (i.e. SF and SENDF for EX fault

and TO for TO fault). The status of each mode is aggregated into record containing

Boolean value representing whether any relevant symptom occurred in the queried time

window and timestamp of latest symptom (required for Time based ranking).

Consider the high connectivity scenario. The typical data bundle transferred by an

individual monitor for EX fault contains data for one service and thus two modes. Thus

the bundle contains two mode records, each consisting of Boolean value and timestamp.

To transfer these data in SOAP message would require about 0.3 KB message. The high

connectivity scenario has on average 7.9 services in DG thus average amount of data

127

CHAPTER 7. EVALUATION

transferred over network would be about 2.5 KB per fault.

7.2.7. Discussion of results

The experimental results above demonstrate the e�ectiveness of our fault localization

method in ranking the correct root causes of failed service conversations. In particu-

lar, the timing-based ranking is shown to be very e�ective in localizing the failures caused

by service exceptions, while the Bayesian-based ranking is more e�ective in the case of

timeout failures. This suggests these two algorithms can be separately employed according

to the kind the failure reported by a client.

The results also show the importance of the proper selection of the time window size,

where a value much smaller than the longest duration of the conversations is shown to

provide good outcomes, re�ecting a relatively quick propagation of the failures in the

system, compared to the time it takes to complete the conversations. Moreover, the method

is also shown to perform consistently in a wide range of rates at which service faults occur

in the system.

An important consideration in the MANET environment is the requirement for data

storage and transfer. We have shown that our method performs well in this regard.

The BNet inference performs quickly on laboratory PC�the construction of BNet from

FPM and the inference of all root causes takes on average of about 3 seconds.

We conclude our evaluation with a look at how each aspect of our fault localization

method contributes to the overall results. To do this, we break down the method into the

contributions of its three main elements, each of which is applied in turn to obtain a result:

(1) the dependence graph, (2) the fault propagation model, and (3) the ranking algorithm.

To see the contribution of each element, we start from the total number of candidate root-

cause faults observed within the selected time window. We then determine how many are

eliminated at each step of the method. We use the high-connectivity scenario with 0.5%

service fault rate and 60-second time window size. The larger window size allows us to see

the reduction in each step more clearly; results for the 6-second window size show similar

trends.

128

7.2. EVALUATION OF FAULT LOCALIZATION

Figure 7.21.: Contribution of fault localization method steps to exception fault analysis

Figure 7.22.: Contribution of fault localization method steps to timeout fault analysis

The results are shown in Figures 7.21 and 7.22. The height of each bar represents the

size of the candidate set. As noted above, there are 19 and 10 candidate root causes

on average for the exception and timeout failures, respectively. (The total number of

symptoms observed by the monitors is much higher�102 and 13 failure symptoms for

exception and timeout failures, respectively�but as the monitors report only aggregated

data, the number of candidates is much smaller.) Each section of the bar represents the

number of candidates eliminated by an element of the method: the DG area represents

129

CHAPTER 7. EVALUATION

the reduction to those services appearing in the dependence graph rooted at the client

that witnessed the failure; the FPM area represents the reduction to those reachable to

the client in the FPM; the Ranking area represents the reduction to those including the

correct root cause; and the Mean RC area represents the �nal mean position of the correct

root cause.

Overall, we can see that each element indeed makes a contribution. The speci�c contri-

bution di�ers with the ranking algorithm and accuracy of the dependence graph. Indeed,

the ranking algorithm and dependence graph play the major roles in localizing the root

cause of client failures. The e�ect of DG accuracy is particularly obvious when the 46%

FP ratio is compared against those of 0% and 3% for exception faults, suggesting that it

is important to have an e�ective dependence discovery in diagnosing such failures. The

timing-based ranking algorithm contributes a signi�cant portion in narrowing down ex-

ception faults, even when the DG and FPM is not e�ective. The BNet-based ranking

algorithm is more e�ective for timeout faults and less so for exception faults. Again, this

supports our suggestion to apply the ranking algorithm most appropriate to the reported

failure.

7.3. Evaluation of Dependence Discovery with

Distributed Data Harvesting

We evaluate the dependence discovery method employed in conjunction with the dis-

tributed data harvesting method. Hence, the data used by the dependence discovery

are harvested from backup stores maintained by the distributed data harvesting method

instead from the direct on-demand access to monitors as in the experiments presented in

Section 7.1.

The distributed data harvesting algorithm continuously synchronizes data between net-

work nodes. The data stored in the backup stores by the distributed data harvesting

algorithm are used by the discovery element in construction of the dependence graphs.

The dependence graphs are constructed on demand by the discovery element. The graphs

are rooted at a given client, beginning at a given time instant, and for some time window.

Each dependence graph is constructed for a particular conversation; thus the time window

begins and ends with start and end of that conversation. The data provided to the discov-

ery element include both relevant and irrelevant information, since the local data backup

store will provide data about all interactions traversing the involved services during the

130

7.3. EVALUATION OF DEPENDENCE DISCOVERY WITH DISTRIBUTED DATA
HARVESTING

time window. These interactions involve not just those of the given conversation of interest,

but also those of others.

Recall, that our method by design loses information and is sensitive to the dynamics

of the operational environment. The monitors retain only aggregate data, not individual

messages. Furthermore, the synchronization mechanism used to transfer the data between

nodes, employs further data aggregation and thus causes additional loss of precision.

The evaluation questions of interest therefore center on the capability of the synchroniza-

tion algorithm to transfer data from monitors to client nodes. In particular, we examine

the factors that should in�uence capability of the method to transfer data and we look at

few additional aspects of our method:

1. Impact of synchronization frequency: We examine the impact of the number

of synchronization cycles on availability of the dependence data in the backup stores

on the client nodes. We hypothesize that as the number of cycles between the end of

theconversation and the start of the data harvesting is increasing, so too should the

availability of the dependence data.

2. Impact of number of peers: We examine the impact of the number of peers

selected during each synchronization cycle on availability of the dependence data in

the backup stores on the client nodes. We hypothesize that increasing the number

of peers per synchronization cycle should increase the availability of the dependence

data.

3. Optimal synchronization strategy: The synchronization frequency and the num-

ber of peers per synchronization cycle are two parameters of the method which partic-

ipate in synergy on the overall performance of the method. We will look for optimal

combination of these two aspects of the method to provide the optimal strategy for

use of our method.

4. Comparison with other method: We compare our method with the approach of

direct access to monitors.

5. Data storage and transfer requirements: We examine the data storage and data

transfer requirements of our method.

131

CHAPTER 7. EVALUATION

7.3.1. Evaluation metrics and parameters

Our experiments focus on a particular hypothetical conversation C. A good result for our

method would be that it can transfer as many dependencies of C as possible, while not

including the dependencies of other conversations. Same as in evaluation of the dependence

discovery method in Section 7.1, we use two metrics to characterize the quality of our

results, namely the ratio of true positives (TP) and the ratio of false positives (FP), as

de�ned in Section 7.1.

A high TP ratio indicates that most of the dependencies in C have been transferred

from the monitors to the client node. A high FP ratio indicates that the discovery result

mistakenly includes a large number of dependencies of conversations other than C. These

irrelevant dependencies need to be minimized in order to improve the accuracy of the DG.

In the evaluation of the dependence discovery method employed in conjunction with

the distributed data harvesting method, we focus only on one type of the dependencies,

namely inter-dependencies. It is because including both inter- and intra-dependencies does

not add any additional insight into understanding of characteristics of the distributed data

harvesting algorithm.

Our goal is to explore behavior of our method under various conditions in MANET

networks. Thus, in the evaluation of the method we use two di�erent scenarios. Both

of these scenarios represent the same service system; however, each of them represents

di�erent type of mobile network.

The �rst scenario represents military unit on mission operating in open terrain. The

unit consists of 50 members which are separated into several groups, each having about 10

members. The members of each group move together by walking speed across the terrain as

they ful�ll their mission. However, occasionally member leaves one group for another and

thus travels between groups in open space. The groups operate in area with bounds of 2x2

kilometers. To simulate the unit members moves we use Nomadic Community Mobility

Model. Given the limitations of the used Wi� standard and its signal range; devices

of members of one group can communicate together for most of the time, however, the

groups are disconnected from one another for almost all the time. Yet, as they pass though

the space, they meet and can communicate together for limited periods of time. Each

member has a mobile device with installed client application. Some of the devices host

services which can be used by client applications or other services. Because the network is

partitioned into several groups, each service has 5 identical instances hosted on 5 di�erent

nodes in order to provide maximum availability.

132

7.3. EVALUATION OF DEPENDENCE DISCOVERY WITH DISTRIBUTED DATA
HARVESTING

Fire�ghting Military

Spatial bounds 1km x 2km 2km x 2km
Mobility model Random Waypoint Nomadic Community

Table 7.6.: Scenario speci�c parameters

Number of nodes 50
Mobility speed 3 - 6.6 km/h
WiFi standard 80211b
WiFi unicast rate 11Mbps
WiFi multicast rate 1Mbps
Transmit power -15 dBm
Path loss mode 2ray
Routing protocol OLSR
Protocol stack TCP/IPv4

Table 7.7.: Network-layer parameters

Number of clients 50 (one per node)
Number of services 25
Size of dependence graph 2 � 6
Invokable methods per service 2
Workload (client request rate) 30s
Number of service replicas 5
Response timeout 60s

Table 7.8.: Service-layer parameters

133

CHAPTER 7. EVALUATION

The second scenario represents �re�ghting unit �ghting forest �re. The unit consists of

50 members representing either personnel or vehicles. The spatial bounds are set to 1x2

kilometers representing �re front line with area within which the unit operates. The unit

members move across the area individually by walking speed with frequent stops as they

carry on their �re�ghting activities. To simulate the moves of the unit members, we use

Random Waypoint Mobility Model. Because the members move across the area in random

fashion, the links between all of the nodes are in constant change. Therefore, this scenario

represents challenging case with highly dynamic topology. Summary of the scenarios is

provided in Table 7.6.

We use the service-based system emulator described in the Section 6.2 in the evaluation

of the method. Table 7.7 summarizes the basic network-layer parameters used in our

experiments. These are standard settings used widely in the networking community and

embodied in the EMANE simulator. We use the IEEE 80211b Wi� standard, with 2ray

path loss mode of wireless signal propagation. The transmit power is set to standard -

15dBm and the transmit data rates are set to 11 Mbps for unicast and 1 Mbps for multicast.

The di�erent transmit rates of unicast and multicast, allow us to simulate the impact of

routing protocol limitations. Another important parameter is the mobility speed of the

mobile hosts. For all of the experiments we set the mobility speed of all nodes to rage of 3

to 6.6 km/h (0.833 to 1.833 m/s). This allow us to simulate behavior of network composed

of nodes carried by walking people.

In Table 7.8 we provide the basic service-level parameters used in our simulations. The

timeouts are set to default Glass�sh/Metro value for SOA and Web Services implementa-

tions. Note that the number of methods in each service is not signi�cant from a simulation

point of view, as long as we have at least two methods available so that we can simulate

the impact of overlapping conversations with di�erent dependence graphs.

Same as in the simulator based experiments, for the interconnection model, we use a

2-tiered topology. The �rst tier consists of the connections between the clients and a set of

�front end� services, while the second tier consists of the connections between the services

themselves. In our experiments, we use 50 clients, �ve front-end services, and 20 �back end�

services. When starting a conversation, each client invokes a method selected uniformly at

random from all methods provided by the �ve front-end services.

In order to isolate the e�ect of the system complexity, we con�gure the service system

such that in given scenario, each conversation involves speci�c number of services. In this

way we control the size of the dependence graph. For most of the experiments we con�gure

134

7.3. EVALUATION OF DEPENDENCE DISCOVERY WITH DISTRIBUTED DATA
HARVESTING

the scenarios to include four services in conversation. However, because certain proportion

of conversations fails (i.e. due to limited network connectivity), the average number of

services involved in conversations of particular scenario is smaller.

We collect our results from 40 minutes of execution run-time after excluding 10 minutes

of warm up. Each combination of parameters in our experiments results in thousands of

conversations occurring during the simulated 40-minute execution. The results given below

are averages over the data collected from these conversations, where each conversation is

then a statistical sample subject to the random variables.

7.3.2. Reachability of nodes in MANETs

In the experiments presented in the Sections 7.1 and 7.2, we have taken the assumption of

complete availability of the dependence and symptom data on demand. However, in a real

network environment the reachability of nodes within a mobile network is limited either

due to the partitioning of the network or due to the limitations of the routing protocols.

To appreciate the seriousness of the reachability problem, consider Figure 7.23. The

experiments examine two di�erent mobility behaviors under the same hypothetical appli-

cation. The �re�ghting behavior is characterized by independent movements of nodes,

while the military is characterized by collective movements. A management node attempts

to harvest the data describing the service interactions involved in a particular conversa-

tion. It does so by iteratively contacting the monitors associated with each node in the

conversation, beginning with the root node (i.e., the client). In this way, it dynamically

discovers the dependence graph. Depending on when the process is initiated, represented

by the horizontal axis, a di�erent percentage of MANET nodes, represented by the vertical

axis, is in fact reachable. The �levels� correspond to the distance in hops from the root of

the conversation. The experiments clearly illustrate the �aw in a direct harvesting method

and motivate the design of the distributed data harvesting method.

When the DG is constructed, certain dependencies are harvested from local node of the

client, while the rest is obtained from remote nodes. The locally harvested dependencies

include the �rst dependence of the conversation between the client and the front-end ser-

vice. Additionally, on nodes which host services, the local services may be involved in

the client�s conversations and thus their dependencies are harvested locally as well. The

dependence data of services hosted on the remote nodes are harvested on demand from

the remote monitors. Given the reachability of the nodes shown in Figure 7.23, the discov-

ered dependencies in the military scenario are shown in the Figure 7.24. The lower area

135

CHAPTER 7. EVALUATION

represents the locally harvested dependencies. Out of four dependencies in the DG, about

33% are harvested locally. The rest of about 77% are harvested from remote monitors.

The middle area represents dependencies successfully obtained from remote monitors with

the on demand requests. The upper area represents portion of dependencies missing in

the DG due to unreachability of the remote nodes. Thus, the discovered DG has about

10% to 25% of dependencies missing depending on a delay. In the �re�ghting scenario the

reachability of nodes is lower and thus the discovered DG has 30% to 55% of dependencies

missing in the DG depending on harvesting delay as shown in Figure 7.25.

Figure 7.23.: Reachability of nodes in the �re�ghting and military scenarios

136

7.3. EVALUATION OF DEPENDENCE DISCOVERY WITH DISTRIBUTED DATA
HARVESTING

Figure 7.24.: Reachability of dependencies in the military scenario

Figure 7.25.: Reachability of dependencies in the �re�ghting scenario

7.3.3. Impact of synchronization frequency

We �rst look at the propagation of the data from monitors to client nodes with single

peer per synchronization cycle (i.e. pairwise gossip). This allows us to examine the basic

characteristics of the algorithm. With single peer per synchronization cycle; in each cycle

for each node is selected randomly single peer from one hop distant neighbors. Thus,

ideally in each synchronization cycle, data propagate to one node one hop away from every

137

CHAPTER 7. EVALUATION

node, which already hosts given data (i.e. the original source node of the data and every

node, which already received the data).

We are interested in the impact of the increasing number of synchronization cycles on

availability of the dependence data in backup stores on the client nodes. We hypothe-

size that as the number of cycles between the end of conversation and the start of the

data harvesting is increasing, so too should the availability of the dependence data. The

availability of the data can be measured as a ratio of TP dependencies in a DG. With

no synchronization cycles occurring before the data harvesting, the only dependence data

available in construction of the DG are harvested from the local monitors. However, with

every next synchronization cycle the amount of data arriving from remote monitors should

increase.

Note that the data do not need to achieve full network penetration in order to be available

for construction of the DGs. In order to be available for harvesting from the backup stores,

the data only need to be transferred from its source to the client nodes.

In this experiment we set the delay between the end of the conversation and the start

of the dependence harvesting to 5 minutes. The results are reported in Figure 7.26. Ini-

tially with no synchronization cycles, the only data available are from the client monitors

and from the locally hosted services. With increasing number of synchronization cycles,

the backup stores are receiving increasing amount of dependence data from the remote

monitors. In the military scenario, the availability of the data is increasing faster than in

the �re�ghting scenario. It is because in the military scenario the services involved in the

conversations are hosted on nodes within the same group as the client. Thus, the depen-

dence data need to be transferred between fewer intermediate nodes then in the �re�ghting

scenario. Whereas in the �re�ghting scenario, the services involved in the conversations

can be drawn from higher distances as the nodes are dispersed relatively evenly over the

large area. Therefore, to transfer the data from more distant nodes, higher number of

synchronization cycles is required.

In both of the scenarios after 8 synchronization cycles the availability reaches about

90%. With further cycles, the availability is increasing only slowly as data arrive from

nodes further a�eld. Eventually, with 32 cycles the availability reaches 97% in the military

scenario and over 99% in the �re�ghting scenario. The lower availability in the military

scenario is caused by the migration of the nodes; as some nodes disconnect from one group

for another, the connection is lost for a long period of time and thus small fraction of data

does not arrive regardless of the number of cycles. This is not the case in the �re�ghting

138

7.3. EVALUATION OF DEPENDENCE DISCOVERY WITH DISTRIBUTED DATA
HARVESTING

scenario and thus the availability of the data is steadily increasing and eventually reaches

almost 100%.

Figure 7.26.: Availability of dependence data with di�erent number of synchronization cy-

cles given as TP ratios

7.3.4. Impact of number of peers

We now investigate the impact of multiple peers used in the synchronization. In this

experiment, we vary the upper limit of number of peers selected during each synchronization

cycle. Same as in the previous experiment, the data harvesting is started �ve minutes after

a conversation ended. However, in order to isolate impact of the variable number of peers,

we �x the synchronization frequency to one per minute. Thus, there are at least four

synchronization cycles initiated by each node after the conversation concluded and before

the data harvesting starts.

The number of selected peers is limited by two factors. First, only one hop distant

neighbors are considered as peer candidates. Second, from the peer candidate options only

certain number limited by the con�gured upper limit is randomly selected. Consequently,

the number of selected peers cannot be higher than either of these two limits, and therefore,

the average number of the selected peers will be somewhat lower than the con�gured limit.

In this experiment we are interested to see the impact of increasing of the upper limit

of the number of peers on availability of data in the backup stores. We hypothesize that

increasing the number of peers should increase availability of the dependence data. The

139

CHAPTER 7. EVALUATION

results are reported in Figure 7.27. As expected, with increasing number of peers per

synchronization cycle, the availability of the data is increasing. However, upper limit of

about 5 peers seems to be the threshold above which further increases in number of the

peers do not have any additional positive impact. The threshold limit is an important

information in con�guration of the method, because it allows us to control the network

overhead imposed by the method.

Furthermore, notice that in comparison with the single peer approach per synchroniza-

tion cycle presented in Figure 7.26 in the previous section, the multiple peers per cycle

provide somewhat better outcome. For example �ve peers per cycle provide 99.4% and

98.6% of data in military and in �re�ghting scenarios respectively. However, the single peer

provides only 94% and 96.3% of data with same number of synchronization cycles in total.

It is because all peers are selected randomly at every synchronization cycle. Thus when

single peer is selected, there is same probability to select peer which was either selected in

previous cycle or from which data were received recently. Thus the e�ectivity of the data

dispersion is decreased. This is particularly pronounced when node has few neighbors.

However, with multiple peers per cycle this problem is reduced since several di�erent peers

are synchronized at one time. Therefore, the multiple peers per cycle approach provides

better synchronization strategy than single peer per cycle.

Figure 7.27.: Availability of dependence data with di�erent number of peers per synchro-

nization cycle given as TP ratios

140

7.3. EVALUATION OF DEPENDENCE DISCOVERY WITH DISTRIBUTED DATA
HARVESTING

7.3.5. Comparison of harvesting methods

We now compare the performance of the distributed data harvesting approach with the

direct on-demand data harvesting approach.

The TP ratio achieved with the direct method is presented in Section 7.3.2 and shown

in Figures 7.24 and 7.25. For example, with 5 minutes delay of the data harvesting, the

direct method yields about 79% and 48% TP ratio in the Military and the Fire�ghting

scenarios respectively. The distributed method with �ve peers per synchronization cycle

and one cycle per minute yields 99.4% and 98.2% TP ratio as shown in Figure 7.27.

In comparison of the FP ratio, we modify the experiments in order to provide a mean-

ingful comparison scenarios. We con�gure the mobile network to have a full connectivity

between all nodes for evaluation of the direct method. In the fully connected network, the

direct method can discover whole DGs unlike in the partially connected mobile network.

In this way we can compare the FP ratios of DGs produced by the direct method with FP

ratios produced by the distributed method in the partially connected mobile network.

The FP ratio of the direct method is product of two factors. First factor is the aggrega-

tion of the data by the monitors which loses some detail due to aggregating the dependence

occurrences into the time slots. In this experiment the monitors use size of time slot of 0.1

second, which provides good tradeo� between data resolution against memory consump-

tion. Second factor is the size of the time window from which dependencies in the DG

are included. The size in all experiments is based on the duration of the conversation;

thus allowing to include all TP dependencies and limit inclusion of FP dependencies to

a minimum. The distributed method uses an additional aggregation of the dependence

data in order to transfer the data e�ciently over the network. Thus, we hypothesize that

the additional aggregation of the data into coarse grained time slots causes further loss of

precision and further increases the FP ratio.

Figure 7.28 presents our results. The Direct method is represented by a single value

of 16.2% of the FP ratio. We provide only a single value because in the fully connected

network experiment, mobility of the nodes has not impact on behavior of the service

system. For the distributed method, we provide results for three di�erent time slot sizes

used in the synchronization data transfer. The slot size of 0.1 second yields 16.4% and

18.2% FP ratios. These results are comparable with the direct method in both of the

scenarios. The somewhat higher FP ratios in both of the mobile networks are caused by

conversations having smaller DG size, because not all services con�gured to be invoked

in the conversations are reachable due to network failures. Thus the DGs contain higher

141

CHAPTER 7. EVALUATION

proportion of intermediate services with higher conversations overlap and thus higher FP

ratios. As the size of the time slot used in the data transfer increases, so too is increases the

FP ratio. Thus, with a size of time slot of 10 seconds the FP ratio reaches 35% and 37%

in the military and the �re�ghting scenarios respectively. The di�erence in these ratios

is caused by the di�erent network topology impacting service selection and conversation

overlap.

Figure 7.28.: Precision of dependence graph with di�erent size of synchronization time slot

given as FP ratio

7.3.6. Network overhead and data storage needs

The continuous data synchronization process imposes constant overhead on the underlying

physical network. In Sections 7.3.3 and 7.3.4, we have established the relationship between

the synchronization frequency and the number of peers per cycle. Figure 7.29 illustrates

the network overhead as an amount of data transferred with variable number of peers per

synchronization cycle with �xed frequency in the �re�ghting scenario.

In synchronization of peer, the data sent to the peer contain all changes in the local

data as well as all the new data received since the last successful synchronization with the

peer. Thus, with increasing number of peers per cycle, the amount of data sent to each

individual peer is increasing, since more data were received and accumulated from other

nodes between the synchronization cycles. However, with more than eight peers per cycle,

the amount of data sent to each peer is somewhat decreasing since almost all of the peers

142

7.3. EVALUATION OF DEPENDENCE DISCOVERY WITH DISTRIBUTED DATA
HARVESTING

are synchronized in each cycle and thus less changes accumulate between cycles.

We can compare the alternative synchronization strategies (i.e. combinations of synchro-

nization frequency and number of peers per cycle) based on the total number of synchro-

nizations to peers in �xed period of time the strategy requires to achieve certain comparable

data availability in the backup stores. In the scenario with single peer per cycle, with 32

synchronization cycles the data availability reaches 97% and 99% of data in the military

and �re�ghting scenarios respectively. While with �ve peers per cycle and four synchro-

nization cycles the data availability reaches 99.4% and 98.6% of data in the military and

�re�ghting scenarios respectively. Thus, given the size of the data transferred per cycle

shown in Figure 7.29, the single peer based scenario will transfer total of about 10 kB

of data per node in all of the 32 cycles. While in the �ve peers based scenario the total

amount of data transferred will be about 22 kB per node in all of the four cycles. Thus

we can conclude that synchronization strategy based on lower number of peers per cycle,

provides better performance pro�le in terms of network data overhead than the multiple

backup strategy.

Another important aspect of the method is the storage needs of the data in backup stores

on nodes. The data stored in backup stores are regularly pruned to limit the amount of data

stored to minimum. The data stored are limited to certain maximum age and obsolete data

are removed. The total amount of data stored depends on complexity of the system. For

example, in the military and �re�ghting scenarios the amount of data stored on individual

nodes is at most 25kB, with data older than 20 minutes being pruned.

143

CHAPTER 7. EVALUATION

Figure 7.29.: The size of data transfered between source and target nodes with di�erent

number of synchronization peers per cycle

7.3.7. Discussion of results

The experiments presented above establish how the synchronization frequency and the

number of peers per synchronization cycle a�ect the capacity of the distributed data har-

vesting method to transfer dependence data from monitors to client nodes. The capacity

of the method to transfer the dependence data is also a�ected by the characteristics of

the network; such as the degree of partitioning and the spatial-temporal behavior of the

mobile nodes as is evident from the di�erences of data availability achieved in the vari-

ous scenarios. This represents a broad exploration of the behavioral characteristics of our

method.

In general, the results indicate consistently the capability of the method to transfer data

between nodes which are not directly connected as measured in terms of TP ratio. The

method provides alternative synchronization options in selecting combination of synchro-

nization frequency and number of peers per synchronization cycle. Both strategies of either

selecting a high frequency with low number of peers or a low frequency with higher number

of targets provide similar outcome measured in terms of TP ratios.

The comparison with the direct on demand access to monitors shows that the distributed

approach can provide similar accuracy (measured in terms of FP ratio) of the data yet with

signi�cantly higher data availability. The aggregation of the data during the synchroniza-

tion may increase the FP ratio, however, we have shown that with selection of a small size

144

7.4. EVALUATION OF FAULT LOCALIZATION WITH DISTRIBUTED DATA
HARVESTING

of the synchronization time slot, the impact is minimal.

The network overhead caused by the continuous data synchronization is an important

factor in operation of the method. We have demonstrated that by selecting suitable syn-

chronization strategy the network overhead can be minimized. The synchronization strat-

egy based on the high synchronization frequency with lower number of peers causes lower

network overhead than the low synchronization frequency with higher number of peers

yielding comparable availability of data.

An important aspect of the method is the determination of parameters for optimal avail-

ability of data in backup stores in particular type of network and service system. Regard-

less of the synchronization strategy employed, the optimal threshold can be determined by

measuring the average size of a DG while altering the synchronization parameters. The

optimal threshold of the method con�guration is achieved when the DG size stabilizes and

does not increases with increases in either the synchronization frequency or the number of

peers per cycle.

7.4. Evaluation of Fault Localization with Distributed

Data Harvesting

We evaluate the fault localization method employed in conjunction with the distributed

data harvesting method used instead of the direct access to the monitors. Same as in the

evaluation of the fault localization with the direct on-demand data harvesting approach

presented in Section 7.2, the evaluation questions of interest center mainly on the accuracy

of the ranking of root-cause candidates. A good result, of course, would be that our method

consistently ranks the correct root-cause candidate at or near the top. We examine the

ranking accuracy in context of an impact of the precision of the dependence and symptom

data the method receives from the distributed data harvesting method. In particular, we

examine the following factors that might in�uence accuracy:

1. Ranking algorithm: We examine accuracy of the two ranking algorithms, timing

and BNet, in terms of the position at which they place the correct root-cause failure.

2. Impact of size of synchronization time slot: We examine the sensitivity of the

ranking algorithms to the size of the time slot used by the distributed data harvesting

method to transfer data between nodes. We would expect that as the size of the time

145

CHAPTER 7. EVALUATION

slot increases, the transferred data become less precise, and the ranking algorithms

might have di�culty maintaining consistent results.

3. Data storage and transfer requirements: We examine the data storage require-

ments and the overhead the data synchronization imposes on the physical network.

In the evaluation of the method we use identical scenarios as in evaluation of the de-

pendence discovery method with the distributed data harvesting method presented in Sec-

tion 7.3. Thus, we use both the military and the �re�ghting scenarios and with the same

service and network layer settings. The service interconnections include four services in

all conversations and the results presented are based on the DGs constructed from inter-

dependencies only. The methodology used in the evaluation of the ranking algorithms is

same as the evaluation of fault Localization presented in Section 7.2.1.

There are several di�erences between scenarios produced by the NS-3 based simulator

and the CORE/EMANE based emulator. Most notable is the di�erence in the ratio of

fault types occurring in the scenarios. While in the NS-3 based experiments the ratio of

exceptions to timeouts received by clients is about 9 to 1 on average. The ratio in the

CORE/EMANE based experiments is about 3 to 7 on average. This is due to multitude of

di�erences in all of the experimental components. Perhaps most important is the di�erence

in the simulation algorithms used in the MAC and PHY network layers of the simulators.

These network layers are more realistically implemented in the EMANE and thus results

from this experimental suit should be considered of a higher trustworthiness.

7.4.1. Impact of size of synchronization time slot

We �rst compare the accuracy of the two ranking algorithms used in conjunction with the

distributed data harvesting method. In Section 7.2 we have established the accuracy of

the algorithms for the two types of the faults found in the service-based systems. In this

experiment, we investigate the sensitivity of the algorithms to the precision of the data

available from the distributed method. The precision of the data available is a�ected by the

size of the time slot used in the data synchronization. We hypothesize that the increasing

size of the time slot used in the data synchronization will have a negative correlation with

the accuracy of the ranking algorithms.

The results are shown in Figures 7.30 and 7.31. Only results for the �re�ghting scenario

are provided because the results for military scenario are almost identical. We compare

precision of the ranking algorithms and show the precision relatively to the number of

146

7.4. EVALUATION OF FAULT LOCALIZATION WITH DISTRIBUTED DATA
HARVESTING

options presented to the ranking algorithms and to the random guess. Same as in the NS-3

based experiments, the Timing algorithm is more e�ective in raking the EX faults and the

BNet algorithm is more e�ective in ranking the TO faults.

These results con�rm our hypothesis, the size of the time slot has a negative correlation

with the accuracy of both of the ranking algorithms. The increasing size of the time

slots has several negative impacts on the fault localization. First, the input into the fault

localization is a DG. The FP ratio of the DG is negatively impacted by the increasing size

of the time slot as presented in Section 7.3. The increasing FP ratio increases the size of the

DG, which in turn increases inclusion of an irrelevant symptoms in a FPM. Furthermore,

the increasing size of the time slot decreases a resolution of the symptoms data and thus

further increases the inclusion of the irrelevant symptoms in the FPM. Higher amount of

symptoms in the FPM increases the number of options presented to the ranking and thus

decreases the precision of the ranking algorithms. The impact is more pronounced in the

ranking of the EX faults than of the TO faults. It is because the time window used in

construction of the FPM of TO faults is signi�cantly larger than that for the EX faults.

Thus the FPM already contains higher ratio of the FP dependencies and symptoms and is

thus less sensitive to the inclusion of the additional FP data.

Figure 7.30.: Accuracy of ranking algorithms in ranking exceptions with variable time slot

size

147

CHAPTER 7. EVALUATION

Figure 7.31.: Accuracy of ranking algorithms in ranking timeouts with variable time slot

size

7.4.2. Network overhead and data storage requirements

In this section we investigate the data storage requirements placed on the backup data

stores, and the data transfer overhead requirements placed on the network.

In Section 7.3.6 we have presented the overhead the continuous data synchronization

places on the physical network while synchronizing the dependence data. The symptom

data required for the Fault Localization method are added into the synchronization process

as an additional source of the time series for synchronization. The symptom data are

aggregated into the time slots same as the dependence data and with the same precision (i.e.

the time slot size). Thus each of the additional time series should increase proportionally

the overall amount of the data transferred.

The amount of data transferred depends on complexity of the system, size of the network

as well as on the reachability of nodes within the network. The amount of data is also

related to the size of the time slot used in the data synchronization. In Figure 7.32 is shown

the sensitivity of the data overhead to the size of the synchronization time slot in both of

the military and the �re�ghting scenarios with single peer per synchronization cycle. The

overall amount of th data synchronized is increased by inclusion of the symptom data of

about 20%. The size of the time slot has negative correlation with the overall amount of

the data transferred i.e. as the time slot is increasing the overall amount of the transferred

data is decreasing. However, as presented in previous section in Figures 7.30 and 7.31, the

148

7.4. EVALUATION OF FAULT LOCALIZATION WITH DISTRIBUTED DATA
HARVESTING

increasing size of the time slot has also negative correlation with the precision of the ranking

algorithms. The increase in the amount of the transferred data with the increasing precision

of the data (i.e. the decrease size of time slot) is however disproportionately slower. Thus

for example in the �re�ghting scenario the 100 fold increase in the data precision from 10s

to 0.1s of size of the time slot, increases the amount of the data transferred only by about

20% from 0.35kB to 0.43kB on average per node and cycle.

Correspondingly, with increase in the data transferred over the network is also increasing

the size of the data stored in the backup stores. Thus in both of the military and the

�re�ghting scenarios, the size of the individual store on each of the nodes increases from

maximum of 25kB of the dependence data alone to maximum of 30kB for the dependence

and the symptom data combined.

Figure 7.32.: Impact of size of synchronization time slot on amount of data transferred in

synchronization cycle between pair of nodes

7.4.3. Discussion of results

The experimental results above demonstrate the e�ectiveness of our distributed data har-

vesting method in transferring symptom and dependence data for use in the fault local-

ization. We have presented the accuracy of the ranking algorithms with various precision

of the data available from the data synchronization. The accuracy of the ranking algo-

rithms seems to respond well to the decreasing precision of data aggregated by the data

synchronization.

149

CHAPTER 7. EVALUATION

An important consideration in the MANET environment is the requirement for data

storage and transfer. We have shown that our method performs well in this regard. The

network overhead is rising only very slowly with increase in precision of the data transferred.

Likewise, the symptom data cause only small increase in the overall network overhead

imposed by the data synchronization.

Finally, in these experiments we have demonstrated the e�ectiveness of the fault local-

ization method implemented in the realistic environment of the CORE and EMANE, with

the fault localization components implemented in the Java EE.

7.5. Threats to Experimental Validity

The results reported are a selection from the experiments we have conducted. This selection

focuses on particular aspects of the method, as detailed above. The results withheld

support the results reported.

The threats to the validity of the results derive from the prerequisites listed in Section 1

and the experimental parameter values detailed in each of the evaluation sections. We

have chosen these values based on the joint experiences of the NS-3, CORE, EMANE

and Java EE community of users, and on the recommendations of commercial SOA and

Web Services providers. Where speci�c community experience was lacking in the choice

of values (e.g., the absence of a benchmark) we attempted to broadly sample in the space

of values. We made use of uniformly random distributions in several instances (e.g., the

request behavior of clients), which are a simpli�cation that is a methodologically accepted

practice at this stage of investigation. This yields statistically sound results, as each data

point in our results is an average over all arising conversations, each of which is a statistical

sample subject to the random variables.

We make no claim that the results generalize beyond the reported experiments, but

overall they give us con�dence that the methods are a viable approach to service dependence

discovery and fault localization in the challenging MANET environment.

150

8. Conclusion

We have presented suite of three run-time methods to discover dependencies, perform

fault localization and to harvest data in service-based systems hosted on mobile ad hoc

networks. The methods are designed to operate in the highly dynamic and resource-

constrained environment of the MANETs.

The dependence discovery method discovers the dependencies among services operated

in the highly dynamic environment of MANETs. Unlike existing approaches, the method

does not require stable dependence relationships, nor does it require that large amounts

of evidence data be collected over long periods. Through an extensive set of simulation-

based experiments, we have evaluated the accuracy of the method in terms of operational

factors characteristic of both service-based systems and MANETs. The method exhibits

good behavior when subjected to the stress of a changing underlying network topology.

Furthermore, its data storage and data transfer requirements scale well with the number

and connectivity of the services involved.

The fault localization method analyzes the failures experienced and reported by clients of

the service-based system in order to locate the root-cause fault, making use of symptoms

observed at both the service and network levels. To cope with the temporal aspects of

the problem, the method uses multiple elements to �lter out irrelevant symptoms. These

include a dynamic dependence graph rooted at the client produced by the dependence

discovery method, a fault propagation model, and algorithms to rank candidate root causes.

An extensive set of simulation-based experiments demonstrates that our method achieves

fault localization results with high accuracy in a range of situations. It does so while

incurring low data storage and transfer costs, making it ideally suited to the resource-

constrained MANET environment.

The distributed data harvesting method uses an epidemic protocol to create a net-

work wide synchronization data overlay to transfer the dependence and the symptom data

over the unreliable links of teh MANETs. To overcome the limited connectivity of the

MANET�s nodes, the epidemic protocol transfers the data over intermediate nodes in suc-

151

CHAPTER 8. CONCLUSION

cessive synchronization cycles. The method minimizes the overhead caused by the contin-

uous data transfer by imposing limits on the age of the data transferred and by eliminating

irrelevant data. Through extensive set of emulation-based experiments, we have evaluated

the capacity of the method to transfer th data from monitors to client nodes in various

types of the MANET environments. We demonstrated that the method has small impact

on the accuracy of the produced dependence graphs and on the fault localization while

providing high availability of the data. Moreover, we have shown how to tune the method

to optimize the overhead to minimum in the resource-constrained MANET environment.

Aside of the three methods, we have presented suite of experimental tools for analysis

of the service-based systems hosted in MANETs. We have designed a new simulator of

service-based systems hosted in MANETs. The simulator is built as an extension of a

standard packet based network simulator NS-3. The simulator closely replicates the com-

plex network behavior as well as the service-based system entities and models. We have

used the simulator for evaluation of the dependence discovery and the fault localization

methods. Furthermore, we have designed a generic web service system implemented in a

Java EE. The system allows analysis of various types and con�gurations of web service

systems in emulation-based or in real world environments. We have used the generic web

service system in emulation-based evaluation of all of the three methods.

8.1. Applicability of the Method

Each of the methods makes certain assumptions about the environment within which op-

erates.

The applicability of the dependence discovery method in a given system depends on infor-

mation available in messages exchanged between services of the system. In systems which

use plain message exchange protocols such as SOAP or REST, the available information is

limited to identi�er of the target service in request messages and therefore the discoverable

dependencies are limited to the outgoing inter-dependencies. This approach is applica-

ble in all service-based systems. However, in system where additional �elds with source

service and conversation-identi�er are present in the messages, it is possible to discover

intra-dependencies as well. This approach is applicable only in systems, which provide the

necessary information in request messages such as those which implement SOAP exten-

sion standards WS-Addressing, WS-SecureConversation and WS-Coordination or similar

extensions of other protocols. It is important to note that both of the approaches do not

152

8.2. CURRENT AND FUTURE WORK

require any alterations of the system components or infrastructure except deployment of

the monitors.

The fault localization method itself requires system components and services to report

symptoms of faults into the system log. Furthermore, the symptom monitor requires per-

mission to access the log to analyze the records. However, since in operation environment

this approach might be unreliable source of symptom data (i.e. the con�guration of the

system and services might be di�cult or some symptoms might not be reported at all).

Thus, in Section 8.2 we provide overview of our work in progress, providing more realistic

fault detection approach providing a more accurate symptom data.

To employ the epidemic protocol for harvesting of the dependence and symptom data,

each node within the network should host an instance of the synchronization agent. It is

important to note that none of the methods require any alterations of the system compo-

nents or infrastructure except deployment of the monitors and agents on nodes.

8.2. Current and Future Work

Currently, we are working on a new fault detection method, which will allow detection of

symptoms of faults from message �ows in service-based systems.

In our current architecture, the system components, application environment and ser-

vices have to be reporting all of the relevant fault symptom data into the logs. However,

in the various operational environments, the capability to record the symptom data might

not be available in all of the components and services. Moreover, the records stored into

the logs have to contain all of the required information �elds in order for the symptom

monitors to access and correctly interpret the required information. Since logging is gener-

ally disparate and inaccurate across various system layers and types of components, some

more reliable and accurate mechanism of fault detection is required.

In the new fault detection method, we focus on detection of symptoms of faults from

�ows of message, occurring at various locations in the service-based system. The method

uses set of passive detectors, each responsible for detection of faults of a particular type

of component of the service-based system. For example, detection of network faults by

observing �ows and exceptions issuing in application platform, or detection of timeouts by

measuring response times.

This approach allows to collect all the symptom types available from the system logs as

well as additional types of faults and observations not available otherwise. For example, this

153

CHAPTER 8. CONCLUSION

approach will allow us to probabilistically di�erentiate between root cause and transitive

timeout symptoms. (The inability to di�erentiate between these two is currently source of

lower precision of the analysis of the timeouts.) Hence, we expect, that the availability of

the additional types of faults and data will allow us to further improve the fault localization

method.

154

9. Appendices

155

A. Algorithms

A.1. Dependence Discovery: Construction of

Dependence Graph

pub l i c DependenceGraph constructDG (

St r ing rootNodeURI ,

long fromTimestamp ,

long toTimestamp)

{

DependenceGraph dg = new DependenceGraph (rootNodeURI) ;

i n t nodeIndex = 0 ;

Node node ;

S t r ing [] nodeDependencies ;

whi l e ((node = dg . getNodes () [nodeIndex]) != nu l l)

{

nodeDependencies = getInterDependenciesForNode (

node , fromTimestamp , toTimestamp) ;

// c r e a t e s edges and ta r g e t nodes in DG

// i f they do not e x i s t yet

addNodeEdges (node , nodeDependencies) ;

nodeIndex++;

}

return dg ;

}

156

A.2. FAULT LOCALIZATION: CONSTRUCTION OF FAULT PROPAGATION
MODEL

A.2. Fault Localization: Construction of Fault

Propagation Model

// c r e a t e s FPM from DG and FPP

pub l i c FaultPropagationModel createFPM(

FaultPropagat ionPattern fpp ,

DependenceGraph dg)

{

FaultPropagationModel fpm = new FaultPropagationModel () ;

// c r e a t e root node in FPM

fpm . createRoot (dg . getRoot () , fpp . getRootMode ()) ;

// add r e c u r s i v e l y a l l DG nodes in to the FPM

addSubNodesToFPM(fpm , fpp , dg . getRoot ()) ;

r e turn fpm ;

}

// r e c u r s i v e − add a l l DG ch i l d e rn nodes o f a DG parent node in to FPM

pr i va t e void addSubNodesToFPM(

FaultPropagationModel fpm ,

FaultPropagat ionPattern fpp ,

DGNode dg_parent)

{

f o r (DGNode dg_child : dg_parent . getSubNodes ())

{

// add DG node in to FPM

addDGNodeIntoFPM(fpm , fpp , dg_parent , dg_child) ;

// i f DG node i s in t e rmed ia t e − add i t s ch i l d e rn

i f (dg_child . i s I n t e rmed i a t e ())

{

addSubNodesToFPM(fpm , fpp , dg_child) ;

}

}

}

157

APPENDIX A. ALGORITHMS

// add DG node in to FPM and c r ea t e propagat ion paths

p r i va t e void addDGNodeIntoFPM(

FaultPropagationModel fpm ,

FaultPropagat ionPattern fpp ,

DGNode dg_parent ,

DGNode dg_child)

{

FaultPropagationPatternMode fpm_parent ;

FaultPropagationPatternMode fpm_child ;

// f o r each mode in FPP cr ea t e new node in FPM

fo r (FaultPropagationPatternMode fpp_chi ld : fpp)

{

// f o r DG l e a f nodes − add only root cause modes

i f (dg_child . i s L e a f () && fpp_chi ld . i sT r a n s i t i v e ())

{

cont inue ;

}

fpm_child = fpm . createNode (dg_child , fpp_chi ld) ;

// l i n k the new FPM node with i t s FPM parent nodes

// add l i n k to each t r a n s i t i v e mode o f parent

f o r (FaultPropagationPatternMode fpp_parent : fpp)

{

i f (fpp_parent . i sT r a n s i t i v e ())

{

fpm_parent = fpm . getNode (dg_parent , fpp_parent) ;

fpm . createPropagat ionPath (fpm_child , fpm_parent) ;

}

}

}

}

158

A.3. FAULT LOCALIZATION: REDUCTION OF FAULT PROPAGATION MODEL

A.3. Fault Localization: Reduction of Fault

Propagation Model

// reduces FPM based on symptoms

pub l i c FaultPropagationModel reduceFPM(

FaultPropagationModel fpm ,

SymptomProvider sp)

{

// a s s i gn symptoms to fpm

assignSymptoms (fpm , sp) ;

// remove nodes without symptoms

removeNodesWithoutSymptom(fpm) ;

// remove i r r e l e v a n t nodes

removeIrre levantNodes (fpm) ;

re turn fpm ;

}

// harves t and a s s i gn symptoms to nodes o f FPM

pr i va t e void assignSymptoms (

FaultPropagationModel fpm ,

SymptomProvider sp)

{

long symptomTimestamp ;

f o r (FaultPropagationModelNode node : fpm . getNodes ())

{

// harves t timestamp o f symptom (i f the re was one)

symptomTimestamp = sp . getSymptomTimestamp (

node . g e tS e r v i c e () ,

node . getSymptomType ()) ;

// a s s i gn the symptom timestamp

i f (symptomTimestamp != 0)

{

node . setSymptomTimestamp (symptomTimestamp) ;

159

APPENDIX A. ALGORITHMS

}

}

}

// remove a l l nodes which have no as s i gned symptom

pr i va t e void removeNodesWithoutSymptom(FaultPropagationModel fpm)

{

f o r (FaultPropagationModelNode node : fpm . getNodes ())

{

i f (! node . getHasSymptom ())

{

fpm . removeNode (node) ;

}

}

}

p r i va t e void removeIrre levantNodes (FaultPropagationModel fpm)

{

boolean anyChange = true ;

whi l e (anyChange)

{

anyChange = f a l s e ;

f o r (FaultPropagationModelNode node : fpm . getNodes ())

{

// remove a l l nodes which have no parent

i f (node . getParent () == nu l l)

{

fpm . removeNode (node) ;

anyChange = true ;

cont inue ;

}

// remove a l l nodes which are t r a n s i t i v e and have no ch i l d r en

i f (node . i sT r a n s i t i v e () && node . getChi ldren () . l ength == 0)

{

fpm . removeNode (node) ;

anyChange = true ;

}

160

A.3. FAULT LOCALIZATION: REDUCTION OF FAULT PROPAGATION MODEL

}

}

}

161

APPENDIX A. ALGORITHMS

A.4. Fault Localization: Timing Based Ranking

// r e tu rn s ordered s e t o f root cause cand idates

pub l i c FaultPropagationModelMode [] timingRanking (

FaultPropagationModel fpm ,

boolean ascendingOrder ing)

{

FaultPropagationModelMode [] fpmm;

// ex t r a c t a l l root cause cand idate s from fpm

fpmm = fpm . getAllLeafModes () ;

// cand idates are ordered based on d i s t anc e o f t h i e r timestamp o f

symptom

// from root node (c l i e n t) timestamp

fpmm = orderModes (fpm . getRoot () . getTimestamp () , fpmm) ;

re turn fpmm;

}

162

A.5. FAULT LOCALIZATION: BAYESIAN NETWORK BASED RANKING

A.5. Fault Localization: Bayesian Network Based

Ranking

// r e tu rn s s e t o f ordered root cause cand idates with t h i e r p r obab i l i t y

pub l i c SortedMap<double , BNetNode> BNetRanking (FaultPropagationModel fpm)

{

BNet bnet ;

// load BNet from FPM

bnet = createBNet (fpm) ;

// c r ea t e CPD

createCPD (bnet) ;

// a s s i gn ev idence − the root node ev idence = true

bnet . getRoot () . se tEvidence (t rue) ;

// run i n f e r e n c e

re turn run In f e r ence (bnet) ;

}

// isomorphic t rans fo rmat ion o f FPM to BNet

p r i va t e BNet createBNet (FaultPropagationModel fpm)

{

BNet bnet = new BNet () ;

createBNetNode (bnet , fpm . getRoot () , fpm . getRoot ()) ;

}

// r e c u r s i v e − c r e a t e node in BNet and add ch i l d r en

p r i va t e void createBNetNode (

BNet bnet ,

FaultPropagationModelNode parent ,

FaultPropagationModelNode mode)

{

bnet . addNode (mode . get Id ()) ;

bnet . addLink (mode . get Id () , parent . ge t Id ()) ;

163

APPENDIX A. ALGORITHMS

f o r (FaultPropagationModelNode ch i l d : mode . getChi ldren ())

{

createBNetNode (bnet , mode , c h i l d) ;

}

}

// c r ea t e CPD fo r each node with parents

p r i va t e void createCPD (BNet bnet)

{

CPD cpd ;

f o r (BNetNode node : bnet . getNodes ())

{

// only nodes with parents have CPD

i f (node . getParents () . l enght > 0)

{

// c r ea t e noisy−OR CPD, with mod i f i e r 0 .99 f o r each l i n k

cpd = calculateCPD (node . getParents () , 0 . 9 9) ;

node . setCPD(cpd) ;

}

}

}

// i n f e r e s f o r each node i t s p r obab i l i t y and re tu rn s so r t ed s e t o f

cand idates

p r i va t e SortedMap<double , BNetNode> runIn f e r ence (BNet bnet)

{

double pp ;

SortedMap output = new TreeMap<double , BNetNode>() ;

f o r (BNetNode node : bnet . getNodes ())

{

// only f o r root cause cand idates − l e a f s

i f (node . i s L e a f ())

{

// i n f e r p o s t e r i o r p r obab i l i t y

pp = node . c a l c u l a t ePo s t e r i o rP r ob ab i l i t y () ;

output . put (pp , node) ;

164

A.5. FAULT LOCALIZATION: BAYESIAN NETWORK BASED RANKING

}

}

return output ;

}

165

APPENDIX A. ALGORITHMS

A.6. Distributed Data Harvesting: Peer Selection

pub l i c S t r ing [] s e l e c tP e e r s (i n t peerCap , i n t hopCountLimit)

{

St r ing [] cand idate s ;

S t r ing [] pee r s ;

cand idates = f indCandidates (hopCountLimit) ;

pee r s = choosePeers (candidates , peerCap) ;

r e turn peer s ;

}

// r e tu rn s l i s t o f cand idate s

pub l i c S t r ing [] f indCandidates (i n t hopCountLimit)

{

ArrayList<Str ing> cand idate s = new ArrayList <>() ;

RoutingTableRecord [] r t r s ;

// r e t r i v e s cur rent r e co rd s o f rout ing tab l e

r t r s = getRoutingTableRecords () ;

f o r (RoutingTableRecord r t r : r t r s)

{

// cand idates must be with in the d i s t ance l im i t

i f (r t r . metr ic <= hopCountLimit)

{

cand idates . add (r t r . ge t Ip ()) ;

}

}

re turn cand idate s ;

}

// choose randomly peer s from cand idates

pub l i c S t r ing [] choosePeers (S t r ing [] candidates , i n t peerCap)

{

St r ing [] pee r s ;

166

A.6. DISTRIBUTED DATA HARVESTING: PEER SELECTION

St r ing randomPeer ;

// i f candidate s e t i s b i gge r than the cap

i f (cand idate s . l ength > peerCap)

{

f o r (i n t i = 0 ; i < peerCap ; i++)

{

randomPeer = randomlySelectPeer (cand idate s) ;

pee r s . add (randomPeer) ;

}

}

// otherwi se use a l l a v a i l a b l e cand idate s

e l s e

{

pee r s = cand idates ;

}

re turn peer s ;

}

167

APPENDIX A. ALGORITHMS

A.7. Distributed Data Harvesting: Dataset Calculation

// c a l c u l a t e s datase t to be send to a peer

pub l i c Dataset c a l cu l a t eData s e t (S t r ing peer , long maximumAgeOfDataToSynch)

{

Dataset ds = new Dataset () ;

// f o r each time s e r i e s s to r ed

f o r (Timeser i e s t s : g e tA l lT imes e r i e s ())

{

// add new data o f the time s e r i e s

addTimeser ies (ds , ts , maximumAgeOfDataToSynch) ;

}

re turn datase t ;

}

// add data o f the time s e r i e s to the datase t

p r i va t e void addTimeser ies (

Dataset ds ,

T imeser i e s ts ,

S t r ing peer ,

long maximumAgeOfDataToSynch)

{

Timeslot [] t ime s l o t s ;

long lastTimestamp ;

long maxAge ;

long o ldes tTimes lo tToInc lude ;

// get timestamp o f the l a s t s u c c e s s f u l synchron i za t i on with the peer

lastTimestamp = getLastSuccessfulSynchTimestamp (peer , t s) ;

// get the maximum age o f t r a n f e r a b l e data

maxAge = Now() − maximumAgeOfDataToSynch ;

// by choos ing the l a t e r o f the se two

// s e l e c t time s i n c e when time s l o t s should be inc luded

// (data should not be send again and not o ld e r then max age)

168

A.7. DISTRIBUTED DATA HARVESTING: DATASET CALCULATION

o ldes tTimes lo tToInc lude = maxAge > lastTimestamp ? maxAge :

lastTimestamp ;

// ex t r a c t time s l o t s newer then

t ime s l o t s = t s . getTimeslotsNewerThen (o ldes tTimes lo tToInc lude) ;

// i f the re are not new data , do not in c lude the time s e r i e s

i f (t ime s l o t s . l ength == 0) return ;

// trim empty t ime s l o t s

t ime s l o t s = tr imTimes lots (t ime s l o t s) ;

// add t ime s l o t s i n to the datase t

ds . addTimeseriesData (t s . ID , t ime s l o t s) ;

}

169

APPENDIX A. ALGORITHMS

A.8. Distributed Data Harvesting: Transfer of Dataset

// t h i s method i s an example o f synchronous send approach

// in r e a l implementation i s r equ i r ed asynchronous and p a r a l l e l approach

pub l i c void sendDatasetToPeer (S t r ing peer , Dataset ds , i n t timeout)

{

Message msg = new Message () ;

PeerProxy proxy = new PeerProxy (peer) ;

boolean suc c e s s ;

// s t o r e datase t i n to a message

msg . addDataset (ds) ;

// send message with datase t and s e t re sponse timeout

su c c e s s = proxy . sendMessage (msg , t imeout) ;

// message was r e c e i v ed by peer and con f i rmat ion response a r r i v ed on

time

i f (s u c c e s s)

{

// s t o r e s timestamp o f l a t e s t t r an s f e r e d time s l o t

// o f each time s e r i e s conta ined in the datase t

storeLatestSuccess fu lSynchTimestampa (ds , peer) ;

}

}

170

Bibliography

[1] A. Adya, P. Bahl, R. Chandra, and L. Qiu. Architecture and techniques for diagnosing

faults in IEEE 802.11 infrastructure networks. In Proceedings of the 10th Annual

International Conference on Mobile Computing and Networking, pages 30�44, New

York, NY, USA, 2004. ACM.

[2] J. Ahrenholz. Comparison of core network emulation platforms. In MILITARY COM-

MUNICATIONS CONFERENCE, 2010 - MILCOM 2010, pages 166�171, 2010.

[3] J. Ahrenholz, C. Danilov, T. Henderson, and J. Kim. Core: A real-time network

emulator. In Military Communications Conference, 2008. MILCOM 2008. IEEE,

pages 1�7, 2008.

[4] J. Ahrenholz, T. Go�, and B. Adamson. Integration of the core and emane network

emulators. In MILITARY COMMUNICATIONS CONFERENCE, 2011 - MILCOM

2011, pages 1870�1875, 2011.

[5] P. Bahl, P. Barham, R. Black, R. Ch, M. Goldszmidt, R. Isaacs, S. K, L. Li, J. Mac-

cormick, D. A. Maltz, R. Mortier, M. Wawrzoniak, and M. Zhang. Discovering de-

pendencies for network management. In Fifth Workshop on Hot Topics in Networks,

Nov. 2006.

[6] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and M. Zhang. Towards

highly reliable enterprise network services via inference of multi-level dependencies.

In Proceedings of the Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications, pages 13�24. ACM, August 2007.

[7] P. Barham, R. Black, M. Goldszmidt, R. Isaacs, J. MacCormick, R. Mortier, and

A. Simma. Constellation: Atomated discovery of service and host dependencies in

networked systems. Technical Report MSR-TR-2008-67, Microsoft Research, 2008.

171

Bibliography

[8] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for request ex-

traction and workload modelling. In Proceedings of the 6th USENIX Symposium on

Operating Systems Design and Implementation. USENIX Association, 2004.

[9] S. Basu, F. Casati, and F. Daniel. Toward web service dependency discovery for

SOA management. In Proceedings of the IEEE International Conference on Services

Computing, pages 422�429. IEEE Computer Society, 2008.

[10] P. Bellavista, A. Corradi, and E. Magistretti. Comparing and evaluating lightweight

solutions for replica dissemination and retrieval in dense manets. In Computers and

Communications, 2005. ISCC 2005. Proceedings. 10th IEEE Symposium on, pages

43�50, 2005.

[11] P. Bellavista, A. Corradi, and E. Magistretti. Redman: A decentralized middleware

solution for cooperative replication in dense manets. In Proceedings of the Third IEEE

International Conference on Pervasive Computing and Communications Workshops,

PERCOMW '05, pages 158�162, Washington, DC, USA, 2005. IEEE Computer Soci-

ety.

[12] K. Birman. The promise, and limitations, of gossip protocols. SIGOPS Oper. Syst.

Rev., 41(5):8�13, Oct. 2007.

[13] A. Bouloutas, S. Calo, and A. Finkel. Alarm correlation and fault identi�cation in

communication networks. Communications, IEEE Transactions on, 42(234):523�533,

1994.

[14] A. Cavalcante and M. Grajzer. Fault propagation model for ad hoc networks. In

Proceedings of the IEEE International Conference on Communications, pages 1�5,

June 2011.

[15] C. Chen, A. Zaidman, and H.-G. Gross. A framework-based runtime monitoring

approach for service-oriented software systems. In Proceedings of the International

Workshop on Quality Assurance for Service-Based Applications, QASBA '11, pages

17�20, New York, NY, USA, 2011. ACM.

[16] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, and E. Brewer.

Path-based faliure and evolution management. In Proceedings of the Symposium on

Networked Systems Design and Implementation. USENIX Association, 2004.

172

Bibliography

[17] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl. Automating network application de-

pendency discovery: Experiences, limitations, and new solutions. In Proceedings of

the 8th USENIX Symposium on Operating Systems Design and Implementation, pages

117�130. USENIX Association, 2008.

[18] S. Chessa and P. Santi. Comparison-based system-level fault diagnosis in ad hoc

networks. In Proceedings of the 20th IEEE Symposium on Reliable Distributed Systems,

pages 257�266, 2001.

[19] D. Dechouniotis, X. Dimitropoulos, A. Kind, and S. Denazis. Dependency detection

using a fuzzy engine. In Proceedings of the 18th IFIP/IEEE International Workshop

on Distributed Systems: Operations and Management, number 4785 in Lecture Notes

in Computer Science, pages 110�121. Springer-Verlag, 2007.

[20] A. Dimakis, S. Kar, J. Moura, M. Rabbat, and A. Scaglione. Gossip algorithms for

distributed signal processing. Proceedings of the IEEE, 98(11):1847�1864, 2010.

[21] G. Ding and B. Bhargava. Peer-to-peer �le-sharing over mobile ad hoc networks.

In Pervasive Computing and Communications Workshops, 2004. Proceedings of the

Second IEEE Annual Conference on, pages 104�108, 2004.

[22] M. Elhadef, A. Boukerche, and H. Elkadiki. Diagnosing mobile ad-hoc networks: Two

distributed comparison-based self-diagnosis protocols. In Proceedings of the 4th ACM

International Workshop on Mobility Management and Wireless Access, pages 18�27,

New York, NY, USA, 2006. ACM.

[23] M. Elhadef, A. Boukerche, and H. Elkadiki. A distributed fault identi�cation pro-

tocol for wireless and mobile ad hoc networks. Journal of Parallel and Distributed

Computing, 68(3):321�335, Mar. 2008.

[24] I. K. Eltahir. The impact of di�erent radio propagation models for mobile ad hoc

networks (MANET) in urban area environment. In 2nd International Conference on

Wireless Broadband and Ultra Wideband Communications. IEEE, Aug. 2007.

[25] M. D. Ernst. Static and dynamic analysis: Synergy and duality. In WODA 2003:

ICSE Workshop on Dynamic Analysis, pages 24�27. Citeseer, 2003.

173

Bibliography

[26] M. Fecko and M. Steinder. Combinatorial designs in multiple faults localization for

battle�eld networks. In Proceedings of the IEEE Military Communications Conference,

volume 2, pages 938�942, 2001.

[27] S. Geyik, B. Szymanski, P. Zerfos, and D. Verma. Dynamic composition of services in

sensor networks. In Services Computing (SCC), 2010 IEEE International Conference

on, pages 242 �249, july 2010.

[28] T. Hara. E�ective replica allocation in ad hoc networks for improving data accessibil-

ity. In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings. IEEE, volume 3, pages 1568�1576 vol.3,

2001.

[29] T. Hara. Replica allocation methods in ad hoc networks with data update. Mob.

Netw. Appl., 8(4):343�354, Aug. 2003.

[30] T. Hara, N. Murakami, and S. Nishio. Replica allocation for correlated data items in

ad hoc sensor networks. SIGMOD Rec., 33(1):38�43, Mar. 2004.

[31] M. Hasan, B. Sugla, and R. Viswanathan. A conceptual framework for network man-

agement event correlation and �ltering systems. In Integrated Network Management,

1999. Distributed Management for the Networked Millennium. Proceedings of the Sixth

IFIP/IEEE International Symposium on, pages 233�246, 1999.

[32] M. Hauspie, D. Simplot, and J. Carle. Replication decision algorithm based on link

evaluation services in manet. In CNRS UPRESA 8022�LIFL University Lille, 2002.

[33] D. Heckerman. A tractable inference algorithm for diagnosing multiple diseases. In

Proceedings of the Fifth Annual Conference on Uncertainty in Arti�cial Intelligence,

pages 163�172, 1989.

[34] T. Heer, S. Gotz, S. Rieche, and K. Wehrle. Adapting distributed hash tables for

mobile ad hoc networks. In Proceedings of the 4th annual IEEE international con-

ference on Pervasive Computing and Communications Workshops, PERCOMW '06,

pages 173�, Washington, DC, USA, 2006. IEEE Computer Society.

[35] J.-L. Huang, M.-S. Chen, and W.-C. Peng. Exploring group mobility for replica

data allocation in a mobile environment. In Proceedings of the twelfth international

174

Bibliography

conference on Information and knowledge management, CIKM '03, pages 161�168,

New York, NY, USA, 2003. ACM.

[36] G. Karumanchi, S. Muralidharan, and R. Prakash. Information dissemination in par-

titionable mobile ad hoc networks. In Proceedings of the 18th IEEE Symposium on

Reliable Distributed Systems, SRDS '99, pages 4�, Washington, DC, USA, 1999. IEEE

Computer Society.

[37] I. Katzela and M. Schwartz. Schemes for fault identi�cation in communication net-

works. IEEE/ACM Trans. Netw., 3(6):753�764, Dec. 1995.

[38] A. Klemm, C. Lindemann, and O. Waldhorst. A special-purpose peer-to-peer �le

sharing system for mobile ad hoc networks. In Vehicular Technology Conference,

2003. VTC 2003-Fall. 2003 IEEE 58th, volume 4, pages 2758�2763 Vol.4, 2003.

[39] S. Klinger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo. A coding approach to

event correlation. In Proceedings of the fourth international symposium on Integrated

network management IV, pages 266�277, London, UK, UK, 1995. Chapman & Hall,

Ltd.

[40] B. Ko, S. Liu, M. Zafer, H. Wong, and K. Lee. Gateway selection in hybrid wireless

networks through cooperative probing. In Proceedings of the IFIP/IEEE Integrated

Network Management Symposium (IM), 2013.

[41] G. Kortuem, J. Schneider, D. Preuitt, T. Thompson, S. Fickas, and Z. Segall. When

peer-to-peer comes face-to-face: collaborative peer-to-peer computing in mobile ad-

hoc networks. In Peer-to-Peer Computing, 2001. Proceedings. First International Con-

ference on, pages 75�91, 2001.

[42] J.-L. Kuo, C.-H. Shih, C.-Y. Ho, and Y.-C. Chen. A cross-layer approach for real-

time multimedia streaming on wireless peer-to-peer ad hoc network. Ad Hoc Netw.,

11(1):339�354, Jan. 2013.

[43] J.-G. Lou, Q. Fu, Y. Wang, and J. Li. Mining dependency in distributed systems

through unstructured logs analysis. SIGOPS Operating Systems Review, 44:91�96,

March 2010.

[44] J. Luo, J.-P. Hubaux, and P. T. Eugster. Pan: providing reliable storage in mobile

ad hoc networks with probabilistic quorum systems. In Proceedings of the 4th ACM

175

Bibliography

international symposium on Mobile ad hoc networking & computing, MobiHoc '03,

pages 1�12, New York, NY, USA, 2003. ACM.

[45] S. Mo, J. Hsu, J. Gu, M. Luo, and R. Ghanadan. Network synchronization for dis-

tributed MANET. In Military Communications Conference. IEEE, Nov. 2008.

[46] A. Moon and H. Cho. Energy e�cient replication extended database state machine

in mobile ad hoc network. In IADIS International Conference on Applied Computing,

pages 224�228, 2004.

[47] M. Natu and A. Sethi. Adaptive fault localization in mobile ad hoc battle�eld net-

works. In Proceedings of the IEEE Military Communications Conference, pages 814�

820, Oct. 2005.

[48] M. Natu and A. S. Sethi. Using temporal correlation for fault localization in dynam-

ically changing networks. International Journal of Network Management, 18(4):301�

314, Aug. 2008.

[49] L. B. Oliveira, I. G. Siqueira, D. F. Macedo, A. A. F. Loureiro, H. C. Wong, and

J. M. Nogueira. Evaluation of peer-to-peer network content discovery techniques over

mobile ad hoc networks. In Proceedings of the Sixth IEEE International Symposium

on World of Wireless Mobile and Multimedia Networks, WOWMOM '05, pages 51�56,

Washington, DC, USA, 2005. IEEE Computer Society.

[50] E. Pacitti, P. Minet, and E. Simon. Fast algorithms for maintaining replica consis-

tency in lazy master replicated databases. In Proceedings of the 25th International

Conference on Very Large Data Bases, VLDB '99, pages 126�137, San Francisco, CA,

USA, 1999. Morgan Kaufmann Publishers Inc.

[51] P. Padmanabhan, L. Gruenwald, A. Vallur, and M. Atiquzzaman. A survey of data

replication techniques for mobile ad hoc network databases. The VLDB Journal,

17(5):1143�1164, 2008.

[52] L. Paradis and Q. Han. A survey of fault management in wireless sensor networks.

Journal of Network and Systems Management, 15(2):171�190, June 2007.

[53] L. Popa, B.-G. Chun, I. Stoica, J. Chandrashekar, and N. Taft. Macroscope: End-

point approach to networked application dependency discovery. In Proceedings of the

176

Bibliography

5th International Conference on Emerging Networking Experiments and Technologies,

pages 229�240. ACM, 2009.

[54] L. Qiu, P. Bahl, A. Rao, and L. Zhou. Troubleshooting wireless mesh networks.

SIGCOMM Computing Communications Review, 36(5):17�28, Oct. 2006.

[55] M. Rabbat and R. Nowak. Distributed optimization in sensor networks. In Information

Processing in Sensor Networks, 2004. IPSN 2004. Third International Symposium on,

pages 20�27, 2004.

[56] A. Shaheen and L. Gruenwald. Group based replication for mobile ad hoc databases

(gbrmad). In Technical Report, University of Oklahoma, Norman, 2000.

[57] W. She, I.-L. Yen, and B. Thuraisingham. WS-Sim: A web service simulation toolset

with realistic data support. Computer Software and Applications Conference Work-

shops, 0:109�114, 2010.

[58] M. Steinder and A. Sethi. End-to-end service failure diagnosis using belief networks. In

Network Operations and Management Symposium, 2002. NOMS 2002. 2002 IEEE/I-

FIP, pages 375�390, 2002.

[59] M. Steinder and A. S. Sethi. Probabilistic fault diagnosis in communication systems

through incremental hypothesis updating. Comput. Netw., 45(4):537�562, July 2004.

[60] M. Steinder and A. S. Sethi. A survey of fault localization techniques in computer

networks. Science of Computer Programming, 53(2):165�194, 2004.

[61] T. A. Stephenson. An introduction to Bayesian network theory and usage. Technical

Report IDIAP-RR-03-2000, Dalle Molle Institute for Perceptual Arti�cial Intelligence,

Martigny, Switzerland, Feb. 2000.

[62] S. Tati, P. Novotny, B. J. Ko, A. Wolf, A. Swami, and T. La Porta. Diagnosing

degradation of services in hybrid wireless tactical networks. In SPIE Defense, Security,

and Sensing, pages 874210�874210. International Society for Optics and Photonics,

2013.

[63] N. Tcholtchev, M. Grajzer, and B. Vidalenc. Towards a uni�ed architecture for re-

silience, survivability and autonomic fault-management for self-managing networks.

177

Bibliography

In Proceedings of the International Conference on Service-Oriented Computing Work-

shops, number 6275 in Lecture Notes in Computer Science, pages 335�344. Springer,

2010.

[64] J. Vomlel. Exploiting functional dependence in bayesian network inference. In Pro-

ceedings of the Eighteenth conference on Uncertainty in arti�cial intelligence, UAI'02,

pages 528�535, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[65] K. Wang and B. Li. E�cient and guaranteed service coverage in partitionable mobile

ad-hoc networks. In INFOCOM 2002. Twenty-First Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings. IEEE, volume 2, pages

1089�1098 vol.2, 2002.

[66] S. Wang and M. A. M. Capretz. A dependency impact analysis model for web services

evolution. In Proceedings of the IEEE International Conference on Web Services, pages

359�365. IEEE Computer Society, 2009.

[67] Y. Yu, B. Krishnamachari, and V. Prasanna. Energy-latency tradeo�s for data gath-

ering in wireless sensor networks. In INFOCOM 2004. Twenty-third AnnualJoint

Conference of the IEEE Computer and Communications Societies, volume 1, pages

�255, 2004.

[68] D. Zhou and T.-H. Lai. An accurate and scalable clock synchronization protocol for

IEEE 802.11-based multihop ad hoc networks. IEEE Transactions on Parallel and

Distributed Systems, 18(12):1797�1808, Dec. 2007.

178

