
Feature Engineering of Software Systems

by

Carlton Reid Turner

B.A., University of North Carolina, 1986

M.S., University of Colorado, 1995

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

1999

This thesis entitled:
Feature Engineering of Software Systems

written by Carlton Reid Turner
has been approved for the Department of Computer Science

Alexander L. Wolf

Ken Anderson

Date

The �nal copy of this thesis has been examined by the signatories, and we �nd that
both the content and the form meet acceptable presentation standards of scholarly

work in the above mentioned discipline.

iii

Turner, Carlton Reid (Ph.D., Computer Science)

Feature Engineering of Software Systems

Thesis directed by Prof. Alexander L. Wolf

Software users and developers have di�erent perspectives. Users are focused on the

problem domain, where a system's features are the primary concern. Developers are

focused on the solution domain, where a system's life-cycle artifacts are key. This

di�erence leads to di�culties producing successful software systems. At present, there

is little understanding of how to narrow the gulf between the two perspectives.

This dissertation argues for establishing an organizing viewpoint, which we term fea-

ture engineering, to incorporate features into software engineering as �rst class objects.

Features, acting as a bridge between the problem and solution domains, can begin to

narrow the gulf.

This dissertation explores three aspects of features in software engineering. First, it

establishes a framework for understanding software features. In this framework, we

de�ne the concept of feature as separate from feature implementation, its realization

in the developed system. The framework also includes a model of features in software

engineering. This model identi�es relationships between a system's features and the

major development artifacts. The �nal part of the framework is an evaluation of the

potential use of feature information in the various software development activities.

The second and third aspects considered are the roles for features and feature rela-

tionships in con�guration management and testing. In this dissertation, we argue that

con�guration management is pivotal for taking advantage of the various relationships

that features structure. The ability of commercial con�guration management systems

iv

to use information about features is evaluated, and our experiences using a prototype

feature-based con�guration management system are reported. Feature testing is identi-

�ed as a useful extension to traditional testing. Feature tests are used to con�rm that a

feature implementation faithfully produces the desired behavior. Feature tests are also

used to uncover feature relationships and interactions in the solution domain.

v

Acknowledgements

I hereby thank my advisor, Alexander Wolf, for his advice, support and guidance.

Without his e�orts, this dissertation simply would not be. I am grateful for his leading

role fostering my academic, professional, and personal growth.

Dennis Heimbigner and Alfonso Fuggetta provided insights and direction in dealing with

the thorny issues uncovered during this research.

A great many thanks go to the SERL students, my editorial sta�, and my colleagues

at U S WEST Advanced Technologies. My friends at SERL sat through numerous

presentations and were never shy with their opinions, helping shape the ideas supporting

this work.

Contents

Chapter

1 Introduction 1

1.1 Problems Addressed . 1

1.2 Approaches . 2

1.3 Solutions . 3

1.4 Scope of this Dissertation . 4

1.5 Validating the Results . 5

1.6 Research Contributions . 6

1.7 Road Map . 8

2 Background and Related Work 10

2.1 Background and Perspective . 10

2.2 Related Work . 14

vii

2.2.1 Domain Analysis and Modeling 14

2.2.2 Requirements Engineering . 15

2.2.3 Feature Interaction Problem . 17

2.2.4 Software Reuse . 19

2.2.5 Software Generation . 19

2.2.6 Product Development . 20

2.2.7 Software Architecture . 21

2.2.8 Con�guration Management . 22

2.2.9 Reverse Engineering . 22

2.2.10 Function Point Analysis . 23

2.2.11 Summary of Related Work . 24

3 A Framework for Feature Engineering 26

3.1 De�ning Feature . 26

3.2 Conceptual Model . 29

3.2.1 Features and Software Life-cycle Artifacts 29

3.2.2 Relationships Among Features 32

3.2.3 The Instance Level . 33

viii

3.2.4 The System Core . 35

3.3 Features in Software Engineering . 37

3.3.1 Features and Problem-Domain Activities 37

3.3.2 Features and Solution-Domain Activities 41

3.4 Terminology . 49

3.5 Summary . 50

4 Features and Con�guration Management 51

4.1 Requirements for Feature-Based Con�guration Management 53

4.1.1 Traditional Con�guration Management 54

4.1.2 Feature-Based Con�guration Management 57

4.2 Feature Support in Con�guration Management Systems 61

4.2.1 Evaluation Framework . 62

4.2.2 Evaluation of CM systems . 66

4.2.3 Analysis of the Evaluation . 75

4.3 Summary . 78

5 Feature-Based Con�guration Management Case Study 79

ix

5.1 A Feature-Based Con�guration Management System 80

5.1.1 De�ning Features . 80

5.1.2 Feature Relationships . 80

5.1.3 Checking Out Features . 84

5.1.4 Con�guration Consistency . 88

5.1.5 Building System Con�gurations 91

5.1.6 Feature Reports . 92

5.2 PerlPhone - A Software Telephone . 94

5.3 The Vim Editor . 99

5.4 Conclusion . 103

6 Features and Testing 105

6.1 An Introduction to Testing . 105

6.2 Applying Features to Testing . 107

6.2.1 Feature Tests . 108

6.2.2 Using Feature Tests to Discover Feature Relationships 110

6.3 A Case Study in Feature Testing . 117

6.3.1 Application Analyzed . 118

x

6.3.2 Coverage Tool . 120

6.3.3 Analysis Method . 122

6.3.4 Results . 129

6.4 Summary . 142

7 Conclusion 145

7.1 Summary . 146

7.2 Contributions of this Work . 147

7.3 Future Work . 149

Bibliography 151

Appendix

A Vim Functional Decomposition 158

B Concrete Features Identi�ed in Vim Tests 161

Figures

Figure

2.1 5ESSR Switch Architecture. 13

3.1 Model of Features within Software Engineering 30

3.2 Instances of Entities and Relationships 34

4.1 Software Engineering Activities . 52

5.1 IronMan Feature Menu . 81

5.2 Example Feature De�nitions . 81

5.3 Relationships De�ned for PerlPhone . 82

5.4 Feature Relationships Based on Function Mapping 85

5.5 Feature Relationships Based on Component Mapping 88

5.6 Specifying a System Con�guration . 89

xii

5.7 Report of Features in the System . 93

5.8 Report of Functions De�ned in a File . 93

5.9 PerlPhone Components . 95

5.10 PerlPhone Feature Relationships . 96

5.11 Vim Feature Relationships . 102

6.1 Feature Testing Entities . 109

6.2 Pairs of Feature Tests . 117

6.3 Histogram of Intersection Size for Pairs of Feature Tests 141

Tables

Table

4.1 Activities in the evaluation framework 62

4.2 Con�guration Management Systems Case Study Summary 67

6.1 Method for discovering feature implementation from feature tests 111

6.2 Features not included in the Analysis . 119

6.3 Statistics about Vim 5.3 and Feature Tests 120

6.4 Features Tests . 125

6.5 Abstract Features Tested . 125

6.6 Feature Test and Shadow Test Scripts for increment-number 126

6.7 Tools Created to Support Test Analysis 128

6.8 Functions Implementing insert-complete-line 133

6.9 Functions Not Implementing insert-complete-line 133

xiv

6.10 Evaluation of Identi�ed Feature Implementations 134

6.11 Conservative Core De�nition . 140

A.1 A Functional Decomposition for Vim 5.3 158

A.2 A Functional Decomposition for Vim 5.3 (continued) 159

A.3 A Functional Decomposition for Vim 5.3 (continued) 160

B.1 Features exercised test cases distributed with Vim 161

Chapter 1

Introduction

This dissertation explores, within the context of software engineering, the concept of fea-

ture. Rather than consider a speci�c feature in a speci�c system, it seeks to understand

the essence of features.

1.1 Problems Addressed

A major source of di�culty in developing and delivering successful software is the gulf

that exists between the user and the developer perspectives on the system. The user

perspective is centered in the problem domain. Users interact with the system and

are directly concerned with its functionality. The developer perspective, on the other

hand, is centered in the solution domain. Developers are concerned with the creation

and maintenance of life-cycle artifacts, which do not necessarily have meaning in the

problem domain. Several researchers including Jackson and Tracz [39, 86] note that

developers are often quick to focus on the solution domain at the expense of a proper

analysis of the problem domain. This bias is understandable, since developers work

primarily with solution-domain artifacts. Yet the majority of their tasks, and, in fact,

the justi�cation for the system, are motivated by demands emanating from the problem

domain.

2

A second problem we see is an outgrowth of the popularity of life-cycle development

models [9, 70]. Without a doubt these models have contributed greatly to the under-

standing of software development. Progress in the di�erent phases of software develop-

ment has been facilitated by identifying each phase and articulating its area of concern.

This progress has come at a cost; each phase of software development is the subject

of specialization. As a result, the tools that support these di�erent phases incorporate

a deconstructed view of software development. They embody ideas and concepts that

do not take into account other phases of development. For example, architecture de-

scription languages [55, 72] describe components and connectors, but they share little

common ground with testing, con�guration management, or low-level design and imple-

mentation. Another example of this deconstructed view can be seen in the inadequate

use of requirements speci�cations in downstream life cycle activities [37].

1.2 Approaches

Attempts to solve the �rst problem are frequently focused on the problem domain phases

of the development life cycle. Various domain analysis and requirements engineering

techniques push the user perspective into the solution domain by either working toward

design [48, 45, 50] or through scenarios [43] and use cases [90, 11]. These solutions

help bridge the gulf by helping the developer understand how a system is to be used,

but they do not address such solution domain concerns as con�guration management,

testing, and documentation. Raccoon identi�es this problem as the Complexity Gap [73]

between the problem domain analysis and solution domain tools.

Much work has been done to rectify the second problem. One approach is to embed all

of the development phases into a single development environment. Integrated software

development environments [10, 16, 65] seek to provide glue for the di�erent development

3

activities by using common, enriched platforms supported by shared information [16].

Other approaches tackle the mismatch between the di�erent phases in pairs or triples,

for example between software architecture, con�guration management, and software

deployment [88] and between software architecture and testing [74]. Software process

research [32] seeks to model all the activities needed to transform user requirements

into software. These models are used to support precise data de�nitions, to de�ne task

prerequisites and results, and to guide the work e�ort required to realize the desired

software.

1.3 Solutions

The research supporting this dissertation targets both of these problems. With the gulf

in perspectives, we see that users think of systems in terms of the features provided

by the system. Intuitively, a feature is an identi�able bundle of system functionality

that helps characterize the system from the user perspective. Users request new func-

tionality or report defects in existing functionality in terms of features. Developers are

expected to translate such feature-oriented requests and reports into a plan for operat-

ing on life-cycle artifacts, which ultimately should have the desired e�ect on the features

exhibited by the system. The easier the translation process, the greater the likelihood

of a successful software system.

We seek to develop a solid foundation for understanding features in software systems

and, more importantly, de�ning a set of mechanisms for carrying a feature orientation

from the problem domain into the solution domain. We term this area of study feature

engineering. The major goal behind feature engineering is to promote features as

\�rst-class objects" within the software process. Such promotion holds the promise

of supporting features in a broad range of life-cycle activities, including requirements

4

analysis, design, testing, user documentation, con�guration management, and reverse

engineering. Such support for features addresses the two problems stated above, �rst, by

bringing the user perspective deeper into the solution domain, and second, by providing

a consistent organizing concept that system developers can use across all phases of

software development.

1.4 Scope of this Dissertation

Feature Engineering starts with de�ning the concept of feature in software and in soft-

ware development, which involves essentially all of the phases of the software life cycle.

Further, promoting features to \�rst-class objects" has broad rami�cations. We ad-

dress these rami�cations by de�ning a feature framework that identi�es a rich set of

relationships tying features to life-cycle artifacts.

While the feature framework identi�es potential roles for features in all of the life-

cycle activities, the scope of this work is restricted to an in-depth exploration into

con�guration management and testing. The reason is pragmatic; each activity is fertile

ground with signi�cant research opportunities.

Con�guration management plays a unique role in software development. It is responsi-

ble for archiving and retrieval of development artifacts developed in the other activities.

Since features participate in relationships that span all major artifact types, con�gura-

tion management systems can use these relationships to support development activities.

For example, con�guration management systems should eliminate the need for develop-

ers to remember which �les are required when working on a particular feature.

A number of signi�cant relationships are identi�ed in the feature framework. Perhaps

the most important of these is the mapping from feature to feature implementation.

5

One of the principal goals of the work in the testing area is to uncover this complex

mapping. With the information that we develop in testing, it is possible to determine

which tests should be run in response to a change to a system's features.

In domain analysis and requirements engineering, features have been already identi�ed

as important entities. [22] Other research [45] e�orts hold promise for determining a

feature model with the problem domain. As a result, developing requirements-analysis

techniques to distill a feature set during a requirements e�ort is outside the scope of

this dissertation. We assume that one product of a requirements e�ort includes an

identi�cation of the desired feature set for a system. In Section 7.3 we consider further

research opportunities related to this work.

1.5 Validating the Results

Di�erent approaches are used to validate the results presented in this dissertation. The

initial contribution of the research is the conceptual framework for understanding fea-

tures in software. This model of features was evaluated against two separate software

applications. The �rst was an extensive one-man-year evaluation of the UT100 switch-

ing software developed by Italtel. The evaluation was performed by researchers at

the Dipartimento di Elettronica e Informazione in Milan. Their work shows that the

model of features and feature relationships holds for the artifacts and documentation.

The evaluation also con�rmed that building di�erent system con�gurations based on

speci�cation of feature sets was a goal of the system developers. The lack of feature

relationship information as developed in feature engineering contributes to the inability

to create such targeted con�gurations. In addition to the evaluation of the UT100 de-

velopment, we evaluated the feature model against a medium-sized application, again

con�rming that the model accurately describes the features and relationships present

6

in this system.

In the con�guration management domain, we evaluated the ideas presented in this dis-

sertation by developing a prototype con�guration management system and populating

it with the artifacts and relationships of two separate applications. We were able to

demonstrate that con�guration management at the feature level removes the tedious

burden of assembling artifacts. The con�guration management system was able to en-

sure consistent product speci�cations by evaluating the relationships among features

described in Section 3.2.2.

In the testing realm, we were able to develop meaningful feature tests that were comple-

mentary to the existing test suite. Feature tests proved to be a natural test organization,

because the behavior of each feature was well documented and thus eminently testable.

By instrumenting the application and developing a shadow test for each feature test,

we were able to discover the mapping from feature to feature implementation with a

high degree of reliability. This mapping was then used to populate the feature-based

con�guration management system, supporting the ability to populate workspaces with

the artifacts involved in a feature implementation.

1.6 Research Contributions

This dissertation introduces a body of research, feature engineering, centered around

the features incorporated in a software system. In a broad sense, the contribution of the

research is to expand understanding of software and software development, particularly

the role of features in software engineering.

The initial contribution is the creation of a framework for understanding the nature of

features in software. A �rm understanding of features is the foundation of this research.

7

This understanding is predicated on a solid de�nition of the term feature that makes

clear the distinction between feature and feature implementation.

A second contribution is developing an understanding of the role of features within

the software development activities. At present, features have implicit relationships

within each of the major activities. The feature-engineering framework makes these

relationships explicit. Supporting features extends the traditional activities and bene�ts

system developers. Each of these areas shows potential for interesting research; in this

dissertation, two of them are singled out for further examination.

The third contribution is to extend con�guration management to incorporate features.

To be useful, features and feature relationships need to be identi�ed and managed

during the evolution of the underlying software. The �rst part of this contribution is

to identify how the features should be managed and to identify the bene�ts of doing so

within software development. The second part is developing an evaluation framework

for assessing the capabilities of con�guration management systems. The third part is

an evaluation of existing commercial con�guration management systems to determine

the support these systems provide for feature management.

The fourth contribution is developing and using a prototype feature-based con�gura-

tion management system. This system incorporates the feature as a native construct.

It permits maintaining information about the features in a system as well as feature

relationships. This information is used to create workspaces for feature development

and to relieve the developer from having to remember the appropriate artifact set. As

a result, the developer can check out all the source code �les required for a feature

implementation as well as all of the test cases that test the feature. It also enables

developers to specify desired feature sets for a product; when specifying a feature all its

dependent features get added to the speci�cation.

8

The �fth contribution of this dissertation is an exploration of the role of features in

software testing. Testing is a cornerstone of good software-engineering practice and at

present takes limited advantage of the concept of features. This research de�nes feature

testing and identi�es its utility. By combining program instrumentation with feature

testing, we are able to discover the mapping from feature to feature implementation.

Feature testing also provides insight into feature interactions that take place in the

solution domain.

1.7 Road Map

The rest of dissertation has the following organization:

� Chapter 2 provides perspective and background information. It also relates our
work with feature engineering to a broad range of research initiatives in software
engineering.

� Chapter 3 develops a conceptual basis for understanding features in software
systems. In this chapter we de�ne the concept of feature and present a model of
software-development activities that illuminates the relationships between fea-
tures and other life-cycle artifacts. We also examine the intersection of feature
engineering with traditional life-cycle activities.

� Chapter 4 examines the impact of feature engineering on con�guration man-
agement. We de�ne feature-based con�guration management and identify its
bene�ts. Then we evaluate several commercial con�guration management sys-
tems for feature support.

� Chapter 5 describes the feature-based con�guration management prototype
IronMan. We report on our experiences using this system to manage the de-
velopment of a software telephone and to provide access to the source code and
test artifacts for the editor Vim.

� Chapter 6 examines the role of feature in testing. It starts with the de�nition
of and motivation for feature testing. Next, we present a case study of the
application of feature testing to Vim. We de�ne a method for discovering the
mapping from feature to feature implementation using feature tests.

9

� Chapter 7 concludes by summarizing the contributions from the dissertation,
and describing unexplored issues and unresolved problems that form a number
of interesting opportunities for future research.

Chapter 2

Background and Related Work

2.1 Background and Perspective

What is software?

This dissertation begins with this simple question. As researchers in Computer Science,

we have an intuitive appreciation for software in its various forms. And yet, its sheer

complexity threatens to overwhelm our ability to understand it.

Consider for a moment the software that makes a line of text appear on the screen

and then on the piece of paper before you. Software embedded in an integrated circuit

in the keyboard detects key presses, performs de-bouncing, and generates signals that

encode the pressed keys. A software device driver waits for these signals and informs

the operating system of the key codes. Key codes are provided to the X server running

on the system and are translated into characters. These characters are then passed to a

terminal-emulation program and then to an editor. That merely gets the character on

the screen. Another piece of software mediates between the X server and the video card.

The �le containing the text has to be stored on disk, requiring software to control the

hard disk. This particular disk is physically attached to some other computer across the

network, so software is required to control the physical network devices on both sides as

11

well, and software is required to support �le sharing over the network. Printing this �le

requires a typesetting program and another program to create PostScriptR output for

the printer, and there is software that spools print requests and software that controls

the printer device.

As computer science researchers and practitioners, we are awash in a sea of software.

Every day we use more software with more complexity than we could possibly know,

and we design and develop it.

We know that software exists to deliver desired functionality to some well-de�ned set

of users. These users can be people, software, or hardware. Research in software

engineering has provided methods supporting the disciplined creation of software. Life-

cycle models have identi�ed the discrete activities that contribute to its development.

And yet, fundamental questions remain unanswered. How is the functionality of software

best organized? What is the relationship between the functionality exhibited to the users

and the underlying componentry required to realize it? In this dissertation, we seek to

illuminate these questions and to develop feature engineering as a framework that leads

us toward some of the answers.

Feature engineering begins with the premise that it is natural for users to conceptu-

alize software as providing a set of features. The ANSI/IEEE Standard for Software

Requirements Speci�cations [60] provides four alternative organizational schemes for

requirement speci�cations. All four are focused around the individual functionalities,

or features, that the software is to provide. Much of the research that involves features

in software involves speci�c features in speci�c software. This dissertation starts with

the concept of feature in the abstract and with the belief that a deeper understanding

of \feature" provides an enriched understanding of software.

12

This enriched understanding is embodied in answers to fundamental questions into the

nature of software and software development:

� What is a feature?

� How might system features relate to one another?

� What is the di�erence between a feature and its implementation?

� What is the di�erence between a feature and a use case?

� How can software development be driven by the features in a system?

� What is there to software besides feature implementations?

In this dissertation we answer these questions. With a deeper understanding of features

in general, our goal is to enable better development of real systems. Part of our initial

e�ort to understand features was undertaking an analysis of telecommunications switch-

ing software. This involved reading technical documentation [13], attending courses on

telephony and AIN (Advanced Intelligent Network) networks, interviewing switch ad-

ministrators, and programming features, such as call forwarding, multi-line hunt

groups, and ISDN, into switches in the U S WEST telecommunications network. Be-

cause of our familiarity with this domain and the rich examples of features it provides,

we use switching software as an example throughout this dissertation.

The software in a large, long-lived system such as a class 5 telephone switch is composed

of millions of lines of code, and it includes many di�erent types of components, such as

real-time controllers, databases, and user interfaces. The software must provide a vast

number of complex features to its users, ranging from terminal services, such as ISDN,

call forwarding, and call waiting, to network services, such as call routing, load

monitoring, and billing.1 The software that actually implements the switch must be

1

13

Module
Switching

Module
Switching

Module
Switching

Module
Switching

Abstract Switching
Machine

Application Software

Database Management

Operating System

Bare Machine
Administrative

Module

Module
Communication

Figure 2.1: 5ESSR Switch Architecture.

made to exhibit these features, as well as to tolerate changes to the features in a cost-

e�ective manner. Bell Laboratories, for example, developed a design in the solution

domain for its 5ESSR switch software by following a layered architectural style [13].

The layers are depicted in Figure 2.1. The Abstract Switching Machine layer was

intended to provide the foundation upon which the features (called \applications")

themselves would be built. This was supposed to result in a clean separation of concerns,

permitting features to be more easily added and modi�ed. The introduction of AIN into

switch software, and thus into service provider networks, is speci�cally targeted toward

increasing the ability to introduce new features.

Features organize a system's functionality, and therefore there is a broad application

of the concept of feature to a number of areas of software engineering research and

practice. In the rest of this chapter, we identify research e�orts related to features as

de�ned in our feature-engineering framework.

Note that from the perspective of a switch builder, network services are not simply internal im-

plementation functions but are truly system features, since they must be made available to external

organizations, such as telecommunications providers.

14

2.2 Related Work

We conducted a search for the term \feature" in the Software Engineering literature

and found little research examining the concept. For the most part, the use of the term

was incidental to the research issue being addressed. A few research e�orts, such as

Feature Oriented Domain Analysis [45, 50] explicitly use the term \feature," but for the

most part, the term feature refers to a speci�c feature, not the concept of feature. Two

typical examples are in [44, 52].

To date, practically no work addresses supporting features throughout the software life

cycle. Feature engineering aims to counter this oversight and bridge the complexity

gap [73] between the problem domain and the solution domain tools and activities.

In this section, we discuss various research e�orts related to the study of features in

software systems. For the most part, these e�orts employ concepts that overlap with

the feature engineering framework in a speci�c domain, such as software architecture or

con�guration management.

2.2.1 Domain Analysis and Modeling

In domain analysis [71] and modeling, the activity of feature analysis has been de-

�ned to capture a customer's or an end user's understanding of the general capabilities

of systems in an application domain [45, 50]. Domain analysis frequently uses the

notion of features to distinguish basic, core functionality from variant, optional func-

tionality [33]. Although features are generally explicit elements of domain models, in

this work, their connection to other life-cycle artifacts is e�ectively non-existent. The

classi�cation scheme described in [71] is a taxonomy of \primitive functions" and rela-

tionships between them in the problem domain. We �nd signi�cant agreement between

15

domain analysis and the feature engineering framework within the problem domain,

but domain analysis does not address solution-domain concerns. One narrow view of

feature engineering might be as research into the application of domain models to other

software engineering activities. A broader view would characterize such domain models

as a starting point for de�ning a feature set known throughout the software life cycle.

Domain models frequently make a distinction between \core," \optional," and \variant"

functionality. A similar distinction is part of the framework for feature engineering, al-

though we view the distinction between optional and intrinsic to be orthogonal to feature

versus core. In other words, features are not de�ned by whether or not they are optional.

Domain models also begin to establish dependencies and other relationships among fea-

tures. Feature engineering also stresses these important relationships in the problem

domain, but it adds relationships that involve solution domain artifacts. Use cases are

an increasingly popular domain modeling techniques we address in Section 3.3.1.1.

2.2.2 Requirements Engineering

Features are problem space entities, and requirements engineering is the discipline that is

focused on providing a concise, consistent, unambiguous, and complete de�nition of the

problem domain. Years ago, researchers identi�ed features as a natural organization of

the problem space [21, 22]. Feature engineering reemphasizes the need for requirements

analysis e�orts to identify the desired feature set. While there are a few close synonyms

for feature, such as \goal" and \root requirement," surprisingly few approaches in the

research literature concentrate on this organization of a system's functionality.

Several approaches in requirements engineering approach the feature identi�cation re-

quired by feature engineering. Hsia and Gupta [38] have worked on automated tech-

16

niques for grouping requirement speci�cations. Their purpose is to support incremental

delivery of system functionality. The cohesive structures that Hsia and Gupta search to

identify are abstract data types (ADTs). It is clear that ADTs are a solution domain

concept with limited relevance in the problem domain. In addition, this work requires

using a development methodology based on ADTs. The goal of delivering ADT-based

prototypes transcends analysis and forces a particular design choice.

Karlsson and Ryan [46] seek to prioritize requirements using a cost-value evauation of

pairs of requirements. Since the number of requirements pairs grows as the square of the

number of requirements, their approach is suited to high-level requirements identi�ed

in the problem domain. Such requirements are equivalent to system features, support-

ing our claim that feature identi�cation is an integral component of the requirements

engineering e�ort.

Another approach that has potential for �nding features in system requirements is the

requirement clustering described by Palmer and Liang. They de�ne the problem state-

ment as an e�ort to \aggregate a set of N requirements into a set of M requirement

clusters where M � N ." [66] This is a precise statement of the goal of identifying

features. Their motivation, however, is to detect errors and inconsistencies within re-

quirements clusters, and therefore the organizing principle behind their clusters is the

similarity of the requirements within a cluster. Thus, they seek to �nd sets of redundant

requirements to analyze the elements of the set for consistency. For feature engineer-

ing purposes, we instead advocate that the organizing principle of a cluster should be

relevance of the constituent requirements to the desired properties of the feature. The

issues of redundancy and consistency are orthogonal, and so a clustering for that pur-

pose, while important, does not provide the structure required to take advantage of

features throughout software development.

17

Quality Function Deployment [25] is a requirements-and-design process aimed at iden-

tifying customer desires and related technical requirements that is popular among some

businesses and quality experts. While there is overlap with the conceptualization of fea-

tures represented by this work and the feature engineering framework, Quality Function

Deployment is more concerned with the organizational and managerial processes than

with the software development.

2.2.3 Feature Interaction Problem

A large number of researchers have studied the feature interaction problem, which is

concerned with how to identify, prevent, and resolve conicts among a set of features [2,

12, 35, 91, 54, 40, 47]. Keck and Kuehn [47] provide a broad survey of of research in this

area. Even in this literature, the de�nition of feature is not established much beyond

the notion of a service customers are willing to purchase.

The feature interaction literature is primarily focused on telecommunications networks;

for example, see [87, 53]. In this domain, features represent capabilities that are in-

crementally added to a telephony network. Telecommunications networks are massive,

complex, distributed systems that incorporate a variety of hardware and software ele-

ments. These systems have potentially hundreds of di�erent features. The presence of

multiple independent component providers makes the feature interaction problem even

more di�cult. According to Aho and Gri�eth, \Since networks involve multiple com-

ponents, interactions can occur if a service in one network component is either unaware

of or incompatible with features of a service in other components." [2]

Telecommunication networks provide many examples of features, such as call waiting,

call forwarding, and voice mail, but they o�er little exploration into the concept

18

of feature itself. The goal of feature interaction research is to eliminate, detect, and/or

resolve feature interactions. In practice, equipment vendors use a variety of ad hoc

mechanisms to deal with feature interaction. A primary method used by some switch

providers is to prioritize features so events can be applied to features in a known order.

Much of the feature interaction literature concentrates on eliminating feature interac-

tions through formal speci�cations, so this work has strong roots in requirements engi-

neering. In the telecommunications switch applications, features such as call waiting

and voice mail relate to the treatment of incoming calls to a busy subscriber line [6],

and thus exhibit overlapping requirements fragments. The identi�cation of such fea-

ture interactions at the requirements phase can help eliminate unanticipated interac-

tion problems during later phases of the software life cycle. The most common research

approach to this problem is the application of formal veri�cation techniques to system

speci�cations, with the goal of detecting all undesired feature interactions. The critical

part of this activity is system speci�cation|de�ning and applying a speci�cation tech-

nique that captures relevant system properties. Jackson and Zave propose DFC [40],

a virtual architecture for representing features that can be dynamically composed to

form a con�guration suitable to provide a speci�c service. From our point of view,

features can be represented and handled in several di�erent ways. In particular, fea-

tures in DFC are treated as �rst class and are expected to drive the subsequent model

checking activities and the design of the system architecture. This conforms to our idea

of a feature-centric development process; feature engineering, however, extends beyond

architecture into the full span of downstream development activities.

19

2.2.4 Software Reuse

Research in software reuse develops methods to increase development productivity. Re-

search e�orts in this domain seek to develop methods that help developers design, create,

classify, retrieve, and employ software components that support multiple use. Bigger-

sta� and Richter assess the e�ectiveness thus: \while reusability is a strategy of great

promise, it is one whose promise has been largely unful�lled" [8].

The feature engineering framework we develop in Section 3.2 overlaps research into soft-

ware reuse. Ku describes developing reusable core components for AIN networks that

facilitate the rapid introduction of features into telecommunication networks. [51] Pre-

sumably, the mapping from feature to feature implementation is made more tenable by

the presence of the correct set of building blocks in the network. The collection of these

Service Independent Building Blocks (SIBs) extends the system core to include func-

tionality to support the desired feature set. Griss, Favaro, and d'Alessadro [36] describe

extending the FODA methodology to create an explicit feature model of functionality

to facilitate reuse-driven software engineering. Among their views is that the feature

model helps integrate other views of the system. In their Reuse-driven Software Engi-

neering Business method, the FODA feature model \ties all of these models together by

structuring and relating feature sets." The feature engineering framework explores how

this structured information can be leveraged across the software development e�ort.

2.2.5 Software Generation

Automatic software generation is based on an analysis of a domain to uncover reusable

components [7, 78]. The components are grouped into subsets (realms, in the terminol-

ogy of Batory and O'Malley) having the same functional interface. A complete system

20

is created by choosing an appropriate element from each subset. The choice is based on

the \features" exhibited by the elements. Here, the term feature is essentially restricted

to extra-functional characteristics of a component, such as performance and reliabil-

ity. Functionally equivalent systems having di�erent extra-functional characteristics can

then be automatically generated by specifying the desired features|the extra-functional

characteristics. Although this work represents an important aspect of features, it needs

to be extended to encompass the generation of functionally dissimilar systems through

the selection of functional characteristics. Software generation research is generally

restricted to a well-known domain, such as user interfaces or databases, that can be sat-

is�ed by assembling well-understood components. These well-understood components

are, of course, solution domain artifacts.

2.2.6 Product Development

Cusumano and Selby [19] describe the strong orientation of software development to-

ward the use of feature teams and feature-driven architectures at Microsoft Corporation.

While this orientation has more to do with project management than with product life-

cycle artifacts and activities, there is a signi�cant interest in features among many

software development teams. Feature enhancements provide both a competitive tool

and a healthy revenue stream from product upgrades. For requirements, a use-case

based method is used to determine the feature set that should be added to a new prod-

uct. Features that score highly in the usage scenarios are most likely to be incorporated

into the next product version. Microsoft's approach to features concentrates on speci�c

features to be added to existing products. Feature engineering, in contrast, is a general

set of approaches geared toward understanding the concept of feature and making use

of the feature relationships in a disciplined fashion across the solution domain. The ex-

istence of feature-based development and testing rea�rms our belief that understanding

21

the concept of feature is important to understanding software.

2.2.7 Software Architecture

Research in Software Architecture is oriented toward the high-level organization of soft-

ware systems [68]. One research direction is an attempt to categorize organizational

schemes or architectural styles that are common to successful software systems. Feature

engineering can bene�t from this type of software architecture research when architec-

tures are evaluated by their support for identi�cation, modi�cation, and addition of

features to the software system.

It has been previously observed that a simple diagram is not adequate to capture the

essence of a complex system [49]. Philippe Kruchten presents the 4+1 View model [49]

as an attempt to organize and structure �ve concurrent views of a system architecture.

A fundamental di�erence between his approach and that described in this dissertation

is that feature engineering attempts to bridge the gap between the user's perspective

and the developer's perspective. Each of Kruchten's four fundamental views is focused

on the solution space. Feature engineering attempts to provide support for important

problem space-objects in the solution space. Further, features are an organization of

the problem space. It is an unproven, but well-supported, assumption that features are

a natural organization and are therefore potentially more valuable inputs into architec-

tural analysis.

In Section 3.3.2.1 we explore the potential synergies between research in software ar-

chitecture and research in feature engineering.

22

2.2.8 Con�guration Management

Con�guration Management is another active discipline within the software engineering

community that relates to feature engineering. Many of the accepted con�guration

management techniques, such as derived object construction and product versioning,

can be directly applied at the feature level. Change sets [29, 20, 82] are a subject of active

research in the con�guration management discipline that will likely be a useful technique

for encapsulating feature implementations. Mathematical Concept Analysis [80] is used

to tease apart con�guration structures from source code based on the examination

of a concept lattice. The concept lattice is generated by examination of conditional

compilation directives embedded in the source code. The goal of this research is to use

Mathematical Concept Analysis to determine possibly inconsistent regions of source

text.

2.2.9 Reverse Engineering

Program slicing is another area that has potential for feature engineering. The notion

of program slicing began with Weiser in 1979 [89]. Since then several researchers have

modi�ed and expanded the concept of a program slice and have proposed additional

methods for determining such slices. In abstract terms, a program slice is a subset of

a program representation that is interesting based upon some criteria. Traditionally,

the criteria are formulated as all program statements that a�ect the value of a variable

at a particular place in the program text. This formulation of the criterion dictates

a backwards slice be computed from the source statement in question. The notion of

forward slices has also been explored. There are several ways that a program slice can

be calculated, with one common technique relying upon program-dependence graphs.

The slicing described so far is known as static slicing, because it relies only upon the

23

program text. Researchers have also explored dynamic slicing, which takes into account

program execution on a particular input set. In general, dynamic slicing produces

smaller slices, which is a bene�t in the isolation of program faults. Current research

frontiers on program slicing are covered by Tip [85]. Program dicing is a term used

to describe the intersection of multiple slices. Tony Sloane expands the traditional

notions of program slicing by generalizing the slicing criteria [79]. His approach relies

upon marking an abstract syntax representation of the program using tree decoration

capabilities inherent in attribute grammars. One of the advantages of Sloane's approach

is that it can easily be used to produce syntactically complete program slices that could

be executed. The notion of program slicing can be expanded to incorporate feature

engineering. By feature slicing, one could extract a subset of the system that interacts

with a particular feature. This would be of critical importance in maintaining individual

features, for exploring feature interactions, and for constructing feature relationships in

an existing system. Presumably, the intersection feature slices would indicate potential

interactions among feature implementations.

2.2.10 Function Point Analysis

Function point analysis is potentially applicable to feature engineering. The basic notion

is that the functionality of a software project can be objectively estimated, independent

of the implementation. Function point analysis considers �ve system characteristics:

application inputs, application outputs, user inquiries, data �les, and interfaces to other

applications. Each application has a function point rating, which presumably can be

determined relatively objectively once the system speci�cation is created. Supporters

claim that function point analysis is superior to lines-of-code metrics for productivity

analysis. Capers Jones asserts that \[Function Point metrics] have substantially replaced

the older lines-of-code metric for purposes of economic and productivity analysis." [42]

24

Since the introduction of this metric, numerous re�nements have been introduced, and

in 1986, the International Function Point Users Group was formed to enhance the tech-

nique's use. Despite advances in function point analysis, subjective judgments remain

a di�culty. Five early goals were identi�ed for the function point metric:

(1) Relate to external features of the software

(2) Deal with features important to the user base

(3) Be applicable early in the life cycle

(4) Relate to economic productivity

(5) Be independent of source code or language

These goals are well-aligned with but considerably narrower than the feature-engineering

ideas identi�ed in this dissertation. Since the function point metrics are based on visible

aspects of a software system, they are a natural �t with the feature view of a software

system. This technique might be useful for estimating the development e�ort required

to implement a particular feature. It might also be used to evaluate the complexity of

various implementation alternatives during the feature design phase. By applying the

metric to the incremental development required for adding features to a system, the

cost and impact of each feature potentially can be estimated.

2.2.11 Summary of Related Work

We believe that features can serve a more catholic role than the narrow one evidenced by

many of the research e�orts identi�ed in this section. We develop a feature engineering

framework in Chapter 3 and identify its overlap with the major software engineering

activities beginning with Section 3.3. Additional research that is at least tangentially

related to features is threaded through that discussion.

25

Looking at the common concept of feature throughout these initiatives, we conclude that

feature is an important concept for software development. Features play important and

varied roles throughout the software life cycle. While we have identi�ed research that is

related to the features present in systems, to date we have been unable to �nd research

speci�cally aimed at uncovering the essence of features, and discovering their potential

within the software life cycle. Feature engineering addresses this overlooked area of

research.

Chapter 3

A Framework for Feature Engineering

3.1 De�ning Feature

Feature engineering begins with the de�nition of the term \feature." \Feature" as

commonly used has a range of meanings. To date, no single de�nition that captures

what feature means within the context of software engineering. Consider, for example,

the two de�nitions in the IEEE Glossary of Software Engineering Terminology [62]:

� A distinguishing characteristic of a software item, for example,
performance, portability, or functionality, and

� A software characteristic speci�ed or implied by requirements doc-
umentation.

Chasing these de�nitions of \software feature" through the glossary reveals a set of

vague synonyms for feature, including \characteristic," \trait," and \property," which

provides little insight beyond the notion that a feature is some aspect of the software

that might be mentioned in the requirements speci�cation.

We conclude that, despite being a pervasive concept, feature is not well de�ned. The

de�nitions above do not provide answers to basic questions like \How are features related

27

to system functionality?" and \Do features exist in the problem space or the solution

space?" and \How is a feature related to its realization in the source code?" Little

e�ort has been made, so far, to solidify the concept of a feature. Our conceptual model

seeks to address this problem and, in so doing, provide answers to those basic questions.

We present and evaluate three candidate de�nitions that capture the range of interpre-

tations of the term as commonly used within software engineering research and practice.

On an abstract level, it is clear that a feature represents a cohesive unit of system func-

tionality. Our three informal de�nitions each identify this unit in a di�erent way and

embody the di�erent meanings people associate with the term \feature." Our intent

is to emphasize the di�erences among these interpretations, to indicate how they are

interrelated and to show how they can be reconciled.

(1) Subset of system implementation. The code modules that together im-
plement a system exhibit the functionality contributing to features. A feature
is a subset of these modules associated with the particular functionality. This
de�nition emphasizes the realization of a feature in the solution domain.

(2) Aggregate view across life-cycle artifacts. A feature is a �lter that high-
lights the parts of all of the life-cycle artifacts related to a speci�c functionality
by explicitly aggregating the relevant artifacts, from requirements fragments
to code modules, test cases, and documentation. This de�nition emphasizes
connections among di�erent artifacts.

(3) Subset of system requirements. Ideally, the requirements speci�cation cap-
tures all the important behavioral characteristics of a system. A feature is a
grouping or modularization of individual requirements within that speci�cation.
This de�nition emphasizes the origin of a feature in the problem domain.

The �rst of these de�nitions has an inherent weakness; accepting it implies that a

feature does not exist until it is coded into a system. It de�nes what we refer to as

a \feature implementation." There are many possible implementations for the same

feature, and certainly it is possible to consider a feature independently of its realization

28

in a particular system. Telecommunications switches provide a clear example: The

5ESS switch has multiple feature implementations; call-waiting is implemented for

both AIN and non-AIN networks. Service providers are able to o�er the same feature

in either type of network because of duplicate implementations of the same feature.

The second de�nition implies that a feature will change simply because an associated

artifact, such as its documentation, changes. A feature should remain a feature re-

gardless of how it is documented, tested, or implemented. In addition, the groupings

of artifacts made explicit in the second de�nition can be inferred by using the third

de�nition, given an appropriate model of the relationships among life-cycle artifacts

(e.g., PMDB [67]). UML collaborations [11], which hold the promise of maintaining

�ne-grained relationships among development artifacts, are a potential mechanism for

supporting the groupings established by this viewpoint.

Features are a user-centered view of a system's functionality and therefore originate in

the problem domain, not the solution domain. The third de�nition captures this critical

aspect. A feature is a set of individual requirements within a requirements speci�cation

for the system. The membership criterion for this set is a direct relationship to a single,

identi�able functionality.

A feature implementation is a projection of a feature into the solution domain. This

projection often represents a complex mapping onto the development artifacts, even for

small and medium-sized systems. The complexity of this mapping leads to fundamental

di�culties in developing software, including the �rst problem identi�ed in Section 1.1.

We use the third de�nition as a fundamental concept to develop a model of the arti-

facts created within the software-engineering activities. The model is not intended to

be de�nitive of all life-cycle artifacts; rather, it is intended to be suggestive of their re-

29

lationships. The model does, however, provide us with several concrete bene�ts. First,

it incorporates not only the software life-cycle activities but also the major artifacts

associated with software development. It also makes explicit the relationships between

these artifacts. As a result, it is complementary to other life-cycle models [9, 70] which

concentrate more on process than on relationships.

3.2 Conceptual Model

In this section, we present a model of features in software development. The model

allows us to identify and to reason about feature relationships both among features and

between features and other life-cycle artifacts. It also permits us to articulate and to

illustrate the bene�ts derived from making features �rst-class. We claim this model,

while not capturing the essence of every development e�ort, is a contribution of this

research.

3.2.1 Features and Software Life-cycle Artifacts

Figure 3.1 shows an entity-relationship diagram that models the role of features within

a software process. The model derives from the concepts typically used in software

engineering practice and commonly presented (often informally) in the literature. The

entities, depicted as rectangles, correspond to life-cycle artifacts. The relationships,

depicted as diamonds, are directional and have cardinality. Despite being directional,

the relationships are invertible. Again, this is just one possible model, and it is meant

to be illustrative of the concepts we are exploring.

The model de�nes key aspects and properties relevant to our understanding of the role

of features in software development, which are explored further in this dissertation.

30

M

N

Tests

M

NM NM N

1

Requirements
Fragment

Design
Specification

Design
Fragment

SubsystemModule

Specification
Requirements

Implements

Reflects

Documents

Composes

Composes

Composes

Tests

Composes

Composes

Composes

UsesUses

1 N

M N

M

N

1

N

MN

N

1

1N

M

N

N

1

1 N
Fragment

Documentation

User
Documentation

FeatureSystem
Test Set

System
Test Case

Test Set
Unit

Composes

N

Test Case
Unit

Composes

1

N

Tests

Test Set
Integration

Test Case
Integration

Depends On

M N

Problem Domain

Solution Domain

Figure 3.1: Model of Features within Software Engineering

There are several observations that can be immediately drawn from the model.

(1) Features as life-cycle entities bridge the problem and solution domains.

(2) Whereas a requirements speci�cation encompasses all expressible system re-
quirements, features are a means to modularize logically the requirements.

(3) The documentation of a feature is a user-oriented description of the realization of
that feature within the solution domain. This contrasts with, and complements,
the user-oriented description in the requirements within the problem domain.

31

(4) The distinction between the problem and solution domains helps illuminate the
fundamentally di�erent orientations among the various testing activities in the
life cycle. For example, \system tests" are focused on user-visible properties
and are therefore conceived of, and evaluated, within the problem domain.

(5) The connection between requirements and architectural design is di�cult, if not
impossible, to formalize beyond the notion that designs reect the requirements
that drive them. If those drivers are features, then there is hope for a better tie
between the problem and solution domains.

Two less immediate but no less important points can also be seen in the model. First,

while design artifacts are directly related to features, the relationships between features

and the deeper implementation artifacts are implicit. For example, a developer might

want to obtain all modules associated with a particular feature to make a change in the

implementation of that feature. Satisfying such requests requires some form of reasoning

applied to the relevant artifacts and relationships. Such reasoning is made much more

di�cult because the relationships are implicit. In general, this reasoning would occur

at the instance level, as illustrated in Figure 3.2 and explained below. Section 6.2.2

develops an approach to automate one aspect of such reasoning.

Second, there are two distinct levels at which features interact. In the problem domain,

features interact by sharing requirements or by simply depending on one another for par-

ticular services. Similarly, features can interact in the solution domain through shared

subsystems and modules or through use dependencies. Although similar in nature, these

interactions are quite di�erent in their rami�cations. The absence of an interaction in

the problem domain does not imply the absence of an interaction in the solution do-

main, which gives rise to the implementation-based feature interaction problems [35].

The reverse is also true, but less obvious, since it arises from the duplicate-then-modify

style of code update. Such a style results in a proliferation of similar code fragments

that are falsely independent (so-called self-similar code [15]).

32

3.2.2 Relationships Among Features

We now de�ne seven distinct relationships that can exist among features. These rela-

tionships can have di�erent reections within the problem and the solution domains.

Figure 3.1 shows only the \Compose" relationship for visual clarity.

Abstract - A feature can be an abstraction of several features. Abstraction is a struc-

turing relationship that reects di�erent granularities of features. Examples

of abstraction are abundant in the functional decomposition provided in Ap-

pendix A.

Compete - A feature can compete with another feature. For instance, in a telephone

switch call-waiting can compete with voice-mail for control when a line in

use receives another call.

Compose - A feature can be composed of two or more features. Composition is dif-

ferent from abstraction because the constituent features do not re�ne the com-

posing feature.

Conict - A feature can conict with another feature such that no consistent product

instantiation can contain both features. In the PerlPhone, example from Sec-

tion 5.2 the features gui and console conict. This relationship is useful for

determining consistent system con�gurations.

Constrain - A feature can change the behavior or properties of another feature. Con-

straint can occur either in the problem domain or in the solution domain. For

example, the presence of registration in PerlPhone constrains the encryption

feature to use only the encryption schemes recognized by the gatekeeper.

Re�ne - A feature can be a specialization of another feature. The re�ne relationship

33

is the inverse of the abstract relationship. Delete-sentence is a re�nement of

delete, an abstract feature.

Require - A feature can require the presence of another feature. For example, the

feature command-redo might require the existence of a command-undo feature.

The requirements for command-redo would presumably constrain the feature to

be inactive until the command-undo feature has been activated.

These relationships arise at various points in the development cycle. The Abstract,

Compose and Re�ne relationships are introduced in the problem domain. The other

four relationships can arise in either the problem domain or in the solution domain. The

Conict and Require relationships are important for reasoning about consistent system

con�gurations. The feature-based con�guration management system we describe in

Chapter 5 uses these relationships to enforce consistent system con�gurations.

3.2.3 The Instance Level

If we populate the model of Figure 3.1 and examine it at the instance level, we reveal

additional insights into features. Figure 3.2 depicts this level for the instances of entities

and relationships of a hypothetical system. The �gure is simpli�ed somewhat by consid-

ering only a subset of the entities. The shaded dots represent individual instances of the

entity types named in the columns. The unlabeled ovals within a column represent in-

stances of aggregate entity types, which are de�ned through the Composes relationship

in Figure 3.1. In particular, the ovals represent, from left to right, test sets, features,

design speci�cations, and subsystems. In this example, there are ten requirements frag-

ments and four features depicted in the �gure. Notice that aggregate artifacts are not

necessarily disjoint. The semantics of the arrows are given by the relationships de�ned

34

in Figure 3.1.

System
Test Case

Design
FragmentFragment

Requirements
Module

Figure 3.2: Instances of Entities and Relationships

The instance diagram provides useful information for evaluating the structure of the

system. For example, we can see that the two features represented by the two topmost

ovals in the second column share a requirement, so that a change to that requirement

potentially a�ects both features. Further, we can see that, despite this shared require-

ment, the feature represented by the top oval is reected in a single design fragment,

which is in turn implemented in a single module. This implies a signi�cant separation

of concerns that might make it easier to modify the feature. We can also see that the

features represented by the two bottom ovals do not interact at the requirements level

but do in fact interact at the subsystem level. Finally, we can see two subsystems whose

designs are not related to any particular feature. This last observation deserves further

discussion; it is addressed in the next section.

There has been a signi�cant amount of work in developing, maintaining, and even

discovering the data for such representations, but none has involved the use of features

as a central element. We advocate a representation that allows one to ask questions

such as the following:

35

� Which features are a�ected by a requirement change?

� Which modules should a developer check out to change this feature?

� Which features are a�ected by this change to a module?

� Which test cases will exercise this feature?

� Which modules are needed to con�gure the system for these two features?

For instance, di�erent features are able to share requirement speci�cations. A shared re-

quirement from the switch example could be both the call-forwarding and call-screening

features signaling completion with an aural tone. These relationships lead to a deeper

set of questions regarding the role of features in a particular system. Answering them

implies the existence of a number of many-to-many relationships. Researchers have

investigated some of these relationships [24, 75] and proposed some solutions. Since

features are a natural structuring of the requirements speci�cation, organizing such re-

lationships around features holds promise for making such e�orts more valuable across

life-cycle activities. In later chapters, we use this model to structure feature relation-

ships that support con�guration management and testing activities to permit answering

the above questions.

3.2.4 The System Core

If a system's functionality is viewed, as we advocate, as a set of features then it is

natural to ask: \Is a system completely composed of the set of features it provides?"

Systems must also include underlying infrastructure to support their features. The

infrastructure, which we call the core, arises solely in the solution domain due to de-

sign and implementation decisions, and it supports development of features. Users are

generally not concerned with the core, and therefore it is not directly reected in the

requirements. An obvious core is evident in the instance diagram of Figure 3.2. At the

36

module level, the core is composed of the bottom two subsystems, which have no direct

tie back to any feature at the requirements level, other than their use by subsystems

that do have such a tie.

Chen, Rosenblum, and Vo [14] make a similar observation about the existence of feature

components and core components, but their de�nition is based on test coverage. In

particular, core components are exercised by all test cases, whereas feature components

are those exercised by only a subset of the test cases. We will employ this de�nition of

core in our testing work in Section 6.2. The notion of core is also present in feature-

oriented domain models, although in this context it relates more to the optional property

of some features [45, 50].

The concept of feature helps us understand the concept of software. Speci�cally, the

feature concept is a foil that helps de�ne the concept of core|the core is what remains

of the system in the absence of features. Since we would like maximum exibility both

in modifying features and in selecting the set of features in any speci�c system con-

�guration, this de�nition identi�es something quite signi�cant. In fact, it provides the

conceptual foundation for the role of software architecture in software system develop-

ment. An architecture provides the core functionality of the system within the solution

domain that supports the desired functionality of the system in the problem domain.

An architecture must embody assumptions about the features it is intended to support,

and the degree to which it correctly anticipates the needs of those features will deter-

mine the quality of that architecture. For example, the layers up to and including the

Abstract Switching Machine shown in Figure 2.1 can be considered the core of the sys-

tem and the essence of its architecture. The test of that architecture comes as features

are added and modi�ed. Failure can be identi�ed by the need to re-architect a system

in the face of demand for features that were not speci�cally anticipated.

37

3.3 Features in Software Engineering

This part of the feature-engineering framework addresses the role of feature engineering

in software-development activities, which involves identifying relationships and their use

in software development. The relationships identi�ed earlier in this chapter are critical

for using features to bridge the gap between user and developer perspectives. In addi-

tion, a concentration on features introduces common vocabulary and concepts across the

di�erent development activities, an important step toward countering a deconstructed

view of software development. First we consider the role of features in the activities

that focus on the problem space|requirements engineering and domain analysis. Then

we cover solution space activities.

3.3.1 Features and Problem-Domain Activities

Problem-domain activities are critical to feature engineering. Since features are sets

of system requirements, the processes that analyze the problem domain and specify

system requirements should be responsible for identifying features. The product of this

e�ort should be more than a list of features for the desired system. Domain analysis

and requirements engineering should produce an organization of the desired system

functionality. The organization should shape the concrete features into a hierarchy

using the relationships de�ned in Section 3.2.2.

3.3.1.1 Domain Analysis

Domain analysis is a method for understanding systems and applications in a speci�c

area such as databases, compiler generation, or telecommunications switching. The

38

product of domain analysis is a domain model, which captures the essential entities in

a domain and the relationships among those entities. Research in the area of domain

analysis is focused on the development of better methods for eliciting and represent-

ing domain models. In addition, for stable domains, automated software-generation

techniques are being sought that can exploit the domain models.

Use cases [41, 90] are a domain-analysis method popular within the object-oriented

design and analysis community. Use cases represent a collection of intended uses for a

proposed system. It is an illuminating exercise to identify the di�erences between use

cases and features, as both are groupings of system requirements. Use cases imply a

narrative thread or context. Frequently this is instantiated by one or more scenarios.

Features are functional building blocks in the problem domain independent of a narrative

context; however, they can be used to support one or more use cases. A feature is a

more orthogonal requirements grouping. While use cases may overlap, concrete features

do not. It is possible to associate any kind of requirement with a feature, but use cases

do not naturally have an a�nity for expressing such characteristics as performance

constraints. Also, the links between features and solution domain artifacts are more

direct than with use cases. With use cases, the domain model objects have connections

to the solution domain artifacts only when the solution domain shares the object model

of the problem domain.

In summary, use cases are a more operational technique used to gather and document

understanding of a domain. An analysis of use cases provides a popular mechanism

for developing system requirements, and when the requirements are developed, features

are the natural functional building blocks therein. Whatever the method used to un-

derstand a domain, the domain model must be translated into a set of requirements

for the targeted system. Requirements engineering, considered in the next section, is

39

responsible for developing the requirements speci�cation.

3.3.1.2 Requirements Engineering

Requirements engineering de�nes the properties of the desired system. It includes ac-

tivities related to

\. . . identi�cation and documentation of customer and user needs, cre-
ation of a document that describes the external behavior and associated
constraints that will satisfy those needs, analysis and validation of the
requirements document to ensure consistency, completeness, and feasi-
bility, and evolution of needs." [37]

Research in requirements engineering is focused primarily on formulating improved no-

tations and analyses, and on developing methods and mechanisms for requirements

elicitation, rationale capture, and traceability. In practice, requirements engineers are

responsible for partitioning, abstraction, and projection [23]. Partitioning amounts to

organizing the functionality of the desired system. Abstraction is used to create hierar-

chical relationships among the problem domain entities. Projection selects salient views

of a system, use cases for example.

Partitioning and abstraction are required to identify the feature set for a system and to

create a functional decomposition. This decomposition should identify the features of

the system, the requirements associated with each feature, and the relationships from

Section 3.2.2.

That requirements engineering is responsible for identifying the feature set for a pro-

posed system is far from revolutionary. The ANSI/IEEE Standard 830-1984 [60] de�nes

four alternative formats for requirements speci�cations, which are organized by distinct

functional properties of the desired system, i.e. features. Years before that standard

40

was created, Davis [22, 21] identi�ed features as an important organizational mechanism

for requirements speci�cations:

\. . . for systems with a large number of internal states, it is easier, and
more natural, to modularize the speci�cation by means of features per-
ceived by the customer. [22]"

We conclude that a system's features are a natural means to organize the requirements

speci�cation. Researchers in requirements engineering continue to search for organiza-

tional strategies and methods for requirements speci�cations [75, 43], while in practice

requirements engineering faces di�culties, as identi�ed by Hsia et al.:

\For the most part, the state of the practice is that requirements en-
gineering produces one large document, written in a natural language,
that few people bother to read." [37]

Feature engineering promises to make the requirements e�ort more useful by carrying

the results to downstream life-cycle activities in a disciplined way. The functional

decomposition identifying the desired feature set for a system is a crucial �rst step.

Looking at the example of telephone switch software, features such as call-waiting and

voice-mail both relate to the treatment of incoming calls to busy subscriber lines [6]

and thus exhibit overlapping requirements fragments. The identi�cation of such fea-

ture interactions at the requirements phase can help eliminate unanticipated interaction

problems during later phases in the software life cycle. In practice, switch developers

often prioritize features to enforce discipled access to telecommunication events such as

a call-setup message when the subscriber line is busy.

41

3.3.2 Features and Solution-Domain Activities

Many of the artifacts and relationships identi�ed in the feature engineering framework

are created and maintained primarily in the solution domain. In this section, we present

a high-level survey of the impact that feature engineering can have on those activities.

The goal of feature engineering is to bridge the gap between the problem and the

solution domain using common entities, features, in the development activities. Our

intention here is to suggest some broad rami�cations of feature engineering, rather than

to attempt a complete coverage of the topic. Detailed examination of the role of feature

engineering in con�guration management and testing will be found in later chapters.

3.3.2.1 Software Architecture and High-level Design

Ideally, a requirements speci�cation is a precise statement of a problem to be solved; it

should structure the problem domain as features to be exhibited by an implementation.

The software architecture, on the other hand, is the blueprint for a solution to a prob-

lem, structuring the solution domain as components and their connectors. Researchers

in software architecture are focusing attention on languages for architectural design,

analysis techniques at the architecture level, and commonly used styles or paradigms

for software architectures [68, 1].

Feature engineering has signi�cant implications for software architecture, such as in

relating the problem-domain structure of features to the solution-domain structure.

Another implication is that, from the perspective of the user, features are the elements

of system con�guration and modi�cation. A high-level design that seeks to highlight

and isolate features is likely better to accommodate user con�guration and modi�cation

requests. Within this context, thus, we see at least two mutually supportive approaches:

42

feature tracing and feature-oriented design methods.

The tracing of requirements to designs has been an area of investigation for many years.

The basic problem is that it is essentially a manual task whose results are di�cult to keep

up to date and prone to errors. One way to mitigate this problem is to raise tracing's

level of granularity from individual requirements fragments to logical groupings of such

fragments|features. We conjecture that tracing at the feature level is more tractable

and, in the end, more useful than traditional methods. Validating this supposition at

the software architecture level is outside the scope of this dissertation and must be left

to future research. In Chapter 5, we present a con�guration management example of

managing feature relationships at a lower level of granularity.

A somewhat di�erent approach to high-level design from traditional functional decom-

position or object-oriented design methods arises from a focus on features. The starting

point for a feature-oriented design method is an analysis of the intended feature set

to gain an understanding of the features, both individually and in combination. Of

particular importance is understanding the requirements-derived dependencies among

the features. If feature prominence is a design goal, then the top-level decomposition of

the architecture should match the decomposition of the requirements speci�cation into

features. At each successive level of architectural decomposition, the goal should con-

tinue to be feature isolation. Points of interaction among features naturally arise from

shared requirements, as well as from the need to satisfy extra-functional requirements

such as performance. The criterion for creating new components should be to capture

explicitly some shared functionality among some subset of features. In this way, the

feature interactions will distill into identi�able components.

In a telephone switch, for example, the call-forwarding, abbreviated-dialing, and

direct-connection features all require the association of directory numbers with a

43

subscriber line [6]. Each Switching Module (see Figure 2.1) includes a special database

to store such information. Thus, the database, as a design element, is driven by a

speci�c and identi�able set of features. Maintaining this relationship is critical to un-

derstanding how to evolve this element without violating constraints imposed by the

system's features.

Combining tracing at the feature level with a design method that leads to modules

representing features and feature interactions should help illuminate the traditionally

obscure relationship between speci�c features and the design elements supporting them.

Moreover, when a request for a feature change is presented to a developer, that feature

can be traced immediately to an associated design element. Any potentially problematic

interactions with other features become visible through their capture in shared modules

representing their interaction.

3.3.2.2 Low-level Design and Implementation

Low-level design and implementation are the activities that realize the modules and

subsystems identi�ed in architectural design. The e�ect that feature engineering has on

them is more likely to be found indirectly through the e�ects on the high-level design and

testing activities and through the contribution of a tool set that makes the relationships

across artifacts visible to the developer.

Nevertheless, a feature orientation exists in software developments. Cusumano and

Selby [19] report that development e�orts for many Microsoft product groups are orga-

nized by the features of the product; small teams of developers are assigned responsibility

for one or more features. Especially complex features are assigned to stronger teams

with more experience. Organizational structure built around features extends to teams

44

with responsibility for testing particular features.

Ossher and Harrison [64] discuss a method of extending existing class hierarchies by

applying \extension hierarchies," which bears some relation to feature engineering at

the implementation level. Goals for their work include reducing modi�cation of existing

code and separating di�erent extensions. Much like change sets in con�guration man-

agement (see below), these extensions can be used as a conceptual mechanism to add

functionality to existing object-oriented systems. Unfortunately, this research describes

extensions only at the granularity of object methods, which seems inappropriate for deal-

ing with complex features such as the call-forwarding feature of a telephone switch.

In addition, the semantic compatibility of combined extensions is not well understood

in this technique, and that is a critical need for feature engineering.

The discussion of the 5ESSR switch has made explicit the relationships between the

features in the system and other life-cycle objects such as requirements and design

components. A primary bene�t gained from concentrating on features as a bridge from

the problem domain to the solution domain is a reduction of the intellectual burden

on developers interacting with the implementation of system features. Developers will

be able to work with a feature implementation without having to recreate the mapping

from problem-domain artifacts to solution-domain artifacts.

3.3.2.3 Testing

Testing is an approach to software veri�cation that involves experimenting with a sys-

tem's behavior to determine whether it meets expectations. In practice, there are three

levels of testing. Unit testing is used to test the behavior of each module in isola-

tion. Integration testing is used to detect defects in the interactions among modules at

45

their interfaces. System testing is focused on testing the complete system as a whole

for compliance with the requirements speci�ed by the users, including the system's in-

tended functionality and performance. System testing is oriented toward the problem

domain, while unit and integration testing are oriented toward the solution domain (see

Figure 3.1).

Feature engineering has an impact on testing activities by permitting a somewhat dif-

ferent organization of test sets than traditionally encountered. In particular, test sets

would be organized around the features they are intended to test. The telephone switch

software, for example, supports a vast number of features that must be tested for every

release. Having requirements for each feature provides a basis for testing each feature in

isolation. Taking all the feature tests together provides the equivalent of a system test

set. This system test set, however, is not speci�cally geared toward detecting errors in

the system core except to the extent that the features use the infrastructure provided

by the core.

Where a feature implementation is con�ned to a single module, tests for that feature

amount to unit tests for the module. Feature implementations frequently involve more

than one module; in such cases, feature tests are a mechanism for evaluating module

integration. The connections between features highlighted by instance diagrams, such

as Figure 3.2, point out sets of features that should be tested in combination. This

approach is useful, for example, in guiding the testing of modi�cations to the database

component of the telephone switch's Switching Module, which is shared by several

features [6]. Such feature-combination tests might detect unwanted feature interactions.

The feature-oriented organization of test sets can also help minimize regression testing

when changes are driven by requests to modify features. When a developer changes the

feature implementation within the system, then only the tests related to that feature

46

(and, possibly, other dependent features) need to be run.

Using feature test executions to create a body of relationships among the development

artifacts is an aspect of feature testing that we explore in depth in Chapter 6.

3.3.2.4 Maintenance

Maintenance is an application of system development activities geared toward the mod-

i�cation of an existing software system. The purpose of these activities is frequently

characterized as corrective, adaptive, or perfective. Corrective and perfective mainte-

nance tasks are motivated by users' needs within the problem domain and are related

to feature engineering. Such maintenance tasks are often identi�ed according to the

a�ected features. Corrective maintenance can be viewed as �xing feature defects, and

perfective maintenance is the result of adding a feature to a system.

There is debate as to whether maintenance is a distinct software development activity.

A common characteristic in maintenance projects is that the original system designers

and developers are no longer involved in the project, which makes having the feature

relationships available to developers even more important as their familiarity with the

system is often incomplete. Understanding the feature set and the mapping from fea-

ture to feature implementation is vitally important for performing maintenance tasks.

Recording these relationships and having a tool set that can operate on them eases

signi�cantly the burden on the maintenance team.

47

3.3.2.5 Con�guration Management

Con�guration management is the discipline of coordinating and managing evolution

during the lifetime of a software system. Traditionally, con�guration management is

concerned with maintaining versions of artifacts, creating derived objects, coordinating

parallel development e�orts, and constructing system con�gurations.

The vocabulary of existing con�guration management systems is oriented toward solution-

domain artifacts, such as �les, modules, and subsystems. Many of the accepted con�g-

uration management techniques, such as version management and derived-object cre-

ation, should be directly applied at the feature level. For example, the developers of

the telephone switch software should be able to populate a workspace through a request

for a speci�c version of all the artifacts associated with a particular feature, such as

call-waiting, by simply identifying the feature, not each of the individual relevant

artifacts. It should also be possible to issue a request to construct a system where that

request can be parameterized by a given set of features. For example, it might be useful

to construct a compact release of the telephone switch software that has basic call-

processing features but omits call-waiting and call-forwarding features. Another

useful capability would be the delineation of parallel workspaces based on features. For

features to become �rst-class, they will have to exist in the models of the systems that

are built. This has the potential for raising the level of abstraction at which developers

work from �les to features.

Realizing this expanded role for con�guration management will require feature imple-

mentations to be encapsulated separately and versioned. Bare �les do not appear to be

the right abstraction for this purpose. Change sets [29, 82], on the other hand, show

promise as a potentially useful storage base. In addition, information about feature

dependencies at both the speci�cation and implementation levels will be needed for

48

specifying consistent system con�gurations. In Chapter 4 we examine in depth the

intersection of feature engineering and con�guration management. In Chapter 5 we

report on the use of a feature-based con�guration management system with a software

telephone system and version 5.3 of the Vim editor.

3.3.2.6 Reverse Engineering

Reverse engineering is the process of discovering the structure and organization of an

existing system from available artifacts. Typically, such artifacts are limited to those

associated with implementation, such as source �les. The activities in reverse engineer-

ing center on the application of various analysis techniques to the artifacts in order to

reveal internal structure, as well as static and dynamic dependencies.

The primary inuence of feature engineering on reverse engineering is to focus the anal-

yses toward discovering connections to features. In essence, this means recreating the

(lost) relationships in Figure 3.2. For example, reverse engineering could be used to

discover feature implementations and feature interactions. Reverse engineering tech-

niques can also be applied to discover dependencies among features and among various

implementation artifacts.

One technique would be to broaden the scope of program slicing, following Sloane and

Holdsworth [79], to create a feature slice through the implementation artifacts. A

feature slice would include all of the fragments that contribute to a feature's implemen-

tation. Working the other way, if a feature test set exists, then observations of test case

executions could reveal the portions of the system involved in implementing the feature.

49

3.4 Terminology

Here we summarize feature-related terms used in this dissertation. The motivation

behind the de�nition of feature is considered in Section 3.1. A feature is a subset of

system requirements that identi�es a cohesive unit of functionality. The functionality

of a system can be considered at di�erent levels of abstraction leading to a hierarchical

organization of functionality in a system. With use cases, functionality is also organized

into a hierarchy of high-level goals, subgoals, and system interaction.

In a feature hierarchy an abstract feature is a set of concrete features that are all

re�nements of the same abstract functionality. In a text editor, delete is an abstract

feature containing such concrete features as delete-character, delete-sentence, and

delete-line. A concrete feature is an atomic feature representing a single speci�c

functionality. For example, delete-word-under-cursor is a concrete feature. Abstrac-

tion is not the only structuring mechanisms for functionality. A composite feature

is a set of concrete features used to create a new feature. In a text editor, a composite

feature might open a new window and load the �le named under the cursor. This is a

composite of two concrete features, window-new and edit-file-under-cursor. The

distinction between a feature and its implementation in a speci�c system is fundamental

to this dissertation. A feature implementation is the realization of a feature in the

system software that produces the functionality de�ned by the feature.

Several additional terms used in this dissertation merit attention. A feature interac-

tion is the inuence two or more features have on one another in either the problem

domain or the solution domain. Feature interactions can be intended or unintended.

Managing feature interactions in telecommunications networks is the subject of con-

siderable research. Research into the \feature interaction problem" is considered in

50

Section 2.2.3. A feature test is a test that exercises or invokes a speci�c feature

implementation in a system. In general, testing a feature requires multiple feature tests

that are organized into a feature test suite. In Section 6.3.3.4 we develop the concept

of a shadow test, which is identical to a speci�c feature test except that it does not

exercise or invoke the targeted feature. In Section 6.2.2.1, shadow tests are used, in

conjunction with program instrumentation, to determine the mapping from feature to

feature implementation.

3.5 Summary

This chapter has described a conceptual basis for understanding features in software de-

velopment. Starting with the word \feature," we evaluated the common understanding

of the term and provided a de�nition that supports reasoning about feature relation-

ships and agrees with common understanding. This de�nition is the basis of a conceptual

model of features which encompasses both problem-domain and solution-domain activi-

ties. Further, the model helps us develop a better understanding of software in general.

It provides a framework for de�ning a system's core in addition to its feature set. Fi-

nally, we apply this model to each of the major life-cycle activities and present ideas

that reect a better understanding of software. In the next chapters, we employ the

feature framework to extend the disciplines of con�guration management and testing.

Chapter 4

Features and Con�guration Management

Con�guration management systems address software development challenges by sup-

porting orderly evolution of artifacts. They archive important documents and mandate

disciplined access to them; they also record signi�cant events during the development

history.

For the most part con�guration management programs work at a �le level. Since spec-

ifying versions of hundreds or thousands of �les is beyond human scale, a common

approach is to use the latest version of each �le by default, but the latest version of

every �le does not always de�ne the desired set. A more sophisticated approach is to use

a set of rules to determine the correct �le versions. ClearCase [4] and Continuus [18] are

two commercial con�guration management systems that use rule satisfaction to select

versions. Following a set of con�guration rules is more powerful than merely select-

ing the latest version, but crafting an appropriate set of rules is often di�cult because

the evaluation order is important, and the results are not always intuitive. The rules

are applied to individual �les, �lename patterns, or �le attributes; there is no inte-

gration between the version-selection mechanisms and the other facilities provided by

con�guration management systems. System modeling facilities in many con�guration

management systems are nonexistent or rely on �le system structure. There is not much

52

con�guration in con�guration management.

A more useful approach to �le selection is to allow users to declare what features they

would like in a system con�guration and let the con�guration management software

determine the correct �le set. This approach permits the developer to work at a higher

level of abstraction, using features rather than �les.

As described in Chapter 3, features organize end-user functionality, and they participate

in relationships that reach across the entire development life cycle. A simpli�ed depiction

of the life cycle is shown in Figure 4.1.

Test ing

Requi rements
Engineer ing

Archi tecture
and Design

Reverse
Engineer ing

Documentat ionImplementat ion

Conf igurat ion Management

Figure 4.1: Software Engineering Activities

Con�guration management systems support each of the major activities in the life cycle

by archiving artifacts and providing access to them. Feature relationships can be used to

associate artifacts across di�erent development activities. For instance, when changing

a feature implementation, a relationship between features and test cases can be used

to identify the correct set of tests to be executed. Since con�guration management

systems are responsible for providing access to the artifacts, using such information in

their operations makes these systems a focal point for feature engineering.

53

Managing features means maintaining relationships. Recording and maintaining these

relationships is tedious and error-prone, in short, an excellent candidate for automated

support. Con�guration management at the feature level o�ers a range of potential ben-

e�ts to software developers and managers. Since change requests are frequently stated

in terms of a system's features, developers are required to map features to the artifacts

that specify, implement, test, and document them. By making these relationships ex-

plicit and managing them within the con�guration management discipline, a di�cult

and error-prone responsibility is removed from developers. Making feature relationships

explicit facilitates other desirable capabilities, such as con�guring systems based on a

desired feature set. Another bene�t is the ability to work within view of a system

that �lters out artifacts unrelated to the features of interest. Filtering based on fea-

ture relationships can make interacting with large systems more tractable. Filtering

eliminates the need for a tedious, manual process for identifying the correct set of �les

when adding or modifying a feature. Section 4.1.2 explores in detail requirements for

extending con�guration management to include a system's features.

In the remainder of this chapter, de�ne requirements for con�guration management

based on features. After analyzing traditional con�guration management, we explore

how each of the constituent parts can take advantage of feature information. Then

we evaluate the level of support that con�guration management systems provide these

requirements. Where the systems do not provide native support for features, we describe

how the requirements might be met using the primitives the systems provide.

4.1 Requirements for Feature-Based Con�guration Management

Con�guration management systems have a history of successful acceptance in industry,

as the facilities they provide are clearly bene�cial to software-development projects.

54

These systems, however, ignore the features in the software they control. As the case

studies in Chapter 5 demonstrate, we believe these systems can provide more bene�ts

to developers.

These systems' users typically work at a low level of abstraction, specifying versions of

individual �les to access. Often con�guration management systems use the �le system's

directory structure as an organization mechanism. When �les related to a particular

subsystem are contained in a separate directory tree, a workspace can be populated

with all of the artifacts for that subsystem. We see two problems with this approach.

Some artifacts, requirements, documentation, and system tests for example, are related

to multiple subsystems. In this case, populating workspaces based on directory struc-

ture is not as powerful as using richer relationship information. The second problem is

that features cut across the structural organization represented by the software archi-

tecture. As a result, working on a feature means working on multiple subsystems at the

same time. A �le-speci�cation mechanism based on feature relationships would allow

developers to populate workspaces with the set of �les related to a particular feature.

4.1.1 Traditional Con�guration Management

In this section, we characterize con�guration management systems and the problems

they address. In the next section we extend the discipline to take advantage of feature

information.

A fundamental characterization of the functional areas addressed by con�guration man-

agement systems is provided by Dart [20]. The functional areas identi�ed in that work

overlap, and they range in importance from incidental to fundamental. Therefore, we

coalesce these eight functional areas into four fundamental goals for con�guration man-

55

agement systems to achieve. This reorganization seeks to eliminate the overlap and to

provide a basic set of concerns managed by con�guration management systems. This

smaller set proves more tractable for reasoning about the impact of feature orientation

on software con�guration management, and it is much closer to that identi�ed in the

IEEE's con�guration management standard. [61] The four fundamental SCM concerns

are

Identi�cation - identify and classify a system's artifacts and their relationships

Control/Process - control access to system artifacts and ensure that all changes ad-

here to the desired software process

Construction - determine and build valid product con�gurations

Status - record signi�cant events within a development process and provide information

to track the system's evolution

4.1.1.1 Identi�cation

Con�guration management systems are responsible for identifying and classifying every

signi�cant development artifact that contributes to the creation of a software product.

Identi�cation ensures that each artifact has a unique name and that di�erent versions of

an artifact are distinct. The notion of immutability supports identi�cation; tradition-

ally, every version of an artifact is frozen once it has been archived by the con�guration

management system. Identi�cation includes ascribing properties and attributes to the

artifacts. Artifact classi�cation involves ascribing types and properties to artifacts that

belong to speci�c groups, such as source-code �les. The �nal aspect of identi�cation

involves managing the relationships among the artifacts. These relationships represent

56

an important body of information about the software-development project. Con�gu-

ration management systems provide varying levels of support both in maintaining this

information and using it to support the operations they provide.

4.1.1.2 Control / Process

Orderly change is the foundation of con�guration management. Order is enforced by

the control disciplines enabled by the con�guration system. In a well-managed envi-

ronment, these disciplines underlie the process of creating the software product. For

example, isolating the e�ects of multiple developers making simultaneous changes is a

goal for con�guration management systems, and artifact check-in/check-out is a tradi-

tional mechanism to ensure such orderly change. Con�guration management systems

must provide each development member access to an appropriate set of artifacts in

such a way that other changes can be selectively included or ignored. These systems

must also identify potentially conicting changes to the artifacts. Con�guration man-

agement systems provide control mechanisms that enforce policies established by the

development group. These control mechanisms cover such activities as providing access

to artifacts, updating the repository, and exercising test suites. An example of such a

policy is ensuring that every module passes a suite of tests before being accepted by the

con�guration management system.

4.1.1.3 Construction

Con�guration management systems should also provide support for the automatic con-

struction of a consistent software product, ideally including tracking artifact versions,

tool versions, platform information, and tool invocation options used in the derivation of

57

products. A con�guration management system should ensure that the set of assembled

artifacts is consistent and complete, should reduce the cost of product construction,

and should provide information about the products that are built. Typically, con�gu-

ration management systems are able to invoke tools that transform source objects into

derived objects, and they should run tools that test and analyze development artifacts.

Often, these needs are met by an enhanced make [30] facility that manages user-de�ned

dependencies among artifacts.

4.1.1.4 Status

A con�guration management system is responsible for maintaining information about

the status of product development. Information about artifact history, events such as

version merges, branch creation, product builds, and artifact check-in is vital for e�ective

project management. Project managers, system architects, developers and testers all

require access to reports about various aspects of the system. For complex systems

involving numerous people, such information becomes increasingly crucial to managing

the development successfully.

4.1.2 Feature-Based Con�guration Management

Con�guration management support for feature engineering spans the four fundamental

concerns. This section identi�es the requirements that the feature concept imposes on

traditional con�guration management. Primarily, these requirements are driven by the

need to manage and operate on the relationships described in Section 3.2.2. Features are

directly or indirectly related to every type of development artifact, from requirements

documents to end-user documentation. To leverage features, information provided by

58

these relationships must be available to guide development activities. Extending con-

�guration management to take advantage of these relationships is paramount in this

e�ort.

4.1.2.1 Identi�cation

The �rst step toward feature awareness is expanding artifact types known to con�gura-

tion management systems to include features. Features are composed of collections of

requirements fragments; it is important to provide �ne-grained access to the elements of

requirements documents. Features do not exist in �les, so feature-based con�guration

management requires being able to maintain information about concepts that exist out-

side of �les. In addition, con�guration management systems need to accommodate the

rich set of relationships that features have with other life-cycle artifacts such as design

documents, subsystems and components, test cases, and documentation. Di�erent ver-

sions of a feature implementation should be associated with di�erent life-cycle artifacts

such as test suites and documentation. The con�guration management system should

ensure that the correct set of tests is applied to any version of feature implementation.

These relationships also need to be available during other con�guration management

operations such as product construction and status reporting. Frequently, this task

boils down to using the relationship information to identify a set of �les and then using

that set as an input to other areas such as system con�guration. Open Hypermedia sys-

tems [59, 17, 3] are a promising technology for managing these relationships. As these

systems mature, con�guration management systems might bene�t from using Open

Hypermedia systems to manage these important relationships.

Identi�cation questions that the con�guration management system should be able to

answer include:

59

(1) What are the features that the system provides?

(2) What is the latest version of this feature?

(3) What other features depend on this feature?

(4) What test cases test this feature?

(5) What artifacts implement this version of this feature?

(6) What design elements or architectural components reect this feature?

4.1.2.2 Control / Process

Access control in many con�guration management systems is managed on a per �le

basis. Users access a set of �les they wish to modify. For software systems composed of

hundreds or thousands of �les, de�ning the right �les to access is a signi�cant challenge.

Features impose a higher-level scheme that can be used to access a set of artifacts within

a software-development project. A feature-based con�guration management system

should allow users to access artifacts based on a particular feature set. A feature is

related to a subset of the �les in the development project. Working on a feature set

means working on exactly the subset de�ned by the relationships. The system should

be capable of providing the complete set of artifacts needed to modify a feature. In

addition, such a system should enable multiple people to work on di�erent features and

should coordinate the changes to the same feature made by di�erent teams at the same

time. Such conicting access needs to be mediated.

Control and process questions that the con�guration management system should be

able to answer include:

(1) What artifacts are needed to make a change to this feature?

(2) Is someone else working on this feature right now?

(3) Can I change this feature without interfering with other current changes?

60

4.1.2.3 Construction

A con�guration management system that supports features must be capable of building

versions of the product based on a set of feature speci�cations, which means that the

system model that describes the product must have knowledge of the system's features

and must be capable of selecting a consistent set of features to incorporate into the

product. It must have information about dependencies between features so that the

resulting product not only includes the speci�ed set of features but also includes all the

features in the closure of the \depends on" relationships of those features. In addition,

the construction primitives that transform crafted artifacts into derived artifacts must

be capable of insuring that the correct feature set is incorporated into the product.

This includes selecting the set of artifacts that contain the feature implementation as

well as invoking the derivation tools with the correct set of parameters. Relationships

among artifacts should be available to the construction of the product. Many software-

development projects require the ability to build di�erent versions of a product with

di�erent feature sets.

Construction questions that the con�guration management system should be able to

answer include:

(1) Is this set of features internally consistent?

(2) Does this set of features comprise a valid product con�guration?

(3) How do I specify the features I want to include for a product build?

(4) What features are included in the latest release?

61

4.1.2.4 Status

Con�guration management systems must incorporate a system's features into the track-

ing and reporting capabilities they provide. Since features are important problem do-

main entities, they can be a useful index of such information as defect reports, modi�-

cation history, lines of code, complexity, number of versions and variants.

Status questions that the con�guration management system should be able to answer

include:

(1) How many modules are used to implement this feature?

(2) What is the change history of this feature?

(3) What features will be a�ected by a change to this component?

(4) How many defects are related to this feature?

(5) How many lines of code are incorporated into this feature?

(6) What test sets are used to test this feature?

In the next section, we consolidate the ideas presented in this section into a framework

for evaluating feature support in an existing con�guration management system. In

Section 4.3 we apply this framework to a number of leading con�guration management

systems.

4.2 Feature Support in Con�guration Management Systems

For large systems with multiple developers, con�guration management is critical and

is one of the few areas within software engineering where commercial systems have an

established record of consistent success. Therefore we have evaluated several commer-

cial con�guration management systems to evaluate their ability to support features in

62

software development. Where these systems do not provide native support for feature-

based activities, we describe how one might create such support from the facilities they

do provide.

4.2.1 Evaluation Framework

This section introduces the criteria used to determine the support that con�guration

management systems can provide for the feature requirements described previously. The

criteria consist of six activities and four levels of support that a system can provide for

carrying out those activities. The activities represent concrete steps that materialize

the requirements described in Section 4.1.2.

Activity Concepts

De�ne a feature within the system Identi�cation

De�ne feature and artifact relationships Identi�cation

Feature check out Identi�cation, Control/Process

Evaluate consistency of a product speci�cation Identi�cation, Construction

Build products with feature speci�cations Identi�cation, Construction

Feature-based reporting Identi�cation, Status

Table 4.1: Activities in the evaluation framework

Table 4.1 summarizes the activities. Identi�cation plays a key role. Managing features

means managing relationships, and these relationships are critical to supporting all of

the feature-based con�guration management activities.

4.2.1.1 Evaluation Activities

The �rst activity is to de�ne the features in the system, which involves giving each

feature a unique identi�cation and gathering the requirement elements related to the

63

particular feature. Ideally, the con�guration management system would enforce consis-

tency between the requirement documents and the feature speci�cations, since features

are composed of requirements fragments. Naturally, feature de�nitions should evolve

with the requirements speci�cation and independently from the solution-domain arti-

facts.

The second activity is to record the relationships among features and between features

and the other development artifacts. These relationships are described in Chapter 3.

Feature-based con�guration management systems must be able to both de�ne and pop-

ulate the appropriate relationships. Populating the relationships means both recording

them and enforcing their consistency as the system evolves. For the relationships to

evolve with the system, each distinct state of the system should have a consistent set of

relationships among the artifacts.

The third activity is feature check out, which involves providing access to the set of

artifacts related to a particular feature. This is the �rst evaluation activity that tests

the integration across con�guration-management operations. This activity requires that

the system de�ne the correct set of artifacts based on feature relationships and provide

access to exactly that set. Feature check out should act as a �lter that provides access

to the artifacts needed to make changes to a feature or a feature implementation. The

desired artifact types could include requirement documents, design documents, source

code, test cases and documentation.

The fourth activity is to evaluate the consistency of a product speci�cation. This in-

volves examining the relationship information to determine whether a speci�ed con�g-

uration is legitimate. Obviously, combining features mutually exclusive should produce

an inconsistent con�guration, but the system should also determine the viability of a

feature speci�cation based on other desired properties such as the release version and

64

the target platform. Exploring the relationship information to build closure over the

appropriate relationships and evaluating the consistency of the selected artifacts are

required.

The �fth activity, constructing a product based on a feature speci�cation, extends the

previous one. Once a speci�cation is deemed consistent, the system must be capable of

building the speci�ed product and insuring that all of the requested features are present

in the chosen implementation artifacts. Satisfying this activity requires supplying con-

trol information for each feature implementation to the tools used in constructing the

product and providing con�guration information for the system.

The sixth activity is producing reports based on a system's features. These reports

would be able to answer questions of the type posed in Section 4.1.2.4.

4.2.1.2 Evaluation Criteria

Outlined below are the four levels of support that a con�guration management system

can achieve for each activity.

Native - Feature semantics are built into the system.

Direct - Feature semantics can be supported by con�guration or interpretation of an

existing system facility or facilities.

Indirect - Feature semantics can be supported by scripts or programs that use the

facilities within the system and that can guarantee the preservation of system

constraints.

Inadequate - Feature semantics must be supported by scripts or programs that can-

not be prevented from violating system constraints or that require duplicating

65

managed information outside of the system.

At the highest level, Native, the system provides support for achieving the activity as

a native concept. For example, native support for the �rst activity would be met if the

system provides a mechanism speci�cally de�ned to permit the de�nition of a system's

features. Con�guration management systems provide native support for archiving ver-

sions of �les but not for versions of features. As a native concept, the system provides

the highest level of integration with other concepts and enforces consistency constraints.

For example, con�guration management systems also generally enforce the constraint

that a speci�c version of a �le is immutable. At the Native level of support, the activity

should be covered in the con�guration management system's documentation.

The next level of support is Direct. Direct support indicates that the system does not

recognize the concept, but system primitives or facilities can be used to achieve the

activity with simple con�guration or interpretation. As an example of direct support,

feature check out can be directly supported using change sets. By encapsulating a

feature's implementation within a change set, the feature can be checked out by the

addition of that change set to a baseline version. Change sets provide no feature seman-

tics, but they can be used, without modi�cation, to achieve the speci�ed activity. This

is Direct support; change sets can simply be interpreted with feature semantics. With

Direct support, there is a lower degree of integration with the other system primitives

than with Native support, but integrity constraints would still be maintained because

system facilities are used directly.

The Indirect and Inadequate levels of support require creating scripts or external pro-

grams that extend the con�guration management system's functionality. If program-

ming is required to achieve the activity, the level of support falls below Direct. With the

third level of support, Indirect, a system has facilities that can be adapted to achieve the

66

speci�c feature needs by additional end-user programming. If the programs do not need

to duplicate information the system maintains and can be made to adhere to system

constraints, this is indirect support. An example would be adapting the �le-archiving

mechanism to store the requirements that comprise a feature in the presence of check-in

triggers. The trigger mechanism can ensure that requirements documents that have not

been processed to extract their features do not get checked into the system. At the level

of Indirect support, there is limited integration between the extended mechanism and

the other system primitives.

The fourth and lowest level of support, Inadequate, exists when the con�guration man-

agement system does not provide su�cient mechanisms to achieve a particular task and

the conditions for Indirect support cannot be met. Con�guration management systems

that rely on user-de�ned Make�les for constructing products provide inadequate sup-

port for checking the consistency of a feature speci�cation. Programming is required

to examine the relationship information to determine the source-code �les involved in a

feature's implementation. This information cannot be guaranteed to be consistent with

the speci�cations expressed in the user-de�ned Make�les.

4.2.2 Evaluation of CM systems

Feature support in leading con�guration management systems has been evaluated ac-

cording to the framework discussed in Section 4.2.1. The results of these evaluations

are summarized in Table 4.2.

Additional evaluations for CCC/Harvest, PCMS, and Process-Centered Software Engi-

neering Environments were performed by researchers at the Dipartimento di Elettronica

e Informazione in Milan, Italy but are not included in this dissertation.

67

Activity ADC Adele ClearCase Continuus

Feature de�nition Direct Direct Indirect Inadequate

De�ne relationships Direct Direct Direct Direct

Feature check out Direct Direct Direct Indirect

Product consistency Indirect Direct Inadequate Inadequate

Product construction Direct Direct Indirect Indirect

Feature reports Indirect Unde�ned Indirect Indirect

Table 4.2: Con�guration Management Systems Case Study Summary

In the following sections, we report the results of the con�guration management system

evaluations, and we draw conclusions about the general level of feature support found

in the systems.

4.2.2.1 Feature Support in ADC

Aide-de-Camp [81, 83] (ADC), is built upon the change-set model [29] of con�guration

management. Change sets do not intrinsically have feature semantics, but they can

be readily employed to achieve some feature activities. ADC also provides a feature

de�nition mechanism other than a �le: database lists. ADC is dependent upon a built-

in shell language, Lakota, which is used for writing scripts that call upon the primitives

provided by the system. Lakota provides an integration mechanism that can be used

to tie together feature-relationship information and other mechanisms provided by the

system.

ADC does not provide native support for any of the activities in the framework; the

concept of feature is not explicitly mentioned within ADC.

ADC provides change sets as a native concept, which can be adapted to support feature

semantics. Change sets are groups of logically related changes that span all the �les in

68

a project. To de�ne a feature within ADC, a change set would include additions to the

requirements documents that describe the feature. Ideally, the change set would en-

capsulate the projection of the feature into every related system artifact. For example,

adding a feature would involve additions to the requirements documents, the imple-

mentation artifacts, the test cases and the user documentation. The change set that

encapsulates the feature would contain all the changes needed for that feature within

the system. The changes to the requirements documents would constitute the feature

de�nition, a direct level of support, since the change-set mechanism can be interpreted

to support feature semantics.

ADC provides the ability to create arbitrary relationship verbs and to assert the rela-

tionships among known artifacts. There are no existing feature relationships, but, by

using the relationship mechanism, all types of relationships that involve features can

be de�ned across features and other life-cycle artifacts. Thus, the level of support for

de�ning relationships types and populating relationships is direct.

The most direct way to accomplish feature check out in ADC would be simply to in-

stantiate a version of the product including the change sets encapsulating the feature.

Again, this solution involves interpreting the change-set mechanism with feature seman-

tics; support for this activity is direct. Encapsulating feature implementations within

change sets exploits the unique facilities provided by ADC. Without this organization,

a script in the Lakota language would enable a feature check-out operation. This script

would gather into a list all the artifacts of interest and then populate a directory with

the artifacts relative to the current version of the system, an indirect level of support.

$ adc-set-value List {adc-relationship-left is ImplementsFeatureA}

$ adc-write-file $List

69

There is no built-in mechanism for examining the consistency of a product speci�cation.

Information about which features are not valid in combinations would be contained in

the relationships among features. Here again, the relationship mechanism would have

to express consistency constraints among the various change sets that encapsulate the

features. Since no speci�c semantics are related to features and since it would require

programming to examine the relationships to evaluate con�guration consistency, the

level of support is indirect.

ADC is the only system we evaluated that automates the process of specifying build

instructions. By scanning the source code, ADC maintains a \calls" relationship among

procedures and a \de�nes" relationship between source �les and procedures. Using these

relationships, the system determines which source �les are needed for each product. By

working with a particular combination of change sets encapsulating features, the system

construction could be generated automatically, provided the implementation language

is supported by an ADC source code scanner. Product construction support is direct.

Finally, all feature-status reports would rely upon the change sets encapsulating features.

Thus the reporting mechanisms that exist for change sets could be employed to provide

reports on the system's features. Scripts would be required to provide such information

as \How many lines of code are required to implement this feature?" and \What test

cases should be run to test this feature?" Support for status reporting is indirect.

4.2.2.2 Feature Support in Adele

Adele [28, 27, 26], uses the composite model [29] of con�guration management. The

system treats con�gurations as objects that can be stored in its repository and upon

which operations can be performed. It provides mechanisms for automatically creating

70

con�gurations based on satisfying constraints expressed in �rst-order logic expressions.

Typically, constraints and properties are expressed in a bottom-up manner where they

are associated with individual �les and components. Con�gurations are built by a top-

down expression of the properties that should be satis�ed. The automatic determination

of con�gurations and the ability to operate on con�gurations is well suited to supporting

feature-based activities.

A feature would take the form of an object within the Adele repository. The feature

object would depend upon a set of requirements documents. Documents can be associ-

ated with objects within the Adele database, providing a direct level of support, since

the association mechanism can be employed to support feature semantics.

Adele appears to provide only a \depends" relationship, which is the basis for the

dependency graph that Adele uses to determine con�gurations. The \depends" relation

su�ces for implementation dependencies such as \this feature is implemented by this

source code �le." Relationships that express di�erent semantics, such as \this test case

tests that feature" would have to be synthesized using the \depends" relation along

with additional type or attribute information. As a result, de�ning an appropriate set

of relationship types is more di�cult in Adele than in systems that permit arbitrary

relations between artifacts. However, since the same result can be accomplished without

resorting to end-user programming, the level of support for de�ning relationship types

and for instantiating the relationships is direct.

Feature check-out in Adele can be accomplished by having Adele create a con�guration

that contains the appropriate feature set and projecting that con�guration object into

the �le system. Adele's ability to determine automatically a con�guration list and

export all of the referenced objects into the �le system provides direct support for

feature check-out.

71

Adele's built-in consistency satisfaction guarantees that a proposed con�guration is

consistent or else it reports an error describing the conict. One of the advantages

of Adele's strategy is that there is no need to maintain a global set of constraints.

Constraints and properties are propagated from each leaf of a con�guration. Evaluating

the consistency of a feature speci�cation in Adele is directly supported.

When a con�guration in Adele is requested, Adele attempts to select versions of com-

ponents that satisfy the desired properties. If the request results in a consistent con�g-

uration, then the appropriate source �les for constructing the product with the desired

properties will be speci�ed in the con�guration list. Building the product from that

set of artifacts will result in a product that contains the desired features. Support for

product construction is therefore direct.

We were unable to determine the level of support Adele provides for status reporting,

because the Adele documentation does not contain information about built-in reporting

mechanisms. Adele does provide an \exec" command that will execute a set of actions

for each component in a con�guration. Depending upon whether the appropriate re-

porting actions would require programming, support for feature status reports is either

indirect or direct.

4.2.2.3 Feature Support in ClearCase

ClearCase [4, 5] is based on the composite model of con�guration management. The

concept of a software feature is not native to ClearCase. In ClearCase, all objects, called

elements, are stored in the Versioned Object Base (VOB). There is no prede�ned element

of type feature, so one would have to be created as a subtype of the text-�le element type.

To de�ne a feature, some mechanism must extract the feature from the requirements

72

documents. There is clearly no such pre-existing mechanism within ClearCase, so the

level of support for de�ning features is below direct. ClearCase does, however, support a

mechanism to customize checking in documents based on their type, which can be used

to ensure the consistency between a feature de�nition and the underlying requirements

documents; thus, the level of support is indirect.

ClearCase provides three mechanisms for creating relationships between elements: hyper-

links, labels, and attributes. Hyper-links are naturally oriented toward de�ning rela-

tionships, whereas with labels and attributes, relationships would have to be synthesized

by associating unique instances with the related entities. Unfortunately, hyper-links are

limited to applying to element versions, rather than elements themselves. They can be,

however, inherited by default as the versions evolve. Since hyper-links can be attributed,

they su�ce for de�ning any relationship type. Support for de�ning relationship types

and populating them is direct.

Feature checkout can be accomplished by de�ning feature workspaces, or views in

ClearCase parlance. De�ning views is done infrequently. De�ning feature views requires

creating a con�guration speci�cation that can exclude inappropriate elements based on

relationship information. If relationship information is encoded in element artifacts,

then support for feature checkout is direct, because the con�guration-speci�cation in-

terpreter can examine element attributes as shown below:

element -type requirements-doc * /main/{comprises=="feature a"}

element -type test-case * /main/{tests=="feature a"}

element -type source * /main/{implements=="feature a"}

ClearCase uses an extended form of Make [30] for product construction. There is in-

adequate support for product-consistency constraints based on an incorporated set of

73

features. ClearCase does not provide any consistency mechanisms that evaluate the

correctness of product speci�cations in the user-de�ned Make�les. As a result, support

for maintaining consistent product speci�cations is inadequate.

There are no built-in mechanisms for parameterizing product construction based on

feature sets. Such a mechanism would build a list of required source �les by examining

the feature relationships and then creating product versions based on the list. Such a

facility would have to be constructed within ClearCase. Therefore, support for feature-

based product construction is indirect.

Feature-status reports require a general facility for building element sets based on re-

lationship information. Unfortunately, there are few built-in mechanisms for building

such sets. Provided that such reports were requested within the context of a feature

view, the con�guration speci�cation might provide a su�cient mechanism. However,

the reporting mechanisms are based on the VOB rather than on speci�c views. Support

for feature-based reports is indirect.

4.2.2.4 Feature Support in Continuus

Continuus [18] is based on the composite model [29] of con�guration management.

In Continuus, objects are stored in the Continuus object pool, and every object is an

instance of a speci�c type. The Continuus type system can be extended with its typedef

facility.

There is no native concept of feature within Continuus. Features would most readily

be de�ned as a custom type of �le to be stored in the object pool. Continuus does

not provide a customized check-in functionality by type. There is no mechanism to

customize the check-in of a particular type, so feature de�nition requires a script to wrap

74

around the requirement document check in to invoke the object-creation command:

ccm create -type feature CallWaiting

to create the features contained in the requirements speci�cations. Since there is no way

to force users to check in documents using the wrapper program, there is inadequate

support for feature de�nition.

Relationship information in Continuus is created by using the relate command shown

below, which provides su�cient exibility because arbitrary relationships among arbi-

trary objects can be created. As with ClearCase, relationship information could be

synthesized by attaching labels to objects as well, but the relationship method is pre-

ferred as it is less tedious. De�ning relationships and relationship types in Continuus is

directly supported.

ccm relate -n RelationshipName -f FromObject -t ToObject

In Continuus, a feature checkout would be performed by creating a subproject in advance

that speci�es the relevant objects. Unfortunately, the method for creating a subproject

does not permit examining the relationship data during speci�cation interpretation time.

Support for feature checkout is indirect.

Product con�gurations are speci�ed using a Make variant within Continuus. The query

mechanism would be used to build information about the set of objects that should be

included in a particular product con�guration. However, there is no integration between

the query mechanism and the user-created product con�gurations that are embodied

in the Make�les. Support for determining the consistency of a product speci�cation is

inadequate.

75

Product construction is accomplished using Make speci�cations of the underlying prod-

uct composition. There are no mechanisms for parameterizing such speci�cations based

on a desired feature set. Support for feature-based product construction, which would

require building con�gurations based on feature relationships, is indirect.

The show command is used to examine the relationships that exist between versioned

objects. Integration of the results of this command with other actions is supported only

by interactively using a reference to the results in a subsequent command. For example,

no mechanism exists to generate a result from this command to use as input for feature

status reports; as a result, they do not achieve a direct level of support. Building such

a reporting mechanism would have to integrate the relationship and reporting facilities.

Support for feature reports is indirect.

4.2.3 Analysis of the Evaluation

Features are not a familiar concept to the con�guration management systems we studied.

None o�ers a native level of support for any activity in the evaluation framework.

Feature orientation poses challenges to all the systems we evaluated.

The most signi�cant challenge involves the level of integration of the basic facilities the

systems provide. Each system provides some mechanism for describing artifact proper-

ties and for recording relationships among artifacts. The di�culties arise when trying

to use these properties and relationships with the other facilities the systems provide.

For example, there is almost no integration between the relationship information and

the mechanisms for de�ning views and generating reports. In general, leveraging these

relationships requires signi�cant customization and end-user programming. Adele, in

contrast, uses �rst-order logic to express constraints, dependencies, and properties. As

76

a result, Adele is able to build con�gurations dynamically based on a speci�cation of

desired properties.

The most common operation needed to support features in con�guration management

is building a set of artifacts based on feature relationships. The systems vary in the level

of access that they provide to the relationship information. None provides any method

for calculating closure across a particular relationship type. Calculating a closure is

important to select all the needed features for the Require relationship identi�ed in

Section 3.2.2. As a result of this omission, programming is needed to create the desired

set.

In ADC a single command might create the desired set, and a second command could

use that set to provide access to the correct artifacts. For ClearCase, it would require

setting up in advance a project workspace that has a set of �lters to allow access to the

correct set of artifacts. The set of �lters is de�ned by speci�cation rules that do not

provide ready access to artifact relationships.

Of the systems we evaluated, Adele and ADC attempt to automate the construction of

build speci�cations. Adele selects appropriate artifacts during con�guration construc-

tion. ADC uses program scanners to build the relationships needed to create build

speci�cations: \calls-by-name" from function-id to function-name, \includes" from �le-

id to �le-name, and \contains" from �le-id to function-id.

The other systems rely upon user-de�ned Make�les to specify which source �les are

needed for speci�c products. All of these systems automate dependency checking for

�les included in the speci�ed source �les. Overall, Adele's �rst-order logic operations and

ADC's change-set approach are well suited for feature-based con�guration management.

Examining con�guration management and features has identi�ed needs unmet by com-

77

mercial systems. In current practice, features have no direct role within con�guration

management systems, despite change requests frequently being expressed in terms of a

system's features.

Each system provides mechanisms for de�ning types and creating relationships about

the artifacts under control. Maintaining these relationships as the products evolve

proves a greater challenge. The systems provide only primitive integration mechanisms

with external tools that might be used to generate these relationships from underlying

artifacts.

Perhaps the most consistent di�culty, however, is using the relationship data to drive

the other con�guration management activities. For instance, none of the systems had

reporting capabilities that produced reports after examination of the relationship infor-

mation.

Based upon the analysis of these con�guration management systems, we have identi�ed

several mechanisms consistently missing. Their inclusion would signi�cantly improve

the level of support. These are listed below:

� Incorporate features as a native concept,

� Use an artifact set created by an examination of relationship information in
product construction and workspace population,

� Create arbitrary con�gurations speci�ed by features,

� Support checking the consistency of product con�gurations based upon feature
relationship information, and

� Provide reporting based on arbitrary sets of artifacts.

78

4.3 Summary

This chapter examined the intersection between software features and con�guration

management and explored ideas for supporting feature relationships.

Here we have argued that con�guration management is vital to taking advantage of

feature information in software development. Presently, most con�guration management

systems are unaware of the features present in their systems. Without native support for

features, end-user programming is required to take advantage of the feature relationships

in system development.

There are many problems to a user-programming solution. End-user programs may

violate system constraints that might be enforced with native support. It also might

be necessary to duplicate information outside the con�guration management system,

which leads to the standard problems with maintaining consistency. Additionally, this

type of end-user programming squanders developer resources that are presumably better

deployed developing the desired system. A better solution is to design the con�guration

management system to provide native support for features.

Con�guration management at the feature level promises the ability to manage systems

at a higher level of abstraction than the current �le level. This enables con�guration

management tools to automate tedious and error-prone developer tasks, and it permits

developers to create richer con�guration interactions such as feature check out and

product construction based on a desired feature set. In the next section, we describe

the development of and our experiences with the use of IronMan, a prototype feature-

based con�guration management system.

Chapter 5

Feature-Based Con�guration Management Case Study

None of the con�guration management systems evaluated in Chapter 4 provides native

support of the activities speci�ed by the evaluation criteria. A goal of this research

was to gain experience managing software systems based on features. In the previous

chapter, we sketched strategies for building a feature-based con�guration management

system using several commercial systems. These systems are expensive, and licensing

arrangements typically con�ne their use to speci�c machines. To be able to demonstrate

the system we developed, it was implemented using RCS [84], a commonly-available

version management tool. Our system, IronMan, provides native-level support for the

activities described in the evaluation framework from Section 4.2.1.

In this chapter, we describe the mechanisms that IronMan provides in supporting

feature-based software development. Then we report our experiences using the sys-

tem with two software applications. Section 5.2 recounts our experiences developing

PerlPhone, a software telephone under feature-based con�guration management. Sec-

tion 5.3 describes our exploration and testing of Vim version 5.3 using IronMan to

manage development artifacts based on feature relationships. The �nal section summa-

rizes the results and identi�es the contributions from our experiences with feature-based

con�guration management.

80

5.1 A Feature-Based Con�guration Management System

IronMan is a prototype con�guration management system written in the Perl language.

It uses RCS to manage the storage and retrieval of development artifacts, which is

ultimately done at the �le level. Users, on the other hand, have access to the system

under development at the feature level. This section documents the mechanisms that

IronMan uses to support the feature-related activities identi�ed in Section 4.2.1.

5.1.1 De�ning Features

The �rst activity is de�ning the system's features. IronMan supports features as a native

artifact type using the same mechanisms used for �les and components. Every feature,

like all artifacts in IronMan, has a unique identity and can have arbitrary properties

associated with it.

IronMan's users can access and manipulate the features de�ned in the system using

options on the feature menu, depicted in Figure 5.1. The system stores information

about the features in a textual format, as shown in Figure 5.2. This information about

features is fundamental to all the other activities within IronMan.

5.1.2 Feature Relationships

The second requirement is the ability to de�ne and populate relationships involving

features. Our experience with feature-based con�guration management reinforced the

importance of the relationships between the various artifacts. As a result, we designed

IronMan with the ability to maintain arbitrary one-to-many relationships between ar-

bitrary artifact types. As a result, a relationship can exist from any instance of any

81

Figure 5.1: IronMan Feature Menu

11 => {

Name => 'registration',

ID => 11,

Note => 'Uses the RAS.pm network module',

ConfigFileLine => 'Registration=True',

Desc => 'register and use H.323 gatekeeper'

},

12 => {

Name => 'encryption',

ID => 12,

Note => 'uses IDEA',

ConfigFileLine => 'Encryption=True',

Desc => 'Encrypt voice/data traffic'

},

Figure 5.2: Example Feature De�nitions

artifact type to any number of artifacts of any other type. To keep track of this ex-

ibility, relationships are identi�ed by a three-part name. The �rst part of the name

de�nes the artifact type on the \from" side of the relationship. The second part iden-

ti�es the type of relationship; some examples are \requires," \tests," and \implement-

edby." The third part of the name is the artifact type of the \to" side of the rela-

tionship. An example should clarify this mechanism. An instance of the relationship

82

\feature.implementedby.component" associates with a feature all of the components

participating in its implementation. Figure 5.10, described later in this chapter, shows

the relationships between features and components within the PerlPhone application.

Figure 5.3 shows the set of relationships de�ned for the PerlPhone application.

Figure 5.3: Relationships De�ned for PerlPhone

To support the required feature operations, the system needs not only to be able to

de�ne relationships, it must also be able to operate over them. IronMan can calculate

closure over any relationship that exists between artifacts of the same type. These

relationship manipulation facilities are paramount to IronMan's ability to support the

feature-based activities. The algorithm for determining closure over a relationship is

shown below. Error checking in the example above has been removed for clarity and

brevity.

RelationshipClosure([Stack of IDs], {SeenSoFar}, "Relationship")

returns set of artifact in closure of "Relationship"

sub

RelationshipClosure

{

83

my ($stack, $seen, $relation) = @_;

Base case [StackOfIds] is empty

return sort numerically keys %$seen unless scalar @$stack;

Recursive case

-- Look at first item on the stack: id -> id*

-- mark id as seen, id* to the stack

my $id = pop(@$stack);

$seen->{$id}++;

Get all the relationships of type $relation

my $rshipref = $relationships->{$relation};

$string is the relation for the entity we're interested in;

my ($string) = grep /^$id:/, @$rshipref;

if ($string) ## Relationship stored id:id:id:id:...

{ ## artifact from ------^ ^--^--^---artifacts to

my ($me, @others) = split /:/, $string;

my $other;

foreach $other (@others)

{ push(@$stack, $other) unless $seen->{$other};

}

}

return RelationshipClosure($stack, $seen, $relation);

}

The closure algorithm uses recursion to examine the relationships. The �rst parameter

is a list of artifacts remaining to be searched. The second parameter is a reference

to a hash table that tracks artifacts that have been seen. The third parameter is the

relationship over which to calculate the closure. The base case for the recursion occurs

when the �rst parameter is empty. When there are no remaining artifacts to explore,

the algorithm simply returns all the artifacts that have been seen. In the recursive case,

the �rst artifact is taken o� the stack and marked as seen in the hash table. The next

step is to get the appropriate relationship. The hash table \relationships" contains all

information about relationships for the system under development. The appropriate

84

set of relationships is selected by accessing the table using the relationship name, given

by the third parameter, for example \feature.requires.feature." This returns all of the

instances for that relationship, so the next line must select the appropriate one for the

current artifact. The relationships are encoded as strings; in this example the string

\5:10:23:40" would indicate that the feature with the identity 5 requires features 10, 23,

and 40. If there is a relationship from the current artifact to other artifacts, the string

encoding it is split, and unseen artifacts are added to the stack to be examined via the

recursive call at the end of the function.

Inverting relationships is also a common task within IronMan. For instance, in the Vim

example, information to populate the \�le.de�nes.function" relationship is created using

the standard Unix tool cproto. When determining which �le a particular function is

de�ned in, this relationshipmust be inverted. Another example of inverting relationships

is used when a user de-selects a feature from a con�guration, described in more detail

in Section 5.1.4.

5.1.3 Checking Out Features

The third activity is the ability to check out a feature from the repository, which Iron-

Man supports as a native operation. To accomplish a feature check out, IronMan ex-

amines the set of de�ned relationships that describe the mapping between features and

feature implementation. Three relationships, \feature.implementedby.function," \fea-

ture.implementedby.�le," and \feature.implementedby.component," are candidates for

this mapping. The di�erent relationships support di�erent levels of granularity. By

default, IronMan searches for these relationships starting with the smallest granularity

to determine the correct artifact set to use in populating a workspace.

85

IronMan, like most con�guration management systems, works at the �le level when

storing and retrieving artifacts. As a result, to check out a selection of features, a feature

speci�cation must be translated to the set of �les to be retrieved from the repository.

Figures 5.4 and 5.5 show two possible schemas for performing this translation. IronMan

supports both methods.

Features

Functions

Files

delete

delete
Line

insert
complete

insert
complete

file

delete
motion

delete
range

delete
character

format

format
alignment

format
comments

format
textblock

insert
complete

tag

insert
complete
keyword

syntax
highlighting

JB D F L

C G KH

A E I M

Figure 5.4: Feature Relationships Based on Function Mapping

In Figure 5.4, which is loosely based on the editor Vim, features are related to the set of

functions that implement them, and functions are related to the set of �les that de�ne

them. IronMan uses the \feature.implementedby.function" and \�le.de�nes.function"

relationships to capture this information. The upper set of arrows represents the former

relationship, and the lower set represents the latter. The appropriate set of �les needed

86

to populate a workspace is assembled by the algorithm provided below.

Foreach feature id, add in the functions and any extra files

my @functions = (); ## New Empty Set

my @extraFiles = (); ## Start with no files

my $fid;

foreach $fid (@featureSelections)

{

my @set = CMLogic::FunctionsImplementingFeature($fid);

@functions = PerlUtils::SetUnion(\@set, \@all);

if ($includeTestFiles)

{

my @set = CMLogic::FilesTestingFeature($fid);

@extraFiles = PerlUtils::SetUnion(\@extraFiles, \@set);

}

if ($includeDocumentationFiles)

{

my @set = CMLogic::FilesDocumentingFeature($fid);

@extraFiles = PerlUtils::SetUnion(\@extraFiles, \@set);

}

}

Include functions for the core, if desired

if ($includeCoreFunctions)

{

my @core = CMLogic::CoreFunctions();

@functions = PerlUtils::SetUnion(\@core, \@functions);

}

Add the files together and check them out

my @files = CMLogic::FilesForTheseFunctions(@functions)

@files = PerlUtils::SetUnion(\@files, \@extraFiles);

CMLogic::FeatureCheckout(@files);

This computation runs in the background when a user requests that a feature be checked

out into a workspace. The array @featureSelections contains the set of features that

should be checked out. For each of these features, all the functions that contribute to

87

the feature implementation are checked added to a set of functions, using a set union

operation. If the user requests that test and documentation �les be included in the

workspace, any such �les associated with the feature are added to a �le set. After each

desired feature is so handled, the functions implementing the core are added to the

function set, again by a set union. The function \FilesForTheseFunctions" translates a

set of functions into the set of �les that implement them using the \�le.de�nes.function"

relationship. This set is combined with the documentation and test set, and the result

is checked out into the workspace.

In Figure 5.5, which is loosely based on the features and relationships in PerlPhone,

a di�erent strategy is used to determine the correct �les for a feature check out. Fea-

tures are related to components by the \component.implements.feature" relationship

(depicted by the top set of arrows), and components are related to �les by the \com-

ponent.implementedby.�le" relationship (depicted by the bottom set of arrows). The

algorithm used to check out features based on the component relationships is presented

and discussed in Section 5.2.

To summarize, in checking out a feature selection within IronMan, the user simply

chooses the desired feature set and the relationship information is processed to determine

the appropriate artifacts. Figure 5.6 shows the user interface provided for selecting the

desired features. Check-in is the inverse operation from check-out. There are two

approaches that the system can use to maintain consistency when artifacts are checked

in. When the relationship information is generated with external tools the system

can invoke the tools to regenerate the appropriate information. When information

is maintained manually, the system looks up relationship information associated with

the artifact, and it can prompt the user to update any relationships that might have

changed.

88

Components

Directory

Script
Engine

Services
Manager

GUI

Audio Sign aling

Database

Network

Features

Tutorial

ScriptingConsole GUI

Voice Mail

Recording Directory

AutoAttendantUses

A E I MFiles

JB D F L

C G KH

Figure 5.5: Feature Relationships Based on Component Mapping

5.1.4 Con�guration Consistency

The fourth requirement is the ability to evaluate the consistency of a product speci�-

cation. IronMan takes advantage of the relationship information to ensure that system

speci�cations are always consistent. As a result, no feature can be added to a product

speci�cation if it conicts with the existing feature set.

Product speci�cations are accomplished by selecting a set of features desired for the

system. IronMan evaluates the feature-to-feature relationships and enforces consistency

in the speci�cation. An example of specifying a feature set is shown in Figure 5.6.

89

Figure 5.6: Specifying a System Con�guration

The example in Figure 5.6 is from the PerlPhone application. Selecting the picture-

Phone feature caused both the T120 and the gui features to be included in the selec-

tion because there is a \feature.requires.feature" relationship speci�ed between picture-

Phone and those two features. A similar relationship holds between callHistory and

eventLogging. So, removing eventLogging from the speci�ed product also removes

callHistory. In addition, to the \feature.requires.feature" relationship, product spec-

i�cation obeys constraints from the \feature.excludes.feature" relationship as well. In

the con�guration shown in Figure 5.6, the feature gui excludes the feature console".

As a result, the console feature cannot be selected unless the gui feature is removed.

Therefore it is not possible to specify an inconsistent system con�guration including

90

both picturePhone and console.

Maintaining product consistency makes use of the ability to calculate closure over the

feature relationships. Each attempted change to the speci�cation is checked in real time

against the relationship information. In the code example below, the user has de-selected

a feature, say T120, from the active con�guration. As a result of removing a feature,

any features that require that feature must also be removed. In the case of PerlPhone

and T120, this means that picturePhone must be removed. Making this determination

requires calculating a closure over the relationship \feature.requiredby.feature." Since

\feature.requiredby.feature" is the inverse relationship of the one actually maintained,

\feature.requires.feature," closure over the inverted relationship is calculated as shown

below.

Figure out which features were deselected

my @lostFids = PerlUtils::SetDifference(\@featureSelections, \@fids);

print "Getting rid of these fids [@lostFids]\n" if $debug;

Closure determines all that have to be removed

my @closure = CMLogic::InvertedRelationshipClosure(

\@lostFids,

{},

'feature.requires.feature');

Now, remove these from the configuration

@featureSelections =

PerlUtils::SetDifference(\@featureSelections, \@closure);

In the code provided above, the user has de-selected a feature using the interface shown

in Figure 5.6. The array @featureSelections always maintains a consistent set of features

for the product speci�cation. A temporary set of features is contained in the array @�ds,

which is created as soon as a user removes a feature from the con�guration. This might

not be a consistent set. The features to be removed are determined by a set di�erence

91

between the consistent set and the temporary set; they are stored in the array @lostFids.

To determine all the features that have to be removed to ensure a consistent set after

a con�guration change, the relationship closure is calculated for each of the de-selected

features. The project associated with this code sample maintains the relationship \fea-

ture.requires.feature" rather than its inverse \feature.requiredby.feature," which could

be used to calculate the closure directly. So, the closure must be calculated by inverting

the existing relationship. Once this is calculated, a consistent set of features is restored

by removing the features in the array @closure from @featureSelections.

Enforcing consistency during system speci�cation proved to be a compelling application

of feature relationships. It relieves the developer of the burden of remembering poten-

tially complex relationships, and it puts some con�guration back into con�guration

management.

5.1.5 Building System Con�gurations

The �fth requirement is the ability to build products based on feature speci�cation,

which relies heavily upon the speci�cation of system con�gurations. IronMan supports

two mechanisms for parameterizing system con�gurations for the included features. The

simplest method is building a con�guration �le based on each of the features in a sys-

tem speci�cation. In the feature information shown in Figure 5.2, any \Con�gFileLine"

entries are added to a con�guration �le that is created for the system. This �rst mech-

anism was used during the development of the PerlPhone application. The code that

supports creating a con�guration �le in the workspace directory is shown below.

my $configString;

my $fid;

92

foreach $fid (@featureSelections)

{

my $string = CMLogic::FeatureProperty($fid, 'ConfigFileLine');

chomp($string);

$configString .= $string . "\n";

}

PerlUtils::WriteFile($configFileName, $workspace, $configString);

In this code, for each feature in the desired con�guration, the property information is

assembled into a �le that gets written into the workspace. A second option works in

a similar manner: If the line \BuildParameter" is part of a feature's properties, then

that line is added to the �le \Build.fx.include" to be included when building the system

components.

The con�guration lines can be added to a Make�le for a particular system, or they can

serve as documentation to the developer. Frequently, as in the case of Vim 5.3, building

the system depends on a con�guration script as well as a Make�le. Accommodating

the wide variety of build mechanisms that exist for di�erent applications is an area of

future work in feature engineering.

5.1.6 Feature Reports

The �nal requirement for feature-based con�guration management is the ability to gen-

erate reports based on the features in the system. IronMan provides reports on all of

the di�erent artifact types known to the system, including components, �les, functions,

and relationships. Figures 5.7 and 5.8 depict some of these reports. IronMan is also

capable of aggregating information about the features in a speci�c con�guration, which

takes advantage of the mechanisms shown above to compute a set of artifacts and then

use that set as input into the status reporting mechanisms.

93

Figure 5.7: Report of Features in the System

Figure 5.8: Report of Functions De�ned in a File

94

IronMan was designed to provide native support for managing systems based on the

features they contain. This section provides detailed information about the mechanisms

that were implemented to provide this support.

In the next sections, we report on our experiences using the system with two di�erent

software applications, PerlPhone|a software telephone, and version 5.3 of the Vim ed-

itor. substantially di�erent software applications. They di�er in size by more than an

order of magnitude, in implementation language, types of artifacts, and granularity of

relationships. These di�erences led to di�erent experiences with feature-based con�g-

uration management. Nonetheless, both applications have interesting feature sets that

provided rich opportunities for con�guration management.

5.2 PerlPhone - A Software Telephone

PerlPhone is a software telephone developed using the Perl language for user interface

and control, and the language C for low-level sound and network-device manipulation.

The application consists of 9 C source �les, containing 1,500 lines of code, and 15 Perl

�les, containing 7,500 lines of code. IronMan was used throughout the development of

PerlPhone. PerlPhone is a prototype system used to explore Internet telephony.

PerlPhone supports more than a dozen features that could optionally be included in

system con�gurations. Several of these features, such as callerId and callWaiting, were

developed to mimic features on standard telephone networks. Other features, such

as picturePhone and encryption, were targeted at taking advantage of the computer

platform that hosted the application, and are shown in Figure 5.6.

PerlPhone's architecture consists of more than a dozen components, four of which make

up the system core; the remaining components are optionally included based on the

95

desired features. The non-core components were added to a system con�guration based

on the desired set of features. The components are shown in Figure 5.9.

Figure 5.9: PerlPhone Components

The �rst step to managing a software development within IronMan is de�ning the

entities and relationships. Since there was a de�ned architecture for PerlPhone, the

relationship set in IronMan included relationships involving components. In contrast,

the Vim application did not have a de�ned architecture, so there are no components

or component relationships in that project. Two important relationships are \compo-

nent.implementedby.�le" and \component.implements.feature."

Figure 5.10 shows the instances of these relationships in the PerlPhone application. The

top row of boxes represents the system's features, and the diamonds are the applica-

96

Features

Components

Files

console

Console

registration

RAS

encryption

CPhoneLib

callHistory

CallHistory

recording

AudioManager

directory

Directory GUIDirectory

fileTransfer

NetManager Datagram

eventLogging

EventLogging

compressionmutecallerIdcallWaitingcallForwardBusyLinevoiceMailsoundEffectspicturePhone

GUI

T120

ControlChannel

gui

UIManager Build

Phone_pm

IceHouse

Directory_pm

Callbacks

CallHistory_pm EventLogging_pm Datagram_pm ControlChannel_pmRAS_pm Callbacks_pm Build_pm PerlUtils_pm v RTTKUtil_pm AudioManager_pm PhoneInterface_h PhoneInterface_c libcphone_a Datagram_c Datagram_h Dsp_c Dsp_h RingBuffer_c RingBuffer_h

Formatter

IceHouse_pm Formatter_pm

Figure 5.10: PerlPhone Feature Relationships

tion's components. The components comprising the system core are the four shaded

diamonds. The lines between the features and the components depict the \compo-

nent.implements.feature" relationship. The circles at the bottom represent the source

code �les for the system. Lines between the components and the �les represent instances

of the \component.implementedby.�le" relationship. Using these two relationships, it is

possible to determine an appropriate set of artifacts for checking out speci�c features.

Part of the IronMan code for doing so is shown below.

Build the set of components

foreach $feature (@features)

{

my @set = ComponentsImplementingFeature($feature);

@components = PerlUtils::SetUnion(\@components, \@set);

}

my @core = $includeCore ? CoreComponents() : ();

@components = PerlUtils::SetUnion(\@core, \@components);

Translate into files using ``component.implementby.file''

my %files = ();

my $cid;

97

foreach $cid (@components)

{

my @files = FilesForThisComponent($cid);

my $file;

foreach $file (@files)

{

$files{$file}++;

}

Checkout the files

my @files = keys %files;

CMLogic::FeatureCheckout(@files);

In this code, checking out a selection of features is accomplished by �nding all the

components that contribute to the desired feature set, thereby creating a component

set, built by combining the components for each individual feature. If desired, the

core components are included in the component set. In the second loop, the �les that

implement each component are assembled by noting their presence in hash table. Then

these �les are checked out into a workspace.

Individual �les are retrieved from the archive using the former relationship for each

component in the component set. This two-level mapping from features to the �les that

actually implement them was devised for two reasons: First, the mapping from feature

to component that implements the feature would be of su�ciently high granularity

that maintaining this relationship manually would not place a signi�cant burden on

system developers. Second, the mapping from component to �les is generally available

from sources such as Make�les and build scripts. Thus the second mapping creates no

additional burden on developers.

Our experience with this strategy led to two conclusions. First, the large granularity of

the feature-to-component mapping caused more �les to be checked out than required

by the feature's implementation. When manually maintaining these relationships, there

98

is a trade o� between the e�ort required and the precision of the mapping to feature

implementation. The second conclusion is that automatic methods to collect structured

information concerning artifacts in the problem are essential. The relationships involv-

ing the components had to be updated whenever the components changed. Keeping

the relationships synchronized with the underlying software was arduous, even for a

relatively small system such as PerlPhone. One way to facilitate maintaining this in-

formation manually is to have the developer specify what changes have been made to

the exiting relationships upon artifact check-in, a signi�cant burden, even when the

relationships reect a high level of granularity. To the greatest extent possible, relation-

ships should be maintained mechanically rather than through developer diligence. As

a result, a small set of tools to analyze source code and populate the relationships for

IronMan was created.

Aside from the engineering required to develop and maintain the set of relationships,

con�guration management based on feature information proved to be valuable in a

number of aspects. Being able to see the feature set de�ned for a system is helpful.

Information about what components contribute to the implementation of speci�c fea-

tures was also useful. The system developer was not forced to remember what �les were

needed to work on each particular feature. For a small system, �ltering through the �les

was not particularly onerous, but capturing the information and reusing it was clearly

an improvement over recreating it repeatedly.

Another useful activity was specifying system con�gurations. Figure 5.6 shows this

activity for PerlPhone. Having the system process the relationships among features

facilitates understanding how features interact. When a user attempts to add a feature

that would create an inconsistent con�guration, feedback is provided that identi�es

the features in conict. This immediate feedback is valuable for con�guration under-

99

standing; it relieves developers from having to remember the details of the inter-feature

relationships and eliminates the possibility of inconsistent con�gurations.

Di�erent workspaces were created to support the development of separate features.

Checking out a feature and the core components into a workspace permits running the

version of the system that includes just the features under development. Since IronMan

also generates a con�guration �le for the system, the developer did not have to remember

how to con�gure the system for the particular feature. Once again, recording and reusing

information proved a better approach than continually recreating it.

Overall, feature-based con�guration management of PerlPhone provided attractive ad-

vantages. Our experiences have led to a better understanding of the costs and bene�ts

of managing software con�gurations based on the features in the systems. The costs

are centered around the di�culty in maintaining structured information about a system

under development. The more rapidly the system changes and the larger the system,

the more imperative it becomes to generate such information. Once the information is

available, however, it can be used to advantage in software development projects. The

demonstrated bene�ts of feature-based con�guration management are greater con�gu-

ration understanding, more insight into the relationships between system artifacts, and

less memory burden placed on developers.

5.3 The Vim Editor

The second system that used IronMan is the Vim editor. Here we briey describe

Vim and its artifacts and then discuss our experiences with feature-based con�guration

management of Vim. Vim was the subject of our feature testing e�ort; more detailed

information about this system is provided in Section 6.3.1. We were not actively mod-

100

ifying the Vim source code for actual development of the application, but we were able

to use the con�guration management system to explore the development artifacts and

feature relationships within the system. Vim is an order of magnitude larger than the

PerlPhone application. The software, documentation, and test cases comprise hundreds

of �les, which are recorded in IronMan. The 1,453 functions linked into the application

are also duly recorded as artifacts, enabling operations such as displaying the functions

de�ned in each source �le. Managing con�gurations of this scale is signi�cantly more

challenging, and the value of having feature information associated with the develop-

ment artifacts is concomitantly greater.

The Vim 5.3 distribution lacks any documentation of the system's software architecture,

and all object �les are linked directly into the single application executable. As a result,

we did not de�ne any components or component relationships in IronMan.

As part of the testing e�ort described in Chapter 6, we decomposed Vim's function-

ality into a hierarchy of features. Vim supports scores of features, which are listed in

Appendix A. All these features are modeled in IronMan. There are few relationships

among the features in Vim. The abstract features in the functional decomposition did

participate in the \feature.abstracts.feature" relationship. The other example, \fea-

ture.composes.feature," indicates that new features are created by a combination of

concrete features. In contrast to the PerlPhone application, Vim is built with the fea-

tures coexisting. As a result, con�guration speci�cation was less interesting with this

application. We envision, however, that the combination of large-scale application with

features that have signi�cant Require and Exclude relationships would make this con-

�guration management function exceptionally compelling.

Relationships between other artifacts include \feature.implementedby.�le," \feature.testedby.�le,"

and \feature.implementedby.function." These relationships supporting feature-based

101

con�guration management with Vim are of smaller granularity than with the PerlPhone

project. Using this �ne-grained information was possible, despite the much larger num-

ber of features and �les, due to better tools to support for extracting the relationships.

A standard tool for extracting function prototypes from C source �les, cproto, was

used to populate the \�le.de�nes.function" relationship. An example of the information

provided by this relationship is shown in Figure 5.8.

Execution of feature tests using an instrumented version of Vim provided informa-

tion about the mapping from feature to feature implementation. This information was

used to populate the \feature.implementedby.function" relationship. With these two

relationships populated, it was possible to perform the feature check out operation.

Figure 5.11 shows these relationships for Vim. Artifacts in this �gure are reduced to a

very small scale, e�ectively points on a line, because of the large number of functions

in the application; as a result, it is not possible to identify speci�c artifacts. There are

three horizontal lines in the �gure representing, from top to bottom, the concrete fea-

tures, functions, and �les in the application. Lines from features to functions depict the

mapping from feature to feature implementation identi�ed from feature testing. The

mappings shown here are for the 21 concrete features that were used in Vim's feature

testing. This �gure shows that features and �ls are di�erent organizational structures

for the system's functions.

Feature check out using these relationships is possible because the relationship informa-

tion is generated from feature test executions rather than being maintained by hand.

Manually maintaining information of this detail on a system the size of Vim is untenable.

Since the information was generated using the tool suite and methods we created, the

incremental cost of the information was minimal; the bene�ts were not. We were able

to checkout workspaces that were populated with the �les that implemented speci�c

102

Features

Functions

Files

aabbr_addabbr_clearabbr_displayarglist_displayarglist_firstarglist_lastarglist_nextarglist_previousautocommandsbackup_autosavebackup_preservebackup_recoverbinary_editingbuffer_changebuffer_displaybuffer_editbuffer_hidebuffer_removebuffer_unhidechange_casedecrement_number filter_textincrement_numbermove_text pattern_based_substitutionreplace_textretabshift_textcopy_textdelete_charsdelete_linebreaksdelete_linesdelete_motiondelete_range delete_text_objectalign_textformat_commentsformat_textblockautoindentcindentlispindentsmartindenttab_handlinginsert_complete_filenameinsert_complete_keywordinsert_complete_lineinsert_complete_macro_definition insert_complete_taginsert_change_indentinsert_characters_from_line_aboveinsert_characters_from_line_belowinsert_digraphsinsert_linebreaksinsert_literal insert_register_contentsinsert_textpaste_textpaste_text_adjust_indentcommand_completioncommand_execute_during_insertcommand_execute_registercommand_execute_filecommand_historycommand_repeat_over_rangecommand_shell_executionoption_displayoption_invertoption_resetoption_setread_modelinecscope_integrationjump_commentjump_file_positionjump_file_under_cursor jump_item_under_cursorjump_jumpjump_line jump_markjump_matched_itemjump_quickfixjump_screenjump_search jump_tagjump_tag_backjump_text_objectwindow_cursor_downwindow_cursor_upline_charactersline_findline_positionline_downbline_upscroll_cursor_relativescroll_downscroll_horizontalscroll_updisplay_ascii_valuedisplay_current_file_namedisplay_cursor_position_in_filedisplay_directorydisplay_filesdisplay_grepdisplay_intro_screendisplay_jump_listdisplay_linedisplay_line_numberdisplay_line_numbersdisplay_linesdisplay_lines_containing_keyworddisplay_macro_definitiondisplay_screendisplay_version_infomark_displayregister_displaytag_displayfile_formatsfile_manipulationgui helpkey_mappingkeyword_lookupleave_abandon_changesleave_exitleave_suspendmark_setmark_set_fileole_integrationperl_integrationpython_integrationqf_firstqf_grepqf_lastqf_load_errorfileqf_makeqf_nextqf_previousexecute_registerrecord_keystrokesregister_append_textregister_fill_with_textregister_paste_contentsright_to_left_editingshell_restrictionresource_file_restrictionsleepsyntax_highlightingtag_display_matchingtag_firsttag_lasttag_nexttag_previoustag_selecttcl_integrationredo_undone_changerestore_lineundo_changeuser_commandsuser_functionsvisual_modewindow_closewindow_decrease_sizewindow_exchangewindow_increase_sizewindow_newwindow_onlywindow_resize window_rotate_downwindow_rotate_upwindow_size_equalwindow_split

cdefg

marks

i

Figure 5.11: Vim Feature Relationships

features. This proved very helpful in searching for feature interaction in the source

code. While we were not actively developing the Vim application, it is easy to imagine

that such workspaces would relieve the developer of having to search through the scores

of �les to change a particular feature. Since IronMan is able to include test cases in

these workspaces, it is possible to change a feature implementation and immediately

execute the feature tests.

Information about the mapping from feature to feature implementation permitted check-

ing out �les contributing to a feature's implementation. Since Vim was not a familiar

application, IronMan's ability to produce feature-based status reports was especially

valuable. We were, for instance, able to examine the functions that implemented par-

ticular features, as well functions that constituted our de�nition of core.

103

5.4 Conclusion

IronMan permitted putting our ideas about the intersection between con�guration man-

agement and features into practice. Our experiences con�rm that con�guration manage-

ment is pivotal to using feature relationships successfully in system development. There

are several speci�c conclusions that we can take from our encounter with feature-based

con�guration management.

Maintaining structured information about a system under development is a signi�cant

challenge, even with smaller applications. We see this as a speci�c instance of a general

problem in software engineering that we refer to as the \mapping problem." Information

about system structure degrades as the underlying system evolves. PerlPhone consists

of only 7,500 lines of Perl code and 1,500 lines of C code, yet manual maintenance

of the information was taxing. We are able to make a distinction between problem-

space information and solution-space information. Making changes to the information

about the features themselves was not overly burdensome. In general, problem-space

information tends to change infrequently. On the other hand, maintaining structured

information about the problem space is an impediment to change. Without tool support

to eliminate the mapping problem, maintaining the relationship information required

to take advantage of features within con�guration management will prove a signi�cant

burden on developers.

Three approaches are commonly used to combat speci�c instances of the mapping prob-

lem. One is to allow the information to degrade and intermittently recreate the infor-

mation by hand. This stop-and-resync method is tedious and virtually guarantees that

the structural information will be out of date most of the time. The second approach is

to use the structured information to generate the underlying system artifacts. Unfortu-

104

nately, domains in which speci�cations are rich enough, for example databases [7] and

compiler generation [34], are the minority. The third approach is to generate the infor-

mation from the underlying system artifacts. This requires developing both methods

and tools to create the information.

When there are automated means to create feature information, feature-based con�gura-

tion management was not an impediment to development; the extensions to traditional

con�guration management proved to be useful and engaging. By making this informa-

tion explicit, it was no longer necessary to �lter the entire set of artifacts to identify the

ones associated with the features of interest. A typical example involves the test cases

for Vim. To determine which test cases applied to a particular feature, one could sim-

ply ask the system to �nd all the artifacts satisfying the \�le.tests.feature" relationship

for that particular feature. When working on a particular feature, the system could

populate the appropriate workspace with the feature tests, saving the developer much

tedious and error-prone work.

Looking forward, there are many opportunities for future work. Clearly, having infor-

mation about speci�c functions but checking out �les reduces the precision of a feature

check out. A strategy for taking advantage of this information would further help iden-

tify the feature implementation for developers.

Parameterizing system construction by a feature set is an engineering challenge due

to the variety of methods used to building systems. A common approach that many

con�guration management systems employ is a custom version of make. Some research

e�orts [56] seek to extend make to support system variation and optional components.

Incorporating this technique could prove fruitful, at the cost of requiring developers to

adopt a non-standard construction tool.

Chapter 6

Features and Testing

The third major area covered in this dissertation is the application of the feature frame-

work to software testing. The goals are to explore the role of features in software

testing, to gain a deeper understanding of the nature of a system core, and to validate

the conjectures in Section 3.3.2.3.

This chapter covers that work and has the following organization: We begin with a

brief introduction to software testing. Then we apply the feature framework to testing,

searching for insight into how understanding a system's features can guide and improve

the testing e�ort. We explore the concept of feature testing and then describe how to

use feature tests to discover information about the underlying software. To validate our

ideas about the role of features in testing, we present a case study applying them to

a real-world application. Finally, the chapter concludes with a summary of the results

from this work and an identi�cation of issues for future research.

6.1 An Introduction to Testing

We start with a brief review of the discipline of software testing, which has the goals of

�nding defects and developing con�dence in the software's quality. Software testing is

106

a fundamental part of software development. Large systems require massive test suites

that can take days to run and to analyze. Good testing is a di�cult task, requiring

signi�cant resource costs in developing and executing test cases and then analyzing

the results. In general, complex systems cannot be certi�ed as \bug-free." Even more

rigorous approaches, like Cleanroom Software Engineering [58], serve to reduce defect

rate rather than produce awless code.

Traditional testing organization includes three levels: unit testing, integration testing,

and system testing. An additional level, acceptance testing, is outside consideration for

our purposes; it is done to demonstrate to the customer that a system meets speci�ed

acceptance criteria.

Unit testing is rooted in the solution domain; unit tests are designed to ensure that

individual functions, methods and classes work correctly. Software developers are fre-

quently responsible for performing unit tests on the code artifacts they create. The

subjects of unit testing are of small granularity and rarely have direct associations with

system requirements but rather with detailed design speci�cations.

Integration testing targets components and subsystems. Its goal is to test the system

architecture and the subsystems that implement it. At the integration testing level, it is

possible to identify some requirements that apply to modules and subsystems, so testing

at this level is guided by both requirements speci�cations and design speci�cations.

System testing is designed to exercise an entire system and test conformance to the

system requirements. For large systems, the complexity of the underlying software

forces the volume of system test cases to be large, which leads to a signi�cant problem:

it is often too expensive to test an entire system exhaustively, especially after making

minor changes or enhancements. For instance, consider modifying the semantics of

107

the interface to a function. That small change can have rami�cations throughout the

system; every location in the source code that relies upon the interface might be broken

by the change. In a loosely-coupled design, the impact should be isolated. Maintaining

information about the semantic interdependence of each function is, in practice, too

costly to be feasible.

Promoting features to �rst-class objects helps address this problem. The next section

describes how information about the features in a system can help guide the testing

e�ort and identify appropriate test cases to run following system modi�cations.

6.2 Applying Features to Testing

In Section 3.3.2.3, we discussed possible rami�cations of feature engineering on testing.

In this section, we fully develop the ideas introduced there. Changes to software systems

can be classi�ed along two broad types. First, there are systemic changes that involve

adding to or modifying the system infrastructure or system architecture. These changes

are generally targeted at the routines that comprise the system core. Examples of such

changes are porting a system to a new platform, changing the mechanisms for accessing

and storing data, and changing the architectural style [68, 77] of the system. These

systemic changes require testing at all the traditional levels. When a systemic change

is con�ned in scope to a single subsystem, then unit and integration testing might be

su�cient, but in the general case there is little hope of and limited utility to bounding

the testing e�ort as a result of systemic changes. Fortunately, systemic changes are

infrequent as a system's architecture is relatively stable.

The second class of changes is much more frequent; these changes involve addition to or

modi�cation of a system's features. A system's users conceptualize its functionality in

108

terms of the features it provides. As a result, change requests are frequently presented

in the same terms; here the feature framework creates compelling synergies. If the

system requirements are modularized in the same form as the modi�cation requests,

then it is natural to associate the change request with the relevant requirements. This

organization demonstrates the bene�ts of having tests targeted at individual features.

Changes to the requirements that constitute a feature can be quickly reected in tests

that target the changed feature. Such targeted tests, or feature tests, are considered

below.

6.2.1 Feature Tests

Feature testing is a natural extension of the traditional testing model. It suggests a

testing organization complementary to traditional testing e�orts, and this organization

is depicted in Figure 6.1. Each feature test links the requirements to a feature to

the behavior of the feature implementation in the system. A characteristic common

to many features is that their implementations frequently cut across the architectural

decomposition of the system. As a result, the scope of feature tests generally cuts across

the three traditional testing levels. When a feature implementation is con�ned to a single

module, testing that feature corresponds to a unit test at the feature level. For feature

implementations that span multiple modules, feature tests represent integration testing,

which is di�erent from attempts to test module interfaces exhaustively.

Since features are de�ned by a collection of requirements, they are excellent candidates

for direct test subjects, and since many changes are changes to speci�c features, there

is great utility in having feature tests. Part of our work validating Vim's feature tests

revealed that two feature tests were incomplete. The tests that we developed did not

completely cover the features' behavior. The feature tests were easy to extend by adding

109

additional test cases. The existence of feature tests permits checking the full range of

system requirements composed by the individual features. Relationships involved in

feature testing are depicted in Figure 6.1. The feature tests embody knowledge of the

feature requirements to ensure that the feature implementations faithfully adhere to the

desired requirements. Ideally, each identi�ed feature in a system should have associated

feature tests.

System
Implementat ion

Requi rements
Speci f icat ion

Figure 6.1: Feature Testing Entities

Evidence of increasing adoption of testing targeted at speci�c system features is pre-

sented by Cusumano and Selby [19]. They report that several application development

teams at Microsoft organize testing e�orts by creating feature teams. Such feature

teams are a project-management reection of feature testing. In addition, observations

of several testing e�orts show that many individual test cases actually represent feature

tests, which is again con�rmed in the case study we describe in Section 6.3.

The features in a system are ideally organized hierarchically, and a parallel organization

110

of feature tests also makes sense. Abstract features are composed of a set of concrete

features, so abstract features would be tested by thoroughly testing each of the con-

stituent concrete features. By developing feature test suites that mirror the structure

of the functional decomposition identi�ed during the requirements e�ort, it is simple to

determine which feature tests need to be run as a minimal response to feature changes.

It is important to remember that having a test set that completely exercises a feature's

functionality does not ensure that changes to the feature's implementation will not be

deleterious to other aspects of the system or that a feature is implemented correctly. As

in all testing, passing a test suite, even one with 100 percent code coverage, does not

prove a system defect-free.

Additional bene�ts accrue from developing feature tests. The features in a system

usually exhibit signi�cant interactions, and developing tests for feature interactions is

more di�cult than developing tests for features in isolation. Each feature has a range of

behavior, and two features together have a range of behavior that is the product of the

individual behaviors. Having feature tests not only serves to document the expected

behavior of a feature in isolation, but it also serves as a starting point for testing feature

interactions. A feature implementation is a subset of the solution-domain artifacts

outside the core. If this subset is known, coverage criteria can be applied to a feature

test suite to evaluate its e�ectiveness in covering the implementation artifacts.

6.2.2 Using Feature Tests to Discover Feature Relationships

Feature testing is facilitated by a well-understood feature set, which should be a direct

result of the functional decomposition that results from the domain analysis and re-

quirements elicitation. A number of feature relationships, however, exist in the solution

111

domain and thus will not be identi�ed by the requirements e�ort. This section describes

in detail a method to use feature tests to recover one of the most important of these

relationships, the mapping from a feature to its implementation. In the next section,

we consider a method for discovering feature interactions in a system.

6.2.2.1 Identifying Feature Implementation

The primary relationship of interest is the mapping from a feature to the set of ob-

jects that implement it. The mapping is frequently complex, hence di�cult for system

developers to generate and maintain. Chapter 5 demonstrates using the relationship

information within con�guration management activities. Solution domain artifacts that

belong to this mapping can be identi�ed by combining feature testing with source code

instrumentation.

The method to determine feature implementation from feature tests is outlined in Ta-

ble 6.1. Below, we explain the method, step by step.

Step Action

1 Instrument source code

2 De�ne system core

3 Create feature test suite

4 Create shadow tests

5 Execute feature tests and shadow tests

6 Calculate feature implementations

Table 6.1: Method for discovering feature implementation from feature tests

Step one is to instrument the source code and build an instrumented version of the

application. Source code pro�lers and coverage tools are candidates for automatically

generating the instrumentation, which should record each entry into every function

de�ned by the application. This excludes standard system library functions, but it

112

includes library functions de�ned by the application. The point of the instrumentation

is to be able to run the application and then to generate a report of the functions entered

during the execution.

Step two is to identify the routines in the application that comprise the system

core. This involves identifying the infrastructure that supports the application. In

the telecommunications switching domain, core infrastructure would include routines

to convert voice samples between analog and digital, subscriber-database implementa-

tion, time-slot interchange for communication among modules, routing tables, protocol

stacks for communication links, and administrative functions that support the abstract

switching machine described in Section 2.1. For the editing domain evaluated in the

case study, the core consists of routines to read and write to the terminal, in-memory

management of the text in bu�ers, error messaging, command parsing and dispatch, and

�le input and output routines. While there may be mechanical methods to approximate

the contents of the core, truly identifying the core requires making decisions based on an

understanding of the application design and development artifacts. It should be noted

that the determination of core versus non-core necessarily involves judgment. There-

fore, it is not productive to strive for an objectively perfect classi�cation. However, the

better the estimation, the better the results that will be achieved in identifying feature

implementations.

Step three is to de�ne a feature test suite that contains a set of tests that exercise

the feature. Ideally, the tests that comprise this suite are minimal; they should exercise

as little functionality as possible outside of the speci�c feature. In practice this goal

is di�cult to achieve. Part of a test design requires creating output or some other

indication that the test has been executed successfully. For example, in the case study

in Section 6.3, speci�c lines from the edit bu�er are written to a �le that is later

113

compared with \golden output" known to be correct. In the next step, we account for

the extra functionality in the feature test.

Step four is to create a duplicate test, called a shadow test, for each test in the

feature-test suite. The shadow test should be almost identical to the feature test,

except it should not exercise the feature. The notion of shadow tests is novel and will

be explained; in the �nal step the shadow test is used to �lter out extraneous system

functionality.

Test design depends on the features being tested, the properties of the underlying ap-

plication, and the test-execution mechanisms. Di�erent applications require di�erent

testing strategies. Whatever the strategy, all tests involve methods of invoking appli-

cation functionality; the speci�c methods are determined based on the above factors.

For an editor, features are most frequently invoked by key sequences from a user. In

a compiler, features are activated by command-line switches and the characteristics of

the code to be compiled. In a telephone switch, features are activated by electrical sig-

nals on subscriber lines, by input from management terminals, and by input from SS7

signaling links [76]. As these examples demonstrate, the exact execution mechanism

depends on the methods required to activate the system's features.

Shadow tests are created to exercise any functionality incidental to the associated feature

test. For an editor, this means starting the application, loading the same text in the

bu�er, and mimicking the feature test except for the key sequences that invoke the

feature being tested. For a compiler, this means invoking the compiler with any switches

from the feature test that do not invoke the tested feature and using input code identical

to that of the feature test, except where it involves the feature. For a telephone switch,

a shadow test uses the same call setup, switch con�guration, and control signals as the

feature test. For example, a shadow test for the call-waiting feature would include an

114

incoming call to a subscriber line that does not have the feature activated, whereas in

the feature test the call-waiting would be active on the subscriber's line. As a result,

the feature executes in one test and not the other. In the general case, some degree of

design ingenuity will be required to excise the feature from the shadow test. Having

little variation between the two test executions improves the ability of the shadow test

to screen out incidental execution of system functionality. Naturally, this can be a more

di�cult goal to achieve for large, non-deterministic systems, such as telephony switches.

In Section 6.3.3.4 we provide a speci�c example of a shadow test for the Vim editor;

the example demonstrates concretely how a shadow test can exercise extraneous func-

tionality of a feature test without exercising the feature. We also consider the di�culty

involved in creating shadow tests. In Section 6.3.4.2 we evaluate the e�ectiveness of

the shadow tests and consider this method's applicability to other types of software.

Step �ve is to run each test and its companion shadow test using the instrumented

version of the executable. The instrumentation code should be able to keep track of each

function entry during a test execution. Separate execution traces should be captured for

each individual test case and each individual shadow test case. An example is described

below.

Step six is to calculate the feature implementation. Given all of the execution traces,

which we will call coverages, the implementation objects for the feature can readily be

determined. If n represents the number of tests in the feature test suite, and covfeaturei

represents the execution trace for feature test i, and covshadowi
represents the execution

trace for shadow test i and covcore represents the execution trace for exercising all of the

core elements, then the following equation approximates the feature implementation.

115

implementation �
n[

i=1

(covfeaturei � (covshadowi
[covcore)) (6.1)

We model the coverages as sets, and simple set algebra is all that is required to un-

cover the feature implementation. The intuition is as follows: The set di�erence of

the artifacts in the feature-test execution trace and the union of the shadow execution

trace with the core artifacts leaves the set of artifacts unique to the feature implemen-

tation. The union of this product over all the test cases in the feature test reveals the

approximation of the feature implementation. This method does not reveal the feature

implementation in isolation. It will not be able to discern the full implementation in the

face of coding practices that put feature implementation in general purpose functions.

Also, the completeness of the de�nition of the functions in the system core will inuence

the method's ability to pinpoint a feature's implementation.

In Section 6.3 we apply this method for discovering the mapping within the Vim

editor and report on its success. In Section 6.4 we explore ideas about enriching the

model to provide additional information about the mapping from feature to feature

implementation.

6.2.2.2 Using Feature Tests to Discover Feature Interactions

Feature interactions are more di�cult to discover than feature implementations. Fre-

quently, feature interactions are subtle and di�cult to isolate. Much of the existing work

has been done in telecommunications, where feature interaction has been identi�ed as

a major concern. In this domain, the complexity of the problem is exacerbated by the

massively distributed nature of the applications. Features must work on di�erent ven-

dors's equipment, as well as work across state and national boundaries. As Cameron and

116

Velthuijsen state, \As the number of features now numbers in the hundreds, detecting

their interactions has become staggeringly complex." [12]

No single method can solve feature-interaction problems. Feature interactions can be

manifest in both the problem and the solution domains. Where feature interactions

exist in the solution domain, testing can play a role in identifying them. Interactions in

the problem domain can be analyzed to determine whether the interaction is inherent

in the problem domain or is a result of design choices made to realize the system. At a

minimum, having a set of tests that exercises each feature makes it easier to design test

suites that exercise features in combination.

After creating a set of feature tests and using it to identify feature-implementation sets

as described above, the non-empty intersections of those sets are prime candidates to

search for feature interaction. The number of pairs of feature implementation sets will

be (n2 � n)=2 where n represents the number of feature-test suites. A visual foray into

discrete algebra demonstrates the intuition behind this equation. There are n2 circles

in the box in Figure 6.2 representing pairs of the n tests. Subtracting out the n hollow

circles, which represent picking the same test twice, leaves n2 � n �lled circles. This is

twice the number of intersections because (1; 2) is indistinguishable from (2; 1), as order

is unimportant.

The number grows quickly, especially considering that examining the intersections takes

manual e�ort. It is, however, much smaller than the number of pairs of individual test

cases; aggregating the test cases by feature reduces the number of intersections dramat-

ically. The better the shadow tests are at isolating feature implementation, the more

insight the intersections provide into feature interactions. We report in Section 6.3.4.3

that the size of these intersections is small relative to the total number of functions in

the system, even with an extremely conservative de�nition of the system core. Another

117

1 b r r r r

2 r b r r r

3 r r b r r

... r r r b r

n r r r r b

1 2 3 ... n

Figure 6.2: Pairs of Feature Tests

element to consider about the degree of manual e�ort required is that this work is out-

side the regular build cycle. This examination would ideally be performed periodically

after changes and new features have accumulated. In the case study described in the

next section, we report on our e�orts to examine this intersection, and we develop a

heuristic that increases the number of empty or trivially small intersections with limited

reduction in e�cacy.

6.3 A Case Study in Feature Testing

To test the ideas developed in the previous section, we instituted a case study of a

medium-sized, real-world application. The general goal of this case study was to evaluate

feature testing and the speci�c goals were to answer the following questions:

� Does the test suite test speci�c features?

� Can the application's feature set be determined from the test suite?

� Does the test suite test feature interactions?

� Can feature implementations be discovered from feature testing?

� Can feature testing help discover feature interactions?

118

To develop our ideas and to gain experience in feature testing, we required a software

application to serve as a subject for testing. Finding an acceptable system for our

purposes proved di�cult. The principal factors guiding our selection of a particular

application are given below:

� Source code availability,

� Suitable platform and implementation language,

� Real-world application,

� Existence of a test suite, and

� Requirements speci�cation or user documentation available.

At a minimum, we required access to the application's source code, and that the ap-

plication have an associated test suite. These two requirements tended to be di�cult

to satisfy jointly. With the exception of compilers, it was surprisingly di�cult to �nd

public-domain applications with signi�cant test suites. We did �nd one application, a

vi-based editor, that met all our requirements. The application, Vim version 5.3, is

described in Section 6.3.1.

6.3.1 Application Analyzed

We used a popular text editor, Vim version 5.3, to study feature testing. Vim met the

requirements for a test application listed above. The application and its source code

are freely available. It has complete user documentation and an existing test suite,

and it has thousands of users across the world. Finally, Vim is written entirely in C,

permitting us to use familiar analysis tools as well as a test-coverage tool we describe

below.

119

Vim has other appealing characteristics. Foremost is that the domain, text editing, is

well understood by the vast majority of researchers, which means that the feature set

provided by the application is easy to understand and assimilate. Vim is also fairly easy

to test, since the user interacts with an edit bu�er, parts of which can easily be written

to output �les to record test results.

A few of the optional features that Vim provides were not included in the version that

we tested. The omitted features are listed in Table 6.2.

Farsi language support

GUI version

Perl integration

Python integration

Right to left editing

TCL integration

Table 6.2: Features not included in the Analysis

Most of these features are obscure and fall outside the mainstream editing functionality.

The GUI version of the program was not included, because graphical user interfaces are

notoriously di�cult to test, often requiring visual inspection to con�rm results. The

omitted features are listed in the functional decomposition; they were not compiled

into the instrumented application. With the exception of GUI, the omitted features

represented less than three percent of the total functions de�ned by the application.

The GUI code was less than eight percent. Since the instrumented application contained

well more than a hundred features, eliminating these few did not materially reduce the

application size. Statistics about Vim 5.3 are provided in Table 6.3.

The 91 KLOCs that make up the application con�rm that this is beyond the scope of a

\toy" application. Even though it is two orders of magnitude smaller than telecommuni-

cations switching systems, it still supports a large number of features, as the functional

120

Statistic Value

Source �les in instrumented application 65

Functions de�ned in instrumented application 1,453

Total lines of code 124,153

Non-comment, non-space lines of code 91,104

Test cases distributed with release 36

Pages of documentation over 500

Concrete features identi�ed 183

Test cases developed 43

Feature test suites developed 13

Feature interaction intersections 78

Average intersection size empty core 7.5

Average intersection size empty conservative core 5.6

Table 6.3: Statistics about Vim 5.3 and Feature Tests

decomposition provided in Appendix A demonstrates.

6.3.2 Coverage Tool

The Generic Coverage Tool (GCT) [57] version 1.4 was used to instrument the Vim

source code. By default, GCT does not add instrumentation to system library routines

linked into the application. This default behavior was accepted. GCT instrumented all

1,453 functions de�ned by the Vim 5.3 distribution linked into the �nal application.

GCT supports a number of di�erent coverage types, such as routine coverage, call cover-

age, loop coverage, branch coverage, multi-condition coverage, and relational coverage.

Routine coverage, which reports on the number of times each function is entered dur-

ing execution, was used. Since all routines were uniformly instrumented with a single

coverage type, the coverage tool con�guration �le, gct-ctrl, was simple, as shown below.

(coverage routine)

121

(options instrument)

Once the instrumented executable is created, the instrumentation code collects infor-

mation in the �le GCTLOG. By starting with an empty log �le for each execution, it is

possible to determine exactly which functions are entered during an execution. Collect-

ing this information proved to be straightforward. All that was required was to augment

the implicit rule in the test Make�le [30] that caused each test to be run.

.in.out:

-rm -f $(COVERAGELOG)

../vim.instrumented -u vimrc.unix -s dotest.in $*.in

/bin/sh -c "if diff test.out $*.ok;

then

mv -f test.out $*.out;

greport -all GCTLOG | grep -v '[0]$$' > $*.cov;

else

echo $* FAILED >>test.log;

fi"

-rm -f Xdotest

We made three changes to this rule. First, any existing coverage log is deleted, which

ensures that every test execution generates a trace containing the right information.

Second, the instrumented version is executed on the test-case input �le, accomplished

by substituting \vim.instrumented" for \vim." Finally, the contents of the log �le are

extracted using the GCT tool greport and saved in a coverage �le. The -all ag is

used with greport to ensure that an entry count is provided for every function in the

application. The grep command is used to eliminate functions not entered, and the

execution trace is collected in a coverage �le named after the test script.

122

6.3.3 Analysis Method

This section describes the analysis method and tools used to analyze the role of fea-

tures and testing with Vim. Note, that the references to speci�c Vim features use the

feature names established in the functional decomposition. The complete hierarchy of

application functionality is provided in Appendix A.

6.3.3.1 Analyze Test Cases

The �rst step was to evaluate the existing test cases that are part of the Vim 5.3

distribution. The primary point to this analysis was to answer the �rst three questions

listed in Section 6.3. The results are presented below.

Does the test suite test speci�c features? The 36 test cases did indeed test speci�c

application features. Two types of feature testing were discovered, intentional and inci-

dental. Due to the way the scripts were constructed, most of the tests included incidental

tests of features such as jump-search, configuration, and command-shell-execution.

In addition, speci�c test cases were targeted at individual features such as autocommands,

jump-file, and pattern-based-substitution.

Can the application's feature set be determined from the test suite? The

answer is determined primarily by the thoroughness of the test suite. Appendix B

contains the list of features discovered from analyzing Vim's test suite. Less than

one-fourth of the features, 44 out of the 183 that the application provides, could be

discovered from an analysis of the test cases. Clearly a more comprehensive test suite

would have led to the discovery of more application features. In any case, without an

exhaustive list of system features to support test development, it is unlikely that the

test suite would reveal all the features.

123

Does the test suite test feature interactions? Both intentional and incidental

feature-interaction tests were present in the test suite, but were a small minority. Most

of the tests were targeted at a speci�c characteristic of a single feature. The interactions

between the features insert-text-from-file and command-shell-execution was in-

cidentally tested, and the interaction between autocommands and buffer-remove, as

well as the interaction between buffer-hide and tags-processing, were intentionally

tested by the test suite.

6.3.3.2 Vim Functional Decomposition

Once the test suite was analyzed, the documentation was studied to compile a list

of all the documented functionality. The documentation is primarily organized based

on an index of commands, which works well for reference purposes but is di�cult for

understanding the application functionality. IEEE Standard 1003.02-1992 [63], which

speci�es the behavior of the screen oriented vi editor, was also consulted to determine

its character and extent. The editor speci�ed in the standard provides a subset of the

functionality in Vim 5.3. In addition, the functionality is organized by an alphabet-

ical ordering of key sequences that invoke the commands. The standard provides no

meaningful organization of the functionality: for example item 5.35.7.1.15 in the stan-

dard describes the command `Control-W' which deletes a word, and item 5.35.7.1.16 is

`Control-Y' which scrolls backwards line by line.

Once the list of commands was compiled, the underlying functionality that they pro-

vided was put together into a list of approximately 10 pages. This functionality was

organized into a functional decomposition, essentially a hierarchical structure organized

from abstract functionality down to single, concrete features. This functional hierar-

chy is contained in Appendix A. Some of the abstract features such as autocommands,

124

syntax-highlighting, and user-functions are not decomposed in the hierarchy.

While the functional decomposition is a logical and thorough presentation of the appli-

cation's functionality, it is not possible to be completely orthogonal in presenting the

categories and features. Some concrete features re�ne more than one abstract feature.

For example, jumps and marks are two abstract features in Vim, and the concrete fea-

ture jump-mark re�nes both of them. Because some concrete features belong to more

than one abstract feature, it is not possible to organize the functionality into a tree

structure. The point of the decomposition was not to have a perfect, non-overlapping

hierarchy, but to have a document that meaningfully identi�es the majority of system

features. Nonetheless, the decomposition of Vim's functionality was fundamental to our

testing e�orts.

6.3.3.3 Develop Feature Tests for Vim

Once the functional decomposition was complete, it was possible to create a set of

feature tests to explore the ideas presented in Section 3.3.2.3. Roughly 10 percent of

the identi�ed features were tested. Most of the features were concrete features, such

as increment-number, move-text, and jump-mark. Two abstract features, delete and

insert-completion, were included in the feature tests, which are listed in Table 6.4.

Each feature test consists of one or more test cases, and each test case includes an input

�le and an output �le. Upon successful completion of the test, the generated output

should match the output �le associated with the test case.

Feature tests for abstract features consist of the feature tests for their concrete features.

Each of the concrete feature that that comprise the two abstract features that we tested

are listed in Table 6.5.

125

change-case

copy-text

decrement-number

delete

help

increment-number

insert-completion

insert-register-contents

jump-keyword

jump-mark

jump-tag

marks

move-text

Table 6.4: Features Tests

delete insert-completion

delete-character insert-complete-filename

delete-linebreak insert-complete-keyword

delete-line insert-complete-line

delete-motion insert-complete-macro

delete-range insert-complete-tag

Table 6.5: Abstract Features Tested

In the aggregate, the feature tests are composed of 43 individual test scripts and their

associated golden output �les. In addition, each of the 43 feature tests has a shadow

test as speci�ed in Section 6.2.2.1. One of the shadow tests, for the increment-number

feature, is described in detail in the next section.

6.3.3.4 Develop Shadow Tests for Vim

In testing Vim, the general strategy is to load a test script into the application via the

command line, to execute the commands contained in the script, and to write part of

the edit bu�er to a �le. By examining the output of the �le, one can deduce whether

126

the system correctly performed the commands listed in the test script.

In Vim, features are invoked by commands associated with speci�c key sequences. To

test Vim, the shadow test should therefore omit the key sequences that cause the fea-

ture to be executed. The example in Figure 6.6 contains one of the test cases for the

increment-number feature and its associated shadow test. The key sequence `Control-A'

invokes the feature. The shadow test assiduously omits this key sequence.

Test Ctrl-A increment numbers

for hex addition

STARTTEST

/^start-here

:set nrformats=hex

j^A13^A^Al^Al2000^A

:set nrformats=octal,hex

0^A13^A^Al^Al2000^A

:set nrformats=hex,octal

0^A13^A^Al^Al2000^A

:.-2,.wq! test.out

ENDTEST

start-here

0x1 0xFF 0xfade

0x1 0xFF 0xfade

0x1 0xFF 0xfade

Shadow: Ctrl-A increment numbers

for hex addition

STARTTEST

/^start-here

:set nrformats=hex

jlll

:set nrformats=octal,hex

0lll

:set nrformats=hex,octal

0lll

:.-2,.wq! test.out

ENDTEST

start-here

0x1 0xFF 0xfade

0x1 0xFF 0xfade

0x1 0xFF 0xfade

Table 6.6: Feature Test and Shadow Test Scripts for increment-number

In this test, the commands to be executed consist of the text between the \STARTTEST"

and \ENDTEST." For the feature test, the command sequence is described in detail

below.

(1) Search forward for the string \start-here" at the start of a line.

(2) Set the nrformat con�guration option to permit hexadecimal addition.

127

(3) Move the cursor to the next line, increment the number under the cursor, add 13
to the number under the cursor, increment the number under the cursor, move
the cursor one character to the right, increment the number under the cursor,
move the cursor one character to the right, add 2000 to the number under the
cursor, and move the cursor to the next line.

(4) Set the nrformat con�guration option to permit octal and hexadecimal addition.

(5) Move the cursor to column 0, increment the number under the cursor, add 13
to the number under the cursor, increment the number under the cursor, move
the cursor one character to the right, increment the number under the cursor,
move the cursor one character to the right, add 2000 to the number under the
cursor, and move the cursor to the next line.

(6) Set the nrformat con�guration option to permit hexadecimal and octal addition.

(7) Move the cursor to column 0, increment the number under the cursor, add 13
to the number under the cursor, increment the number under the cursor, move
the cursor one character to the right, increment the number under the cursor,
move the cursor one character to the right, add 2000 to the number under the
cursor, and move the cursor to the next line.

(8) Write the range of lines from two above the cursor to the cursor to the �le
\test.out" and exit.

The shadow test contains the same sequence of commands but omits the `Control-A'

key sequence that invokes the increment-number feature. The extraneous function-

ality in this test includes the jump-search, configuration, move-character, and

file-manipulation features. The shadow test invokes the same features with the

exception, of course, of the increment-number feature. Recall that the feature test

and the shadow test are both run by the implicit rule of the make�le described earlier.

This rule takes care of comparing test.out with the golden output and capturing the

execution trace into a .cov �le.

This example demonstrates that creating a shadow test for Vim is straightforward. It

takes less thought to create than the feature test itself. Some care does need to be taken,

however, to ensure that the shadow test covers all the incidental functionality and does

not exercise the functionality not in the feature test. Careful observation of the feature

128

test and the shadow test reveals that the numeric arguments to the increment-cursor

feature are not present in the shadow tests. This omission underscores the need to craft

the shadow tests carefully so that as much incidental functionality in the feature test

as possible is masked by the shadow test.

6.3.3.5 Develop Tools to Support Analysis

After developing the feature tests, an instrumented version of Vim was created. All

of the feature tests and feature shadow tests were executed, and their execution traces

were captured, which generated 86 coverage �les, one for each of the feature tests and

shadow tests. Several tools were developed to manipulate the coverage �les in support

of the analysis. Some of the more signi�cant tools are displayed in Table 6.7 and are

discussed below.

cova+b union of two or more coverage sets

cova-b di�erence of two or more coverage sets

cova^b intersection of two or more coverage sets

cov�les extract �le names from a coverage set

covfuncs extract function names from a coverage set

Table 6.7: Tools Created to Support Test Analysis

The raw coverage information captured in .cov �les lists each function entered during

a test execution. The programs cov�les and covfuncs �lter that information and report

the list of �les and functions respectively. The cova*b �les perform basic set operations

on coverage �les. The following script fragment typi�es their use in approximating the

feature implementation for feature 57, increment-number.

echo "Calculating implementation artifacts info for feature 57:"

129

cova+b core.cov ../fs.01.01.cov > a ; cova-b ../fx.01.01.cov a > 1

cova+b core.cov ../fs.01.02.cov > a ; cova-b ../fx.01.02.cov a > 2

cova+b core.cov ../fs.01.03.cov > a ; cova-b ../fx.01.03.cov a > 3

cova+b 1 2 3 > 57.cov ; rm -f 1 2 3 a

This script fragment follows the equation for recreating the mapping between features

and their implementations from Section 6.1. The �rst line reminds the user what is being

calculated. The next three lines calculate the union of the feature-shadow coverage and

the core coverage, and they store the result in a temporary �le \a." Then they store

the set di�erence between the feature coverage and the temporary �le into a numeric

temporary �le. The union of the numeric temporary �les is calculated and stored into

�le \57.cov."

6.3.4 Results

This section reports results of our inquiry into feature testing. The analysis of the

test cases distributed with Vim 5.3 revealed that feature testing is at least an implicit

component of the testing e�ort. A number of the existing test cases were actually

feature tests, and several were even feature-interaction tests, although they were not

always classi�ed as such in the minimal test documentation. These test cases showed

evidence of an organic origin; rather than being designed to cover an entire feature, they

were aimed at testing a speci�c requirement of a feature. For instance, the test cases 2

and 17 were to test the jump-file-under-cursor feature. Jump-file-under-cursor

permits the user to edit a �le named by the text under the cursor. Both of these tests

were aimed at insuring correct behavior of the feature under di�erent conditions. Test

2 was for �lenames embedded in a World Wide Web address, and Test 17 was for a �le

named by a variable's contents. None of the tests was targeted at the basic behavior of

the feature. From these observations, we can conclude that many of the test cases in the

130

suite were developed in response to particular problems. A more disciplined approach,

including feature testing, would improve the thoroughness of Vim's test suite.

6.3.4.1 Feature Testing

Without an explicit enumeration of the features that a system provides, feature testing

is bound to remain implicit and ad hoc. As Section 3.3.1 makes clear, one of the

major contributions of a requirements engineering e�ort is such a decomposition of the

system functionality. In the case of Vim, there is no such requirements document, so

the features were identi�ed through an examination of the documentation. Then they

were organized into a functional hierarchy.

This study revealed that feature testing can be a natural and useful extension to tra-

ditional testing. Feature tests were relatively straightforward to create because their

behaviors were well-documented. Such a test suite, one that ensures that the system's

features work correctly, at least in isolation, is a reasonable and attainable goal for the

testing e�ort. Clearly after making a change to a feature implementation, the devel-

opment e�ort can be improved by having a set of tests that ensure that the behavior

remains correct in isolation.

Having such a suite is an asset for other aspects of the development. We have shown

that it can be used to recover the mapping from feature to feature implementation, it

is useful for ferreting out feature interactions, and it forms a basis for building targeted

and comprehensive test suites.

131

6.3.4.2 Recovering Feature Implementation

Recovering the mapping from feature to feature implementation is a principal goal

for feature testing. In Section 6.2.2.1, we describe a method to achieve this goal.

In this section, we evaluate its e�ectiveness. The evaluation is based on a thorough

analysis of Vim's source code. The method proves reliable in its ability to identify the

desired functions and satisfactory in �ltering out unnecessary ones. We also suggest an

additional technique to improve the method's ability to �lter out extraneous functions.

The method for recovering feature implementation produces a set of functions executed

when a feature is invoked within the target system. Evaluating how well the method

worked with Vim's feature tests requires determining how well the identi�ed set matches

the actual set. Two considerations are crucial for making this determination: First, and

most important, determine whether the identi�ed set contains the functions in the

actual set. If the method fails to identify a signi�cant number of functions in the actual

set, then it fails to identify the mapping meaningfully. Second, determine whether the

method is e�ective in �ltering out functions that do not belong to the actual set. If the

method consistently identi�es hundreds of functions that do not belong in the set, then

it provides little value to the system developers.

To make the required determinations, it was necessary to analyze the source code for

Vim to �nd the actual mapping for each of the features that were tested. We knew

of no alternative to manually examining the entire body of source code, so the actual

feature implementations were compiled manually. This examination involved �nding

each location in the source code where a speci�c feature might be invoked. The func-

tional decomposition and system documentation were helpful in exposing the methods

for invoking features, but the lack of documentation of Vim's system architecture made

the analysis arduous.

132

In Vim, di�erent features are invoked in di�erent places in the source code, and a single

feature can be invoked in more than one. For instance, the change-case feature can

be invoked as an operator, as a normal command, and as an extended command. Thus

there are three places to start the search for its implementation. All three locations

eventually rely on Vim's swapchar function to change the case of individual characters.

As an operator, the implementation of change-case is encapsulated in the function

op tilde, which calls swapchar on its operand. As a normal command change-case

is implemented by n swapchar. The extended commands for the change-case feature

also use the function op tilde to implement the feature. The analysis, repeated for

each feature, identi�ed the set of functions written to implement the speci�c feature.

The functions implementing the insert-complete-line feature are presented, as an

example, in Table 6.8. The determination of which functions in Vim are dedicated to im-

plementing speci�c features was not di�cult, although familiarity with the underlying

programming language and libraries is required. In the few cases where some judg-

ment was necessary, examining the contexts in which the particular function was called

served to disambiguate between feature-speci�c and general purpose. In the case of

insert-complete-line, all of the functions listed in the table except get expansion,

make cyclic, and search for exact line were obviously written to implement the

concrete features re�ning the abstract feature insert-completion. These three func-

tions were called only from the context of other functions implementing the feature.

Documentation internal to the source code consistently con�rmed our intuitions about

which functions provided implementations for speci�c features. Starting from the lo-

cation in the source code where insert-complete-line is invoked and following func-

tion calls permits identifying the set of functions used by the feature implementation.

The majority of the functions that are called by Vim's feature implementations be-

133

add completion

add completion and infercase

free completions

get expansion

ins complete

ins expand pre

make cyclic

search for exact line

Table 6.8: Functions Implementing insert-complete-line

long to the core. A number of others belong to other features; these are considered

in Section 6.3.4.3. A selection of the core functions called by the implementation of

insert-complete-line is provided in Table 6.9. Comparing Tables 6.8 and 6.9 demon-

strates how the feature implementation could be separated from core functionality. For

functions that were not immediately obvious, such as ui breakcheck, examining the

function and its call contexts made the determination clear.

ui breakcheck

STRNCMP

alloc

vim strnsave

vim free

STRCMP

is lower

is upper

is alpha

Table 6.9: Functions Not Implementing insert-complete-line

The complete results of the validation exercise are presented in Table 6.10. The �rst

column lists the 21 concrete features that were tested. Recall that �ve of these features

re�ne the abstract feature delete and �ve re�ne insert-completion, so that the 13

feature tests expand into tests of 21 concrete features. The second column identi�es the

number of functions identi�ed by the feature-testing method. The third column lists the

134

number of functions in the actual feature-implementation set, determined through our

analysis of the underlying source code. The fourth column identi�es the functions that

the method failed to detect. Each of these entries is considered below. The �fth column

is the number of identi�ed functions that should be included in the de�nition of the

system core. The results we present here are predicated on an extremely conservative

de�nition of the system core. A more realistic de�nition of core would permit the method

to �lter out these functions. The �nal column tallies the functions that were neither

part of the feature implementation nor obviously part of the system core. Primarily,

the functions in this column were part of the implementation of features other than the

one being tested.

Feature Identi�ed Actual Missed Core Other

change-case 31 3 0 15 13

copy-text 34 2 0 19 13

decrement-number 28 1 0 15 12

delete-char 40 5 1 20 16

delete-line 23 4 0 11 8

delete-linebreak 49 7 0 30 12

delete-motion 46 9 0 22 15

delete-range 11 3 0 3 5

help 49 5 0 24 20

increment-number 29 1 0 16 12

insert-complete-�lename 21 7 1 15 0

insert-complete-keyword 43 10 1 31 3

insert-complete-line 16 8 1 8 1

insert-complete-macro 21 7 1 15 0

insert-complete-tag 22 5 1 10 8

insert-register-contents 23 6 2 18 1

jump-item-under-cursor 8 2 0 4 2

jump-mark 23 3 0 20 0

jump-tag 31 10 0 17 4

marks 8 4 0 4 0

move-text 26 2 0 16 8

Table 6.10: Evaluation of Identi�ed Feature Implementations

While Table 6.10 shows the method was capable of identifying the functions that belong

135

to the feature implementations, the few cases where functions were not identi�ed by the

method require explanation. All of the features that re�ne insert-completion are par-

tially implemented by the function ins expand pre. This function advances the state of

the input-completion action, if the feature is active. If the feature is not active, then

the function has no e�ect. It is always called within the edit function, so it appears in all

of the shadow tests for insert-completion, and therefore the method fails to detect it.

One strategy for expanding the method to detect this unusual coding idiom would be to

calculate a set di�erence between the shadow test and any functions in a feature's imple-

mentation that are invoked indiscriminantly. Other functions that were not identi�ed

by the method were the result of incomplete feature tests. For the delete-char feature,

an option for vi compatibility controls whether or not the function display dollar is

called. Adding a test case with this option set to the delete-char feature test led to

the inclusion of this function in the identi�ed set. Two functions were missing from

the insert-register-contents implementation, again because the feature tests were

incomplete. Expanding the behavior of the feature tests to include inserting the register

contents without interpretation corrected the omission of stuff escaped; and inserting

the register contents in command mode added the function cmdline paste. When the

shortcomings of the feature tests were �xed, the method identi�ed all the features in the

actual implementation sets except for ins expand pre. While unusual coding practice

can defeat this method, it proved exceptionally e�ective in identifying the functions in

the actual implementation sets.

The other consideration for evaluating the method is its precision in �ltering out func-

tions outside the implementation. The �nal column in Table 6.10 represents the number

of functions that would be erroneously identi�ed if the core were more realistically de-

�ned. Note that from a population of more than 1,400 possible functions, the number

of false positive responses generated by the method is quite small. Two extensions to

136

the method might be used to reduce this number further. First, it would be possible

to �lter the erroneous functions from the feature test coverage �les. Building the �lters

would require manual e�ort, so without process and tool support their accuracy would

degrade as the system evolves. Second, since many of the functions represented in this

column are involved in the implementation of other features, it would be possible to use

the intersection of coverage sets to ag functions that deserve special handling. From

our observations of the feature interactions within Vim, having such information should

prove valuable.

After evaluating the validity of this method, we are prepared to answer another of the

questions posed early in this chapter. Can feature implementations be discovered

from feature testing? This work demonstrated that it is possible to recover the set of

functions implementing a system's features through feature-based testing. We recognize

that the set of functions implementing a feature does not completely capture its imple-

mentation. While this information is helpful, it does not provide an understanding of

everything involved in a feature implementation. Recovering the complete mapping in

the solution domain is a more di�cult problem. Missing information can be classi�ed

into two types: additional information that might be generated, and information that

is based on an understanding of the semantics of the implementation.

For the �rst class of missing information, two additions would help support an under-

standing of the mapping. First, sets are not a rich enough model for the functions

engaged in a feature's implementation. This information could be augmented by re-

lationships between the functions that indicate in what context a function is called.

We see two mechanisms for providing this information: one, enhance the instrumenta-

tion of the executable so that the call stacks are output rather than function entries

in isolation, and, two, synthesize these relationships using program dependence [31, 69]

137

information. The second body of additional information that could be added relates

to the program's data structures. These data structures are manipulated within the

context of the functions that make up the information, and they represent additional

constraints and relationships not captured by the set-of-functions representation. This

context has to be recreated before one fully understands the feature implementation.

Here again, dependence information would be useful.

The second type of missing information is not subject to mechanical reconstitution.

A true understanding of the system resources provided by the system core, the data

structures that support the implementation of the system and its features, and the

constraints between them, is needed to acquire knowledge of the mapping. The intuition

and insight in the designers' and developers' minds is beyond what can be recreated via

a mechanical testing strategy, such as feature testing.

6.3.4.3 Discovering Feature Interaction

Can feature testing help discover feature interactions? Our work with feature

tests leaves little doubt that feature testing does indeed lead to the discovery of feature

interactions. Analysis of the functions identi�ed by the feature tests led to the discov-

ery of a large number of unanticipated interactions. Analysis of the Vim 5.3 source

code indicates that feature interactions are nearly ubiquitous. Certain features such as

undo-redo, autocommands, and right-to-left-editing span disparate sections of the

application code, interacting with many other features, both simple and complex. In

the case of Vim, these features con�rm our assertion that features frequently cut across

system structure.

Consider the relatively simple feature increment-number. This feature performs ad-

138

dition on the number under the cursor in the current bu�er. It is simple and self-

contained; one function, do addsub, implements its functionality. From examining

the code, identi�ed through the feature test, an unanticipated interaction with the

right-to-left-editing feature was found. Evidence of a feature interaction in the

�le ops.c is shown below. To implement the increment-number feature, the editor must

reverse the line when supporting the right-to-left-editing feature.

curwin->w_set_curswant = TRUE;

#ifdef RIGHTLEFT

ptr = ml_get_buf(curbuf, curwin->w_cursor.lnum, TRUE);

RLADDSUBFIX();

#endif

update_screenline();

Working to evaluate the recovery of feature implementation from feature testing revealed

the complexity of the interactions among system features. The example above is a simple

interaction. Below is a more complex interaction between the delete-line and mark

features. The presence of the mark feature imposes constraints on the system that must

be maintained by other feature implementations.

/*

* Now we must be careful adjusting our marks so that we

* don't overlap our mark_adjust() calls.

*

* We adjust the marks within the old text so that they refer

* to the last lines of the file (temporarily), because we know

* no other marks will be set there since these line numbers

* did not exist until we added our new lines.

*

* Then we adjust the marks on lines between the old and new

* text positions (either forwards or backwards).

*

* Finally we adjust the marks we put at the end of the file

139

* back to their final destination at the new text position

*/

last_line = curbuf->b_ml.ml_line_count;

mark_adjust(line1, line2, last_line - line2, 0L);

if (dest >= line2)

{

mark_adjust(line2 + 1, dest, -num_lines, 0L);

curbuf->b_op_start.lnum = dest - num_lines + 1;

curbuf->b_op_end.lnum = dest;

}

else

{

mark_adjust(dest + 1, line1 - 1, num_lines, 0L);

curbuf->b_op_start.lnum = dest + 1;

curbuf->b_op_end.lnum = dest + num_lines;

}

curbuf->b_op_start.col = curbuf->b_op_end.col = 0;

mark_adjust(last_line - num_lines + 1,

last_line,

-(last_line - dest - extra), 0L);

The code to maintain the constraints added by the marks feature doubles the size of

the do move function. Feature interactions add signi�cantly to the complexity of devel-

oping software. The feature interaction is not quite complete. Inside the mark adjust

function, one �nds an interaction with the quick-fix feature:

#ifdef QUICKFIX /* quickfix marks */

qf_mark_adjust(line1, line2, amount, amount_after);

#endif

As a result, the delete-line function has an indirect interaction with the quick-fix

feature. As this example demonstrates, feature interactions are subtle, and they can be

hard to detect upon examination of the system's source code.

We calculated the intersection of the feature coverage sets for each pair of features that

we tested as described in Section 6.2.2.2. Aggregating these cases by feature reduced

140

the number of intersections that had to be examined from 903 to 78. We also took a

conservative approach to de�ning the system core. First, we calculated the intersections

with an empty core. Then we examined the source code and identi�ed a small number of

functions, 21, that de�ned common functionality. With this small handful of functions,

less than 2 percent, we de�ned the core.

File Functions

charset.c vim isblankline

edit.c oneright

�leio.c vim fgets

message.c give warning, emsg, msg

misc1.c changed, changed warning, msgmore

misc2.c alloc check, alloc clear

os unix.c mch isdir, WaitForChar, mch char avail

screen.c update screenline

term.c term bg color

ui.c vim is input buf empty, ui char avail

Table 6.11: Conservative Core De�nition

Table 6.11 lists the �les and functions that were included in the core. These functions

relate mostly to such basic operations as moving the cursor, allocating memory, checking

for input, and producing error messages.

The information in the intersections of the pairs of tests proved valuable for discovering

interactions. A few of the coverage sets evidenced large intersections, leading to the

discovery of a number of feature interactions. A histogram of the number of functions

in each of these intersections is provided in Figure 6.3.

This histogram shows that in general the number of functions in the intersections for

di�erent pairs of features was low, averaging in single digits for both de�nitions of

core. About one in �ve pairs was empty and nearly three out of four pairs had inter-

sections that contained fewer than 10 functions. After examining the functions in the

141

Figure 6.3: Histogram of Intersection Size for Pairs of Feature Tests

intersections, it was possible to identify a number of instances of feature interactions.

Considering the number of core functions identi�ed in Table 6.10, a less conservative

and more accurate de�nition of the system core would result in even signi�cantly more

pairs having empty or trivially small intersections. For the empty core, the 78 intersec-

tions contained 584 functions, including duplication. Excluding duplicates, 112 distinct

functions participated in the intersections.

Since information about the system architecture was not available and we are not the

application's developers, we took a very conservative approach to de�ning the core.

A more informed understanding of the implementation would undoubtedly lead to a

signi�cantly expanded de�nition of the core. Another approach to de�ning the core

would be to examine the functions executed when the application is simply invoked and

then terminated immediately. A large number of functions, nearly a third of the 1,453,

142

were invoked for this simple execution. Of course, one of the major contributions of the

shadow tests was to �lter out exactly this set of functions.

A heuristic that would further reduce the number of intersections and their sizes would

be to include additional functions in the de�nition of the system core used for calculating

the intersections. Functions that do not have side e�ects or do not change system state,

such as predicates, are unlikely to contribute to feature interactions.

In summary, examination of the functions in the non-empty intersections revealed in-

teresting and unanticipated interactions between the features, threaded throughout the

implementation of the application. For example, the insert-complete feature shares

functions with the command-completion and command-file features that examine the

contents of the current directory, and it has additional interactions with the jump-jump,

display-jumplist, and mark features. The functions in the intersections hold promise

for being involved in feature interactions, especially when the system core is fully iden-

ti�ed.

6.4 Summary

To summarize the intersection of the feature-engineering framework and testing, we

examined the three goals established at the beginning of this section. Then, we reported

our �ndings and described future opportunities in the realm of feature testing.

Feature testing adds structure to the testing process. Our analysis of Vim's test cases

shows that the test cases covered a modest subset of the application's functionality.

Creating test suites that follow a feature decomposition of the system is an e�ective

organization of testing e�orts. Creating a suite of tests that can con�rm each feature's

basic behavior is no more di�cult than ad hoc testing. In several weeks, we were able

143

to create a test suite of the same magnitude as the one distributed with the applica-

tion. Creating a feature test for all of the features identi�ed would require an order of

magnitude more e�ort, but that is well within the bounds of reasonable testing e�ort.

Since features are a fundamental element of nearly all software systems, feature testing

should easily generalize to any system with a well-de�ned feature set.

Identifying feature implementations proved e�ective for our work with Vim. We were

able to take the relationship information generated from testing Vim and use it in the

con�guration management study described in Section 5. The synergy a�orded by pop-

ulating a workspace based on this information made sifting through the implementation

artifacts less onerous.

Developing the feature tests was the most di�cult part of the feature testing; how-

ever, it was no more di�cult than developing any thorough set of tests. Instrumenting

the source code and calculating the intersections was a minor, one-time cost. Vim

proved particularly facile to instrument since all of the implementation was in a single

language. For larger systems developed within heterogeneous environments, more en-

gineering e�ort would be required to collect the required information, but such e�orts

are within reasonable expectations. The feature implementations identi�ed through our

method were not minimal but they were, with one exception, complete, showing that

this method is capable of automatically discovering the mapping from feature to feature

implemention.

Discovering feature interactions was the most di�cult of the three goals to achieve.

De�ning the intersections of the feature implementations is certainly feasible and creates

limited technical challenges. It is extremely di�cult to quantify the e�ectiveness of

this approach for discovering feature interactions because the universe of interactions

is unknown. Certainly, examination of the intersections provided fruitful ground for

144

discovering interactions. The brute force approach of combining each feature test suite

would prove daunting on systems with hundreds of de�ned features. In this case a more

selective approach would be required. One strategy would be to use feedback from each

intersection examined to augment the de�nition of the core. Every function examined

could be characterized as \safe" or \risky" based on the impact the function execution

has on the application's state. Safe functions could be added to the de�nition of the core

to reduce the size of the intersections that need to be checked. Regardless, identifying

feature interactions remains a challenge.

In addition to evaluating the e�ectiveness of our testing e�orts, we also identi�ed fruit-

ful areas for additional research. The preceding paragraph makes clear that discovering

feature interactions will require additional methods and testing to demonstrate e�cacy.

We also determined that the set of functions identifying a feature interaction is not as

rich a model as we would like. By enhancing the output of the coverage tool and by com-

bining information from program dependence analysis, more structured and complete

information about feature implementation could be synthesized.

Chapter 7

Conclusion

From the user's perspective, the operations that software performs are characterized

as a set of features, and as an application domain matures, features become a major

competitive tool. New features from other applications are quickly adopted into new

releases. Adding new features to software is not often a simple, cosmetic change. A

feature's implementation can span multiple subsystems and can contribute to unan-

ticipated architectural connections among components. Features are deeply enmeshed

within the software that implements them.

In this dissertation, we have examined the concept of feature. Our goal has been to

expand the understanding of the nature of software itself. As a result of this work, we

are able to provide answers to the questions raised in Chapter 2; the answers provide

a summary of the conclusions that follow from this research. We also enumerate our

contributions to computer science research, and �nally, we look ahead to future research

opportunities opened up by this work.

146

7.1 Summary

In Chapter 2 we posed several questions that seek to understand the essence of soft-

ware. In this section, we summarize the answers developed within the context of this

dissertation work.

What is a feature? It is a unit of functionality at some level of abstraction. As such,

it is a denizen of the problem domain and is described by a set of requirements.

How might system features relate to one another? In Chapter 3, we describe

a rich set of relationships that can exist between features. Where these relationships

hold in the problem domain, the participating features serve to structure the desired

system functionality. Where they exist in the problem domain, they illuminate design

and code choices made to enable an e�cient and well-structured implementation.

What is the di�erence between a feature and a feature implementation? A

feature exists in the problem domain; a feature implementation is its realization in the

solution domain. Requirements analysts identify the features; developers create feature

implementations in software.

What is the di�erence between a feature and a use case? A use case captures

the use of a system to achieve a speci�c goal. Any number of features may be employed

in a use case. Features are the building blocks of a system's functionality; use cases

are the building blocks of the way people use a system. A use case might involve the

user goal of correcting spelling errors in an editor. If there is a spell-checking feature

de�ned for the system, then presumably the use case would take advantage of it. If no

such feature exists, then the use case would involve other means of achieving the goal,

perhaps by using an external program.

147

How can software development be driven by the features in a system? Under-

standing features helps us understand software. Feature engineering helps us understand

how features can be used in software development. It has reections in all phases of de-

velopment. Identi�cation of the feature set provides a natural structuring of the desired

system functionality. High-level design should result in an architecture that gracefully

hosts unanticipated features. Implementation activities are enhanced by explicit rela-

tionships that relieve developers of tedious and error-prone tasks, like recreating the

mapping from a feature to its implementation. Con�guration management can be done

at a level that more closely resembles the problem domain. Testing can be targeted to

speci�c features, and since the features are composed of requirements, the tests can be

written against known constraints.

What is there to software besides feature implementations? Systems deliver

their functionality to users in quanta of features. Beneath the feature implementation,

there is an infrastructure that represents the realization of a system's architecture. We

can conceive of systems as being comprised of two distinct parts, its feature implemen-

tations and its core.

7.2 Contributions of this Work

A framework for understanding features in software is the �rst contribution of this

research. This understanding starts with de�ning features to be a problem domain

entity. The distinction between feature and feature implementation is also important.

The feature framework presents a model of software development that has been applied

to several software projects and found to �t them well.

Understanding the possibilities for taking advantage of feature information within soft-

148

ware development is the second contribution. These possibilities are predicated on mak-

ing the implicit roles for features explicit. The feature-engineering framework makes use

of these relationships and extends traditional development activities. Each of these ar-

eas of extension has the potential for interesting research. In this dissertation, two are

explored and found to be bene�cial to the development of software.

Extending con�guration management to make use of feature information in a system

is the third contribution. Con�guration management occupies a unique position in

software development because it provides support for each of the other activities. To

be useful within software development, features and the relationships that they struc-

ture require identi�cation and management throughout the evolution of the underlying

software. We identify how features might be managed within software development.

Managing feature relationships poses a signi�cant challenge to con�guration manage-

ment systems. One part of this contribution was to develop a framework for evaluating

the support that con�guration-management systems are able to provide for feature

management. Using this framework, we undertook an evaluation of commercial con-

�guration management systems. This evaluation led to a better understanding of the

con�guration management discipline in general and helped identify poorly-supported

requirements for managing features.

The fourth contribution is building a prototype feature-based con�guration manage-

ment system, IronMan, and using it to support software development. The system was

built to incorporate the feature extensions to provide native support for the activities

identi�ed in the evaluation framework. The experiences using IronMan con�rmed the

value of bringing feature relationships into software development. Signi�cant burdens

are eliminated from developers when this information guides workspace management

and system con�guration.

149

Exploring features in software testing is the �fth contribution of this dissertation. Test-

ing is fundamental to the development of good software. We de�ne feature testing and

outline its use with the testing discipline. As features organize an application's func-

tionality, feature tests are a natural organization for testing. In our research, we also

develop a method to use feature tests to reveal the mapping from features to feature

implementations. Recovering this mapping is important for feature-based con�guration

as well as improving developers' understanding of software structure.

7.3 Future Work

The span of feature engineering is broad, leading to a number of directions for extend-

ing this work. The systems analyzed in this research have �t the feature-engineering

framework; applying the framework to additional systems is warranted. Exploring the

characteristics of di�erent software systems that inuence their suitability for feature

engineering is a logical extension to this work. We de�ne relationships that can be used

to improve the development of software systems. In the problem domain, relationships

are created through the analytical skill of domain analysts and requirements engineers.

In the solution domain, there are opportunities to take advantage of these relationships;

in Section 3.3 we identify many of these. Extending the tools and process within the

software-development activities to reect these relationships is rich ground for future

work. For instance, in software architecture, there is potential for developing methods

to trace features to the architectural elements that provide them. In addition to the

relationships stemming from the problem domain, additional ones occur in the problem

domain. Much work remains to develop tools and methods for discovering them from

development artifacts. There is also the potential for developing a language for express-

ing these relationships and integrating it with the existing concepts within the di�erent

150

software development activities.

We de�ne a set of relationships that con�guration management systems should maintain.

Our experience with the feature-based con�guration management prototype demon-

strates the value of making this information available for workspace management and

system con�guration. Existing con�guration management systems are weak in using the

identi�cation facilities they provide as input into the other operations. Additional work

is needed to characterize and extend the interaction mechanisms between the di�erent

con�guration management activities. Another useful e�ort would be a thorough ex-

amination program construction techniques to categorize the mechanisms they provide

for including optional features. Con�guration management systems leave program con-

struction to external tools that do not take advantage of feature information, creating

another area for future work.

In software testing, two areas merit additional research. The �rst is to create richer

information from feature testing. Extending the set model of feature implementation

to incorporate a path through code artifacts and incorporating data structures into

the implementation would provide greater insight into feature implementation. We can

identify promising and complementary approaches. Incorporating information from de-

pendence analysis for the software and enriching the program instrumentation would

facilitate generating the desired information. Greater insight promises better identi�-

cation of the feature interactions occurring in the solution domain. These techniques

should help developers attain more value from testing e�orts and improve the quality

of the software they develop.

Bibliography

[1] G.D. Abowd, R. Allen, and D. Garlan. Formalizing Style to Understand Descrip-
tions of Software Architecture. ACM Transactions on Software Engineering and
Methodology, 4(4):319{364, October 1995.

[2] A.V. Aho and N. Gri�eth. Feature Interaction in the Global Information Infrastruc-
ture. In Proceedings of the Third ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pages 2{5. ACM SIGSOFT, October 1995.

[3] K.M. Anderson, R.N. Taylor, and E.J. Whitehead Jr. Chimera: Hypertext for Het-
erogeneous Software Environments. In Proceedings of the 1994 ACM Conference
on Hypertext, pages 94{107, September 1994.

[4] Atria Corporation, Inc., Lexington, Massachusetts. ClearCase Concepts Manual -
Unix Edition, March 1995.

[5] Atria Corporation, Inc., Lexington, Massachusetts. ClearCase Reference Manual -
Unix Edition, March 1995.

[6] AT&T Network Systems. 5ESS Switch Global Technical Description, September
1991. Issue 3.

[7] D. Batory and S O'Malley. The Design and Implementation of Hierarchical Software
Systems with Reusable Components. ACM Transactions on Software Engineering
and Methodology, 1(4):355{398, October 1992.

[8] T. Biggersta� and C. Richter. Reusability Framework, Assessment, and Directions.
IEEE Computer Society, 1987.

[9] B.W. Boehm. A Spiral Model of Software Development and Enhancement. IEEE
Computer, 21(5):61{72, May 1988.

[10] B.W. Boehm, M.H. Penedo, E.D. Stuckle, R.D. Williams, and A.B. Pyster. A
Software Development Environment for Improving Productivity. IEEE Computer,
17(6):30{44, June 1984.

[11] G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modeling Language User
Guide. Addison-Wesley, Reading, Massachusetts, 2 edition, 1998.

152

[12] E.J. Cameron and H. Velthuijsen. Feature Interactions in Telecommunications
Systems. IEEE Communications, pages 18{23, August 1993.

[13] D.L. Carney, J.I. Cochrane, L.J. Gitten, E.M. Prell, and R. Staehler. Architectural
Overview. AT&T Technical Journal, 64(6):1339{1356, 1985.

[14] Y.-F. Chen, D.S. Rosenblum, and K.-P. Vo. TestTube: A System for Selective Re-
gression Testing. In Proceedings of the 16th International Conference on Software
Engineering, pages 211{220. IEEE Computer Society, May 1994.

[15] K.W. Church and J.I. Helfman. Dotplot: A Program for Exploring Self-Similarity
in Millions of Lines for Text and Code. Journal of Computational and Graphical
Statistics, 2(2):153{174, June 1993.

[16] L.A. Clarke, J.C. Wileden, and A.L. Wolf. Object Management Support for
Software Development Environments. In Appin Workshop on Persistent Object
Systems, August 1987.

[17] J. Conklin. Hypertext: An Introduction and Survey. IEEE - Computer, 20(9):17{
41, January 1987.

[18] Continuus Software Corporation, Irvine, California. Continuus Task Reference,
1994.

[19] M.A. Cusumano and R.W. Selby. Microsoft Secrets. The Free Press, New York,
1995.

[20] S. Dart. Concepts in Con�guration Management Systems. In Proceedings of the
Third International Workshop on Software Con�guration Management, pages 1{18.
ACM SIGSOFT, 1991.

[21] A. Davis and R. Rauscher. Formal Techniques and Automatic Processing to Ensure
Correctness in Requirements Speci�cations. In Proceedings of the 1979 Conference
on Speci�cations of Reliable Software, pages 15{35. IEEE Computer Society, 1979.

[22] A.M. Davis. The Design of a Family of Application-Oriented Requirements Lan-
guages. IEEE - Computer, 15(5):21{28, May 1982.

[23] A.M. Davis. Software Requirements - Objects, Functions, & States. Prentice-Hall,
Englewood Cli�s, New Jersey, 1993.

[24] C.G. Davis and C.R. Vick. The Sofware Development System. IEEE Transactions
on Software Engineering, SE-3(1):69{84, January 1977.

[25] R.G. Day. Quality Function Deployment. ASQC Quality Press, Milwaukee Wis-
consin, 1993.

[26] J. Estublier. A Con�guration Manager: The Adele Data Base of Programs.

[27] J. Estublier. Con�guration Management - The Notion and the Tools.

153

[28] J. Estublier and R. Casallas. The Adele Con�guration Manager. In W. Tichy,
editor, Con�guration Management, number 2 in Trends in Software, pages 99{134.
Wiley, London, 1994.

[29] P.H. Feiler. Con�guration Management Models in Commercial Environments.
Technical Report SEI-91-TR-07, Software Engineering Institute, Pittsburgh, Penn-
sylvania, April 1991.

[30] S.I. Feldman. Make - A Program for Maintaining Computer Programs. Software -
Practice and Experience, 9(4):255{265, April 1979.

[31] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The Program Dependence Graph
and its Use in Optimization. ACM Transactions on Programming Languages and
Systems, 9(3):319{349, October 1987.

[32] A. Fuggetta and A.L. Wolf, editors. Software Process. Number 4 in Trends in
Software. Wiley, London, 1996.

[33] H.V. Gomaa, H.V. Sugumaran, C. Bosch, and I. Tavakoli. A Prototype Domain
Modeling Environment for Reusable Software Architectures. In Proceedings of
the Third International Conference on the Software Reuse, pages 74{83. IEEE
Computer Society, November 1994.

[34] R.W. Gray, V.P. Heuring, S.P. Levi, A.M. Sloane, and W.M. Waite. Eli: A
Complete, Flexible Compiler Construction System. Communications of the ACM,
35(2):121{131, February 1992.

[35] N.D. Gri�eth and Y. Lin. Extending Telecommunications Systems: The Feature-
Interaction Problem. IEEE Computer, 26(8):14{18, August 1993.

[36] M. Griss, J. Favaro, and M. d'Alessandro. Developing Architecture Through Reuse.
1997.

[37] P. Hsia, A.M. Davis, and D.C. Kung. Status Report: Requirements Engineering.
IEEE Software, 10(6):75{79, November 1993.

[38] P. Hsia and A. Gupta. Incremental Delivery Using Abstract Data Types and
Requirements Clustering. In Proceedings of the Second International Conference
on Systems Integration, pages 137{150. IEEE Computer Society, June 1992.

[39] M. Jackson. Software Requirements and Speci�cations: A Lexicon of Practice,
Principles, and Prejudices. Addison-Wesley, Reading, Massachusetts, 1995.

[40] M. Jackson and P.Zave. Distributed Feature Composition: A Virtual Architecture
for Telecommunications Services. IEEE Transactions on Software Engineering,
24(10):831{847, October 1998.

[41] I. Jacobson. Object-Oriented Software Engineering - A Use Case Driven Approach.
Addison-Wesley, Reading, Massachusetts, 1992.

[42] C. Jones. Applied Software Measurement: Assuring Productivity and Quality.
McGraw-Hill, New York, 2 edition, 1996.

154

[43] H. Kaindl, S. Kramer, and R. Kacsich. A Case Study of Decoposing Functional
Requirements Using Scenarios. In Third Internation Conference on Requirements
Engineering, pages 82{89. IEEE Computer Society, April 1998.

[44] Y. Kamigaki, T. Nara, S. Machida, A. Hakata, and K. Yamaguchi. 160 Gbit/s ATM
switching system for public network. In Global Telecommunications Conference,
1996., pages 1380{1387, November 1996.

[45] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI{
90{TR{21, Software Engineering Institute, Pittsburgh, Pennsylvania, 1990.

[46] J. Karlsson and K. Ryan. A Cost-Value Approach for Prioritizing Requirements.
IEEE - Software, 14(5):67{74, Sep/Oct 1997.

[47] D.O. Keck and P.J. Kuehn. The Feature and Service Interaction Problem in
Telecommunications Software Systems: A Survey. IEEE Transactions on Software
Engineering, 24(10):779{796, October 1998.

[48] C. Kop and H.C. Mayr. Conceptual Predesign Bridging the Gap between Require-
ments and Conceptual Design. In Third Internation Conference on Requirements
Engineering, pages 90{98. IEEE Computer Society, April 1998.

[49] P. Kruchten. The 4+1 View Model of Architecture. IEEE Software, 12(6):42{50,
November 1995.

[50] R.W. Krut. Integrating 001 Tool Support into the Feature-Oriented Domain Anal-
ysis Methodology. Technical Report CMU/SEI{93{TR{01, Software Engineering
Institute, Pittsburgh, Pennsylvania, July 1993.

[51] B.S. Ku. A Reuse-Driven Approach for Rapid Telephone Service Creation.
Proceedings of the Third Interanational Conference in Software Reuse, pages 64{72,
November 1994.

[52] M.M Larrondo-Petrie, K.R. Nair, and G.K. Raghavan. A domain analysis of Web
browser architectures, languages and features. In Southcon/96 Conference Record,
pages 168{174, 1996.

[53] F.J. Lin, H. Liu, and A. Ghosh. A Methodology fo rFeature Interaction Detection in
the AIN 0.1 Framework. IEEE Transactions on Software Engineering, 24(10):797{
817, October 1998.

[54] Y.-J. Lin and M. Jazayeri. Guest Editoral: Introduction to the Special Section
on Managing Feature Interactions in Telecommunications Software Systems. IEEE
Transactions on Software Engineering, 24(10):777{778, October 1998.

[55] D.C. Luckham and J. Vera. An Event-based Architecture De�nition Language.
IEEE Transactions on Software Engineering, 21(9):717{734, September 1995.

[56] A. Mahler. Variants: Keeping Things Together and Telling Them Apart. In
W. Tichy, editor, Con�guration Management, number 2 in Trends in Software,
pages 73{97. Wiley, London, 1994.

155

[57] B. Marick. The Craft of Software Testing. Prentice-Hall, Englewood Cli�s,
New Jersey, 1995.

[58] H.D. Mills, M. Dyer, and R.C. Linger. Cleanroom Software Engineering. IEEE
Software, 4(5):19{25, September 1987.

[59] J. Nielsen. HyperText & HyperMedia. Academic Press, Inc., Boston, MA, 1990.

[60] Standards Coordinating Committee of the IEEE Computer Society. ANSI/IEEE
Std 830-1984. Standard for Software Requirements Speci�cations, 1984.

[61] Standards Coordinating Committee of the IEEE Computer Society. IEEE Std
1042-1987. Guide to Software Con�guration Management, 1987.

[62] Standards Coordinating Committee of the IEEE Computer Society. IEEE standard
glossary of software engineering terminology . IEEE Std 610.12-1990, December
1990.

[63] Standards Coordinating Committee of the IEEE Computer Society. Portable
Operating System Interface (POSIXR) - Part 2 Shell & Utilitites. IEEE/ANSI
1003.2-1992 Std for Information Technology, 1992.

[64] H. Ossher andW. Harrison. Combination of Inheritance Hierarchies. In Proceedings
of the Conference on Object-oriented Programming Systems, Languages, and
Applications, pages 25{40. Association for Computer Machinery, October 1992.

[65] L.J. Osterweil. Software Environment Research: Directions for the Next Five Years.
IEEE Computer, 14(4):35{43, April 1981.

[66] J.D. Palmer and Y. Liang. Indexing and Clustering of Software Requirements
Speci�cations. Information and Decision Technologies, 18(4):283{299, 1992.

[67] M.H. Penedo and E.D. Stuckle. PMDB|A Project Master Database for Software
Engineering Environments. In Proceedings of the 8th International Conference on
Software Engineering, pages 150{157. IEEE Computer Society, August 1985.

[68] D.E. Perry and A.L. Wolf. Foundations for the Study of Software Architecture.
SIGSOFT Software Engineering Notes, 17(4):40{52, October 1992.

[69] A. Podgurski and L.A. Clarke. A Formal Model of Program Dependencies
and its Implications for Software Testing, Debugging, and Maintenance. IEEE
Transactions on Software Engineering, 16(9):965{979, September 1990.

[70] R.S. Pressman. Software Engineering: A Practitioner's Approach. McGraw-Hill,
New York, 3 edition, 1992.

[71] R. Prieto-D��az. Domain Analysis for Reusability. In Eleventh Annual Computer
Software and Applications Conference, pages 23{29. IEEE Computer Society, 1987.

[72] R. Prieto-D��az and J.M. Neighbors. Module Interconnection Languages. Journal
of Systems and Software, 6(4):307{334, November 1986.

156

[73] L.B.S. Raccoon. The Complexity Gap. SIGSOFT Software Engineering Notes,
20(3):37{44, July 1995.

[74] D.J. Richardson and A.L. Wolf. Software Testing at the Architectural Level. In
Second International Software Architecture Workshop, pages 68{71, October 1996.

[75] W.N. Robinson and S. Pawlowski. Surfacing Root Requirements Interactions
from Inquiry Cycle Requirements Documents. In Third Internation Conference
on Requirements Engineering, pages 82{89. IEEE Computer Society, April 1998.

[76] T. Russell. Singaling System 7. McGraw-Hill, New York, 2 edition, 1998.

[77] M. Shaw. Comparing Architectural Design Styles. IEEE Software, 12(6):27{41,
November 1995.

[78] M. Sitaraman. Performance Parameterized Reusable Software Components.
International Journal of Software Engineering and Knowledge Engineering,
2(4):567{587, October 1992.

[79] A.M. Sloane and J. Holdsworth. Beyond Traditional Program Slicing. In
Proceedings of the 1996 International Symposium on Software Testing and Analysis
(ISSTA '96), pages 180{186. ACM SIGSOFT, January 1996.

[80] Gregor Snelting. Reengineering of con�gurations based on mathematical concept
analysis. ACM Transactions on Software Engineering and Methodology, 5(2):146{
89, April 1996.

[81] Software Maintenance & Development Systems, Inc., Concord, Massachusetts.
Aide de Camp Con�guration Management System, April 1994.

[82] Software Maintenance & Development Systems, Inc, Concord, Massachusetts.
Aide de Camp Product Overview, September 1994.

[83] Software Maintenance & Development Systems, Inc., Concord, Massachusetts.
Aide de Camp Product Overview, September 1994.

[84] W.F. Tichy. Design, Implementation, and Evaluation of a Revision Control System.
Proceedings of the 6th International Conference on Software Engineering, pages
58{67, September 1982.

[85] F. Tip. A Survey of Program Slicing Techniques. Technical Report CS-R9428,
Centrum voor Wiskunde Informatica (CWI), Amsterdam, The Netherlands, 1994.

[86] W. Tracz. Confessions of a Used Program Salesman - Institutionalizing Software
Reuse. Addison-Wesley, Reading, Massachusetts, 1995.

[87] S. Tsang and E.H. Magill. Learning to Detect and Avoid Run-Time Feature In-
teractions in Intelligent Networks. IEEE Transactions on Software Engineering,
24(10):818{830, October 1998.

157

[88] A. van der Hoek, D.M. Heimbigner, and A.L. Wolf. Software Architecture, Con�g-
uration Management, and Con�gurable Distributed Systems: A Menage a Trois.
Technical Report CU-CS-849-98, University of Colorado, University of Colorado,
Boulder, Colorado, January 1998.

[89] M. Weiser. Program Slicing. In Proceedings of the 5th International Conference
on Software Engineering, pages 439{449. IEEE Computer Society, March 1981.

[90] M. Fowler with K. Scott. UML Distilled - Applying the Standard Object Modeling
Language. Object Technology Series. Addison-Wesley, Reading, Massachusetts,
1997.

[91] P. Zave. Feature Interactions and Formal Speci�cations in Telecommunications.
IEEE Computer, 26(8):20{29, August 1993.

Appendix A

Vim Functional Decomposition

abbreviations

abbr-add

abbr-clear

abbr-display

argument-list

arglist-display

arglist-first

arglist-last

arglist-next

arglist-previous

autocommands

backup

backup-autosave

backup-preserve

backup-recover

binary-editing

buffer

buffer-change

buffer-display

buffer-edit

buffer-hide

buffer-remove

buffer-unhide

command-line

command-completion

command-execute-during-insert

command-execute-register

command-execute-file

command-history

command-repeat-over-range

command-shell-execution

configuration

option-display

option-invert

option-reset

option-set

read-modeline

cscope-integration

cursor-movement

jumps

jump-comment

jump-file-position

jump-file-under-cursor

jump-item-under-cursor

jump-jump

Table A.1: A Functional Decomposition for Vim 5.3

159

cursor-movement (continued)

jump (continued)

jump-line

jump-mark

jump-matched-item

jump-quickfix

jump-screen

jump-search

jump-tag

jump-tag-back

jump-text-object

window-cursor-down

window-cursor-up

move-horizontal

line-characters

line-find

line-position

move-vertical

line-down

line-up

scrolling

scroll-cursor-relative

scroll-down

scroll-horizontal

scroll-up

display-information

abbr-display

arglist-display

buffer-display

display-ascii-value

display-current-file-name

display-cursor-position-in-file

display-directory

display-files

display-grep

display-intro-screen

display-jump-list

display-line

display-line-number

display-line-numbers

display-lines

display-lines-containing-keyword

display-macro-definition

display-screen

display-version-info

mark-display

register-display

option-display

tag-display

edit

change

change-case

decrement-number

filter-text

increment-number

move-text

pattern-based-substitution

replace-text

retab

shift-text

copy-text

delete

delete-chars

delete-linebreaks

delete-lines

delete-motion

delete-range

format

align-text

format-comments

format-textblock

indent

autoindent

cindent

lispindent

smartindent

tab-handling

insert

completion

insert-complete-filename

insert-complete-keyword

insert-complete-line

insert-complete-macro-def

insert-complete-tag

insert-change-indent

insert-characters-line-above

insert-characters-line-below

insert-digraphs

insert-linebreaks

insert-literal

insert-register-contents

insert-text

paste

paste-text

paste-text-adjust-indent

file-formats

160

file-manipulation

gui

help

key-mapping

keyword-lookup

leaving

leave-abandon-changes

leave-exit

leave-suspend

marks

mark-display

mark-set

mark-set-file

jump-mark

ole-integration

perl-integration

python-integration

quickfix

qf-first

qf-grep

qf-last

qf-load-errorfile

qf-make

qf-next

qf-newer

qf-older

qf-previous

registers

execute-register

record-keystrokes

register-append-text

register-display

register-fill-with-text

register-paste-contents

right-to-left-editing

security

shell-restriction

resource-file-restriction

sleep

syntax-highlighting

tags

jump-tag

jump-tag-back

tag-display

tag-display-matching

tag-first

tag-last

tag-next

tag-previous

tag-select

tcl-integration

undo-redo

redo-undone-change

restore-line

undo-change

user-commands

user-functions

visual-mode

windows

window-close

window-cursor-down

window-cursor-up

window-decrease-size

window-exchange

window-increase-size

window-new

window-only

window-resize

window-rotate-down

window-rotate-up

window-size-equal

window-split

composite-features

split-all-args

split-all-buffers

split-edit-tag-file

split-first-arg

split-goto-define-def

split-goto-file

split-goto-identifier-def

split-last-arg

split-tag-jump

split-tag-select

Table A.3: A Functional Decomposition for Vim 5.3 (continued)

161

Appendix B

Concrete Features Identi�ed in Vim Tests

autocommands

buffer-edit

buffer-hide

buffer-remove

buffer-unhide

decrement-number

pattern-based-substitution

delete-linebreaks

delete-motion

align-text

autoindent

cindent

lispindent

smartindent

tab-handling

insert-complete-filename

insert-complete-keyword

insert-complete-tag

insert-text

command-execute-file

command-shell-execution

option-set

read-modeline

jump-file-position

jump-file-under-cursor

jump-item-under-cursor

jump-search

jump-text-object

line-down

file-formats

file-manipulation

leave-abandon-changes

leave-exit

qf-load-errorfile

qf-next

resource-file-restriction

jump-tag

user-commands

user-functions

visual-mode

window-close

window-only

window-split

window-split-all-args

Table B.1: Features exercised test cases distributed with Vim

