
Analysis and Design
 For a

Next Generation
Software Release Management System

by
ROBERT ARTHUR SMITH

B.A., Montclair State University, 1974
B.S., University of Colorado, 1993

A thesis submitted to the
Faculty of the Graduate School of the

University of Colorado in partial fulfillment
of the requirement for the degree of

Master of Science
Department of Computer Science

1999

ii

This thesis entitled:
Analysis and Design for a Next Generation Software Release Management System

written by Robert Arthur Smith
has been approved for the Department of Computer Science

__
Alexander Wolf

__
Kenneth Anderson

__
Dennis Heimbigner

 Date

The final copy of this thesis has been examined by the signatories, and we find that
both the content and the form meet acceptable presentation standards of scholarly

work in the above mentioned discipline.

iii

Smith, Robert A. (M.S., Computer Science)

Analysis and Design of a Next Generation Software Release Manager

Thesis directed by Professor Alexander L. Wolf

SRM is a software release management system that helps developers in

releasing software and users in obtaining software. Two key characteristics of SRM

are its inherent support for dependencies and its support for distributed operation.

However, despite its advantages, two important disadvantages exist in the current

version of SRM. First, it is inflexible in terms of its distribution, which needs to be

specified a priori. Second, it is inflexible in terms of its appearance, which cannot be

configured and is based on a standard set of descriptive metadata.

This thesis contributes a solution to these two problems. Based on a

comprehensive survey of existing release management systems, a core set of

capabilities is defined. These capabilities are further refined into a detailed design of

both a novel repository structure and a new XML-based method of defining the

descriptive metadata of a repository.

The advantages of the design are demonstrated through the use of a prototype,

which is used to demonstrate how the distribution topology can change over time and

how the same repository can be configured to be a software or document release

management system.

iv

Acknowledgments

First, I would like to thank Professor Alexander L. Wolf, who was brave

enough to give a person who is a fulltime employee an opportunity to do some

research. I’ve found this past year or so of work both interesting and challenging, and

for that, well, thanks.

Next, André van der Hoek, teacher, editor, and friend. SRM and NUCM are

his brainchildren, and through his patience (sorely tested at times) and teaching

ability, I was able to learn some of this field. Moreover, the past two weeks he has

been the editor extraordinaire. I never realized how much could be done by email in

two weeks by a person who is just flat out good at this. What can I say, except that

this work would not be done without him. I wish you the best of luck as you move

on, and I will miss the weekly meetings. As the immortal songsmith wrote, “what a

long, strange trip it’s been.”

I would also like to thank Bill Hoferer of Sun Microsystems, Inc. He’s my

department manager, and an ex-BUFF driver, and he gave me the time to finish this

work up, even when I could more profitably be used doing what I should be doing.

Thanks.

And finally, I want to thank my family, Maryann, Melissa and Andrew, and

my father. How can you thank people who support you, even when you’re cranky

from the long hours? Or who can help you regain your balance with a joke or just

having fun? You can’t, but this comes close. Thanks, from the bottom of my heart.

Thank you all.

v

CONTENTS

CHAPTER

1 Introduction 1

2 Survey 5

2.1 Survey Dimensions 5

2.2 Survey Results 12

3 Capabilities 17

3.1 Metadata 18

3.2 Access Control 21

3.3 Consumer Operations 23

3.4 Producer Operations 24

3.5 Server Operations 25

3.6 Prioritization 27

4 Design 31

4.1 Key Entities and Relationships 31

5 Mapping the Design to a Repository 39

5.1 Defining the Physical Repository 39

5.2 Defining the Logical Repository 42

5.3 Schema, Attributes and Logs 45

5.4 Groups 46

6 Schema, Metadata and Management 50

6.1 Metadata Management 50

vi

6.1.1 Base Data Types 51

6.1.2 Schema Definition 53

6.1.3 Release Item Definition 56

6.1.4 Remaining Metadata 60

6.1.4.1 Access Control Lists 61

6.1.4.2 Licenses 63

6.1.4.3 Key Sets 64

6.1.4.4 Groups 65

7 System Prototype 67

7.1 Creating a Repository. 67

7.2 Adding a Child Repository 70

7.3 Adding Groups 73

7.3 Managing Access Control List, Key Sets and Licenses. 77

7.4 Adding Release Items to the Repository 78

7.5 Retrieving Software from the Repository 83

7.5.1 Software Retrieval Process 84

7.5.2 Web-based Software Retrieval Process 87

7.6 Document Repository 91

8 Conclusion 96

BIBLIOGRAPHY 97

vii

APPENDIX

A. Document Type Definitions 98

B. Document Repository Upload Screen XSL Style Sheet 100

C. Document Repository Availability Screen XSL Style Sheet 102

viii

FIGURES

Figure

4.1 Entity Relationship Top Level Diagram. 33

4.2 Entity Relationship Diagram – Attributes Centered
 on Repository Level Facilities. 34

4.3 Entity Relationship Diagram – Attribution Centered
 on Release Item Facilities. 35

5.1 Physical Repository Directory Structure. 40

5.2 Logical Repository Directory Structure. 42

5.3 Logical Repository Link to a Release Item. 43

5.4 Logical Repository Links between Parent and
 Child Repositories. 45

5.5 Logical Repository Links Showing a Group. 47

5.6 Logical Repository Links Showing Groups and SubGroups. 48

6.1 Repository Schema Definition. 54

6.2 Sample Schema Definition. 55

6.3 Release Item Definitions. 56

6.4 Example Release List. 59

6.5 Access Control List DTD. 61

6.6 Example Access Control List. 62

6.7 License DTD. 63

6.8 An Example License XML File. 63

6.9 KeySet DTD. 64

6.10 KeySet DTD. 64

ix

6.11 Group DTD. 65

6.12 Sample Group XML File. 66

7.1 CreateParent Application Interface. 68

7.2 Parent Repository Directory Structure. 69

7.3 CreateChild Application Interface. 71

7.4 Child Repository Directory Structure. 72

7.5 AddGroup Application Interface. 74

7.6 Creating Groups. 75

7.7 Parent Repository AllGroups Directory Contents. 76

7.8 MyGroups Directory Contents. 77

7.9 ManageItem Application Interface. 77

7.10 Sample Upload Graphical User Interface. 79

7.11 Group Selection Dialog. 80

7.12 Strong Dependency Selection Dialog. 81

7.13 Off-site Dependency Selection Dialog. 82

7.14 Directory Structure after DVS Check In. 83

7.15 Software Retrieval Dialog GUI Prototype. 84

7.16 Release Item Information Dialog GUI Prototype. 86

7.17 Sample XSL Style Sheet for License DTD. 89

7.18 Sample License Page Generated by XSL. 90

7.19 Sample Schema Definition for a Document
 Repository. 91

7.20 Sample Document Release List. 92

7.21 Document Repository Upload Screen. 93

x

7.22 Document Repository Availability Screen. 95

xi

TABLES

Table

2.1 Survey Results of System Capabilities. 14

2.2 Survey Results of System Capabilities. 15

3.1 Metadata Related Capability Definitions. 29

3.2 Access Control Capability Definitions. 29

3.3 Consumer Operations Capability Definitions. 29

3.4 Producer Operations Capability Definitions. 30

3.5 Server Operations Capability Definitions. 30

Chapter 1

Introduction

Configuration management, as a process, has traditionally been applied during

the development cycle, and normally has not been extended to the point of releasing

software. The objective of a software release management process is to provide, for a

group or organization, a means to organize, manage, and control the release of

software systems. Software systems can range from simple script files to massive

systems containing numerous executable and library files. Understanding the key

relationships between system components becomes more difficult as the number of

components rises, and ensuring that the proper components are available for any

given release of a system becomes a difficult task [12]. With the advent and

development of the World Wide Web and the increased use of networks within

organizations, different approaches have been developed to address the issue of

managing releases of software artifacts. The Software Release Manager (SRM) [21]

is one of the systems developed to address the software release management process.

SRM is a distributed application that defines a Configuration Management

(CM) policy for managing the release of software artifacts. SRM has two objectives.

First, it supports producers in releasing their software and specifying dependencies.

Second, it supports the consumer in obtaining released software, in particular by

providing the ability to retrieve all related software as one package. SRM implements

its policy through the use of the Network Unified Configuration Manager (NUCM)

2

[22], making use of its distribution functionality to provide release management in a

distributed, heterogeneous, and possibly decentralized setting.

Despite the capabilities provided by SRM, there are two major drawbacks

with the current version of SRM. First, SRM currently provides a fixed set of

attributes that are used to describe and manage artifacts within the repository. This

inflexibility makes it difficult for repository owners to customize SRM to their release

management and presentation needs. Second, server distribution is fixed, a priori,

and cannot be changed. Therefore, all member servers must be configured at the time

of repository creation. This limitation prevents servers from joining or leaving a

federation of servers, as organizations evolve or change their center of interest.

To address some of the shortcomings of SRM, the work described in this

thesis was undertaken. This thesis addresses both of the problems with the existing

version of SRM. Based on a comprehensive survey of existing release management

systems, a core set of release management capabilities is identified. Moreover, a

comprehensive design is contributed that defines how the next generation SRM

should be implemented. Finally, a prototype is constructed that demonstrates how the

design addresses and solves the problem of inflexibility in the attributes that define a

repository and the problem of inflexibility in the distribution process.

Chapter 2 presents a survey of existing release management systems. In

particular, a large number of websites are inspected for methodology, content,

structure, and relationships as a preliminary step towards providing a set of

comparative results used to identify a set of commonly provided capabilities in

release management systems. Since software release management is not a

3

widespread methodology, and evidence of release management practices is not

always visible except by inference, the approach to the survey was evolutionary. A

certain set of characteristics was identified as being the primary search criteria, and

then a large number of websites were investigated from the business and academic

areas for presence of the search criteria. As the search evolved, additional criteria

were discovered.

As would be expected from such a survey, site presentation varies widely, as

did the amount and type of data presented about each individual item. Artifacts are

organized in different ways, and the processes for obtaining an artifact varied with

almost every site. Chapter 3 organizes the survey capabilities by grouping operations

or characteristics based on either similar capabilities or by related information. The

capabilities are also prioritized for inclusion within the requirements for the new

version of SRM.

Based on this categorization, the design of the next generation SRM is

presented in Chapter 4. The design is presented as an Entity Relationship Diagram

(ERD), which defines the management of all metadata and key metadata relationships

to be stored in SRM. The ERD provides a precise definition of the key concepts and

relationships derived from the capabilities defined in Chapter 3, specifically: a

logical repository, a physical repository, groups, release items, the schema, data

types, metadata, access control lists, licenses, license key sets, registration, strong

dependencies, and off-site dependencies.

Information from the logical design, as defined in the ERD, is mapped onto

the physical design of the repository. Chapter 5 describes how the physical repository

4

is the mechanism by which the release manager stores and manages artifacts, and how

the distributed aspects of SRM are accomplished. Since SRM represents a

Configuration Management policy, the design makes use of NUCM to implement the

underlying repository structure and to support the distributed aspects of the release

manager.

Accompanying the physical repository structure, as described in Chapter 5, is

a flexible attribution mechanism, which allows a repository owner to define the look

and attribute sets at the time when a repository is created. Chapter 6 details the

attribution mechanism, which maps some of the types defined in the ERD, such as

keysets and licenses, to the physical repository structure, and some of the types to

XML document type definitions (DTDs) that are to be interpreted by the release

management system.

Chapter 7 discusses the prototype of the next generation SRM. The objective

of the prototype is to validate the design presented in the previous three chapters. The

prototype does not implement the entire design. Instead, it focuses on implementing

the solution to the two problems with the current version of SRM, inflexible metadata

and distribution. The discussion centers around the process of creating repositories,

adding specialized or shared content to the repository, adding release items to the

repository, and managing the information in a repository that supports flexible

attribute sets.

Chapter 8 summarizes the materials discussed, from the discovery of

functionality through to the final prototype, and then finishes with a brief discussion

of future directions that can be taken from this work.

Chapter 2

Survey

With the advent of the World Wide Web, many different approaches have

been taken to solve the problem of software release management. The functionality

provided by each approach varies widely, as does the amount and kind of metadata

that is presented to the user. Each approach is generally delimited by the needs of the

organization releasing their software, although many websites show a great deal of

similarity with their solutions. Further inspection of release management processes at

websites shows a very similar approach taken between managing the release of

documents and software, and those approaches are being extended now to other

items, as well, such as books at Amazon.com or music which can be downloaded

over the web.

To gain an understanding of the different approaches to software release

management, this chapter presents a survey of the World Wide Web for evidence of

software release management. Presented first is the list of capabilities by which the

websites are surveyed, followed by the results of the survey. The chapter concludes

with the introduction of some observations that can be made from the results of the

survey.

2.1 Survey Dimensions

Sites are evaluated for methodology, content, structure and key relationships.

During the course of the survey, many capabilities were considered, and applied as

6

search criteria as the survey progressed. Initial factors were established as

characteristics to look for, such as a licensing mechanism, access control and any

indication of dependent relationships [22]. Through an iterative process of inspection

of websites and evaluation of results, the following list of capabilities was determined

to be most relevant to software release management.

• Weak relationships. Weak relationships indicate some form of relationship

between artifacts where there is no dependency, but there exists some form of

relationship between them that a producer may wish to capture. For example,

TUCOWS [19] and freshmeat.net [7] provide numerous examples of grouping

relationships. An example of a weak relationship could be listing all available

software by operating system, or listing an application will all its optional

components.

• Strong relationships. Strong Relationships are characterized as a dependency

relationship between artifacts, in which one artifact requires another artifact for

correctness. An example of a Strong Dependency would be the Distributed

Versioning System (DVS) [5] that uses the Network Unified Configuration

Manager (NUCM) [22] to manage its repositories. The current version of SRM

[17] tracks strong dependencies, presents that information to the user, and gives

the user the opportunity to download the dependency when the requested artifact

is downloaded. A further example of managing a Strong Dependency comes

from the Red Hat Packaging Manager (RPM) [15], which allows a software

producer to accurately specify dependencies for any item to be released.

7

• Passive licensing. A passive licensing process occurs when the repository policy

does not require the user to read or agree to license terms prior to downloading

the artifact. No acceptance of licensing terms can be inferred from a passive

policy. Examples of a passive licensing policy are the GNU [9] sites. GNU

provides a link to the GNU Public License and requests users read the terms and

conditions, but there is no requirement to read the license text prior to

downloading any item

• Intrusive licensing. An intrusive licensing process is one where the licensing

terms and conditions are displayed prior to download, and the user signifies

acceptance by continuing with the download. For example, SRM [17] can present

licensing terms to the user before the user can download, and the user must click a

button to signify acceptance.

• Passive registration. Passive registration happens when the user is requested to

register, but is not required to do so. For example, after a download is completed,

SRM [17] presents the user with a registration page, which can be closed, without

registering the user.

• Intrusive registration. Intrusive registration occurs when the user must register

prior to receiving a download. AT&T Research [3] actually presents the license

terms on the same page that the user registration information must be entered, and

the artifact cannot be downloaded without the user first providing all required

information. In one process, AT&T retrieves both the user information and an

implicit acceptance of the licensing terms.

8

• Historical versions. Historical versions means making prior versions of an

artifact available. This situation occurs when a company or an organization makes

older versions of a software package available to users who require backward

compatibility for their software systems. IntraNet Solutions [11], which provides

document management solutions, provides the user with current and prior

versions of a document. SRM [17] is the only release management system that

could be determined to provide the same function for software.

• Metadata presence. Metadata is descriptive data about any given artifact, such

as the release name or version. Typically, such metadata can be key metadata,

similar in nature to primary keys in a database. The two most consistent sites for

evidence of metadata presence are SRM [17] and TUCOWS [19]. SRM has a

required set of metadata that the producing user must complete when uploading a

release. TUCOWS exhibits a consistent approach to presenting metadata about an

artifact, and for organizing the site.

• Info beyond the bare essentials. Information (Info) beyond the bare essentials,

or optional metadata, is an indicator that not only is key metadata present, but

there is a consistency of related metadata that indicates an organized approach to

providing that metadata. It is important to note that there is not a consistent

approach among the websites viewed as to what is key metadata and what is

extended metadata. For example, GNU [9] has information or description pages

for its software in which the file information and revision is usually available.

However, in many instances, the software information pages contain information

related to the project, project team, or other related projects or software. While

9

not uniform or consistent in nature, the pages do provide the user with optional

information that the publisher wishes to present to the end user.

• Off-site download/purchase. Off-site download or purchase indicates that there

is a facility provided to either take the user to another web site to download or

purchase a related item. In some repositories, such as the NASA Repository Base

Software Engineering (RBSE) [13] tool, or freshmeat.net [7], the whole purpose

of the site is the management of metadata, and no artifacts are stored. Hence the

need to go to another web site to acquire the artifact of interest.

• Workflow. Workflow is generally not a visible mechanism, but can be inferred

by the presence of processes that may not be included in an application or

website. Workflow is characterized by the ability to organize tasks, assign them

to non-native processes either internal or external to a system, and to manage the

tasks as they progress through the task list. IntraNet Solutions [11] provides an

explicit workflow capability, such as sending e-mail with instructions upon

uploads or downloads.

• Revision control. Such software as RCS [18], CVS [4] or PVCS [10] best

exemplifies revision control. In essence, a user can evolve a version of a piece of

software, as might be necessary in case of problems or bug fixes. Revision

control does differ from historical versions. Historical versions generally mean

that there is more than one version of an artifact present in the repository,

normally due to the need to support existing software in the field. Revision

control supports incremental changes made to an existing artifact, which normally

occur during the development phase. Further, historical versions do not prevent

10

things from breaking, as an artifact can be removed and a required dependency

can be broken. Revision control governs the process through which multiple

versions of an artifact are stored in a repository. In particular, it ensures that

required dependencies are not broken. Both Intranet Solutions [11] and SRM [17]

provide revision control facilities.

• Distribution. Distribution means that the repository itself may be distributed

over several different sites. This should not be confused with replication, in which

the contents are replicated at several different sites. In essence, each member

repository server of a site would contain some subset of release artifacts, while

replication means that each server contains a complete set of release artifacts.

SRM [17] is the only system that deliberately indicates that it provides

distribution capability.

• Internal consistency. Internal consistency is evidenced by link correctness. The

state of the repository is validated regularly, where all items and links are tested

for correctness. NASA’s RBSE [13] performs regular link validation, since it

provides only metadata about external artifacts.

• Auto web page generation. Auto web page generation is a producer operation,

designed to ease the burden on the artifact producer. This process results in a

consistent site look and feel. SRM [17] provides a consistent download page that

is automatically generated when the user provides the needed metadata describing

the artifact. IntraNet Solutions [11] takes it a step further and converts documents

to web pages.

11

• Internal/external publication. Released software can be published in one of two

different directions, internally or externally. Internal publication means that

software is released to only to an organization or group, while external

publication releases the software to third parties. Internal publication versus

external publication is not constrained to mean intranet or internet, although that

may be one configuration, but can also be internal to a particular group within an

umbrella organization, or an organization than spans other organizations. It

should be kept in mind that internal or external publication is a publishing

scheme, and individual access permissions can be applied to either internal or

external publication, or both. IntraNet Solutions [11] provides a distinct

separation for internal versus external publications as part of its repository

mechanism, while others can be used either as an internal or an external tool.

• External submissions/uploads. Each repository owner will likely face the

problem of controlling uploads into the system. Many different policies exist in

which release items can be added to a repository, and a repository should allow

the repository owner to use a policy of their own choice. For example, TUCOWS

[19] primary reason for existence is to provide software for downloads, primarily

from developers who are not commercial producers. Therefore, they provide a

system where the user submits candidate software that is evaluated prior to

placement in the repository.

• Security or access control. Security and access control are always issues when it

comes to owning a repository or server. Managing or limiting access can be

applied at several different levels, such as directly to the repository, to a group or

12

organization within the repository, or to artifacts within the repository. Access

control can also apply discrete actions, such as uploading or downloading an item.

IntraNet Solutions [11], SRM [17] and freshmeat.net appear to have the only

defined security policy in place with respect to access control of a repository.

• Bundled downloads. Bundled downloads is the packaging of a selected artifact

and its related strong dependencies and off-site dependencies into a single bundle

for downloading. SRM [17] packages artifacts in this manner, while Gamelan [8]

bundles all selected items in the shopping cart. Gamelan [8] downloads each item

individually to the end user.

• Bundled licenses. Bundled licensing relates to bundled downloads. Some sites

provide the user with the capability of bundling downloads, and provides the

ability to bundle licenses for each item in the download bundle. Gamelan [8] and

SRM [17] both provide bundled licenses to users that download bundled artifacts.

2.2 Survey Results

Base on the presented set of capabilities, one dozen sites were evaluated, as

shown in Tables 1 and 2. These twelve websites are: GNU [9], AT&T Research

Laboratories [3], AT&T Laboratories [2], the World Wide Web Consortium (W3C)

[23], TUCOWS [19], Netlib [14], NASA [13], IntraNet Solutions [11], Alexander

Wolf’s publication pages [1], the existing Software Release Manager (SRM) [17], the

Software Engineering Institute (SEI) [16], Gamelan [8], freshmeat.net[7] and Red Hat

Packaging Manager (RPM) [15]. The results of the survey are shown in Tables 1 and

13

2, indicating the sites visited and their individual contributions based on inspecting

visible characteristics of each site.

14

Table 2.1 Survey Results of System Capabilities.

Search Characteristics GNU AT&T
Res.

AT&T
Labs

W3C TUCOWS Netlib NASA

Weak relationships No Yes Yes Yes Yes No Yes

Strong relationships No No Yes ~ No ? No

Passive licensing Yes Yes Yes Yes No No No

Intrusive licensing No Yes No No No No No

Passive registration No No No No No No No

Intrusive registration No Yes Yes No No No No

Historical versions No No No Yes~ No No No

Metadata presence Yes No Yes~ Yes~ Yes No Yes

Info beyond bare essentials Yes Yes Yes Yes Yes No No

Off-site download/purchase Yes No No Yes Yes~ No Yes

Workflow No No No Yes No Yes No

Revision control No No No No No No No

Distributed No No No No No No Yes~

Internal consistency No Yes No No No Yes Yes

Auto web page generation Yes~ Yes ? ? No ? Yes

Internal/external publication No Yes Yes No No Yes Yes

External submissions/uploads Yes No No Yes No No ~

Security or access control No No No No No No No

Bundled downloads No Yes~ No No~ No No No

Bundled licenses No No No No No No No

15

Table 2.2 Survey Results of System Capabilities.

Search Characteristics IntraNet
Solutions

Alex's
Docs

SRM SEI Gamelan freshmeat.
net

Red Hat
RPM

Weak relationships ? Yes No Yes Yes Yes Yes

Strong relationships ? No Yes No No~ No Yes

Passive licensing No Yes No Yes No Yes No

Intrusive licensing No No Yes No Yes No No

Passive registration No No Yes No No No No

Intrusive registration No No No No Yes No No

Historical versions Yes No Yes No No No Yes

Metadata presence Yes No Yes Yes~ Yes Yes Yes

Info beyond bare essentials Yes No No No Yes~ Yes No

Off-site download/purchase No No No Yes No Yes Yes

Workflow Yes No No No Yes~ Yes~ Yes~

Revision control Yes No Yes No No ? Yes

Distributed No No Yes No No No No

Internal consistency Yes No Yes No Yes~ No~ Yes

Auto web page generation Yes No Yes ? Yes~ Yes No

Internal/external publication Yes Yes Yes ? Yes~ No No

External submissions/uploads Yes~ No No ? No Yes No

Security or access control Yes No No No Yes~ Yes No

Bundled downloads No~ No Yes No Yes No Yes

Bundled licenses No~ No Yes No Yes No No

16

The survey keys are as follows:

• No – no evidence was found that supports the capability.

• Yes – evidence found.

• Yes~ - evidence inferred that the capability exists.

• No~ - inferred that the capability does not exist.

• ? – Unable to determine whether the capability exists.

• ~ - Possible evidence of existence, based on inference.

In conclusion, the sites that were investigated showed that some manage only

documentation, while others manage software or metadata about software external to

their site. Investigating the documentation sites (e.g. SEI and Alexander Wolf’s

publications) shows a very similar process in releasing documents as compared to

releasing software. Metadata is used to manage documents and software alike, and

both can have access controls placed on uploads and downloads. As can be seen from

the survey results, no one site provides all capabilities, but each site has a particular

focus that come from providing some combination of the capabilities. A flexible and

configurable software release management system should be able to provide the

capabilities shown in the survey, and provide key functionality to sites with similar

operations to those surveyed.

Chapter 3

Capabilities

From the survey results, it becomes clear that many of the capabilities that

were observed or inferred can be grouped into various functional categories. A re-

evaluation was made of the discovered capabilities, abstracting each and categorizing

them into groups. Some of the discovered characteristics were found to be unrelated

to the role of a software release management system. However, based on further

analysis, additional capabilities were discovered and added to the list of twenty

defined in Chapter 2. These additional capabilities are mostly intangible, or deal with

issues related to distribution.

Five categories are distinguished: metadata, access control, consumer

operations, producer operations, and server functionality. Metadata is any data that

relates directly to an artifact. It can vary based on need or policy, and is used for

identification, description, association, and location. Access control consists of

processes that govern access to repositories and the artifacts within the repository. It

can be applied to uploads or downloads independently. Consumer operations support

the repository consumer with ease of use functionality, such as bundled downloads

and search facilities. They can be applied to off-site items as well as items stored

directly in the repository. Producer operations are operations supporting the

repository producer or software author. They ease the workload in distributing and

making available releases in a variety of ways. Server operations provide

18

functionality that is unrelated to consumers or producers. These operations are

primarily used for repository management and operational support.

These categories form the basis for the design of the next generation software

release manager. Below, each category is discussed in detail.

3.1 Metadata

Metadata is descriptive data about an artifact. Of the seven defined

characteristics, the first four focus on defining an artifact in the repository, while the

last three focus on retaining relationship or association information. The metadata that

each repository retains must be defined at the time of repository creation, essentially

forming a schema for the repository. Metadata definition can vary based on the needs

of the repository owner or fit a defined policy of an organization. Overall, metadata

can be used not only for identification and association, but also for description and

location.

Table 3.1 illustrates the metadata-related characteristics identified in the

survey or discovered during the evaluation process. Each capability is described

below.

• Key Metadata. Key metadata is the foundation on which a generic software

release management system is built. Key metadata is similar, in many ways, to

primary keys in a database, and uniquely identifies an artifact in the repository,

and must be capable of being flexibly defined at the time that the repository is

created. For example, a repository owner may decide that a name and a version

number describe an artifact, whereas a different repository owner may require that

19

an artifact is defined by a name, a version number, and an operating system.

Therefore, a generic software release management system must understand how

to manage flexible key metadata in order to support a repository owner’s metadata

requirement. Closely related to understanding key metadata are historical

versions, strong and weak relationships, and off-site dependencies. The metadata

associated with these capabilities are not just descriptive metadata. Each of these

capabilities has special operating considerations that have to be kept in mind,

particularly with respect to metadata. For example, an off-site dependency may

have to be retrieved by the repository via the web, rather than retrieved from the

repository. A software release management system must be able to handle these

semantics.

• Required metadata. Required metadata is any metadata that is required by the

repository owner to be provided when an artifact is added to the repository.

Essentially, required metadata is defined by the policy of the owning

organization. By definition, key metadata is included in the set of required

metadata. For example, SRM [17] requires a large set of metadata that includes,

among other things, the name and e-mail address of the person producing the

software.

• Optional metadata. Optional metadata is just as the name describes, optional.

The metadata is not required from the software producer at the time when the

artifact is added to the repository. SRM [17] does not require that a producer add

any comments to the “What’s New” field.

20

• Historical versions. Historical versions occur when a repository retains multiple,

discrete versions of a software item. Java [tm] is an excellent example. Sun

Microsystems, Inc. maintains all released versions of Java for backward

compatibility for their end user needs.

• Strong relationships. Strong relationships are dependencies between two pieces

of software, without which one would not operate. For example, the current

version of SRM [17] requires NUCM [22] to manage the repository.

• Weak relationships. Weak relationships are associations between items that do

not otherwise exhibit a direct or strong dependency on each other. TUCOWS

[19] groups all Windows 98 software together, and further groups all Windows 98

HTML editors together. Freshmeat.net [7] also groups related items together,

such as Web applications, which have further sub-groups such as administration

or on-line shopping tools.

• Off-site dependencies. An off-site dependency occurs when a dependency

exists between an item in an SRM repository and an item in a non-SRM

repository. An example of this type of relationship would be a piece of software

that is retained in the repository and has a dependency on Java. Upon release, a

URL to a specific version of Java needs to be provided. Since it is unlikely that

all software repositories will be SRM compatible repositories, this capability

becomes more important as the numbers of software artifacts grows.

Furthermore, with many repositories becoming web-enabled, it is clear that an

off-site dependency should be URL-based to ensure a consistent access capability.

21

3.2 Access Control

Access control is the combination of processes that govern access to the

repository, artifacts within the repository, or groups. Access control can be applied to

either uploads or downloads, independent of each other, and can be applied at

different locations in the repository, based on the policy of the repository owner.

Table 3.2 describes the various characteristics of access control, as found in

the survey. Based on the evaluation process, licensing and registration processes were

grouped together with security related processes, as they jointly affect producers and

consumers of the repository. The following expands on the definitions given in Table

3.2.

• Passive licensing. Passive licensing, essentially, is a licensing process that the

user can ignore. Although there are license terms that the software producer

wants the user to read and agree to, the user can bypass license acceptance easily.

As with GNU, a user does not need to read the GNU public license, or signify

acceptance of the license terms, in order to download any item within the GNU

repository.

• Intrusive licensing. Intrusive licensing is a licensing process that requires that

the user actively signify acceptance of the licensing terms. If the user tries to

bypass the licensing terms, the software cannot be downloaded. Typically,

intrusive licensing is accomplished by inserting the license terms into the

download process chain prior to retrieving the artifact, with accept and reject

choices given to the user.

22

• Passive registration. Passive registration places no requirement on the user to

provide registration information in order to download the requested item. The

user can send blank information in, or in the case of a GUI, dismiss the dialog box

without providing the information.

• Intrusive registration. Intrusive registration requires that the user provide all

required registration information to the system prior to downloading the artifact.

If the user fails or refuses to provide the information, the system will not allow the

download to continue. As with intrusive licensing, the registration process is

inserted into the download process chain prior to retrieving an item. Potentially,

the server, prior to downloading the artifact to the consumer, can validate the

information to a certain degree.

• Access control – downloads. Downloads can be restricted through the use of

permissions, or through the use of an access control list. As a matter of policy,

the repository owner may want to restrict downloads of artifacts to only members

of a specific group, and may use an access control list to restrict the availability of

a particular release of an artifact.

• Access control – uploads. Uploading of software may be restricted to members

of a specific group associated with a repository, and modifications of existing

artifacts can be limited to the artifact owner or producer. Access would then be

controlled by requiring a producer to supply a user id and password.

23

3.3 Consumer Operations

Consumer operations, as shown in Table 3.3, are operational aids to ease the work

of a user that downloads software from a repository. While web-based systems are

the model that much of these operations are derived from, the operations do apply to

non-web-based systems, as well. The following describes the consumer operations in

more detail.

• Bundled downloads. Bundled downloads are a service that the repository server

provides. As provided by SRM [17], the user can choose to download a released

item and all of the items it depends on, and SRM will bundle all of the items into

a single tar file, which is then passed to the user.

• Off-site download. A foreign system, or off-site dependency, is one that the

release management system recognizes as a dependency of an artifact. The

dependency is, however, not managed by SRM but by some foreign Web site. In

this situation, the release management system must also have a link to the location

where the off-site dependency can be obtained. When a user requests an item, he

or she can request that the system retrieve the item as part of the download

process for the given artifact.

• On-site purchase. A logical use of a software release manager would be to make

use of one as a web-commerce repository. For example, Gamelan has a developer

specific site in which a developer can download source code or sample

applications. In addition to the developer specific site, Gamelan also operates a

web commerce site for the purchase of software. A joint repository that supports

both operations would, by definition, be part of an on-site purchasing system.

24

• Shopping cart. A shopping cart is a mechanism by which a server aggregates

choices made by a consumer, with respect to items that a user wishes to download

or purchase. The items chosen are normally unrelated to each other and do not

exhibit any strong dependencies with each other, except incidentally. Typically,

shopping carts are associated with web commerce sites, but can be extended for

use with a release management server. For example, a shopping cart can be used

as a mechanism to collect all items that a user requests. When the user has

completed shopping in the repository, the server could then place all requested

items, and their related dependencies, into a single bundle for download to the

user.

• Searching the repository. This capability provides a consumer with the ability

to search the metadata retained by a repository for information. A typical

example would be the situation where a consumer remembers certain information

about an artifact, but is unable to locate the artifact directly. The search function

locates the set of potentially matching artifacts based on the supplied information.

3.4 Producer Operations

Producer operations are operations that aid the software producer in making

available artifacts, or information about the release, to interested parties. Since the

web survey discloses only visible clues to software release management, the producer

operations were derived during the post-survey evaluations.

Table 3.4 lists the derived producer operations. Each of these producer

operations deserves some additional detail.

25

• Mailed confirmation. Mail confirmation is a step that can be part of the

uploading process in which the server mails a confirmation to the producer, and

perhaps to the repository owner. For example, a repository owner may want to

keep an eye on how much software is uploaded to make sure enough space is

available.

• Release channels. As an example of the definition in Table 3.4, the repository

may have a configured list of third parties or news groups that are interested in

receiving notification when software of a particular type is available, such as

configuration management tools. The repository server would distribute the

information through the release channels on behalf of the producer, based on

direction from that user.

• Release to multiple repositories. A software producer may want to release an

application to several repositories that are not members of a single federated

repository. The producer would upload software to an initial repository, and the

client software would repeat the actions with all of the other repositories. This

would require that the client understand the uploading processes at the other

repositories.

3.5 Server Operations

Server operations predominantly support the repository owner, providing

repository management functionality and operational support. Table 3.5 describes

server operations, which, like producer operations, were discovered during the post-

survey evaluation. Server operations are discussed in greater detail below.

26

• Distribution. Distribution allows multiple repositories to act together in a

federated manner. For example, a repository could exist on a server located in

Boulder, CO while another repository could be located in New York, NY. The

repositories could then work together, acting as a single unit, while residing in

different locations.

• Mirroring. Mirroring is the ability to replicate the entire contents of one

repository to another repository that is completely independent of the first. As an

example, TUCOWS [19] has mirror repositories located around the world. This

helps users locate and use the server nearest them, thereby reducing network

traffic.

• Internal consistency. This is a process through which a repository ensures that

its metadata is in a valid state, as well as any links exist and are valid. The NASA

[13] Repository Based Software Engineering system performs link validation as it

contains only metadata, and does not store software.

• Logging. Logging is a facility that records all operations within a repository, as

they take place. The logs would then provide the repository owner with the

means to determine what occurred as operations take place. In the situation where

a producer experiences a problem during an upload, the repository owner would

then view the log as part of the troubleshooting process.

• Statistics. Statistics can be derived from the activities that take place within a

repository. Generally, the statistics are derived from the activity logs, and can

give the repository owner insight into system usage. A typical use for statistics

27

would be to show uploads, downloads and inspections for a given set of artifacts

over a period of time.

• Dynamically add or remove servers. Related to distribution is the ability to add

or remove a server dynamically. A server may need to leave a federation due to

policy change, or for maintenance. Building on the distribution example, the

server located in New York may be removed due to an alliance change. As a

result of the change, it would be undesirable to completely rebuild the repository

when a server leaves. This capability would manage that process for the user.

3.6 Prioritization

The survey results show that most of the characteristics described in the

Metadata, Access Control and Consumer Operations topics were directly visible from

the websites, and represent either information that most end users understand, or

operations that end users are familiar with. The capabilities characterized as Producer

and Server operations were derived from familiarity with the current SRM or other

areas of computer science.

In preparation for the design phase, each of the items presented was reviewed

with the aim of making an effective prototype that addresses the goals of the thesis.

Towards that end, the following items were prioritized as directly affecting

distribution, metadata and relationships: key metadata, required metadata, optional

metadata, historical versions, strong relationships, weak relationships, off-site

dependencies, licensing, registration, access control, distribution, and dynamically

28

add or remove servers. Licensing will address the needs of both passive and intrusive

licensing, as will registration.

With regards to the remaining capabilities, they represent capabilities that are

already demonstrated in other systems, or represent capabilities that do not apply

directly to a software release management repository but can be built on top of the

repository. Those capabilities are: mirroring, internal consistency, logging, statistics,

mailed confirmation, release channels, release to multiple repositories, bundled

downloads, off-site download, on-site purchase, shopping cart, and searching the

repository. These capabilities will be ignored throughout the remainder of this thesis.

29

Table 3.1 Metadata Related Capability Definitions.

Capability Definition
Key metadata Metadata used to uniquely identify any given artifact within a

repository.
Required metadata Metadata required to be completed for an object in the repository.

This includes key metadata.
Optional metadata Metadata not required to be completed for an object in the repository.
Historical versions Maintaining previous releases of an artifact in the same repository.
Strong relationships Dependencies, or maintaining and identifying those objects which

another object is dependent on for correct operation.
Weak relationships Grouping, or associating related items that do not have a dependency

relationship
Off-site dependencies A dependency on an artifact in a non-SRM repository.

Table 3.2 Access Control Capability Definitions.

Capability Definition
Passive licensing Does not interfere with or prohibit downloading of an artifact
Intrusive licensing User must signify agreement with the license terms prior to download
Passive registration Places no constraint on the user to register prior to download
Intrusive registration User must register to receive a download
Access control –
downloads

Downloads are restricted by applying an access control list to a group

Access control –
uploads

The ability to upload, modify or remove is restricted to those users
that supply a valid user id and password

Table 3.3 Consumer Operations Capability Definitions.

Capability Definition
Bundled downloads An artifact and any related dependencies are bundled together into a

single package for downloading to the user.
Off-site download Download of a foreign system dependency.
On-site purchase Depending on the purpose of a repository, web commerce may play a

role. The purchasing system would be a large system by itself, and
does not necessarily interact with the repository directly.

Shopping cart In essence, a web specific operation, which bundles unrelated items
for downloading, possibly for purchase.

Searching the
repository

Searching the repository metadata for specific artifacts related to the
search criteria.

30

Table 3.4 Producer Operations Capability Definitions.

Capability Definition
Mailed confirmation Mailed confirmation to the developer, and possibly the repository

owner, indicating the success of the upload operation.
Release channels Software is often released to groups of interested third parties. In

addition, notification of new releases can be posted to news groups
and user lists. Release channels would support that operation, by
providing a method of distributing artifacts, notification or both to
interested user.

Release to multiple
repositories

Releasing a single artifact to multiple, unrelated repositories.

Table 3.5 Server Operations Capability Definitions.

Capability Definition
Distribution Having multiple storage locations act in a concerted manner as part of

a single repository.
Mirroring Replicating the contents of an entire repository to another,

independent repository.
Internal consistency Validating the contents of a repository, along with the related

metadata.
Logging Recording the activities of a repository.
Statistics Deriving statistical data about each activity in a repository.
Dynamically add or
remove servers

For distributed systems, the ability to dynamically add or remove a
member server, either for maintenance, or as alliances change.

31

Chapter 4

Design

Having categorized the capabilities required of the new software release

manager, the next step is creating the system design. The design focuses on the

informational areas affecting SRM: metadata, relationships, and logging. While

many related capabilities were identified as relating directly to software release

management, for the purposes of this thesis, the candidates are reduced to those

factors directly involved with the base repository functionality.

This chapter introduces the key entities and relationships that exist to support

relating metadata, relationships and logging within the repository. This introduction

is based on an entity-relationship diagram (ERD) that not only identifies each entity

and relationship, but also illustrates the associated attribute related to each entity.

Below, we first introduce the ERD and then discuss each of its parts in more detail.

4.1 Key Entities and Relationships

From the list of capabilities defined in Chapter 3, we have identified the key

entities and relationships that a software release management system should

incorporate. From the information described in Section 3.2, an Entity Relationship

Diagram (ERD) can be drawn. Figures 4.1, 4.2, and 4.3 show the ERD as it defines

the system. Figure 4.1 depicts the top-level diagram, showing all major entities and

relationships. Figures 4.2 and 4.3 depict attribution for each of the entities defined.

32

The following describes the list of entities and relationships of the entity relationship

diagram as it defines the repository.

• Repository. The repository retains and manages all items related to software

release management. The logical repository is the focal point of the software

release manager. It manages all information and key relationships, and retains all

items in one or more physical repositories. A physical repository contains

attributes that describe its host name, port number, home directory and URL. A

logical repository is defined by the schema, and is organized by the groups

contained within. The logical repository can also retain licenses, which are

available throughout the repository. Further, the logical repository maintains a

log of events that take place within the repository. The logical repository is

described by attributes that retain information such as the repository name, the

owner name, contact email, and any presentation text. The remaining information

in this section focuses on the entities and relationships within the logical

repository.

• Groups. Groups are the nucleus around which release items are managed. As

can be seen from TUCOWS [19], groups can also have subgroups, which, in turn,

can be nested to an arbitrary level. Each group, regardless of level, contains and

manages release items. A group is described by the following attributes: name,

owner, password, date created, and presentation text. A group can also be

protected by an access control list.

33

Figure 4.1 Entity Relationship Top Level Diagram.

Logical
Repository

Physical
Repository

Log

Group

Release
Item

SRM E-R Diagram

Off-site
Release Item

Registration

License
Key Set

Metadata

Schema

Access
Control List

Event

Datatype

Member
Entry

License
 Key

11

11

1

1..n

1 1

11

1 1

1

1

1

1

1..n

0..1

1

1

1..n 1..n

1..n

0..n

1..n1

0..n

0..n

0..n

1..n

0..n

0..n

0..n

0..n

0..n

0..m

License

0..n

1..n

1

1

protected
by

organized
by has

members

defined
by

retains
items

in

maintains

records

adheres
to

has
a

contains

contains

strong
dependency

is
protected

by

depends
on

records
user

records
licensed

user

described
by

defines

34

Figure 4.2 Entity Relationship Diagram – Attributes Centered on Repository Level Facilities.

Logical
Repository

Physical
Repository

Log

Group

Release
Item

SRM E-R Diagram
Attribution

Metadata

Schema

Event

Datatype

1

1

11

1 1

1

1

1

1

1
1..n

1..n

1..n

0..n

1..n1

0..n

1..n

0..n

Host name
Port number
Home directory
URL

Time stamp
Activity type
Action allowed
Item
User
Event details

Repository name
Owner name
Contact email
Presentation text

Name
Modifier (key, required, optional)
Data type
LabelOwner password

Name
Value

Name
Owner
Password
Date created
Presentation text

maintains

organized
by

defines

defined
by

contains

adheres
to

described
by

retains
items

in

has
members

records

35

Figure 4.3 Entity Relationship Diagram – Attribution Centered on Release Item Facilities.

Logical
Repository

Group

Release
Item

SRM E-R Diagram
Attribution

Off-site
Release Item

Registration
License
Key Set

Access
Control List

Member
Entry

License
 Key

1

1

11

1

1..n

1

1

1

1..n

0..1

1

0..n

0..n

0..n 1..n

0..n

0..n

0..n 0..n

Name
URL
Description

0..n

Name
Value

User name
Email address
Registration date
Organization

Name
Permission set
Password

License

License type
(active/passive)
License text

1

1

0..n

1..n

organized
by

contains

protected
by

contains
has

members

strong
dependency

is
protected

by

depends
on

records
user

has
a

records
licensed

user

36

• Access control lists. An access control list provides protection to a group. An

access control list contains a list of the users who are allowed access to the

repository contents, and each member has a name, password and permission set

associated with them. Multiple groups may use a single access control list.

• Schema. A single schema defines the logical repository. The schema is defined

by a number of data types, or attributes. Chapter 6 discusses the role of schema

and its relationship to release items.

• Data types. Data types are described with a name, a label, a modifier, and a type.

A modifier can be one of three values: key, required, or optional. Data types are

used to define a schema, and are the constraint to which metadata adheres.

• Metadata. Metadata describes a release item and adheres to the data types used

to define the schema. Metadata also contain name value pairs used to store data.

• Release items. A release item belongs to the group to which it is released, and an

individual release item may belong to multiple groups. A release item is

described by metadata, which adheres to the data types that are defined by the

schema. A release item may have strong dependencies on other release items that

are contained within the repository. A release item may also depend on an off-

site dependency. In addition to the metadata that describes a release item, a

release item also has the owner’s password as an attribute. A release item may be

protected by a license key set. Further, a release item can record any number of

user registrations.

37

• Off-site dependencies. A release item may also have one or more foreign system

dependencies, which the repository does not manage. The release item metadata

will need to retain a reference to the off-site dependency, and the repository will

need to understand the off-site dependency to aid producers in managing their

releases. A name, a URL, and a description describe a off-site dependency.

• Registrations. Registrations apply directly to a single release item. A

registration records the following consumer information for a release item: user

name, e-mail address, registration date, and organization. In the situation where a

user provides a license key, a registration is also recorded for the licensed user.

• Licenses. Many licenses can be available throughout a repository, and a release

item can be protected by a given license, based on the requirements of the

producer. A release item will be associated with at most one license.

• License key set. A license key set can protect a release item, and may contain a

number of license keys. While a release item is protected by a single license key

set, multiple license keys can be applied to a release item through the key set.

License key sets may also record any number of licensed user registrations.

• License key. A license key set can contain multiple license keys. License keys

contain a Name and Value pair as its attributes. A license key is similar in nature

to keys that are required to unlock a CD-ROM based software installation

mechanism or server based software.

• Logs. A repository retains a log that records the events of the system. An event

contains a time stamp, activity type, whether the action was allowed, the name of

38

the item, the user identifier, and any event details that the repository supplies for

that event.

In conclusion, the major entities and relationships have now been defined for

the new version of a software release manager. From the top-level diagram, as shown

in Figure 4.1, we can see the hierarchical structure used to manage release items. A

repository is defined by a schema, which is defined by basic data types. A repository

is organized by the groups defined within it, and can have subsidiary member groups.

Each group, and subgroup, can be protected by an access control list, which contains

entries for each member of the list. Each group or subgroup contains a list of release

items, which are stored in a file. A release item is described by metadata, which

adheres to data types that define the schema. Each release item may have off-site

dependencies, and may also have strong dependencies on other release items in the

repository. Release items can be protected by license key sets, and registrations may

be recorded for that release item. Finally, a repository can log all events that take

place within the system.

Chapter 5

Mapping the Design to a Repository

Having created the logical design for the system, the next step is to map some

of the entities specified in the Entity Relationship Diagram (ERD) to a physical

repository. The Network Unified Configuration Manager (NUCM) [22] is chosen as

the underlying repository, since it provides both distribution and configuration

management capabilities.

This chapter describes the entities that are mapped to the physical repository,

how the physical repository is structured, and how the metadata is stored. Also

presented is a solution to the problem of dynamically adding and removing servers

from the repository federation.

5.1 Defining the Physical Repository

From the ER Diagram, as described in Chapter 4, certain entities present

themselves immediately as candidates for either directories or files to be created or

stored in the repository. In addition to the entities and relationships defined in the

ERD, distribution is an identified capability. Therefore, another consideration in

mapping entities to the physical repository is the concept of parent and child

repositories.

A parent repository is the lead repository in a federation of servers, and

performs all management functions. The schema definition of the parent repository is

the defining schema for the repository federation. A child repository, on the other

40

hand, is a member repository that provides release items to be made available through

the parent repository.

In order to define the repository structure, it is necessary to take into account

any structure necessary to separate the contents owned by a repository from those

items shared by the repository federation. To do so, the concept of physical and

logical repository is extended to the structure of the repository. For the purposes of

the repository, the physical repository is the area in which items locally owned by a

member repository are retained, whether the repository is a parent or child. The

logical repository is the area where items are shared by the member repositories.

Each physical repository, whether a parent or child repository, will have the

same directory structure, as shown in Figure 5.1. To differentiate the physical from

the logical repositories, all physical directory names start with the prefix My.

Directory names are capitalized, while file names are not.

• /MyGroups/Groups/SubGroups/attributes
 | /metadata
 | /releaselist
 /attributes
 /metadata
 /releaselist

• /MyReleases/ReleaseItem/Version/archive
 /dependency_counter
 /registrations

• /MyAccessControl/access_control_list
• /MyKeySets/keyset
• /MyLicenses/license

Figure 5.1 Physical Repository Directory Structure.

The following discussion details how the physical repository, as described in

Figure 5.1, maps back to the Entity Relationship Diagram of Figure 4.1

41

• Groups. Groups translate to directories and sub-directories. A group contains

files that retain metadata about the group’s release items, and about the group

itself. Since groups can contain sub-groups, each sub-group will then be

contained in a sub-directory of the parent group, and will contain its own

metadata and group attributes files. All groups stored in the physical repository

map are located within the MyGroups directory.

• Release items. Release items will be stored in a parent directory, with each

version of a release item going into its own sub-directory. In addition to the

archived release file, each version directory will contain its own dependency

counter file and the list of registrations for that version of the release item. The

dependency counter allows the logical repository to ensure that no release item

is removed while there are still dependencies on the item. All release item

directories are stored in the MyReleases directory.

• Access control list. Access control lists are applied to groups, and multiple

groups may share a single access control list. Thus, the access control lists will

be stored as separate files in a directory dedicated to access control lists. All

access control lists are stored in the MyAccessControl directory of the physical

repository.

• Key set. Key sets are similar to access control lists, in terms of availability.

Therefore, each key set will be contained in its own file located in a directory

dedicated to key sets. Key set files are stored in the MyKeySets directory.

42

• License. License agreements are similar to access control lists and key sets, in

terms of availability. As with both, each license will be contained in its own

file located in a directory dedicated to licenses. Licenses agreement files are

stored in the MyLicenses directory.

5.2 Defining the Logical Repository

The logical repository is the part of SRM where all repository components and

files are visible, making access to these components transparent to all federation

member repositories. Each directory within the logical repository is a link to a file or

directory in the physical repository, and is not an actual object. NUCM provides the

capability of maintaining pointers to artifacts or directories in other repositories,

effectively providing distribution. As a repository is added to the federation, a

repository links its items into the parent logical repository, and then points its own

logical links to the parent logical repository.

To create a logical repository, each repository will have the following

directory structure, as shown in Figure 5.2. Logical directory names start with All.

• /AllGroups/group_ptr

• /AllReleases/release_item_ptr

• /AllAccessControl/access_control_list_ptr

• /AllKeySets/keyset_ptr

• /AllLicenses/license_ptr

• /AllLogs/log_ptr

Figure 5.2 Logical Repository Directory Structure.

43

As a matter of convention, all logical repository member names are prefixed

with the word All. For a stand-alone or parent repository, after the directory structure

has been created, the next step is to create the links from the logical repository to the

physical repository. A pointer is created from AllGroups to contents of the

MyGroups directory, as is similarly done for AllReleases, AllAccessControl,

AllKeySets and AllLicenses. AllLogs will contain pointers to the log files of each

physical repository. AllSchemas and AllAttributes point to the schema and attribute

file of the parent repository. When new contents are placed at the root level of a My

directory, a link is drawn from the corresponding All directory to the newly added

item. Figure 5.3 shows an example of an item added to the MyReleases directory and

the link from AllReleases.

Figure 5.3 Logical Repository Link to a Release Item.

When a child repository is added to a parent repository, it creates the same

directory structure as the parent repository, as shown in Figures 5.1 and 5.2. For the

physical repository, the directory structure remains the same. However, the creation

AllReleases MyReleases

DVS
1

1

1

1

nucm_root

44

of a logical repository for a child repository requires different handling. As the child

logical repository is created, each All directory has a link created that point from the

individual child. All directory to the corresponding parent repository All directory.

Later, as items are added to a child repository, links are created from the parent

logical repository to the item in the child physical repository. For example, suppose

that a parent repository is created in Boulder, CO and child repository is created in

New York, NY. Using release items as an example, Figure 5.4 shows that the parent

repository is created as shown in Figure 5.3, then the links are created from the child

AllReleases to the parent AllReleases. At some indeterminate time later, a release

item is added to the child repository and a link is made from the parent logical

repository to the release item. Once the links are complete, both release items are

visible from either logical repository, transparently.

45

Figure 5.4 Logical Repository Links between Parent and Child Repositories.

5.3 Schema, Attributes and Logs

There are three classes of files that are important to the overall operation of

the repository: the schema file, the attributes file and the log files. The following

discussion describes their creation and their individual roles.

• Schema. The schema will be defined at the creation of the logical repository,

and dictates the structure of the release item metadata for all member

repositories. The schema file, whose naming convention is schema, will be

located in the root directory of the logical repository. Each parent repository

owns the schema file. The schema file is made available to all member

Boulder

nucm_root

AllReleases MyReleases

DVS

New York

nucm_root

MyReleases

Balboa

1

1

1

1

1

1

1

46

repositories as the single source of reference for repository metadata definition,

and all member repositories must point to the parent schema.

• Attributes. As shown in the ER Diagram of Figure 4.2, each repository has its

own metadata that forms the attributes for the logical repository. Those

attributes will be contained in a file, using a naming convention of attributes,

located in the root directory of the logical repository. The parent repository

owns the attributes files. As with the schema, the attributes that are defined for

the parent repository are the reference set of attributes for all repository

members, and all members of the federation must point to the parent attributes.

• Log. There will be only one log file per physical repository, which will be

located in the root directory of the physical repository. Since both parent and

child repositories own and manage their log files, the log file naming

convention is log.server_name.port_id, providing a ready method for

identification. The log files are maintained and managed by the individual

physical repositories, and are made available to all federation members through

the AllLogs directory.

5.4 Groups

Groups are worth some additional explanation, since they, alone of the other

directories in the repository, can have an arbitrary nesting of subdirectories. As

would be expected from Figure 5.4, a group is created as a subdirectory of

MyGroups, and then a link is created from AllGroups to the newly created group.

Figure 5.5 shows an example of a group named SERL created as a directory in the

47

MyGroups directory, with the corresponding link from the AllGroups directory to the

SERL group.

Figure 5.5 Logical Repository Links Showing a Group.

As can be seen, there is no significant difference between the link connections

of Figure 5.3 and 5.5. The SERL group would be visible to all consumers from the

AllGroups directory.

When a child repository is added to a parent repository, groups can be added to

the child repository, as well as the parent repository, in exactly the same manner as is

done with release items. A link is created from the child repository AllGroups

directory to the parent repository AllGroups directory, giving immediate visibility to

all parent repository groups. As groups are added to the MyGroups directory of the

child repository, links are created from the parent repository AllGroups directory to

the new group.

nucm_root

AllGroups MyGroups

SERL

1

1

1

1

48

However, when subgroups are created, no additional links are needed, as the

logical repository already sees the parent group in the physical repository. Figure 5.6

shows a sample repository using the same conditions as the example given for Figure

5.4.

Figure 5.6 Logical Repository Links Showing Groups and SubGroups.

As can be seen in Figure 5.6, each top-level group in the logical repository is

made visible to all members through the use of the remote pointers. Once a top-level

group is created, any subgroup becomes automatically visible, with no further links

required.

Boulder

nucm_root

AllGroups MyGroups

New York

nucm_root

MyGroups

1

1

1

1

1

1

1

SERL

1

OCMG

ARCH

1

CM

49

Based on this design, removing a server from the federation of repositories

becomes a matter of removing links from child repositories to the parent repository

and from the parent repository to the child repositories. However, the repository

software must ensure that there are no outstanding links to any release items. By

checking dependency counters, the repository software can warn the server owner of

problems in removing the server. After that, the server owner must make the

determination how to proceed to best serve the consumers and the producers

dependent on the release item.

In conclusion, a brief inspection of the ER Diagram will show that each of the

major top level entities in the ER Diagram relates to a directory or to a file within the

repository. Groups contain files with describe themselves and contain the metadata

of the software artifacts released to that group. Access control lists are stored

together in their own directory, as are licenses and key sets. Release items are stored

in directories by name and by version, and maintain dependency counters and

registration information specific to that version. Log files, repository attributes and

schema files are available from the root of the logical repository.

Chapter 6

Schema, Metadata and Management

At this point, entities and relationships have been defined, as shown in the

Entity Relationship Diagram of Figure 4.1. Attributes have also been defined for

each of the entities, and from the repository structural definition of Chapter 5, files

and storage locations have been identified. The next step in the process is designing a

method for managing metadata throughout the repository.

The survey and analysis, as well as the problems with the current version of

SRM, helped identify a requirement for flexible definition of key metadata that

defines a release item. While some flexibility is still required for presentation text,

such as for a group, the need is not as extensive as for release items. This chapter

describes the approach to managing both flexible and static metadata throughout the

site.

6.1 Metadata Management

The primary metadata requirement revolves around the issue of defining,

managing, and maintaining the metadata that describes a release item. The current

version of SRM has a fixed metadata scheme, which inhibits the development of

dependent systems with differing metadata requirements. Further analysis from the

survey shows a wide variability in metadata needs. The need for flexibility makes

managing release items more difficult, since a repository must understand the

metadata in order to manage the release items. This implies that the schema must be

51

fixed at the time that the repository is created, and must have sufficient recognizable

structure to allow the repository to manage the information surrounding each artifact.

Thus, the schema that the repository owner defines at repository creation must be

capable of flexible definition, while at the same time having sufficient structure that

the repository can understand what is defined.

The Extensible Markup Language (XML) offers a solution to the metadata

problem. XML is a structured language that allows the user to define a grammar,

which can then be understood by parsers and by applications designed to understand

the grammar. The grammar is defined in a Document Type Definition (DTD), which

the parser uses to validate an XML document. XML documents can be one of two

types: well formed or valid. A well-formed XML document is one in which the

XML content is structurally correct according to the rules of XML. A valid

document is both well-formed, and conforms to the grammar defined in a DTD [12].

As a result, the XML combined with a DTD provides for the ability to define a

grammar to which a repository schema must adhere.

6.1.1 Base Data Types

Prior to defining the schema grammar, a group of basic data types must be

defined, which forms the working vocabulary of the system. The repository will use

these data types as a basis for interpreting the data stored in the repository and for

interpreting input from the user. All of the following data types are defined.

52

• STRING. A string is a collection of character text, as is input via a text box. A

string will not be interpreted by the repository, other than to pass the contents on

to the requesting function.

• TEXTFIELD. A textfield indicates that multiple lines of text make up the

content of this field. Repositories will interpret this as multi-line text, as is input

by a text area. No other special interpretation is performed.

• BOOLEAN. An integral value meaning true or false, as is used in a

programming language. The repository can interpret the boolean as a check box.

No other interpretation is performed.

• STRONG_DEPENDENCY. This indicates to the repository that the attribute is

a strong dependency. The repository can use the information contained by the

attribute to package a release item with its strong dependencies.

• OFFSITE_DEPENDENCY. This indicates to the repository that the attribute is

an offsite dependency. The repository can use the information contained by the

attribute to bring the user to the dependency, or possibly bundle the dependency

with its related release item.

• EMAIL. This data type is a character text string that can be input via a text box,

and that the repository can interpret the data to be an email address.

• LICENSE. This data type is a character text string that can be input via a text

box, which the repository interprets to be a pointer to a license retained by the

repository in a separate file, and having its own grammar.

• DATE. This data type is a character text string that can be input via a text box or

drop down control, and that the repository can interpret the data to be a date.

53

• URL. This data type is a character text string that can be input via a text box, and

that the repository can interpret the data to be a Uniform Resource Locator

(URL).

• KEYSET. This data type is a character text string that can be input via a text

box, and that the repository can interpret the data to be a pointer to a key set

retained by the repository.

6.1.2 Schema Definition

The schema file, which the repository owner creates, defines the structure of

the metadata of each release item, and is stored as a structured XML document. The

schema file structure is constrained by the Schema grammar definition contained in

the schema DTD file. At the time that the repository is created, the schema file is

validated against the DTD, and must correspond to the grammar contained within.

The schema file then defines how the release item metadata is structured.

Figure 6.1 shows the fragment of the complete repository DTD that contains

the Schema DTD. The Schema DTD defines the grammar of the repository schema.

The complete repository Document Type Definition is contained in Appendix A. In

this chapter, we discuss the repository DTD piecewise, and present only fragments

related to the topic at hand.

54

<!ELEMENT Schema (Attribute)+ >
<!ELEMENT Attribute (Label,(Value|OffsiteDependency|StrongDependency)?)>
<!ELEMENT Label (#PCDATA) >
<!ELEMENT Value (#PCDATA) >
<!ATTLIST Attribute Name ID #REQUIRED >
<!ATTLIST Attribute Type(STRING|TEXTFIELD|BOOLEAN|STRONG_DEPENDENCY|
OFFSITE_DEPENDENCY|EMAIL|LICENSE|DATE|URL|KEYSET) #REQUIRED >
<!ATTLIST Attribute Modifier (key|required|optional) #REQ UIRED >

Figure 6.1 Repository Schema Definition.

This DTD defines a Schema to contain one or more Attributes, and an

Attribute contains a Label and may contain a Value or an OffsiteDependency or a

StrongDependency. An Attribute also has three required attributes: a Name, a Type,

and a Modifier. The Name attribute tells the repository what the name of the

Attribute is, such as ReleaseName or ReleaseVersion. The Type of the Attribute

indicates which of the base data types the Attribute conforms to, e.g. STRING or

OFFSITE_DEPENDENCY. The Attribute Modifier tells the repository what kind of

metadata this Attribute is: key, required, or optional. A key attribute is metadata

that, in combination with any other key attributes, uniquely identifies a release item.

Required attributes are those attributes that the repository policy requires be

completed by the producer when an item is released to the repository. Optional

attributes are not required to be complete when the release item is added to the

repository. Labels and values are #PCDATA fields, which tells the XML parser to

not parse the contents of the defined element. In essence, these fields are strings. For

the purposes of defining a repository, only the Label is used. The Label field is used

by the repository as the presentation text on a GUI control. For example, if the name

of an Attribute is "ReleaseName" and the Label element contains the string "System

Release," then the repository will display the name System Release next to the GUI

control that the user uses to enter the System Name.

55

For the purposes of defining the repository schema, no further definition is

required. Strong and offsite dependencies apply to the storage of release-item

specific metadata.

Figure 6.2 contains a small example of a schema definition file that meets the

format requirements of a valid XML document, and meets the grammar defined for

the repository.

<?xml version="1.0"?>
<!DOCTYPE Schema SYSTEM "./schema.dtd" >
<Schema>
 <Attribute Name="ReleaseName" Type="STRING" Modifier="key">
 <Label>System Name</Label></Attribute>
 <Attribute Name="ReleaseVersion" Type="STRING" Modifier="key">
 <Label>System Version</Label></Attribute>
 <Attribute Name="ReleaseDate" Type="DATE" Modifier="required">
 <Label>Release Date</Label></Attribute>
 <Attribute Name="WhatsNew" Type="TEXTFIELD" Modifier="optional">
 <Label>What's New</Label></Attribute>
 <Attribute Name="StrongDependency" Type="STRONG_DEPENDENCY"
Modifier="optional">
 <Label>System Dependencies</Label></Attribute>
</Schema>

Figure 6.2 Sample Schema Definition.

The first line of Figure 6.2 contains the XML document processing directive

indicating that the document is an XML document. The second line contains the

document type definition reference indicating to the XML parser that the document

type Schema has been defined, and that its definition can be found in the file

“schema.dtd” [12].

The remainder of Figure 6.2 contains a definition for a repository schema.

Five attributes are defined, showing examples of all modifiers and a strong

dependency. In this example, there are two key attributes, ReleaseName and

ReleaseVersion, which the repository can then interpret. One required field was

specified, ReleaseDate, which the repository will not interpret but will ensure that

56

data is supplied for it. Two optional fields are specified, WhatsNew and

StrongDependency. The WhatsNew field is multi-line text, and is not otherwise

inspected. The StrongDependency is defined to be optional metadata, since not every

software item has a strong dependency.

6.1.3 Release Item Definition

Each group retains a file in the repository that contains the list of release items

managed by that group. The file content structure is governed by the repository

schema definition, as defined in the schema file. The release item Document Type

Definition shares elements of the Schema DTD. Figure 6.3 shows the fragments of

the repository DTD that apply directly to release items.

<!ELEMENT ReleaseList (ReleaseItem)* >
<!ELEMENT ReleaseItem (Attribute+, LicenseFile?) >
<!ATTLIST ReleaseItem RID ID #REQUIRED >
<!ELEMENT LicenseFile (#PCDATA) >

<!ELEMENT Attribute (Label,(Value|OffsiteDependency|StrongDependency)?) >
<!ELEMENT Label (#PCDATA) >
<!ELEMENT Value (#PCDATA) >
<!ATTLIST Attribute Name ID #REQUIRED >
<!ATTLIST Attribute Type (STRING|TEXTFIELD|BOOLEAN|STRONG_DEPENDENCY|
OFFSITE_DEPENDENCY|EMAIL|LICENSE|DATE|URL|KEYSET) #REQUIRED >
<!ATTLIST Attribute Modifier (key|required|optional) #REQ UIRED >

<!ELEMENT OffsiteDependency (NamedURL)+ >
<!ELEMENT NamedURL (Url,Name,Description) >
<!ELEMENT Url (#PCDATA) >
<!ELEMENT Name (#PCDATA) >
<!ELEMENT Description (#PCDATA) >

<!ELEMENT StrongDependency (Dependency)+ >
<!ELEMENT Dependency (SRMAttr)+ >
<!ELEMENT SRMAttr (Name,Value) >

Figure 6.3 Release Item Definitions.

Due to an XML constraint, an XML document can contain only one root

element, which corresponds directly to a document type. Since many release items

57

can be stored in the release item file, the release items are grouped under a release

list. This corresponds directly to the notion that Groups manage a list of release

items. Therefore, a Release List can contain zero or more Release Items. Each

ReleaseItem has a mandatory RID, or Release ID, attribute.

Each ReleaseItem, as is the case with the Schema, consists of at least one

Attribute. In addition to the list of Attributes, a ReleaseItem can contain a

LicenseFile. A LicenseFile is character text that acts a pointer to a license file, which

relates to a ReleaseItem. An Attribute contains a Label, and in the case of a Release

Item, contains a Value, an OffSiteDependency, or a StrongDependency. The

Attribute element attribution is the same for a Release Item as it is for a Schema, as

described in 6.1.2. Further, Release Items, unlike Schema, make use of the Value,

OffsiteDependency and StrongDependency elements, as defined in the Release Item

DTD.

An OffsiteDependency is essentially a list, consisting of one or more

NamedURL's. A NamedURL is a triple containing a Url, a Name, and a Description.

All elements of the NamedURL are character text, as indicated by the (#PCDATA).

The NamedURL contains the attributes defined for an Offsite Dependency, as shown

in the ERD of Chapter 4.

A StrongDependency contains a list of one or more Dependency elements.

Each Dependency contains one or more SRMAttr elements, each of which contains a

Name-Value pair. Name and Value were defined elsewhere in the DTD as character

text. Strong dependencies, as defined in the DTD, require a closer inspection. Each

Dependency, as defined in the DTD, corresponds to a release item, as shown in the

58

"has dependencies" relationship in the ER Diagram of Figure 4.1. From there, the

DTD differs from the ERD due to the complexity of providing flexible metadata. In

essence, for each strong dependency that release item has, the dependency must

provide the key metadata necessary to uniquely identify the strong dependency. The

Schema DTD defines a release item to be described by a list of attributes, and since

the attribute list can vary, each Dependency must contain a list of key attributes.

Each of the key attributes are retained in an SRMAttr, and the Name and Value pair is

a pointer to one Attribute. The SRMAttr Name element contains the Name attribute

of an Attribute element. The Value element contains the Value contained by the key

Attribute.

Figure 6.4 contains an example of a release list containing two release items,

one with a strong dependency on the other. The ReleaseItem definition matches the

Schema definition as shown in Figure 6.2.

59

<?xml version="1.0"?>
<!DOCTYPE ReleaseList SYSTEM "./schema.dtd" >
<ReleaseList>
 <ReleaseItem RID=" DVS_1.3.1">
 <Attribute Name="ReleaseName" Type="STRING" Modifier="key">
 <Label>System Name</Label>
 <Value>DVS</Value>
 </Attribute>
 <Attribute Name="ReleaseVersion" Type="STRING" Modifier="key">
 <Label>System Version</Label>
 <Value>1.3.1</Value>
 </Attribute>
 <Attribute Name="ReleaseDate" Type="DATE" Modifier="required">
 <Label>Release Date</Label>
 <Value>Sept. 1998</Value>
 </Attribute>
 <Attribute Name="StrongDependency" Type="STRONG_DEPENDENCY"
Modifier="optional">
 <Label>System Dependencies</Label>
 <StrongDependency>
 <Dependency>
 <SRMAttr>
 <Name>ReleaseName</Name>
 <Value>NUCM</Value>
 </SRMAttr>
 <SRMAttr>
 <Name>ReleaseVersion</Name>
 <Value>2.1e</Value>
 </SRMAttr>
 </Dependency>
 </StrongDependency>
 </Attribute>
 </ReleaseItem>
 <ReleaseItem RID="NUCM_2.1e">
 <Attribute Name="ReleaseName" Type="STRING" Modifier="key">
 <Label>System Name</Label>
 <Value>NUCM</Value>
 </Attribute>
 <Attribute Name="ReleaseVersion" Type="STRING" Modifier="key">
 <Label>System Version</Label>
 <Value>2.1e</Value>
 </Attribute>
 <Attribute Name="ReleaseDate" Type="DATE" Modifier="required">
 <Label>Release Date</Label>
 <Value>17-02-1998</Value>
 </Attribute>
 </ReleaseItem>
</ReleaseList>

Figure 6.4 Example Release List.

60

From the example XML file, it can be seen that the ReleaseList contains two

ReleaseItems, which have a RID attribute that is the concatenation of key attribute

values for the release item. Building on the earlier Schema and ReleaseList

discussion, there are two ReleaseItems in the list, each of which has two key

attributes, ReleaseName and ReleaseVersion. Each ReleaseItem has a required

ReleaseDate attribute, and neither uses the optional WhatsNew attribute. The second

ReleaseItem contains the metadata for NUCM version 2.1e, which was released on

17-02-1998. As can be seen from the metadata, NUCM has no off-site dependencies

and no strong dependencies.

The first ReleaseItem contains the release metadata for DVS version 1.3.1,

which shows a release date of Sept. 1998. DVS does have a strong dependency on

NUCM version 2.1e, as shown by the information contained in the

StrongDependency element grouping. In reading the Dependency elements, it can be

seen that one SRMAttr points to the ReleaseName key metadata of NUCM, and that

the second SRMAttr points to the second key metadata field, ReleaseVersion. The

repository uses the information contained in those fields to search the key attributes

for matching values for the given attribute name. In this manner, larger lists can be

generated and managed programmatically.

6.1.4 Remaining Metadata

The remaining metadata for the repository provides attribute storage for

groups, access control lists, licenses, and key sets. These DTDs are fixed, as there is

61

no flexibility requirement for those entities. The following sections describe the four

remaining metadata types used by the repository.

6.1.4.1 Access Control Lists

Figure 6.5 shows the definitions for an access control list. Following Figure

6.5 is a brief discussion of the DTD and an example XML document containing an

access control list.

<!ELEMENT AccessControlList (MemberEntry)+ >
<!ELEMENT MemberEntry (MemberEntryName, Password) >
<!ELEMENT MemberEntryName (#PCDATA) >
<!ELEMENT Password (#PCDATA) >
<!ATTLIST MemberEntryName PermissionSet
(ALL|READONLY|UPDATEONLY|READANDUPDATE|ADMINISTER|EXCLUDED)
#REQUIRED >

Figure 6.5 Access Control List DTD.

An AccessControlList contains the attribute set for an Access Control List, as

described in Figure 4.3. Each AccessControlList contains at least one MemberEntry,

which consists of a MemberEntryName and a Password. Both MemberEntryName

and Password are character text strings. A MemberEntryName also has a set of

permissions as an attribute. The permissions are as follows:

• ALL. All permissions indicate that a user has all other access permissions, except

EXCLUDED.

• READONLY. The user has read only access to the repository. As such, the user

can perform downloads.

62

• UPDATEONLY. The user has upload only access to the repository, and cannot

perform a download.

• READANDUPDATE. The user can perform both uploads and downloads.

• ADMINISTER. The user has permission to manage the repository.

• EXCLUDED. The user is specifically excluded from any access to the

repository.

Figure 6.6 contains a sample XML file containing an access control list.

<?xml version="1.0"?>
<!DOCTYPE AccessControlList SYSTEM "./schema.dtd" >
 <AccessControlList>
 <MemberEntry>
 <MemberEntryName PermissionSet="ALL">Alexander Wolf</MemberEntryName>
 <Password>Milan</Password>
 </MemberEntry>
 <MemberEntry>
 <MemberEntryName>PermissionSet="READONLY">Dennis
Heimbigner</MemberEntryName>
 <Password>Who_Are_You</Password>
 </MemberEntry>
 <MemberEntry>

 <MemberEntryName PermissionSet="EXCLUDED">Bob Smith</MemberEntryName>
 <Password/>
 </MemberEntry>
</AccessControlList>

Figure 6.6 Example Access Control List.

Of the three users shown, one has ALL permissions, one has read only, and

one is excluded from the system. For the user that is excluded from the system, no

password needs to be provided, but due to the document type definition, the password

element must be included. Therefore, the password is shown as an empty XML

element (<Password/>).

63

6.1.4.2 Licenses

Licenses contain a minimal amount of fixed information in each document

file. The license DTD contains the information defined in the ERD of Figure 4.3.

Figure 6.7 shows the License DTD.

<!ELEMENT License (LicenseDomain,LicenseText) >
<!ELEMENT LicenseDomain (#PCDATA) >
<!ELEMENT LicenseText (#PCDATA) >
<!ATTLIST License LicenseType (INTRUSIVE|PASSIVE) #REQUIRED >

Figure 6.7 License DTD.

A License contains a LicenseDomain and LicenseText pair. The license

domain and license text are both character text. In addition, a License has a

LicenseType attribute, which can be either INTRUSIVE or PASSIVE. This attribute

tells the repository which process to impose during the download of a system. Figure

6.8 shows an example license file.

<?xml version="1.0"?>
<!DOCTYPE License SYSTEM "./schema.dtd" >
<License LicenseType="INTRUSIVE">
 <LicenseDomain>GNU General Public License</LicenseDomain>
 <LicenseText>

 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
…. (example elided for brevity)

 END OF TERMS AND CONDITIONS

 </LicenseText>
</License>

Figure 6.8 An Example License XML File.

As shown in the License XML file, the license domain is the GNU General

Public License, and the license text contains a fragment of the GNU public license as

formatted text. The LicenseType attribute is set to INTRUSIVE, telling the

64

repository to make presentation of the license an intrusive process during download

of the artifact.

6.1.4.3 Key Sets

License key sets are also defined in the DTD file, and follow the attribute

requirements described by the ERD in Figure 4.3. Figure 6.9 shows the KeySet DTD.

<!ELEMENT KeySet (Key)+ >
<!ELEMENT Key (Name,Value) >

Figure 6.9 KeySet DTD.

A KeySet can contain one or more Keys. Each Key is a Name-Value pair,

and reuse definitions in earlier DTDs as character text. Figure 6.10 shows an

example KeySet file.

<?xml version="1.0"?>
<!DOCTYPE KeySet SYSTEM "./schema.dtd" >
<KeySet>
 <Key>
 <Value>12345-98743-871204</Value>
 <Name>Andre van der Hoek</Name>
 </Key>
 <Key>
 <Value>cnowe08u234kmn0uwef</Value>
 <Name>Ken Anderson</Name>
 </Key>
</KeySet>

Figure 6.10 KeySet DTD.

As can be seen from the example in Figure 6.10, each KeySet contains a Key, which

has a Value that contains the actual key value, and a Name, which associates a user

with the Value for any given key.

65

6.1.4.4 Groups

Groups are the last of the fixed information metadata that will be managed

and verified using a DTD. The Group DTD addresses all of the attribute and

relationship requirements for the Groups entity, as described in the DTD of Figure

4.1. Figure 6.11 contains the Group document type definition.

<!ELEMENT Group (GroupData, ACLFile?, SubGroup*) >
<!ELEMENT GroupData
(GroupName, GroupOwner, GroupPassword, DateCreated, PresentationText) >
<!ELEMENT GroupName (#PCDATA) >
<!ELEMENT GroupOwner (#PCDATA) >
<!ELEMENT GroupPassword (#PCDATA) >
<!ELEMENT DateCreated (#PCDATA) >
<!ELEMENT PresentationText (#PCDATA) >
<!ELEMENT ACLFile (#PCDATA) >
<!ELEMENT SubGroup (#PCDATA) >

Figure 6.11 Group DTD.

The Group DTD defines a Group to contain a GroupData element, and that it

can contain an ACLFile element and a list of SubGroups. A GroupData element

contains a GroupName, GroupOwner, GroupPassword, the DateCreated and

PresentationText. The GroupData information meets the attribute requirements for

the Group entity, as described in the ERD of Figure 4.2. Each of the GroupData sub-

elements contains character text. An ACLFile contains character text, and is a pointer

to the access control list file that the repository will use to protect the group, as shown

in Figure 4.1.

Each SubGroup element contains character text. A SubGroup is a listing of

each group that the parent group contains, as shown by the “has members”

relationship in Figure 4.1. While XML and the XML parsers will support a recursive

all, it does not provide a programmatic method to easily relate a parent with a child.

66

Therefore, each group maintains a list of subgroups. An example of a Groups XML

file is contained in Figure 6.12.

<?xml version="1.0"?>

<!DOCTYPE Group SYSTEM "./schema.dtd" >
<Group>
 <GroupData>
 <GroupName>SERL</GroupName>
 <GroupOwner>Alexander Wolf</GroupOwner>
 <GroupPassword>something_good</GroupPassword>
 <DateCreated>1/1/70</DateCreated>
 <PresentationText>

...(example elided for brevity)
 </PresentationText>
 </GroupData>
 <ACLFile>acl.xml</ACLFile>
 <SubGroup>SERL/CM</SubGroup>
 <SubGroup>SERL/ARCH</SubGroup>
</Group>

Figure 6.12 Sample Group XML File.

This example shows a sample Group definition for the SERL group, and

describes the relationship between GroupData, ACLFile and SubGroups. As can be

seen from the SubGroup example, each SubGroup is identified with its parent

GroupName. This naming convention will continue down the group hierarchy.

Chapter 7

System Prototype

The final step in this thesis is to prototype the next generation software release

management system. The goal of the prototype is to demonstrate that the design

decisions made address the shortcomings in the current version of SRM, namely

flexible metadata and better distribution support. This chapter describes the approach

taken, starting with the creation of a parent repository and ending with examples of

producer and user screens. Following the prototype examples is a brief discussion on

the use of SRM as a document management system.

7.1 Creating a Repository

The first step that a repository owner must perform is the creation of a

repository. Since SRM uses NUCM to manage the repository and handle distribution,

a NUCM [22] server must be executing for SRM to work correctly. Figure 7.1 shows

the prototype application developed to create the parent repository and its directory

structure.

68

[smithr@test2 bin]$ java CreateParent

CreateParent - (c) 1999 by SERL
 Department of Computer Science
 University of Colorado - Boulder

Usage: java CreateParent flags

Required flags:
 -mh parenthost - hostname of parent repository
 -mp parentport - port number of parent repository
 -sf schema - [path/]name of schema file
 -af attrs - [path/]name of attributes file
 -wd workingdir - path/name of working directory
[smithr@test2 bin]$

Figure 7.1 CreateParent Application Interface.

The CreateParent prototype has four required flags that must be set when

creating the repository, along with one optional flag. The first two flags, “-mh” and

“-mp”, specify the NUCM host name and port number that SRM will use as a parent

repository. The third flag, “-sf”, specifies the name and location of the XML based

schema file that defines the metadata surrounding a release item. The “–af” flag

specifies the name of the repository attributes file. The last flag, “-wd”, is optional

and specifies a working directory, which NUCM uses for its operation. Otherwise,

the current working directory is used as the working directory. When CreateParent is

run, the first item checked is whether the supplied schema file is a valid file, which is

performed by validating the schema file against the Schema Document Type

Definition (DTD). If the attributes or elements are not correct, the application will

return a failure message, indicating the source of failure. CreateParent then checks

the NUCM server to ensure that there is no other installation of SRM on that host

name and port number combination. If there is, CreateParent also returns a failure

message indicating the cause of failure.

69

Assuming that all preconditions are correct, CreateParent will create the

directory structure for both the logical and physical repository, as described in

Chapter 5. Figure 7.2 shows the contents of the parent repository after construction

by CreateParent.

[smithr@test2 smithr]$ nucmclient list //test2:6947/nucm_root $PWD
0
name: MyKeySets
version: 1
name: MyReleases
version: 1
name: MyGroups
version: 1
name: MyAccessControl
version: 1
name: MyLicenses
version: 1
name: AllLicenses
version: 1
name: AllAccessControl
version: 1
name: AllGroups
version: 1
name: AllReleases
version: 1
name: AllKeySets
version: 1
name: AllLogs
version: 1
name: schema
version: 1
name: log.test2.6947
version: 1
name: attributes
version: 1
[smithr@test2 smithr]$

Figure 7.2 Parent Repository Directory Structure.

The following are the directories that are created in support of the physical

repository: MyKeySets, MyReleases, MyGroups, MyAccessControl, and

MyLicenses. Each of these directories corresponds to the directories described in

Figure 5.1. The logical repository directories, as depicted in Figure 5.2, are also

present: AllLicenses, AllAccessControl, AllGroups, AllReleases, AllKeySets, and

70

AllLogs. The last three files shown in Figure 7.2 are the schema file, repository log

file, and the repository attributes file, respectively. Each of the files has the host

name and port number appended to the file name to identify the instances of SRM to

which they apply.

On completion of the work performed by CreateParent, the logical and

physical repositories have been correctly constructed, and match the directory

structure specified in Chapter 5. At this time, the logical repository just created exists

with only one physical repository. From this point forward, the SRM repository is

ready to add child repositories, to add or remove groups, or to add or release software.

7.2 Adding a Child Repository

A child repository, as described in Chapter 5, is one that depends on the

existence of a parent repository. In order for a child repository to be created

correctly, two NUCM servers must be running, one which serves the SRM parent

repository, and one which serves the SRM child repository. Figure 7.3 shows the

command line application that creates the child repository.

71

[smithr@test2 bin]$ java CreateChild

CreateChild - (c) 1999 by SERL
 Department of Computer Science
 University of Colorado - Boulder

Usage: java CreateChild flags

Required flags:
 -mh parenthost - hostname of parent repository
 -mp parentport - port number of parent repository
 -sh childhost - hostname of child repository
 -sp childport - port number of child repository
 -wd workingdir - path/name of working directory
[smithr@test2 bin]$

Figure 7.3 CreateChild Application Interface.

The CreateChild application requires five flags for correct operation. As with

CreateParent, the “-mh” and “-mp” flags specify the parent repository host name and

port number. The “–sh” and “–sp” flags are specific to the child repository, and

specify the child host name and port number, respectively. As with CreateParent, the

“-wd” flag specifies the working directory.

It is worth noting here the difference in the flags between the two systems.

There are no CreateChild flags to indicate the schema file or the attributes file. Since

the repository being created is the child repository, the child repository must use the

schema defined for the parent repository to be able to interoperate correctly. The

attributes of the parent repository are the defining attributes for the repository

federation. Figure 7.4 shows the repository structure and contents for a child

repository.

72

[smithr@test2 smithr]$ nucmclient list //test2:3721/nucm_root $PWD
0
name: MyKeySets
version: 1
name: MyReleases
version: 1
name: MyGroups
version: 1
name: MyAccessControl
version: 1
name: MyLicenses
version: 1
name: AllLicenses
version: 1
name: AllAccessControl
version: 1
name: AllGroups
version: 1
name: AllReleases
version: 1
name: AllKeySets
version: 1
name: AllLogs
version: 1
name: schema
version: 1
name: log.test2.3721
version: 1
name: attributes
version: 1
[smithr@test2 smithr]$

Figure 7.4 Child Repository Directory Structure.

As can be expected based on the discussion of Chapter 5, the physical and

logical repository top-level directory structure is the same for the child as for the

parent. The difference to be noted between Figures 7.2 and 7.4 is in the files. The

schema file name is the same for both repositories, as is the attributes file. It is

important to note here that the Allxxx directory names, as well as the schema and

attribute files, are links to the actual physical files or directories that reside on the

parent repository. In both examples, the NUCM host name is test2 and the port

number is 6947. However, for the child repository, the log file is named

log.test2.3721, which indicates that the NUCM server, while on the same host,

73

operated at a different port number. The difference in file names shows that the log

file is specific to the child repository, and indicates that the child will retain its log

entries in that file. The functionality shown here ensures that the repository meets the

structure as defined in Chapter 5.

The CreateChild repository function shows support for more flexible

distribution, as can be seen from the examples, in that a child repository can be added

at some undetermined time after the creation of the parent repository. At this point in

time, the ability to remove a child repository has not been prototyped. However, the

activities to remove a child repository from a parent are fairly straight forward, but is

contingent on there being no dependencies on any item that exists as a member of the

child repository. Should there be software within the child repository that has

dependencies on it, then the removal process would have to stop. Upon such a

failure, the actions that could be taken to remedy the situation are primarily the policy

of the repository owner. One option is that the system at hand is transferred to one of

the repositories that remain in the federation. Another option would be to establish

the dependency as an off-site dependency, if the child repository owner does continue

to make the child repository available in a different venue.

7.3 Adding Groups

The next step that a repository owner must perform is adding a group to the

repository. The repository does not have a default group assigned, so the repository

owner must create one group to operate the repository, at the very least. Groups can

74

be added at any time during the repository’s lifetime, as each group is created and

managed independently.

Figure 7.5 shows the AddGroup application. The operational flags for the

AddGroup application are as follows: “-h” specifies the host name of the NUCM

server, “-p” specifies the port number of the NUCM server, “-n” specifies the name

of the new group to add, “-g” specifies the parent group to add the new group to, “-a”

specifies the name of the group attributes file as shown in Figure 6.12, “-r” specifies

the release list file for the group as shown in Figure 6.4, and “–w” specifies the name

of a working directory that NUCM uses. When specifying that a group is to be added

to the root groups directory of the repository, the repository owner must use “–g .” as

the group specifier flag.

[smithr@test2 bin]$ java AddGroup

AddGroup - (c) 1999 by SERL
 Department of Computer Science
 University of Colorado - Boulder

Usage: java AddGroup flags

Required flags:
 -h hostname - hostname of repository
 -p port - port number of repository
 -n newgroup - name of new group
 -g parentgroup - name of parent group
 -a groupattrs - group attributes file
 -r releaselist - release list filename
 -w workingdir - [path/]name of working directory
[smithr@test2 bin]$

Figure 7.5 AddGroup Application Interface.

Figure 7.6 shows the commands used to create the set of groups that

form the group directory structure to match the subgroups listed in Figure 6.12.

75

java AddGroup -h test2 -p 3721 -n SERL -g . -w $PWD/ws -a
serlgroupfile -r releaselist

java AddGroup -h test2 -p 3721 -n CM -g SERL -w $PWD/ws -a
cmgroupfile

-r releaselist
java AddGroup -h test2 -p 3721 -n ARCH -g SERL -w $PWD/ws -a

archgroupfile -r releaselist

Figure 7.6 Creating Groups.

The first entry creates a group in the root group directory on NUCM server

test2 at port 3721, with an attribute file named serlgroupfile and a release list file

named releaselist. The second line adds the CM group to SERL at the same NUCM

server, using a different group attribute file, but the same release list file. The last

line adds a second group to SERL named ARCH, which also uses the same release

file but a different attributes file. For the initial addition to the repository, the release

list is an empty list having no ReleaseList elements.

Figure 7.7 shows the structure of the parent repository AllGroups directory, as

well as the subgroup directories directly related to the SERL group.

76

[smithr@test2 bin]$ nucmclient list //test2:6947/nucm_root/AllGroups
$PWD
0
name: SERL
version: 1
[smithr@test2 bin]$ nucmclient list //test2:6947/nucm_root/

AllGroups/SERL $PWD
0
name: ARCH
version: 1
name: CM
version: 1
name: releaselist
version: 1
name: groupattributes
version: 1
[smithr@test2 bin]$ nucmclient list //test2:6947/nucm_root/

AllGroups/SERL/ARCH $PWD
0
name: releaselist
version: 1
name: groupattributes
version: 1
[smithr@test2 bin]$ nucmclient list //test2:6947/nucm_root/

AllGroups/SERL/CM $PWD
0
name: releaselist
version: 1
name: groupattributes
version: 1
[smithr@test2 bin]$

Figure 7.7 Parent Repository AllGroups Directory Contents.

As can be seen from the repository, AllGroups contains a single directory

entry, SERL, and contained within the SERL directory is the other two groups, CM

and ARCH, along with the attributes file and the release list for that group. Further

inspection of the CM and ARCH directories show the attributes file and the release

file for each group. These directories are consistent with the directory structure

discussed in Chapter 5.

Worth noting here are the actual contents of the MyGroups directory of both

SRM repositories. Figure 7.8 shows these contents.

77

[smithr@test2 bin]$ nucmclient list //test2:6947/nucm_root/MyGroups
$PWD
0
[smithr@test2 bin]$ nucmclient list //test2:3721/nucm_root/MyGroups
$PWD
0
name: SERL
version: 1
[smithr@test2 bin]$

Figure 7.8 MyGroups Directory Contents.

As can be seen in Figure 7.8, the MyGroups directory of the parent repository

is empty, because the groups actually exist on the child repository. Furthermore, had

the directory contents of AllGroups been viewed from the child repository, there

would appear to be no difference between that listing and the listing shown in Figure

7.7. This shows further support for distribution by SRM.

7.3 Managing Access Control List, Key Sets and Licenses

Figure 7.9 shows the ManageItem application, which manages the addition

and removal of access control lists (ACL), key sets, and licenses from the repository.

[smithr@test2 bin]$ java ManageItem

ManageItem - (c) 1999 by SERL
 Department of Computer Science
 University of Colorado - Boulder

Usage: java ManageItem flags

Required flags:
 -a action - add, getrefs, remove or destroy
 -h hostname - hostname of repository
 -p port - port number of repository
 -f filename - file name
 -t itemtype - in [acl|keyset|license]
 -w workingdir - [path/]name of working directory
[smithr@test2 bin]$

Figure 7.9 ManageItem Application Interface.

78

The required flags, as shown in Figure 7.9 are as follows: “-a” specifies the

type of action to take, “-h” specifies the NUCM server host name, “-p” specifies the

NUCM server port number, “-f” specifies the file name to manage, “-t” specifies

whether the item is an ACL, key set or license, and “–w” specifies the NUCM

working directory.

The action command requires some additional explanation. The add

command adds the item to the repository based on the item type defined with the –t

flag, and in accordance with the directory structure specified in Figure 5.1. The

remove command will remove the file from the repository provided that there are no

outstanding references to the specified item. The getrefs command allows the

repository owner to view the number of references to the specified items.

7.4 Adding Release Items to the Repository

The next important capability for SRM is adding a release item to the

repository, particularly given the requirement of managing flexible metadata. To

accomplish this, the repository must be able to interpret the schema file provided at

repository creation, and then build a graphical user interface (GUI) which will adjust

automatically to meet the schema definition. This section describes how SRM

manages dynamic construction of an upload GUI and then stores the metadata in the

appropriate release item file.

Using the schema definition shown in Figure 6.2 as an example, the repository

will open the schema file when an upload is requested. The repository then parses the

XML document and extracts from the Schema definition all metadata definitions and

79

sorts them by key metadata, required metadata, and optional metadata. Then as the

upload GUI is constructed, SRM builds each section based on the type definition for

the Attribute. Figure 7.10 shows the resulting upload GUI built from the schema

definition shown in Figure 6.2.

Figure 7.10 Sample Upload Graphical User Interface.

80

As can be seen in Figure 7.10, the GUI has three distinct visual cues for the

user, indicating what information is classified as key attributes, which are required,

and which are optional. There is a section to name the release file, a button to locate

groups to release the software to, buttons for setting dependencies, and several

buttons at the bottom line to aid the user during operation. Off-site Dependencies are

included on the screen to show the full functionality of the system.

When the software producer is ready to upload a software release, he or she

must select a group to release the software to. When the producer selects the button,

SRM presents the user with the group selection dialog shown in Figure 7.11.

Figure 7.11 Group Selection Dialog.

The producer simply selects the group(s) of choice, and is returned to the main

upload screen.

If the software producer wants to include other items on the system as strong

dependencies, he or she will select the button titled Set Dependencies. SRM will

81

bring up another dialog box, as shown in Figure 7.12, which indicates those items

within the group that the user has selected that a software producer may include as a

strong dependency.

Figure 7.12 Strong Dependency Selection Dialog.

The user selects as many of the listed releases as are necessary for the released

software to operate correctly.

In those situations where a software producer wants to include off-site

dependencies, selection of the button titled Off-site Dependencies will bring the

producer to the Off-Site Dependency dialog, as shown in Figure 7.13.

82

Figure 7.13 Off-site Dependency Selection Dialog.

The producer must enter all information into the dialog. The information

saved from this form meets the schema definition for an off-site dependency, as

shown in Figure 6.3.

Using the DVS example shown in Figure 6.4, when the software producer

adds the item to the repository, SRM first checks the repository in the MyReleases

directory for any prior version of the artifact. If a previous version is not found, then

a directory entry is created based on the name of the artifact, and the initial directory

version is established. Otherwise, the next directory version of the artifact is created.

Figure 7.14 shows the directory structure for an initial check in of DVS.

83

[smithr@test2 bin]$ nucmclient list
//test2:6947/nucm_root/MyReleases $PWD
0
name: DVS
version: 1
name: version_1
version: 1
[smithr@test2 bin]$ nucmclient list //test2:6947/nucm_root/

MyReleases/DVS $PWD
0
name: 1
version: 1
[smithr@test2 bin]$ nucmclient list //test2:6947/nucm_root/

MyReleases/DVS/1 $PWD
0
name: DVS1.3.1-linux-i386
version: 1
name: dependency_counter
version: 1
name: registrations
version: 1
[smithr@test2 bin]$

Figure 7.14 Directory Structure after DVS Check In.

As can be seen by the directory structure, this follows the physical repository

directory design from Figure 5.1, which also addresses historical versions. At the

completion of the activity, the repository will have a new entry in the release group’s

release list that describes the new release item. Further, the release item will have a

new version committed to the local MyReleases, which will be immediately visible in

the AllReleases directory. Default dependency counters and registration files are

created and initialized to zero and empty respectively, and the release item is

available to all member repositories of the federation.

7.5 Retrieving Software from the Repository

Software retrieval has not been prototyped. However, GUI prototypes have

been developed that illustrate the options and processes that a consumer has available

to retrieve software from a repository. This section first describes the software

84

retrieval process and then follows with a brief discussion of web-based software

retrieval.

7.5.1 Software Retrieval Process

The software retrieval process begins when the user is presented with the

repository software retrieval dialog. The GUI prototype, in this case a Java applet, is

shown in Figure 7.15.

Figure 7.15 Software Retrieval Dialog GUI Prototype.

85

It should be noted that this GUI prototype was developed for the current

version of SRM and would require a repository schema definition that supports the

information shown.

The retrieval application can provide the consumer with several capabilities.

The consumer can select a group to view its releases, and depending on the structure

of the repository schema, view releases by platform and release date. As Figure 7.15

shows, immediately underneath the top-level selection controls is a text box that lists

the releases for the selections made from the Group, Platform and Release Date

controls. Following the selection box is a text area where the user can engage in a

keyword search of release items contained in the site, or make use of a speed search

where the buttons represent the first letter of the release item name. At the bottom of

the page are several buttons which provide the consumer with the following

functionality: Help provides context specific help based on the current dialog or page

in the site, Mail Us provides the consumer with the ability to mail the repository

owner, About Us presents the presentation text associated with the repository, the

Clear button clears all selections made and returns the page to its default state,

Download Now takes the consumer’s selection from the software list box and delivers

it immediately to the consumer, and View Package Details brings the consumer to a

detailed information page for the selected software release item.

Typically, a consumer will select a release item and then decide to view the

details about a release item, or may choose to simply download the artifact. In the

case where the consumer decides to view the package details, the user is brought to a

86

page that contains the known information supporting the release item. Figure 7.16

shows a sample release information page.

Figure 7.16 Release Item Information Dialog GUI Prototype.

From Figure 7.16, three sets of functionality selections can be made. At the

top level is the list of related release, platforms and versions available for the selected

release item. Immediately underneath the release item information is a set of buttons

that the consumer can use to get more detail about the release item. All requested

information is displayed in the text box directly below the top row of buttons. The

87

Detailed Description button would show the detailed description information. The

Dependencies button would list the dependencies for the release item. Information

would show any information associated with the release item that is not the detailed

description. The License Requirements button would show any license agreement

text associated with the release item.

The bottom row of buttons provide very similar functionality as the buttons

shown in Figure 7.15. Mail Us, About Us, and Help function in the same was as the

buttons described for Figure 7.15. Main Page brings the consumer back to the entry

screen for SRM, and Close closes the current screen. The Download button

downloads only the current artifact, whereas the Download with Selected

Dependencies button downloads the artifact along with the items the consumer

selected from the Dependencies screen.

7.5.2 Web-based Software Retrieval Process

From the discussion in section 7.5.1, it can be shown that a repository

consumer has the ability to retrieve software release items as is currently performed

by SRM, and that there is a fair degree of flexibility in the information that is shown.

However, this is a constrained approach to providing release item information in that

it requires a certain information base to support the functionality described. A

retrieval GUI can be developed which is dynamic in its presentation of release item

information, and that supports the retrieval of release items and their dependencies as

is done with the current version of SRM. However, a Java applet based approach is

not easily promoted to the Web, as browsers support Java differently, and that support

88

varies between versions of the browser. Therefore, a better way is to take advantage

of the basic browser capability and of the information contained within the new

version of SRM as XML.

XML is a mark up language for creating structured documents, and provides

for the creation of a grammar that allows users to agree on the definition of the

information contained in the document. As part of this thesis, a particular type of

XML document was created for specifying information about a particular software

release. Having this information in a structured document enables the creation of

tools that can process the SRM-related XML documents and perform some task.

Since one of the requirements for the next generation SRM is the ability to customize

the user interface, the information within the document can be used to create a

customized web-based presentation that presents the information to the user in a

correct manner. The World Wide Web Consortium (W3C) has defined a presentation

language based on XML called the Extensible Stylesheet Language (XSL) [6]. With a

set of appropriately defined XSL style sheets, presentation pages could be generated

that show the information the consumer needs directly from the XML contents of the

repository. Therefore, the problem would be to design an appropriate site navigation

that would support the consumer while at the same time support correctly the

presentation of flexible metadata.

Figure 7.17 shows an example XSL style sheet that was used to generate the

license agreement page shown in Figure 7.18. The XSL style sheet shown in Figure

7.17 supports the License DTD shown in Figure 6.7 and uses the repository license

XML file shown in Figure 6.8 as its source of content.

89

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl"
 xmlns="http://www.w3.org/TR/REC-html40" result-ns="">

<xsl:template match="/">
 <xsl:invoke macro="head"/>
 <xsl:apply-templates/>
 <xsl:invoke macro="tail"/>
</xsl:template>

<xsl:template match="License">
 <h2>License Terms</h2>
 <p>
 Licensing Domain:
 <![CDATA[]]><xsl:value-of select="LicenseDomain"/>
 </p>
 <center>
 <form>
 <textarea cols="70" rows="20">
 <xsl:value-of select="LicenseText"/>
 </textarea>
 <![CDATA[

 <input type="submit" name="accept" value="Accept">
 <input type="submit" name="reject" value="Reject">
]]>
 </form>
 </center>
</xsl:template>

<xsl:macro name="head">
<![CDATA[
<HTML>
 <HEAD>
 </HEAD>

 <BODY BGCOLOR="#FFFFFF">
]]>
</xsl:macro>

<xsl:macro name="tail">
<![CDATA[
 </BODY>
</HTML>
]]>
</xsl:macro>

</xsl:stylesheet>

Figure 7.17 Sample XSL Style Sheet for License DTD.

90

Figure 7.18 Sample License Page Generated by XSL.

As can be seen from the examples contained within this section, XSL support

is a logical and powerful extension of the system capabilities for use in software

retrieval. Further, XSL can be used to generate not only web-based software retrieval

pages, but web-base software upload pages, as well.

91

7.6 Document Repository

The capabilities defined and prototyped to date can be applied to documents

as well as software. Documents are often organized around a topic area, and can be

described by title, author, publication date, an abstract, and possibly a document

identifier. To use the next generation SRM as a document management system

requires no changes to the system, only the definition of an appropriate schema, as

shown in Figure 7.19.

<?xml version="1.0"?>
<!DOCTYPE Schema SYSTEM "./schema.dtd" >
<Schema>
 <Attribute Name="Author" Type="STRING" Modifier="key">
 <Label>Author Name</Label></Attribute>
 <Attribute Name="Title" Type="STRING" Modifier="key">
 <Label>Document Title</Label></Attribute>
 <Attribute Name="Topic" Type="STRING" Modifier="required">
 <Label>Subject Topic</Label></Attribute>
 <Attribute Name="PublicationDate" Type="DATE"
Modifier="required">
 <Label>Publication Date</Label></Attribute>
 <Attribute Name="DocumentID" Type="STRING" Modifier="required">
 <Label>Document Id</Label></Attribute>
 <Attribute Name="Abstract" Type="TEXTAREA" Modifier="required">
 <Label>Abstract</Label></Attribute>
</Schema>

Figure 7.19 Sample Schema Definition for a Document Repository.

As can be seen, the schema definition in Figure 7.19 is very similar to the

schema definition of Figure 6.2. Both have key and required metadata, while the

document definition example does not contain any optional metadata definition.

Based on the schema definition in Figure 7.18, each document is identified by an

Author Name and a Document Title, and supplies a Subject Topic, a Publication

Date, a Document Id, and an Abstract.

92

From the schema definition of Figure 7.19, a matching release item file would

eventually be generated. Figure 7.20 shows a release list file containing one

document.

<?xml version="1.0"?>
<!DOCTYPE ReleaseList SYSTEM "./schema.dtd" >
<ReleaseList>
 <ReleaseItem RID="CU-CS-857-98_1.0">
 <Attribute Name="Author" Type="STRING" Modifier="key">
 <Label>Author Name</Label>
 <Value>Antonio Carzaniga, Alfonso Fuggetta, Richard S. Hall,
Dennis Heimbigner, André van der Hoek, and Alexander L. Wolf </Value>
 </Attribute>
 <Attribute Name="Title" Type="STRING" Modifier="key">
 <Label>Document Title</Label>
 <Value>A Characterization Framework for Software Deployment

Technologies </Value>
 </Attribute>
 <Attribute Name="Topic" Type="STRING" Modifier="required">
 <Label>Subject Topic</Label>
 <Value>Configuration Management</Value>
 </Attribute>
 <Attribute Name="PublicationDate" Type="DATE" Modifier="required">
 <Label>Publication Date</Label>
 <Value>April 1998</Value>
 </Attribute>
 <Attribute Name="DocumentID" Type="STRING" Modifier="required">
 <Label>Document Id</Label>
 <Value>CU-CS-857-98</Value>
 </Attribute>
 <Attribute Name="Abstract" Type="TEXTAREA" Modifier="required">
 <Label>Abstract</Label>
 <Value>(elided for brevity)</Value>
 </Attribute>
 </ReleaseItem>
</ReleaseList>

Figure 7.20 Sample Document Release List.

From the schema definition of Figure 7.19, the upload graphical user interface

shown in Figure 7.10 will change, as depicted in Figure 7.21. Figure 7.21 is built

using an XSL Style Sheet and the document repository schema file definition as

defined in Figure 7.19. The XSL Style Sheet is shown in Appendix B. The intended

functionality is the same for both screens.

93

Figure 7.21 Document Repository Upload Screen.

As with the example in Figure 7.10, Key Attributes still has two text boxes,

the first labeled Author Name and the second labeled Document Title. Required

94

Attributes is expanded to contain three text boxes and a text area, labeled Subject

Topic, Publication Date, Document Id, and Abstract, respectively. All other

repository functionality would remain unchanged. Once the information was

completed and the software producer commits the data to the repository, then the

release item information is store in the release list file for the group, as shown in

Figure 7.20. Once the information is committed to the repository, an XSL Style

Sheet can be applied to the release list file, generating an HTML file for display on

the web. Figure 7.22 shows the resulting display file. The XSL Style Sheet that

created this image is available in Appendix C.

95

Figure 7.22 Document Repository Availability Screen.

Chapter 8

Conclusion

In this thesis, we have addressed two of the shortcomings of the current

version of SRM, namely inflexibility in distribution and inflexibility in appearance

and functionality. In particular, this thesis contributes a novel design that leverages

the distribution capability of NUCM and the flexible data definition and presentation

techniques of XML in solving the two problems. NUCM is used to allow physical

repositories to join or leave a federation of repositories at will. XML is used to

support the flexible definition of the functionality of the repository, along with its

associated presentation style. A prototype was developed to demonstrate these new

capabilities. In particular, the flexibility is demonstrated by the modeling of the

current version of SRM and the modeling of a document management system within

the new SRM.

Future work on the system includes completing the prototype of the system,

refining the application graphical user interface for the download capability, and

extending the use of XML and XSL to develop web-based access to the system. In

addition, other types of release items could be evaluated for deployment by SRM,

such as the type of electronic distribution that would be found in such systems as

online library or course delivery systems. Finally, SRM can be extended to the field

of e-commerce by evaluating its use in conjunction with a web-based purchasing

system, or for use as the main functionality base of a web-based application service

provider.

Bibliography

1. Alexander Wolf’s publication pages. Publications Available on the Web. June 1,
1998. http://www.cs.colorado.edu/users/alw/doc/AvailablePubs.html

2. AT&T Laboratories. Download the DjVu Plugin. June 1, 1998.
http://djvu.research.att.com/home_mstr.htm

3. AT&T Laboratories Research. Strudel Web-site Management System. June 2,
1998. http://www.research.att.com/sw/tools/strudel/

4. Berliner, B. CVS II: Parallelizing Software Development. In Proceedings of 1990
Winter USENIX Conference, Washington, D.C., 1990.

5. DVS. Distributed Versioning System, Carnaziga, A. Nov, 5.1999.
http://www.cs.colorado.edu/serl/cm/dvs.html

6. Extensible Stylesheet Language, World Wide Web Consortium. Nov. 11, 1999.
http://www.w3.org/Style/XSL.

7. freshmeat.net. Freshmeat.net. Nov. 15, 1999. http://www.freshmeat.net.
8. Gamelan. Gamelan, The Official Directory for Java. June 2, 1998.

http://www.developer.com/directories/pages/dir.java.html
9. GNU. GNU's Not Unix! Feb. 6, 1998. http://www.gnu.org/
10. INTERSOLV, Rockville, Maryland. Using PVCS for Enterprise Distributed

Development, 1998.
11. IntraNet Solutions. IntraNet Solutions, Inc. June1, 1998.

http://www.intranetsol.com
12. Megginson, D., Structuring XML Documents. 1998
13. NASA. Repository Based Software Engineering. June 2, 1998.

http://rbse.jsc.nasa.gov/eichmann/rbse.html
14. NetLib. Netlib Repository at UTK and ORNL. June 1, 1998.

http://www.netlib.org/
15. Red Hat. Red Hat Packaging Manager. Dec. 3, 1999.

http://www.redhat.com/developer
16. Software Engineering Institute (SEI). Software Engineering Institute. June 2,

1998. http://www.sei.cmu.edu
17. Software Release Manager (SRM). June 2, 1998. http://www.cs.colorado.edu/serl
18. Tichy, W.F. RCS, A System for Version Control. Software Practice and

Experience, 15(7), pp. 637-654, July 1985.
19. TUCOWS. The Ultimate Collection of Winsock Software. June 1, 1998.

http://www.tucows.com
20. van der Hoek, A., Hall, R.S., Carnaziga, A., Heimbigner, D., and Wolf, A.L.

Software Deployment: Extending Configuration Management Support into the
Field. 1998

21. van der Hoek, A., Hall, R.S., Heimbigner, D., and Wolf, A.L. Software Release
Management. 1997

22. van der Hoek, A., Heimbigner, D., and Wolf, A.L. A Generic, Peer-to-Peer
Repository for Distributed Configuration Management. 1996

23. World Wide Web Consortium. Leading the Web to its Full Potential. June 2,
1998. http://www.w3.org/

Appendix A.

Document Type Definitions

<!-- *** -->
<!-- SRM Schema definition. This definition allows the -->
<!-- repository owner to flexibly define a repository at -->
<!-- the time of creation. -->
<!-- *** -->
<!ELEMENT Schema (Attribute)+ >
<!ELEMENT Attribute
(Label,(Value|OffsiteDependency|StrongDependency)?) >
<!ELEMENT Label (#PCDATA) >
<!ELEMENT Value (#PCDATA) >
<!ATTLIST Attribute Name ID #REQUIRED >
<!ATTLIST Attribute Type
(STRING|TEXTFIELD|BOOLEAN|STRONG_DEPENDENCY|OFFSITE_DEPENDENCY|EMAIL
|LICENSE|DATE|URL|KEYSET) #REQUIRED >
<!ATTLIST Attribute Modifier (key|required|optional) #REQUIRED >

<!-- *** -->
<!-- A Offsite Dependency is a dependency on an item that -->
<!-- is not found within SRM. Hence it is a pointer to -->
<!-- that item. -->
<!-- *** -->
<!ELEMENT OffsiteDependency (NamedURL)+ >
<!ELEMENT NamedURL (Url,Name,Description) >
<!ELEMENT Url (#PCDATA) >
<!ELEMENT Name (#PCDATA) >
<!ELEMENT Description (#PCDATA) >

<!-- *** -->
<!-- Strong dependencies are release items which can be -->
<!-- found within SRM. This definition allows the -->
<!-- application to handle the flexible attribution of -->
<!-- the key attributes defining a release item. -->
<!-- *** -->
<!ELEMENT StrongDependency (Dependency)+ >
<!ELEMENT Dependency (SRMAttr)+ >
<!ELEMENT SRMAttr (Name,Value) >

<!-- *** -->
<!-- A Release List is defined to contain Release items, -->
<!-- which are made up of the same attributes which -->
<!-- define the schema. -->
<!-- *** -->
<!ELEMENT ReleaseList (ReleaseItem)* >
<!ELEMENT ReleaseItem (Attribute+, LicenseFile?) >
<!ELEMENT ReleaseItem (Attribute)+ >
<!ATTLIST ReleaseItem RID ID #REQUIRED >
<!ELEMENT LicenseFile (#PCDATA) >

99

<!-- *** -->
<!-- Access Control List. Each Group will point to an -->
<!-- ACL file, rather than keep all ACLs together. -->
<!-- *** -->
<!ELEMENT AccessControlList (MemberEntry)+ >
<!ELEMENT MemberEntry (MemberEntryName, Password) >
<!ELEMENT MemberEntryName (#PCDATA) >
<!ELEMENT Password (#PCDATA) >
<!ATTLIST MemberEntryName PermissionSet
(ALL|READONLY|UPDATEONLY|READANDUPDATE|ADMINISTER|EXCLUDED)
#REQUIRED >

<!-- *** -->
<!-- License. Each license will exist in its own file. -->
<!-- License presentation is either INTRUSIVE or PASSIVE. -->
<!-- License domain can typically be shareware, public -->
<!-- domain, GPL, or user defined, and has text. -->
<!-- *** -->
<!ELEMENT License (LicenseDomain,LicenseText) >
<!ELEMENT LicenseDomain (#PCDATA) >
<!ELEMENT LicenseText (#PCDATA) >
<!ATTLIST License LicenseType (INTRUSIVE|PASSIVE) #REQUIRED >

<!-- *** -->
<!-- License Key Set. A license key set is a set of -->
<!-- permissible keys which will allow a user access to -->
<!-- an item in the repository. -->
<!-- *** -->
<!ELEMENT KeySet (Key)+ >
<!ELEMENT Key (KeyValue) >
<!ELEMENT KeyValue (#PCDATA) >

<!-- *** -->
<!-- Groups. -->
<!-- permissible keys which will allow a user access to -->
<!-- an item in the repository. -->
<!-- *** -->
<!ELEMENT Group (GroupData, ACLFile?,SubGroup*) >
<!ELEMENT GroupData (GroupName, GroupOwner, GroupPassword,
DateCreated, PresentationText) >
<!ELEMENT GroupName (#PCDATA) >
<!ELEMENT GroupOwner (#PCDATA) >
<!ELEMENT GroupPassword (#PCDATA) >
<!ELEMENT DateCreated (#PCDATA) >
<!ELEMENT PresentationText (#PCDATA) >
<!ELEMENT ACLFile (#PCDATA) >
<!ELEMENT SubGroup (#PCDATA) >

Appendix B.

Document Repository Upload Screen XSL Style Sheet

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl"
 xmlns="http://www.w3.org/TR/REC-html40" result-ns="">

<xsl:template match="/">
 <xsl:invoke macro="head"/>
 <xsl:apply-templates/>
 <xsl:invoke macro="tail"/>
</xsl:template>

<xsl:template match="Schema">
 <TABLE WIDTH="100%" BORDER="1">
 <TR><TD><center>
 <h4>Key Attributes</h4>
 <Table width="100%" cellspacing="0" cellpadding="0">
 <xsl:apply-templates select="Attribute[@Modifier='key']"/>
 </Table> </center></TD></TR>
 </TABLE>
 <TABLE WIDTH="100%" BORDER="1">
 <TR><TD><center>
 <h4>Required Attributes</h4>
 <Table width="100%" cellspacing="0" cellpadding="0">
 <xsl:apply-templates select="Attribute[@Modifier='required']"/>
 </Table> </center></TD></TR> </TABLE>
</xsl:template>

<xsl:template match="Attribute[@Modifier='key']">
 <TR>
 <td align="right" width="50%"><xsl:value-of select="Label"/>:
</td>
 <td align="left"><input type="TEXT" size="40"/></td>
 </TR>
</xsl:template>

<xsl:template match="Attribute[@Modifier='required']">
 <TR>
 <td align="right" width="50%"><xsl:value-of select="Label"/>:
</td>
 <td align="left"><input type="TEXT" size="40"/></td>
 </TR>
</xsl:template>

<xsl:template match="Attribute[@Type='TEXTFIELD']">
 <TR>
 <td align="right" width="50%"><xsl:value-of select="Label"/>:
</td>
 <td align="left"><TEXTAREA rows="6" cols="40"></TEXTAREA></td>
 </TR>
</xsl:template>

101

<xsl:template match="Attribute[@Modifier='optional']">
 <TR>
 <td align="right" width="50%"><xsl:value-of select="Label"/>:
</td>
 <td align="left"><input type="TEXT" size="40"/></td>
 </TR>
</xsl:template>

<xsl:macro name="head">
<![CDATA[
<HTML>
 <HEAD>
 </HEAD>

 <BODY BGCOLOR="#FFFFFF">
 <center>
 <h3>SRM - Software Release Manager</h3>
 <form>
 <input type="submit" value="Select Release Group">
 </form>

 <form>
]]>
</xsl:macro>

<xsl:macro name="tail">
<![CDATA[
 <Table width="100%" border="1">
 <TR><TD>
 <Table width="100%" border="0">
 <TR>
 <td align="right" width="50%">Release File: </td>
 <td align="left"><input type="TEXT" size="40"></td>
 </TR>
 </Table>
 </TD></TR>
 </Table>
 <input type="submit" value="Set Dependencies">
 <input type="submit" value="Off-site Dependencies">

 <input type="submit" value="Dismiss">
 <input type="submit" value="Clear">
 <input type="submit" value="Help">
 <input type="submit" value="Submit">

 </form>
 </center>
 </BODY>
</HTML>
]]>
</xsl:macro>

</xsl:stylesheet>

Appendix C.

Document Repository Availability Screen XSL Style Sheet

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl"
 xmlns="http://www.w3.org/TR/REC-html40" result-ns="">

<xsl:template match="/">
 <xsl:invoke macro="head"/>
 <xsl:apply-templates/>
 <xsl:invoke macro="tail"/>
</xsl:template>

<xsl:template match="ReleaseItem">
 <xsl:apply-templates/>
<![CDATA[<hr width="75%" ALIGN="CENTER">]]>
</xsl:template>

<xsl:template match="Attribute[@Modifier='key']">
 <p><xsl:value-of select="Label"/>:
<![CDATA[]]>
 <xsl:value-of select="Value"/></p>
</xsl:template>

<xsl:template match="Attribute[@Modifier='required']">
 <p><xsl:value-of select="Label"/>:
<![CDATA[]]>
 <xsl:value-of select="Value"/></p>
</xsl:template>

<xsl:template match="Attribute[@Type='TEXTFIELD']">
 <p><xsl:value-of select="Label"/>:
<![CDATA[]]>
 <xsl:value-of select="Value"/></p>
</xsl:template>

<xsl:template match="Attribute[@Modifier='optional']">
 <p><xsl:value-of select="Label"/>:
<![CDATA[]]>
 <xsl:value-of select="Value"/></p>
</xsl:template>

<xsl:macro name="head">
<![CDATA[
<HTML>
 <HEAD>
 </HEAD>

 <BODY BGCOLOR="#FFFFFF">
 <h3>SRM - Software Release Manager</h3>

]]>
</xsl:macro>

103

<xsl:macro name="tail">
<![CDATA[
 </BODY>
</HTML>
]]>
</xsl:macro>

</xsl:stylesheet>

