A BDD-based BMC Approach for the Verification of Multi-Agent Systems

Andrew V. Jones Alessio Lomuscio
{andrewj, alessio}@doc.ic.ac.uk

Department of Computing
Imperial College London

Concurrency, Specification, and Programming
September, 2009
The majority of “symbolic” model checkers use binary decision diagrams.

Current bounded model checkers, either:
- Require a translation of the problem to SAT, or
- Aren’t very expressive

And – they concentrate on “bug hunting”, not verifying correctness.

SAT-based BMC and conventional model checking techniques are, at the moment, seen as complementary to each other.
Is it possible to convert an existing model checker to a bounded one?

And ...

How can we distribute the verification process?
What is an agent?

“An agent is a computer system that is situated in some environment, and that is capable of autonomous action in this environment in order to meet its design objectives.” – Weiss
A system is composed of a set of agents $A = \{1, \ldots, n\}$ and an environment e.

Each agent, i, is described by
- A set of local states – L_i
- A set of local actions – Act_i
- A local protocol function – $\mathcal{P}_i : L_i \rightarrow 2^{\text{Act}_i}$
- An evolution function – $\tau_i : L_i \times \text{Act} \rightarrow L_i$

Act is the set of joint actions –
$\text{Act} \subseteq \text{Act}_1 \times \cdots \times \text{Act}_n \times \text{Act}_e$
G is the set of possible global states – $G \subseteq \mathcal{L}_1 \times \cdots \times \mathcal{L}_n \times \mathcal{L}_e$

- A global state $g = (l_1, \ldots, l_n, l_e) \in G$ represents a “snapshot” of the system
- $l_i : G \rightarrow \mathcal{L}_i$ is a projection of agent i’s local state from the given global state
- Each agent i has an epistemic relation – $g \sim_i g'$ iff $l_i(g) = l_i(g')$

T is a transition relation for the system – $T \subseteq G \times \text{Act} \times G$

- $g \mathrel{T} g'$ iff there exists actions a_1, \ldots, a_n such that for all i, $a_i \in \mathcal{P}_i(l_i(g))$ and $\tau_i(l_i(g), a_1, \ldots, a_n) = l_i(g')$
A model $M_{\mathcal{IS}}$ is a tuple $(G, \iota, T, \sim_1, \ldots, \sim_n, \mathcal{V})$

- $\iota \in G$ is an initial global state
- G is the set of reachable states accessible from ι via T
- \mathcal{V} is a mapping from global states to propositional variables (\mathcal{PV}) – $\mathcal{V} : G \rightarrow 2^{\mathcal{PV}}$

A path $\pi = (\iota, g_1, \ldots)$ is an infinite sequence of global states such that $\forall k \geq 0 \ (g_k, g_{k+1}) \in T$.

- $\pi(k)$ is the k^{th} global state of the path π
- $\Pi(g)$ is the set of all paths starting at $g \in G$
A Temporal Epistemic Logic – CTLK

- Syntax

\[\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid EX \varphi \mid EG \varphi \mid E[\varphi U \psi] \mid Ki \varphi \]

- Derived Modalities

 - \(EF \varphi \overset{\text{def}}{=} E[\text{true}U \varphi] \)
 - \(AX \varphi \overset{\text{def}}{=} \neg EX \neg \varphi \)
 - \(AF \varphi \overset{\text{def}}{=} \neg EG \neg \varphi \)
 - \(AG \varphi \overset{\text{def}}{=} \neg EF \neg \varphi \)
 - \(\overline{Ki} \varphi \overset{\text{def}}{=} \neg Ki \neg \varphi \)

- \(A[\varphi U \psi] \) – Takes the expected meaning
$K_i \varphi$ – “agent i knows that φ”

$\mathcal{M}_{IS}, g \models K_i \varphi$ iff $\forall g' \in G, g \sim_i g'$ implies $\mathcal{M}_{IS}, g' \models \varphi$

$\overline{K}_i \varphi$ – “agent i considers it possible that φ”

$\mathcal{M}_{IS}, g \models \overline{K}_i \varphi$ iff $\exists g' \in G : g \sim_i g'$ and $\mathcal{M}_{IS}, g' \models \varphi$
Conventional “symbolic” model checkers use a canonical representation called ROBDDs. These can be used to efficiently represent a Boolean function.

Two main stages:
1. Calculate the entire reachable state space
2. Recursively evaluate the property using fix point methods

Interpreted Systems Reachable State Space

$$\text{lfp}(Q) = (I(g) \lor \exists g' (T(g, a, g') \land Q(g'))$$
Model Checking Multi-Agent Systems

MCMAS:

- Symbolic model checker for verifying *certain* aspects of multi-agent systems
- Based on BDDs from the CUDD library
- Based on the “Interpreted Systems Programming Language”

Interpreted Systems Programming Language – ISPL – allows for the definition of multi-agent systems following the interpreted systems formalism. ISPL syntax includes:

- Agent
- Evaluation
- Formulae
ECTLK

CTLK as before:
- Restricts negation to only appear in front of elements of $\mathcal{P}V$
- Contains \overline{K}_i not K_i

ACTLK

A formula is in ACTLK if the negation is ECTLK...

$$ACTLK \subseteq \{\varphi | \neg \varphi \in ECTLK\}$$
Current Approaches to Bounded Model Checking

SAT-based BMC

<table>
<thead>
<tr>
<th>Idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Unroll” the transition relation k times</td>
</tr>
<tr>
<td>Translate the negated property and unrolled model to the Boolean satisfiability problem</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requires a SAT solver</td>
</tr>
<tr>
<td>Not straightforward to convert a BDD model checker to a SAT one</td>
</tr>
</tbody>
</table>

BDD-based BMC

<table>
<thead>
<tr>
<th>Idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Represent the “error” as a bad state</td>
</tr>
<tr>
<td>Find all of the reachable states at a depth k</td>
</tr>
<tr>
<td>Check the intersection of the error state with the “fringe”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>How does one specify properties as a single error state? Okay for invariant/safety properties – but apart from that?</td>
</tr>
</tbody>
</table>

Andrew V. Jones, Alessio Lomuscio

BDD-based BMC for Multi-Agent Systems
BDD-BMC(\(\psi : \text{ACTLK Formula}, \mathcal{I} : \text{Initial State}, \text{Trans} : \text{Transition Relation} \)) : \text{Boolean}

1: \(\varphi \leftarrow \neg \psi \) \{\(\varphi : \text{ECLTK Formula} \}\}
2: \text{Reach} \leftarrow \mathcal{I} \{\text{Reach} : \text{BDD} \}\)
3: \textbf{while} \ TRUE \ \textbf{do}
4: \ \textbf{if} \ 1 \rightarrow D = \text{Reach} \ \textbf{then}
5: \ \ \ \textbf{return} \ \text{FALSE} \ \{\text{Counterexample found} \}\)
6: \ \textbf{end if}
7: \ \text{Reach} \leftarrow \text{Reach} \lor (\text{Reach} \land \text{Trans})
8: \ \textbf{if} \ \text{Reach} \ \text{Unchanged} \ \textbf{then}
9: \ \ \ \textbf{break} \ \{\text{Fixed point reached} \}\)
10: \ \textbf{end if}
11: \ \textbf{end while}
12: \ \textbf{return} \ 1 \rightarrow D = \text{Reach}
Extending SAT_{CTLK}

Current fix point methods work even when using non-serial transition relations, but we need a symbolic method for \overline{K}_i.

We could just use $\overline{K}_i \varphi \overset{\text{def}}{=} \neg K_i \neg \varphi$.

$\text{SAT}_{\overline{K}}(\varphi : \text{FORMULA}, i : \text{AGENT}) : \text{set of STATE}$

1. $X \leftarrow \text{SAT}_{\text{CTLK}}(\varphi)$
2. $Y \leftarrow \text{pre}_K(X, i)$
3. $\text{return } Y$
Inside MCMAS

BDD basic_agent::project_local_state(BDD *state, BDDvector* v)
{
 BDD tmp = bddmgr->bddOne();

 // For all of the state variables before the agent ...
 for (int j = 0; j < get_var_index_start(); j++)
 {
 // 'and' them on
 tmp = tmp * (*v)[j];
 }

 // and after the agent ...
 for (int j = get_var_index_end() + 1; j < v->count(); j++)
 {
 // 'and' them on
 tmp = tmp * (*v)[j];
 }

 return state->ExistAbstract(tmp);
}

Figure: The simplified project_local_state method
We restrict verification to invariant properties, i.e. “AG” is the top most connective.

Distributed Approach

1. **Fixed-Depth BDD-based BMC.**
2. **Seed State Generation.**
3. **Distributed Parallel BDD-based BMC.**
Distributed Verification of Invariant Properties

Andrew V. Jones, Alessio Lomuscio

BDD-based BMC for Multi-Agent Systems
Distributed Verification of Invariant Properties

Seed 1

Depth k

Andrew V. Jones, Alessio Lomuscio

BDD-based BMC for Multi-Agent Systems
Distributed Verification of Invariant Properties

Seed 1
Seed 2
Seed 3

Depth k

Andrew V. Jones, Alessio Lomuscio

BDD-based BMC for Multi-Agent Systems
Distributed Verification of Invariant Properties

Seed 1

Seed 2

Seed 3

Depth k

Andrew V. Jones, Alessio Lomuscio

BDD-based BMC for Multi-Agent Systems
A Scalable Model
The Train Gate Controller Model

Controller

Tunnel

Eastbound Train

Westbound Train

Andrew V. Jones, Alessio Lomuscio

BDD-based BMC for Multi-Agent Systems
Faulty trains now have a service counter and a breaking depth...
The Faulty Train Gate Controller – Controller

<table>
<thead>
<tr>
<th>Label</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>IDLE</td>
</tr>
<tr>
<td>c_2</td>
<td>EXIT_TRAIN</td>
</tr>
<tr>
<td>c_3</td>
<td>IDLE</td>
</tr>
<tr>
<td>c_4</td>
<td>IDLE</td>
</tr>
<tr>
<td>c_5</td>
<td>ENTER_TRAIN_T</td>
</tr>
</tbody>
</table>

$T \in \{E,W\}$
Example Specifications

\(\varphi_{TGC1} : \text{“Trains can’t stay in the tunnel forever”} \)

\[AG(\mathbf{AF}(\neg \text{TrainE_in_tunnel})) \]

Mutual Exclusion:

\(\varphi_{TGC2} : \text{“Two trains never occupy the tunnel at the same time”} \)

\[AG(\neg \text{TrainE_in_tunnel} \lor \neg \text{TrainW_in_tunnel}) \]

\(\varphi_{TGC3} : \text{“When a train is in the tunnel it knows that another train is not”} \)

\[AG(\text{TrainE_in_tunnel} \rightarrow K_{\text{TrainE}}(\neg \text{TrainW_in_tunnel})) \]
Figure: Memory usage for two trains, with a full service depth of 20 – when checking various formulae
Figure: Time required for two trains, with a full service depth of 20 – when checking various formulae
Biere et al. (1999): bounded model checking “finds counterexamples of minimal length”.

<table>
<thead>
<tr>
<th>Method</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\varphi_{TGC1})</td>
</tr>
<tr>
<td>Regular</td>
<td>25</td>
</tr>
<tr>
<td>BMC</td>
<td>13</td>
</tr>
</tbody>
</table>

Table: Length of counterexamples generated between BMC and full verification
Given we don’t have completeness for epistemic sub-formulae, we need a different formula to verify . . .

Temporal-Epistemic

\[AG(\text{TrainE_in_tunnel} \rightarrow K_{\text{TrainE}} (\neg \text{TrainW_in_tunnel})) \]

Temporal-Only

\[AG(\text{TrainE_in_tunnel} \rightarrow AX (\neg \text{TrainW_in_tunnel})) \]
Table: A comparison of seeded BMC vs. BMC for a single master and 3 slaves (seed depth of 4).

<table>
<thead>
<tr>
<th>Model</th>
<th>Ratio</th>
<th>Memory</th>
<th>Time</th>
<th>States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faulty</td>
<td>1.8255</td>
<td>3.8130</td>
<td>1.7297</td>
<td></td>
</tr>
<tr>
<td>Working</td>
<td>0.9500</td>
<td>0.0013</td>
<td>0.0008</td>
<td></td>
</tr>
</tbody>
</table>

Table: Ratios comparing time for seeded BMC vs. BMC, for a varying number of slaves (seed depth of 3).

<table>
<thead>
<tr>
<th># Hosts</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0033</td>
</tr>
<tr>
<td>4</td>
<td>0.0066</td>
</tr>
<tr>
<td>6</td>
<td>0.0098</td>
</tr>
<tr>
<td>8</td>
<td>0.0131</td>
</tr>
</tbody>
</table>
BDD-based BMC is shown to be effective with variable reordering disabled; for satisfiable formulae the overhead imposed is negligible.

Distributed BDD-based BMC:
- Out-performs the sequential approach for falsifiable formulae
- Increasing the number of hosts increases verification efficiency

Further work
- Completeness of temporal-epistemic formulae
- Intersection-based BMC using MCMAS’s RedStates
- More Models
- Comparison to VERICS
- Smarter use of CUDD using Cudd RecursiveDeref
Are there any questions?
Backup Slides
SAT requires an encoding of a “back loop”

Semantics of ECTLK

\[M_{IS}, g \models EG\varphi \iff \exists \pi \in \Pi(g) \ \forall m \geq 0 \ M_{IS}, \pi(m) \models \varphi \]

Bounded Semantics of ECLTK

\[M_k, g \models EG\varphi \iff \exists \pi \in P_k(\pi(0) = g \ \wedge \ \forall 0 \leq j \leq k \ M_k, \pi(j) \models \varphi) \]

... requires \(\text{loop}(\pi) \neq \emptyset \)

\[
\text{loop}(\pi) = \emptyset \quad \quad \quad \text{loop}(\pi) = \{2\}
\]
BDD approaches require an explicit “error state”

BoundedTraversal (Trans : Transition Relation, \mathcal{I} : Initial States, Err : Error State, k : Depth)

1: Frontier$_0$ ← \mathcal{I}
2: for ($i = 0; i < k; i++$) do
3: if (Frontier$_i$ · Err $\neq \emptyset$) then
4: return (FAILURE)
5: end if
6: Frontier$_{i+1}$ ← IMG(Trans, Frontier$_i$)
7: end for
8: return (PASS)
CUDD ExistAbstract

- Quantification – $B_h = \exists x \ B_f$
- Shannon’s expression – $h = (\neg x \land f|_{x\leftarrow 0}) \lor (x \land f|_{x\leftarrow 1})$
\[\varphi_{\text{TGC4}}(N) \]

\[
AG \left(\left(\text{TRAIN}_i _\text{IN_TUNNEL} \rightarrow K_{\text{TRAIN}_i} \right) \wedge \left(\bigwedge_{j=1}^{i-1} \neg \text{TRAIN}_j _\text{IN_TUNNEL} \right) \wedge \left(\bigwedge_{j=i+1}^{N} \neg \text{TRAIN}_j _\text{IN_TUNNEL} \right) \right) \]

Andrew V. Jones, Alessio Lomuscio
BDD-based BMC for Multi-Agent Systems
Parameterised Specifications

$$\varphi_{TGC5}(N)$$

$$\begin{align*}
AG & \left(\text{TRAIN}_i _ \text{IN} _ \text{TUNNEL} \rightarrow K_{\text{TRAIN}_i} \right) \\
& \left(\bigwedge_{j=1}^{i-1} AX \left(\neg \text{TRAIN}_j _ \text{IN} _ \text{TUNNEL} \right) \right) \land \\
& \left(\bigwedge_{j=i+1}^{N} AX \left(\neg \text{TRAIN}_j _ \text{IN} _ \text{TUNNEL} \right) \right)
\end{align*}$$