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ABSTRACT 

We present a logic-based approach for analysing event-based requirements specifications 
given in terms of a system’s reaction to events and safety properties. The approach uses an 
event-based logic, called the Event Calculus, to represent such specifications declaratively. 
Building on this formalism, the approach uses an abductive reasoning mechanism for 
analysing safety properties. Given a system description and a safety property, the abductive 
mechanism is able to identify a complete set of counterexamples (if any exist) of the 
property in terms of symbolic “current” states and associated event-based transitions. If it 
fails to find such an answer, this establishes the validity of the safety property with respect to 
the system description. The approach is supported by a decision procedure that (i) always 
terminates and (ii) facilitates analysis of this type of properties even in the presence of 
incomplete domain knowledge, where initial conditions are not completely specified. A case 
study of an automobile cruise control system specified in SCR is used to illustrate our 
approach. The technique described is implemented using existing tools for abductive logic 
programming.  

Keywords 
Requirements, event-driven specifications, logic-based analysis, abduction, Event Calculus, 
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1. Introduction 
Analysis of requirements specifications is a critical activity in the software development 
process. Specification errors, which if undetected often lead to system failures, are in general 
less expensive to correct than defects detected later in the development process. Techniques 
for the detection and analysis of errors in requirements specifications are therefore crucial 
for successful and efficient development of software systems.  

This paper describes a formal approach to this task, and an associated tool, that have the 
following two desirable characteristics. First, the tool is able to verify some properties and 
detect some errors even when requirements specifications are only partial, and even when 
only partial knowledge about the domain is available. In particular, our approach does not 
rely on a complete description of the initial state(s) of the system, making it applicable to 
systems embedded in complex environments whose initial conditions cannot be specified 
completely. Second, the tool provides diagnostic information about detected errors (e.g. 
violated safety properties) as a debugging aid for the engineer. In practical terms, it is the 
integration of both these characteristics that distinguishes our approach from other formal 
techniques, such as those based on model checking or theorem proving [9].  

Our focus is on event-based requirements specifications. For the purposes of this paper, we 
will regard such specifications as composed of system descriptions, i.e. system requirements 
expressed in terms of required reactions to events (inputs, changes in environmental 
conditions, etc.), and safety properties.  

The approach uses an event-based logic, called the Event Calculus [32], to declaratively 
model event-based requirements specifications. This choice of representation is motivated by 
both practical and formal needs, and has several advantages. First, and in contrast to pure 
state-transition based representations, the Event Calculus ontology includes an explicit 
structure of time that is independent of any (sequence of) events under consideration. This 
characteristic makes it straightforward to model event-based systems where a number of 
input events may occur simultaneously, and where the system behavior may in some 
circumstances be non-deterministic (see [37]). Second, the Event Calculus ontology is close 
enough to existing types of event-based requirements specifications to allow them to be 
mapped automatically into the logical representation. This allows our approach and tool to 
be used as a back-end to existing requirements engineering representations, with the 
additional advantage that both the semantics of the front-end requirements specification 
language and individual specifications themselves have a common declarative formal 
representation. Third, we can prove a general property of the particular class of Event 
Calculus representations employed here that allows us to reason with a reduced two-state 
representation (see Section 2.3), thus substantially improving the efficiency of our tool. 
Fourth, we can build on a substantial body of existing work in applying abductive reasoning 
techniques to Event Calculus representations [30; 37].  

This brings us to the second corner stone of our approach, which is the use of abduction. In 
Artificial Intelligence (A.I.) abduction is one of three common modes of automated 
reasoning (the other two being deduction and induction). In pure logical terms, assuming T 
to be a theory, ∆ a set of assumptions, and α a formula, then deduction is an analytic 
reasoning process that uses the assumptions in ∆ to infer from T the consequence α. 
Abduction is, on the other hand, a constructive reasoning process that identifies the set of 
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assumptions ∆, which when added to the given theory allows the inference of the 
consequence α. Abduction is a technique for generating “explanations” or “plans” (e.g. ∆) 
for given “observations” or “goals”(e.g, α)1. In software engineering terms, the theory T can 
be seen as a system description, the set of assumptions ∆ as a set of specific instances of 
system behavior, and the consequence α as system property that has to hold after the 
execution of system behavior(s). Abduction has been shown to be suitable for automating 
tasks such as diagnosis [11], planning [15], theory and database updates [10; 24; 26], and 
knowledge-based software development [35; 43; 44]. Our approach employs abduction in a 
refutation mode to verify safety properties with respect to event-based system descriptions2. 
Given a system description and a safety property, the abductive mechanism is able to identify 
a (possibly complete) set of counterexamples (if any exist) of the system property, where 
each such counterexample is in terms of a “current” system state and an associated event-
based transition. Failure to find such a counterexample establishes the validity of the safety 
property with respect to the system description. (Thus, in A.I. terminology, each 
counterexample is an “explanation” for the “observation” which is the negation of the 
property at an arbitrary symbolic time-point.) The particular form of these counterexamples 
makes them ideal as diagnoses that can be used to modify the specification appropriately, by 
altering either the event-based system description, or the safety properties, or both. 

The abductive decision procedure employed by our approach has several desirable features. 
First, in contrast to most conventional theorem proving techniques, it always terminates. 
Second, in contrast to model-checking approaches, it does not rely on a complete 
description of some initial system state. Third, like the Event Calculus representation, it 
supports reasoning about specifications of systems whose state-spaces may be infinite. This 
last feature is mainly because the procedure is goal- or property-driven. 

The paper is organised as follows. Section 2 describes our general approach. It first reviews 
the general technique of abduction, and how it may be employed in refutation mode to prove 
or disprove safety properties. It then describes the variant of Event Calculus we have 
developed for our approach, how we can efficiently apply abduction in this context, and our 
prototype tool. Section 3 describes a case study in analysing a Software Cost Reduction 
(SCR) tabular specification. It reviews SCR focusing on mode transition tables and mode 
invariants. Then it shows how SCR tables and mode invariants can be straightforwardly 
mapped into an Event Calculus specification, the kind of diagnostic information that our 
abductive technique is able to provide, and some heuristics for identifying possible changes. 
Section 4 describes our logic programming tool and results about its soundness and 
completeness with respect to the logical formalization of our approach given in Section 2. 
Section 5 discusses comparison with related work, and Section 6 concludes the paper with a 
discussion about possible future extensions to our approach. 

                                                
1 Induction is a synthetic reasoning process that generates universally quantified formulae from collections of specific 

instances.  
2 This specific use of abduction in refutation mode is an innovative way of deploying such reasoning mechanism with 

respect to the various existing applications of abduction presented so far in the Artificial Intelligence literature.  
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2. Our Approach 
As stated above, we will regard requirements specifications as composed of system 
descriptions and safety properties. The analysis task that we are concerned with is to 
discover whether a given system description satisfies all safety properties, and if not why 
not. We express a collection of safety properties as logical sentences I1,…,In and an event-
based system description as a set of rules S. Thus for each safety property Ii, we need to 
evaluate whether S � Ii, and, if not, to generate appropriate diagnostic information. The 
Event Calculus representation we have employed allows us to use an abductive reasoning 
mechanism to combine these two tasks into a single automated decision procedure. The next 
two sections describe in detail the two features of our approach: (i) the Event Calculus 
formalism used for representing event-based specifications, and (ii) the analysis process for 
safety properties, based on abduction.  

2.1 The Event Calculus 
The Event Calculus [32] is a logic-based formalism for representing and reasoning about 
dynamic systems. Its ontology includes an explicit structure of time that is independent of 
any (sequence of) events or actions under consideration. As we shall see, this characteristic 
makes it straightforward to model a wide class of event-driven systems including those that 
are non-deterministic, those in which several events may occur simultaneously, and those for 
which the state space is infinite. Our approach has, so far, been tested only on specifications 
for deterministic systems, such as the case study described in Section 3 (which is an SCR 
style specification). However, we are currently investigating its applicability to LTS style 
specifications [33], which may be for concurrent and non-deterministic systems. 

Different forms of Event Calculus have been presented in the literature [32; 45]. Our 
approach adapts a simple classical logic form [37], whose ontology consists of (i) a set of 
time-points isomorphic to the non-negative integers, (ii) a set of time-varying properties 
called fluents, and (iii) a set of event types (or actions). The logic is correspondingly sorted3, 
and includes the predicates Happens, Initiates, Terminates and HoldsAt, as well as some 
auxiliary predicates defined in terms of these. Happens(a,t) indicates that event (or action) a 
actually occurs at time-point t. Initiates(a,f,t) (resp. Terminates(a,f,t)) means that if event a 
were to occur at t it would cause fluent f to be true (resp. false) immediately afterwards. 
HoldsAt(f,t) indicates that fluent f is true at t. So, for example, to indicate that events A1 and 
A2 occur simultaneously at time-point T4 it is sufficient to assert:  

[Happens(A1,T4) ∧  Happens(A2,T4)]. 

System descriptions as axiomatisations. 

Every Event Calculus description includes a core collection of domain-independent axioms 
(sentences) that describe general principles for deciding when fluents hold or do not hold at 
particular time-points. In addition, each specification includes a collection of domain- or 
scenario-dependent sentences, describing the particular effects of events or actions (using 
the predicates Initiates and Terminates), and may also include sentences stating the 

                                                
3 The language may contain function as well as constant symbols of sorts fluent and event, in order for example to allow 

for parameterised fluents and infinite state spaces. 
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particular time-points at which instances of these events occur (using the predicate 
Happens).  

To write the domain-independent axioms succinctly, it is convenient to introduce two 
auxiliary predicates, Clipped and Declipped. Clipped(t1,f,t2) means that some event occurs 
between the times t1 and t2 which terminates the fluent f. In logic, this is: 

 Clipped(t1,f,t2) ≡ ∃ a,t[Happens(a,t) ∧  t1 � W � W� ∧  Terminates(a,f,t)]  

(In this and all other axioms all variables are assumed to be universally quantified with 
maximum scope unless otherwise stated.) Similarly, Declipped(t1,f,t2) means that some 
event occurs between the times t1 and t2 that initiates the fluent f: 

 Declipped(t1,f,t2) ≡ ∃ a,t[Happens(a,t) ∧  t1 � W � W� ∧ Initiates(a,f,t)]  

Armed with this notational shorthand, we can state the three general (commonsense) 
principles that constitute the domain-independent component of the Event Calculus: (i) 
fluents that have been initiated by event occurrences continue to hold until events occur that 
terminate them: 

 HoldsAt(f,t2) ← ∃ a,t1[ Happens(a,t1) ∧ Initiates(a,f,t1) ∧  
       t1 < t2 ∧  ¬Clipped(t1,f,t2)]      

(ii) fluents that have been terminated by event occurrences continue not to hold until events 
occur that initiate them: 

  ¬HoldsAt(f,t2) ← ∃ a,t1[Happens(a,t1) ∧ Terminates(a,f,t1)   
      ∧  t1 < t2 ∧  ¬Declipped(t1,f,t2)]   
and (iii) fluents only change status via occurrences of initiating and terminating events: 

 HoldsAt(f,t2) ← [HoldsAt(f,t1)  ∧  t1 < t2  ∧  ¬Clipped(t1,f,t2)]        

 ¬HoldsAt(f,t2) ←  [¬HoldsAt(f,t1)  ∧  t1 < t2 ∧  ¬Declipped(t1,f,t2)]  

The above axiomatisation also allows the representation of event-based systems where a 
number of input events may occur simultaneously and where the system behavior may in 
some circumstances be non-deterministic. The non-determinism can, in general, be caused by 
either the occurrence of an (input) event, which can have complementary effects on a given 
fluent (e.g., the event “toss a coin” can both initiate and terminate a fluent “head”), or by the 
occurrence of simultaneous events, which have complementary effects on the same fluent. In 
either these two cases, the above axiomatisation would not allow the inference of 
information about the effects of non-deterministic event(s), as it would accept different 
models for different non-deterministic behaviors.  

From the viewpoint of formal representation and reasoning, the above axiomatisation is 
expressive enough to model both deterministic and non-deterministic event-based system 
specifications, and also specifications with sequential and simultaneous events. However, for 
the purpose of abductive analysis of safety properties, the event-based system specifications 
have to be deterministic. In the case of non-deterministic systems, failure to identify 
examples of system behavior, which together with the system description entail the negation 
of a safety property, can be due to the property being actually satisfied as well as to the non-
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determinism. In the latter case, our abductive approach would provide unsound results4. This 
is, however, not a real limitation of the approach, since any non-deterministic system 
description can be transformed into an equivalent deterministic system specification 
behavior. To model deterministic event-driven requirements specifications it is sufficient to 
strengthen the above Event Calculus axiomatisation by adding the following deterministic 
axiom. This axiom simply excludes the two possible causes for non-determinism described 
above: 

 ¬∃  t, a1, a2, f [Initiates(a1,f,t) ∧ Terminates(a2,f,t)  
   ∧ Happens(a1,t)∧ Happens(a2,t)] 

To model event-driven requirements specifications where events only happen one at a time, 
as in the case study described in Section 3, it is sufficient to strengthen the above Event 
Calculus axiomatisation by adding the following axiom:  

  ¬∃  t, a1, a2, f [Happens(a1,t)∧ Happens(a2,t)∧  a1≠a2] 

We can now define the domain-independent Event Calculus axiomatisation used in our 
approach and denoted by ECAx. 

Definition 1. [ECAx] The domain-independent Event Calculus axiomatisation ECAx consists 
of the following seven axioms: 

 Clipped(t1,f,t2) ≡ ∃ a,t[Happens(a,t) ∧  t1 � W � W� ∧  Terminates(a,f,t)] (EC1) 

 Declipped(t1,f,t2) ≡ ∃ a,t[Happens(a,t) ∧  t1 � W � W� ∧ Initiates(a,f,t)] (EC2) 

 HoldsAt(f,t2) ← ∃ a,t1[Happens(a,t1) ∧ Initiates(a,f,t1) ∧ (EC3) 
       t1 < t2 ∧  ¬Clipped(t1,f,t2)] 

 ¬HoldsAt(f,t2) ← ∃ a,t1[Happens(a,t1) ∧ Terminates(a,f,t1) ∧   (EC4) 
     t1 < t2 ∧  ¬Declipped(t1,f,t2)] 

 HoldsAt(f,t2) ←  [HoldsAt(f,t1)  ∧  t1 < t2  ∧  ¬Clipped(t1,f,t2)]    (EC5) 

 ¬HoldsAt(f,t2) ←  [¬HoldsAt(f,t1)  ∧  t1 < t2 ∧  ¬Declipped(t1,f,t2)] (EC6) 

 ¬∃  t, a1, a2, f [Initiates(a1,f,t) ∧  Terminates(a2,f,t) ∧   (ECD) 
   Happens(a1,t) ∧  Happens(a2,t)]  � 

To illustrate how the effects of particular events may be described in the domain-dependent 
part of a specification using the predicates Initiates and Terminates, we will describe an 
electric circuit consisting of a single light bulb and two switches A and B all connected in 
series. We need three fluents, SwitchAOn, SwitchBOn and LightOn, and two actions FlickA 
and FlickB. We can describe facts such as (i) that flicking switch A turns the light on, 
provided that switch A is not already on and that switch B is already on (i.e. connected) and 
is not simultaneously flicked: 

  Initiates(FlickA,LightOn,t) ← 
   [¬HoldsAt(SwitchAOn,t)   

                                                
4 A technical justification for restricting our approach to just event-based specifications of deterministic systems can be 

found in the proof of Theorem 1, given in Section 2.2.  
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    ∧ HoldsAt(SwitchBOn,t)  
    ∧  ¬Happens(FlickB,t)]   

(ii) that if neither switch is on, flicking them both simultaneously causes the light to come 
on: 

  Initiates(FlickA,LightOn,t) ←  
   [¬HoldsAt(SwitchAOn,t)   
    ∧ ¬HoldsAt(SwitchBOn,t)  
    ∧  Happens(FlickB,t)]   

and (iii) that if either switch is on, flicking it causes the light to go off (irrespective of the 
state of the other switch): 

  Terminates(FlickA,LightOn,t) ← [HoldsAt(SwitchAOn,t)] 

  Terminates(FlickB,LightOn,t) ← [HoldsAt(SwitchBOn,t)]  

In fact, in this example we need a total of five such sentences to describe the effects of 
particular events or combinations of events on the light, and a further four sentences to 
describe the effects on the switches themselves. Although for readability these sentences are 
written separately here, it is the completions (i.e. the if-and-only-if transformations) of the 
sets of sentences describing Initiates and Terminates that are actually included in the 
specification. The completion of the two Terminates clauses above, for example, is: 

 Terminates(a,f,t) ≡ [[a=FlickA ∧ f=LightOn ∧ HoldsAt(SwitchAOn,t)] ∨ 
  [a=FlickB ∧ f=LightOn ∧ HoldsAt(SwitchBOn,t)] ] 

The use of such completions avoids the frame problem, i.e. it allows us to assume that the 
only effects of events are those explicitly described5.  

For many applications, it is appropriate to include similar (completions of) sets of sentences 
describing which events occur (when using the predicate Happens). However, in this paper 
we wish to prove properties of systems under all possible scenarios, i.e. irrespective of 
which events actually occur. Hence our descriptions leave Happens undefined, i.e. they 
allow models with arbitrary interpretations for Happens. In this way, we effectively simulate 
a branching time structure that covers every possible series of events. In other words, by 
leaving Happens undefined we effectively consider, in one model or another, every possible 
path through a state-transition graph. The formal definition of a domain-dependent Event 
Calculus description, denoted with ECSpec is as follows6. 

                                                
5 The “frame problem” is the problem of stating concisely that in general almost all fluents that hold true at a given 

instant of time continue to hold after an event has been performed [43].This corresponds to the fact that requirements 
engineers do not want to have to explicitly list “non-effects” of (input) events. For example, SCR mode transition 
tables do not explicitly describe sets of conditions and input types for which no mode transition occurs. 

6 In the case of finite domains the set of uniqueness-of-name axioms can be expressed in the form of ∀ f,∀ e.[(f = F1 ∨  f 
= F2 ∨ …∨  f = Fn) ∧  (e = E1 ∨  e = E2 ∨ …∨  e = En)], where Fi and Ei are, respectively, ground fluents and ground 
events in the Event Calculus language. The inclusion of such axioms and of the existence-of-name axioms guarantees 
the models of a given (Event Calculus) specification to be based only on the domain defined in the specification.   
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Definition 2. [Specification ECSpec] A set ECSpec is an Event Calculus specification if it 
contains exactly the following: 

a. The completion of a set of Initiates clauses each of the form 
   Initiates(A,F,t) ← Π 

  where Π is a conjunction of (positive and negative) HoldsAt and Happens literals 
 whose event and fluent terms are ground and whose only timepoint term is t. 

b. The completion of a set of Terminates clauses each of the form 

  Terminates (A,F,t) ← Π 

  where Π is a conjunction of (positive and negative) HoldsAt and Happens literals 
 whose event and fluent terms are ground and whose only timepoint term is t. 

c. A set of uniqueness-of-name axioms for all event and fluent terms. 

d. A set of existence-of-name axioms or an existence-of-names schema for each sort 
of the language.         � 

Safety properties are assertions about attributes of system states that must hold for every 
possible system execution. They can therefore be expressed in Event Calculus as universally 
quantified formulae of the form∀ t.I(t), where I(t) is a logical expression without quantifiers, 
using only the predicate HoldsAt and ground fluent terms corresponding to the system 
attributes relevant to the properties.  

Definition 3. [Safety property] A safety property is an expression of the form ∀ t.I(t), where 
I(t) is a formula without quantifiers, whose only predicate is HoldsAt and whose fluent 
terms are ground. � 

Other types of properties can also be formalised in Event Calculus. In particular, temporal 
logic formulae (e.g. [5; 42]) can be represented as equivalent reified7 Event Calculus first-
order formulae. For the purpose of this paper, we will consider only the class of safety 
properties defined below. Examples of such properties are given in Section 3.      

2.2 Abduction for Verification 

2.2.1 Defining an abductive framework 

Abduction is commonly defined as the problem of finding a set of hypotheses (an 
“explanation” or “plan”) of a specified form that, when added to a given specification, 
allows an “observation” or “goal” sentence to be inferred, without causing contradictions 
[30]. In logical terms8, given a domain description D and a sentence (goal) G, abduction 
attempts to identify a set ∆ of assertions such that: 

 D ∪  ∆ � G,  (1) 
 D ∪  ∆ is consistent. (2) 

The set ∆ is often required to satisfy two main properties: (1) it must consist only of 
abducible sentences, where the definition of what is abducible is generally domain-specific 
(e.g., assertions about performances of particular actions in the case of planning), and (2) it 
                                                
7 Reified in the sense that properties, which might otherwise be represented as predicates or propositions, are instead 

represented as fluents inside the HoldsAt predicate, and thus becoming terms of the language. 
8 Throughout the paper, the mathematical symbol � denotes logical entailment. 
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is minimal. The set of abducible sentences is defined a priori to reflect some domain-specific 
notion of causality with respect to the given properties. For instance, in the electric circuit 
example given before, the occurrences of events FlickA and FlickB cause the light bulbs to 
be on and/or off, depending on the current states of the system. This state recursively 
depends on previous events occurrences of FlickA and FlickB. So observations about 
properties of system states can be explained in terms of sequences of ground Happens 
literals and ground literals on what is true or false at the initial state. These types of 
information would constitute our set of abducible sentences. This is also the case for 
arbitrary event-driven specifications − system behaviors are caused by occurrences of event 
transitions in specific system states. Observations such as violation of a safety property can 
be explained in terms of sequences of environmental events and conditions over the initial 
state of the system. Therefore, in our approach, abducible sentences are ground Happens 
literals and specific types of ground HoldsAt literals, as stated in the following two 
definitions. 

Definition 4. [Abductive predicates set Ab] The set Ab of abductive predicates is given by 
the predicates HoldsAt and Happens.         � 

Definition 5. [Abducible sentence] Given an abductive predicates set Ab, an abducible 
sentence is a ground literal over Ab given by a ground HoldsAt literal whose timepoint term 
is 0 or a ground Happens literal.         � 

The minimality property means that the set ∆ of abduced explanations should not be 
subsumed by other explanations. For instance, in the above electric circuit example, given 
the observation ¬HoldsAt(LightOn,t+1), the explanation {HoldsAt(SwitchAOn,t), 
HoldsAt(SwitchBOn,t), Happens(FlickA,t), Happens(FlickB,t)} is not minimal since there 
are two other possible explanations, namely, {HoldsAt(SwitchAOn,t), Happens(FlickA,t)} 
and {HoldsAt(SwitchBOn,t), Happens(FlickB,t)}, which subsume the first one.  

An abductive reasoning process also takes into account domain specific constraints [30]. 
These are in general used to define the classes of “correct” models for a given system 
specification. Examples of constraints are, for instance, natural physics laws of the 
environment in which a system is supposed to run, or, more specifically, environmental 
assertions in SCR style requirements specifications. In the presence of such constraints, the 
abductive reasoning process is able to generate explanations that satisfy such constraints. In 
logical terms, given a domain description D, a set of integrity constraints C, and a sentence 
(goal) G, abductive reasoning in the presence of constraints attempts to identify a set ∆ of 
assertions such that: 
 D ∪  ∆ � G (1') 
 D ∪  ∆ is consistent and D ∪  ∆ � C. (2') 

Condition (2') is stronger than condition (2) given before, since it has the effect of further 
reducing the collection of explanations generated by the abductive reasoning process to just 
those that satisfy the given set of constraints.  

In our approach, constraints take the form of formulae without quantifiers, whose only 
predicate is HoldsAt, whose fluent terms are ground and whose only timepoint is a timepoint 
term τ (see Definition A1 in Appendix). To summarise, the abductive framework used in our 
approach is the triple <D, Ab, C> where D is a domain description given by the domain 
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independent Event Calculus axiomatisation ECAx and (the Event Calculus representation of) 
an event-based specification ECSpec, the component Ab is the set of abductive predicates and 
C is a set of constraints (see Definition A2 in Appendix).   

2.2.2 Using abduction to analyse safety properties 

To analyse safety properties in event-based specifications means showing, in general, that 
given a safety property Ii and a (formal) specification D, it is the case that D � Ii. In our 
approach this analysis task is translated into an equivalent problems; that is, to show that it is 
not possible to consistently extend the specification with assertions that particular events 
have actually occurred (i.e. with a ∆) in such a way that the extended description entails ¬ Ii. 
In other words, there is no set ∆ such that D ∪  ∆ � ¬ Ii. The equivalence of these two 
problems, illustrated in Figure 1 and proved in Theorem 1 below, depends on the particular 
Event Calculus representation used in our approach.  

The problem of showing that there is no set of abducibles ∆, such that D ∪  ∆ � ¬ Ii for a 
given domain description and safety property, is solved by attempting to generate such a ∆ 
using a complete abductive decision procedure. Given an abductive framework defined 
above and a safety property Ii, the analysis of this property consists in trying to identify a set 
∆ of assertions such that D ∪  ∆ � ¬ Ii, and, in the presence of domain dependent constraints 
C, such that D ∪  ∆ � C as well. We refer to this analysis process as using abduction in a 
refutation mode. If the abductive procedure finds such a ∆, then the set ∆ acts as a 
counterexample (see Definition 6 below). The completeness of the abductive proof 
procedure (see Theorem A1 in the Appendix) guarantees that failing to find such a set ∆ 
establishes the validity of the property in the given event-based specification.  

Definition 6. [Counterexample of a safety property] Let <D, Ab, C> be an abductive 
framework where D is a domain description given by the set ECAx and a specification ECSpec; 
Ab is a set of abducible predicates and C is a (possibly empty) set of constraints. Let ∀ t.I(t) 
be a safety property. A set ∆ of abducibles over Ab is a counterexample of the safety 
property if and only if the following two conditions hold:  

(1) D ∪  ∆ � ¬∀ t.I(t)  
(2) D ∪  ∆ is consistent, and D ∪  ∆ � C (when C ≠ ∅ )    � 

As we shall see, the form of such counterexamples makes them ideal as diagnostic 
information that can be utilised to change the description and/or safety properties. The 

Specification � Safety Property 

There is no ∆ such that 

Specification ∪  ∆ � ¬  Safety Property 

 Using abduction in “refutation mode”  

Figure 1. Using abduction to analyse safety properties 
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counterexamples generated by our approach describe particular events occurring in 
particular “contexts” (i.e. classes of current states). These contexts must themselves satisfy 
the property. This is ensured by considering the property instantiated on a symbolic current 
state also as part of the domain description, so as to prune the set of possible 
counterexamples. A detailed description of the particular abductive proof procedure used in 
our approach is given in Section 4.2. 

Theorem 1. [Abduction theorem]. Let <D, Ab, C> be an abductive framework, and 
let∀ t.I(t) be a safety property. Then, D �∀ t.I(t) if and only if there exists no counterexample 
of the safety property ∀ t.I(t). 

Proof. The “only if” part of the theorem can be easily proved reasoning by contradiction and 
using the monotonicity property of classical logic. The proof of the “if part” of the theorem 
is more elaborate. Let us assume, for simplicity, that the set of constraints C are always 
satisfied in any possible extension D∪∆  of the domain description D, for any set ∆. 
Therefore, we know that there is no ∆ such that D∪∆ �¬∀ t.I(t), and D∪∆  is consistent. Let 
us suppose now that D | ∀ t.I(t). This means that there is a classical model _ that satisfies 
D and ¬ ∀ t.I(t) (i.e. _ ^ ECAx ∧  ECSpec ∧  ¬∀ t.I(t), which means that the axioms in ECAx 

and in  ECSpec and the formula ¬∀ t.I(t) are true in the model _. Given the syntactic form of 
the safety property, _ ^ ¬∀ t.I(t) implies that there is a time point n such that _ ^ ¬ I(n). 
By the deterministic property of ECSpec (see Lemma 1 in Appendix), we also know that 
there is no other model _' that agrees with _ up to the time point n, and such that _' ^
∀ t.I(t). We can construct now from _ the set of abducibles ∆ as follows: 

∆ = {¬HoldsAt(F',0) | _ ^ ¬HoldsAt(F',0)} ∪  {HoldsAt(F',0)  | _ ^ HoldsAt(F',0)} ∪  

 {Happens(E',0)  | _ ^ Happens(E',0)} ∪  {¬Happens(E',0) | _ ^¬Happens(E',0)} 

By construction, ∆ is consistent with D, and by the deterministic property of ECSpec 

D∪∆ �¬∀ t.I(t), which contradicts the initial hypothesis.     � 

It is easy to see that the above theorem would not hold if the Event Calculus axiomatisation 
did not include the deterministic axiom (ECD). This is because the proof of existence of one 
counter model for a given safety property would not be sufficient to guarantee the existence 
of a (minimal) extension D∪∆  of the given specification that would violate the property in 
all the possible (non-deterministic) models of system behaviors.  

2.3 Efficient Abduction with Event Calculus 
In the previous section we defined the analysis of a safety property as the process of 
detecting, by means of abduction, counterexample(s) of the property. However, given that 
such properties are sentences universally quantified over time, it is (potentially) 
computationally expensive to demonstrate their truth by standard (deductive or abductive) 
theorem-proving techniques. To overcome this problem we make use of a “reduction step” 
that simplifies the given inference task to a simpler one based on an appropriately 
instantiated domain description and safety property. The abductive proof procedure is then 
applied to this reduced (ground) description so making the reasoning process more efficient. 
The proof of soundness and completeness of this reduction step is given in Theorem 2. 

This simplification step can be seen as a form of abstraction, which reduces a complex semi-
decidable and computationally expensive inference process to two propositional inference 
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tasks, which are thus fully decidable and computationally tractable. This abstraction process 
is based on proof by induction, and it can therefore be used only to analyse the class of 
safety properties considered in this paper (i.e. universally quantified formulae with no 
nesting temporal quantifiers). We speculate, however, that abductive reasoning in general, as 
described in section 2.2.1, can also be used to analyse other classes of system properties, 
such as liveness properties, but this is a topic for future investigation.  

The reduced domain description of an event-based specification is given by considering a 
simple time structure consisting of two (arbitrary) timepoints Sc and Sn, respectively, such 
that Sc < Sn. The Event Calculus axiomatisation and event-based specification are both 
grounded over this simple time structure as shown in the following two definitions. 

Definition 7. [ECAx(S)] Let S be a time structure consisting of two timepoint Sc and Sn, 
with Sc < Sn. The set ECAx(S) consists of the following axioms:  
 Clipped(Sc,f,Sn) ≡ ∃ a[Happens(a,Sc) ∧  Terminates(a,f,Sc)]   (ECS1)   

 Declipped(Sc,f,Sn) ≡ ∃ a[Happens(a,Sc) ∧ Initiates(a,f,Sc)] (ECS2)    

 HoldsAt(f,Sn) ← ∃ a[Happens(a,Sc) ∧ Initiates(a,f,Sc)  ∧  (ECS3) 
    ¬Clipped(Sc,f,Sn)]       

 ¬HoldsAt(f,Sn) ← ∃ a[Happens(a,Sc) ∧ Terminates(a,f,Sc)  ∧ (ECS4) 
      ¬Declipped(Sc,f,Sn)]   

 HoldsAt(f,Sn) ← [HoldsAt(f,Sc)  ∧ ¬Clipped(Sc,f,Sn)]  (ECS5) 

 ¬HoldsAt(f,Sn) ← [¬HoldsAt(f,Sc)  ∧  ¬Declipped(Sc,f,Sn)]   (ECS6) 

 ¬∃  a1, a2, f [Initiates(a1,f,Sc) ∧  Terminates(a2,f,Sc) (ECSD1) 
   ∧ Happens(a1,Sc)∧ Happens(a2,Sc)] 

 ¬∃  a1, a2, f [Initiates(a1,f,Sn) ∧  Terminates(a2,f,Sn) (ECSD2) 
   ∧ Happens(a1,Sn)∧ Happens(a2,Sn)]  � 

The set of axioms ECAx(S) is then an instantiation of the set of axioms ECAx over the two 
timepoint structure S. Similar instantiation is performed on the domain description ECSpec as 
shown below. 

Definition 8. [ECSpec(S)] Let ECSpec be a specification and let S be a time structure 
consisting of two timepoints Sc and Sn, with Sc < Sn. The set ECSpec(S) is the corresponding 
ground specification containing exactly the following ground rules: 

a. The completion of a set of Initiates clauses each of the form 

Initiates(A,F,Sc) ← Π 

 where Π is a conjunction of (positive and negative) HoldsAt and Happens literals 
whose event and fluent terms are ground and whose only timepoint term is Sc. 

b. The completion of a set of Terminates clauses each of the form 

Terminates (A,F,Sc) ← Π 

 where Π is a conjunction of (positive and negative) HoldsAt and Happens literals 
whose event and fluent terms are ground and whose only timepoint term is Sc. 

c. A set of uniqueness-of-name axioms for all event and fluent terms. 
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d. A set of existence-of-name axioms or an existence-of-names schema for each sort 
of the language.  � 

Theorem 2. [Reduction theorem]. Let D be a domain description given by the set ECAx and 
a specification ECSpec. Let ∀ t.I(t) be a safety property. Let S be a time structure consisting of 
two timepoints Sc and Sn, with Sc < Sn. Let D(S) be the ground domain description given 
by the set ECAx(S) and the ground specification ECSpec(S). Then D �∀ t.I(t) if and only if D 
� I(0) and D(S)∪ {I(Sc)}�I(Sn).  

Proof. By Lemma A1 in the Appendix, D �∀ t.I(t) if and only if D � I(0) and 
D∪ {I(Sc)}�I(Sn). By Lemma A2 in the Appendix, D∪ {I(Sc)}�I(Sn) if and only if 
D(S)∪ {I(Sc)}�I(Sn). Hence, D �∀ t.I(t) if and only if D�I(0) and D(S)∪ {I(Sc)}�I(Sn).   

� 

As a corollary of both Theorems 1 and 2 given above, we can now state the soundness and 
completeness of our abductive reasoning technique for the analysis of safety properties. 

Corollary 1. Let D be a domain description given by the set ECAx and a specification ECSpec. 
Let ∀ t.I(t) be a safety property. Let S be a time structure consisting of two timepoints Sc 
and Sn, with Sc < Sn. Let D(S) be the ground domain description given by the set ECAx(S) 
and the ground specification ECSpec(S) and let C be a set of domain specific constraints. 
Then D �∀ t.I(t) if and only if D�I(0), and in the abductive framework <D(S), Ab, C> there 
exists no counterexample ∆ of the safety property ∀ t.I(t). � 

Hence, to show for some safety property∀ t.I(t) that ECAx�∀ t.I(t) it is sufficient to show (i) 
that the property is initially true (i.e. I(0) is true), and (ii) that D(S)∪ {I(Sc)} � I(Sn), where 
S is a simple time structure consisting of just two points Sc and Sn such that Sc < Sn (“c” 
for “current” and “n” for “next”), and D(S) is the ground domain description 
ECAx(S)∪ ECSpec(S). Therefore, given that a safety property is satisfied at the initial 
timepoint 0, to verify that it is always true it is sufficient to consider only a symbolic time-
point Sc and its immediate successor Sn, assume the property to be true at Sc, and 
demonstrate that its truth follows at Sn. The results given in Theorems 1 and 2 and 
Corollary 1 are also applicable even when complete information about the initial state of the 
system is not available. Their utilisation reduces computational costs considerably because, 
in the context of ECAx(S), it allows us to re-write all our Event Calculus axioms with ground 
time-point terms (as shown in Definition 7).  

Once the Event Calculus representation of an event-based requirements specification is 
provided (possibly by automatic translation), the reasoning task of showing that a safety 
property is true at the initial state is a simple theorem proving task where the formula to 
prove (i.e. I(0)) is a ground sentence. The second reasoning task, i.e. D(S)∪ {I(Sc)}�I(Sn), 
is, on the other hand, where our abductive analysis technique, defined and proved in 
Theorem 1, is applied. Using the reduced time structure described above, our approach 
proves assertions of the form D(S)∪ {I(Sc)}�I(Sn) by showing that a complete abductive 
proof procedure fails to produce a set ∆ of HoldsAt and Happens facts, grounded at Sc, 
such that D(S)∪ {I(Sc)}∪∆ �¬I(Sn). If, on the other hand, the abductive procedure produces 
such a set ∆, then this ∆ is an explicit indicator of where in the specification there is a 
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problem. The case study gives such an example of generation of diagnostic information from 
the violation of a safety property.  

3. A Case Study 
In this section we describe, via an example, an application of our approach to analysing 
Software Cost Reduction (SCR) specifications. We show how our tool analyses particular 
SCR-style safety properties, called mode invariants, with respect to event-based system 
descriptions expressed as SCR mode transition tables. The SCR approach has been shown 
to be useful for expressing the requirements of a wide range of large-scale real-world 
applications [1; 14; 20; 38] and is a popular requirements engineering method for specifying 
and analysing event-based systems. Other requirement engineering representations for event-
based specifications include [17]. 

3.1 SCR Specifications 
The SCR method is based on Parnas’s “Four Variable Model”, which describes a required 
system’s behavior as a set of mathematical relations between monitored and controlled 
variables, and input and output data items [41]. Monitored variables are environmental 
entities that influence the system behavior, and controlled variables are environmental 
entities that the system controls. For simplicity, our case study uses only Boolean variables. 
(This is not a major restriction, since non-Boolean variables can always be reduced to 
Boolean variables, i.e. predicates defined over their values.) SCR facilitates the description 
of natural constraints on the system behavior, such as those imposed by physical laws, and 
defines system requirements in terms of relations between monitored and controlled 
variables, expressed in tabular notation. Predicates representing monitored and controlled 
variables are called conditions and are defined over single system states. An event occurs 
when a system component (e.g., a monitored or controlled variable) changes value.  

Full SCR specifications can include mode transition, event and condition tables to describe a 
required system behavior, assertions to define properties of the environment, and invariants 
to specify properties that are required to always hold in the system (see [6; 19; 20]). 
However, this case study concerns a simple SCR specification consisting of just a single 
mode transition table and a list of system properties.  

3.1.1 Mode transition tables  

Mode classes are abstractions of the system state space with respect to monitored variables. 
Each mode class can be seen as a state machine, defined on the monitored variables, whose 
states are modes and whose transitions, called mode transitions, are triggered by changes on 
the monitored variables. Mode transition tables represent mode classes and their respective 
transitions in a tabular format. The mode transition table for our case study, taken from [4], 
is given in Table-1. It is for an automobile cruise control system. Note that the table already 
reflects basic properties of monitored variables. For example, the two transitions from 
“Inactive” to “Cruise” take into account the environmental property that in any state a cruise 
control lever is in exactly one of the three positions “Activate”, “Deactivate” or “Resume”. 
So, for example, whenever “Activate” changes to true, either “Deactivate” or “Resume” 
changes to false. For a more detailed description of this case study, the reader is referred to 
[4].  
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Mode transition events occur when one or more monitored variables change their values. 
Events are of two types: “@T(C)” when a condition C changes from false to true, and 
“@F(C)”, when a condition C changes from true to false. C is called a triggered condition. 
For example, in the automobile cruise control system the event “@T(Ignited)” denotes that 
the engine of the automobile has changed from not being ignited to being ignited. Event 
occurrences can also depend on the truth/falsity of other conditions. In this case, the events 
are called conditioned events. For example, in Table-1 the mode transition defined in the 
second row is caused by the occurrence of conditioned event “@F(Ignited)” whose 
condition is that “Running” is false. Different semantics have been used for conditioned 
events [21], all of which are expressible in our Event Calculus approach. In this specific case 
study, we have adopted the same interpretation as used in [4]. An event “@T(C)” 
conditional on “D” means that “C” is false in the current mode and is changed to true in the 
new mode, while “D” is true in the current mode and stays true in the new mode. The 
interpretation is similar for an event “@F(C)” conditional on “D”, but with “C” changing 
truth value from true to false.  In a mode transition table, each row is a transition from a 
current mode, indicated in the left most column of the table, to a new mode, specified in the 
right most column. The central part of the table defines the events that cause the transition. 
A triggered event “C” can have entries equal to “@T” or “@F”. Monitored variables that 
are conditions for the occurrence of an event can have entry equal to “t” or “f”. Monitored 
variables that are irrelevant for the transition have a “−” entry.  

SCR mode transition tables can be seen as shorthand for much larger tables in two respects. 
First, a “−” entry for a condition in the table is shorthand for any of the four possible 
condition’s entries “@T”, “@F”, “t” and “f”. This means that any transition between a 

 

Current 
Mode Ignited Running Toofast Brake Activate Deactivate Resume New 

Mode 
Off @T - - - - - - Inactive 

Inactive @F f - - - - - Off 
 @F @F - - - - -  
 t t - f @T @F f Cruise 
 t t - f @T f @F  

Cruise @F @F - - - - - Off 
 t @F - - - - - Inactive 
 t - @T - - - -  
 t t f @T - - - Override 
 t t f - @F @T f  
 t t f - f @T @F  

Override @F @F - - - - - Off 
 t @F - - - - - Inactive 
 t t - f @T @F f Cruise 
 t t - f @T f @F  
 t t - f f @F @T  
 t t - f @F f @T  

Table 1: Mode Transition Table for an automobile cruise control system 
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current and a new mode specified in a table using n dashes is in effect shorthand for 4n 
different transitions, between the same current and new modes, given by the different 
combinations of entries for each of the dashed monitored variables. For instance, the first 
transition in Table-1 from mode Inactive to mode “Cruise” is shorthand for four different 
transitions between “Inactive” and “Cruise” given, respectively, by each of the four entries 
“t”, “f”, “@T” and “@F” for the condition “Toofast”. Second, tables are made very much 
more concise by the non-specification of transitions between identical modes. A mode 
transition table basically describes a function that defines, for each current mode and each 
combination of condition values, a next mode of the system. This next mode may or may not 
be equal to the current mode. The function thus uniquely captures the system requirements. 
However, in specifying real system behavior only the transitions between current and next 
modes that are different are explicitly represented in SCR tables. The other “transitions” 
(where current and next modes are identical) are implicit and thus omitted or “hidden” from 
the table. Hence for the purposes of discussion we may regard the meaning of real SCR 
mode transition tables as being given by “full extended” (and very long!) mode transition 
tables that do not utilise “−” dashes and include a row (which might otherwise be “hidden” 
in the sense described above) for each possible combination of current mode and “t”, “f”, 
“@T” and “@F” condition entries. Therefore, both the implicit “hidden rows” and the 
dashes need to be taken into account when analysing invariants with respect to the real 
(concise) version of an SCR mode transition table. Our case study shows that both can 
indeed be causes for mismatch between SCR tables and system invariants, as they may 
obscure system behaviors that violate these invariants. 

3.1.2 Mode invariants  

Mode invariants are unchanging properties (specification assertions) of the system regarding 
mode classes, which should be satisfied by the system specification. They are specific types 
of safety properties. In our case study of an automobile cruise control system, an example of 
an invariant is:  

Cruise → (Ignited ∧  Running ∧  ¬Brake) 

This means that whenever the system is in mode “Cruise”, the conditions “Ignited” and 
“Running” must be true and “Brake” must be false. In SCR notation mode invariants are 
formulae of the form: 
   m → P (INV) 

where m is a mode value of a certain mode class and P is a logical proposition over the 
conditions used in the associated mode transition table. A mode transition table of a given 
mode class has to satisfy the mode invariants related to that mode class.  

3.2 Abductive Analysis of Mode Invariants  
We are now in the position to illustrate the use of our abductive Event Calculus approach to 
analysing mode invariants in SCR mode transition tables.  

3.2.1 The translation 

In our translation, both conditions and modes are represented as fluents, which we will refer 
to as condition fluents and mode fluents respectively. Although in reality many different 
types of external, real-word events may affect a given condition, SCR tables abstract these 
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differences away and essentially identify only two types of events for each condition − a 
“change-to-true” (@T) and a “change-to-false” (@F) event. Hence in our Event Calculus 
translation there are no independent event constants, but instead two functions @T and @F 
from fluents to events, and for each condition fluent C, the two axioms: 

  ∀ t.Initiates(@T(C),C,t) (S1) 

  ∀ t.Terminates(@F(C),C,t) (S2)  

The translation of tables into Event Calculus axioms (rules) is modular, in the sense that a 
single Initiates and a single Terminates rule is generated for each row of the table. For a 
given row, the procedure for generating the Initiates rule is as follows. The Initiates literal 
in the left-hand side of the rule has the new mode (on the far right of the row) as its fluent 
argument, and the first @T or @F event (reading from the left) as its event argument. The 
right-hand side of the rule includes a HoldsAt literal for the current mode, and a pair of 
HoldsAt and Happens literals for each “non-dash” condition entry in the row. Specifically, if 
the entry for condition C is a “t” this pair is HoldsAt(C,t)∧¬ Happens(@F(C),t), for “f” it is 
¬HoldsAt(C,t)∧¬ Happens(@T(C),t), for “@T” the pair ¬HoldsAt(C,t) ∧  
Happens(@T(C),t), and for “@F” the pair HoldsAt(C,t) ∧  Happens(@F(C),t). The 
Terminates rule is generated in exactly the same way, but with the current mode as the 
fluent argument in the Terminates literal. For example, the seventh row in Table-1 is 
translated as follows9: 

 Initiates(@F(Running),Inactive,t) ← 
  [ HoldsAt(Cruise,t)  ∧ 
   HoldsAt(Ignited,t)  ∧ ¬ Happens(@F(Ignited),t)∧  
   HoldsAt(Running,t) ∧  Happens(@F(Running),t) ]   

 Terminates(@F(Running),Cruise,t) ← 
  [ HoldsAt(Cruise,t)  ∧ 
   HoldsAt(Ignited,t) ∧  ¬Happens(@F(Ignited),t)∧  
   HoldsAt(Running,t) ∧  Happens(@F(Running),t) ] 

Clearly, this axiom pair captures the intended meaning of individual rows as described in 
Section 3.1.1.  

The semantics of the whole table is given by the two completions of the collections of 
Initiates and Terminates rules. These completions (standard in the Event Calculus) reflect 
the implicit information in a given SCR table that combinations of condition values not 
explicitly identified are not mode transitions. Indeed, as discussed in Section 3.1.1 we may 
regard SCR tables as also containing “hidden” or “default” rows (which the engineer does 
not need to list) in which the current and the new mode are identical. Violations of system 
invariants are just as likely to be caused by these “hidden” rows as by the real rows of the 
table. Because our translation utilises completions, the abductive tool is able to identify 
problems in “hidden” as well as real rows.  

                                                
9 Please note that the automatic translation from SCR specifications into Event Calculus descriptions may also consider 

as a target formalism the simplified ground version of an Event Calculus description given in Definition 7. 
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Our Event Calculus translation supplies a semantics to mode transition tables that is 
independent from other parts of the SCR specification. In particular, the translation does not 
include information about the initial state, and the abductive tool does not rely on such 
information to check system invariants. The technique described here is therefore also 
applicable to systems where complete information about the initial configuration of the 
environment is not available. The abductive tool does not need to use defaults to “fill in” 
missing initial values for conditions. (Information about the initial state may of course also 
be represented in the Event Calculus; e.g., HoldsAt(Off,0), so that system invariants may be 
checked with respect to the initial state separately 

3.2.2 Translation of an alternative SCR semantics. 

As mentioned in Section 3.1, different semantics for conditioned events have been used in 
the literature [21], all of which are expressible in our Event Calculus approach. In recent 
years, one of these semantics has become widely used. According to this semantics, two 
basic assumptions are made when representing systems specifications as SCR mode 
transition tables. The first is that events are deterministic, and the second, called the one 
input assumption, is that only one event happens at a time. In this context, the interpretation 
of an event “@T(C)” conditional on “D” means that “C” is false in the current mode and is 
changed to true in the new mode, while “D” is assumed to be true in the current mode, 
without forcing any condition on the particular value of the variable D in the new mode. 
Similarly for an event “@F(C)” conditional on “D”, but with “C” changing truth value from 
true to false [18]. It is easy to see that this different way of interpreting conditioned events 
together with the one input assumption gives, in the case of independent monitored 
variables, the same interpretation of conditioned events as given in Section 3.1. Our 
approach is also able to express this particular semantics with the following minor 
modifications.  

The assumption of deterministic events is already captured by the (ECD) axioms included in 
our Event Calculus axiomatisation ECAx. To express the one input assumption, our 
axiomatisation ECAx also needs to include the axiom: 

    ¬∃  t, a1, a2[Happens(a1,t) ∧  Happens(a2,t) ∧  a1≠ a2] (ECL) 

This eliminates the possibility of simultaneous (different) events happening in the 
environment. Two ground instantiations of this axiom need to be added to the reduced 
version of our Event Calculus axiomatisation ECAx(S), given in Definition 7. These are: 

 ¬∃  a1, a2[Happens(a1,Sc) ∧  Happens(a2,Sc) ∧  a1≠ a2] (ECSL1) 

 ¬∃  a1, a2[Happens(a1,Sn) ∧  Happens(a2,Sn) ∧  a1≠ a2] (ECSL2) 

In this semantics, mode transition tables always include just single (conditioned) events in 
each transition row. Each of these rows will then be translated into a single Initiates and a 
single Terminates rule, as described in section 3.2.1, but with the following minor change. If 
the entry for a condition C is a “t” then the right-hand-sides of the corresponding Initiates 
and Terminates rules will only include the single literal HoldsAt(C,t) rather than the pair 
HoldsAt(C,t)∧¬ Happens(@F(C),t). If the entry is a “f” then the right-hand-sides of the 
Initiates and Terminates rules will only include the single literal ¬HoldsAt(C,t) rather than 
the pair ¬HoldsAt(C,t) ∧  Happens(@T(C),t). Propagations of effects of events on other 
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(internal) variables of the system are expressed in SCR terms by considering such variables 
to be dependent on other monitored variables. Such dependencies are expressed by means of 
condition tables. This guarantees consistency with respect to the one input assumption. In a 
similar way, propagations of effects of events can be formalised in the Event Calculus by 
several techniques (see for example [37]). 

3.2.3 The abductive proof procedure  

For the purposes of discussion, let us suppose Table-1 has been translated into an Event 
Calculus specification ECSpec. The system mode invariants in this particular case are 
translated into four universally quantified sentences ∀ t.I1(t),…,∀ t.I4(t) (where each Ii is 
expressed with standard logical connectives and the HoldsAt predicate). In general, there 
will be n such properties, but we always add an additional property ∀ t.I0(t) that simply states 
(via an exclusive or) that the system is in exactly one mode at any one time. We use the term 
∀ t.I(t) to stand for ∀ t.I0(t) ∧ … ∧ ∀ t.In(t).  

Thus, for our case study the invariants are (reading “|” as exclusive or): 

 I0: [ HoldsAt(Off,t)  |  HoldsAt(Inactive,t)  | 
      HoldsAt(Cruise,t)  |  HoldsAt(Override,t) ] 

 I1: HoldsAt(Off,t)  ≡  ¬HoldsAt(Ignited,t) 

 I2: HoldsAt(Inactive,t)  →  [HoldsAt(Ignited,t) ∧  
    [ ¬HoldsAt(Running,t) ∨ ¬ HoldsAt(Activate,t)]] 

 I3: HoldsAt(Cruise,t)  →  [HoldsAt(Ignited,t) ∧  
   HoldsAt(Running,t)  ∧  ¬ HoldsAt(Brake,t)] 

 I4: HoldsAt(Override,t)  →   
  [HoldsAt(Ignited,t)  ∧  HoldsAt(Running,t)] 

Using the results illustrated in Corollary 1, the abductive analysis is then performed with 
respect to a reduced version of the Event Calculus specification, which uses a time structure 
S consisting of just two symbolic points Sc and Sn such that Sc < Sn. Different abductive 
proof procedures and techniques have been developed [30]. Our approach uses a logic 
programming abductive proof procedure, so deploying a substantial existing body of work in 
applying abduction to Event Calculus representations [29; 30]. This proof procedure (i.e. 
procedure to find ∆’s) is composed of two phases, an abductive phase and a consistency 
phase, that interleave with each other. Each abducible generated during the first phase is 
temporarily added to a set of abducibles that have already been generated. But this addition 
is only made permanent if the second phase confirms that the entire new set of abducibles is 
consistent with the specification and with the given constraints (if any). A detailed 
description of the abductive proof procedure is given in Section 4.2, together with an 
illustrative example, whereas background logic programming definitions and related 
theoretical results are given in the Appendix.    

Our abductive procedure attempts to find system behaviors described by the transition table 
that are counterexamples of the system invariants, by attempting to generate a consistent set 
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∆ of HoldsAt and Happens facts (positive or negative literals grounded at Sc), such that 
D(S)∪ {I(Sc)}∪∆  � ¬I(Sn). We can also check the specification against a particular 
invariant ∀ t.Ii(t) by attempting to abduce a ∆  such that D(S)∪ {I(Sc}∪∆ � ¬Ii(Sn). Because 
the abductive procedure is complete (see Theorem 3 in section 4.1), failure to find such a 
∆ ensures that the table satisfies the invariant(s). If, on the other hand, the tool generates a 
∆, this ∆ is effectively a pointer to a particular row in the table that is problematic. 

For example, when checking the table against the invariant I3 the tool produces the 
following ∆: 

 ∆   =  {HoldsAt(Ignited,Sc), HoldsAt(Running,Sc),  
     HoldsAt(Toofast,Sc), ¬HoldsAt(Brake,Sc), 
     HoldsAt(Cruise,Sc), ¬Happens(@F(Ignited),Sc),  
     ¬Happens(@F(Running),Sc), 
     ¬Happens(@F(Toofast),Sc),  
     Happens(@T(Brake),Sc) } 

Clearly, this ∆ identifies one of the hidden rows of the table in which a “@T(Brake)” event 
merely results in the system staying in mode “Cruise”. The requirements engineer now has a 
choice: (1) alter the new mode in this (hidden) row so that invariant I3 is satisfied (in this 
case the obvious choice is to change the new mode from “Cruise” to “Override”, and make 
this previously hidden row explicit in the table), (2) add an extra invariant that forbids the 
combination of HoldsAt literals in ∆ (e.g. add the invariant I5 = 
[HoldsAt(Cruise,t)   →   ¬HoldsAt(Toofast,t) ]) or (3) weaken or delete the system 
invariant (in this case I3) that has been violated. 

This example illustrates all the types of choices for change that will be available when 
violation of an invariant is detected. Choices such as these will be highly domain-specific and 
therefore appropriate for the requirements engineer, rather than the tool, to select. After the 
selected change has been implemented, the tool should be run again, and this process 
repeated until no more violations of properties are identified (i.e. until the tool fails to 
generate a ∆). As an indication, a single execution of our abductive reasoning over the 
invariant I3, for example, takes XXXX, using a simple unoptimised implementation of the 
abductive proof procedure.  

4. Tool Support  
The results illustrated in Section 2 describe the logic foundations of our technique for 
analysing safety properties. They are based on a classical notion of logical abduction, as 
given in Definition A2 in the Appendix, and on a notion of counterexample of a safety 
property as given in Definition 6. They are therefore applicable to any abductive proof 
procedure or abductive algorithm that is sound and complete with respect to these classical 
notions. As mentioned in the previous section, our approach uses a logic programming 
abductive proof procedure based on two phases, abductive phase and a consistency phase, 
interleaving with each other. In this section, we describe these two phases in detail and the 
overall implementation of our abductive framework. The tool is implemented in Prolog, and 
it uses (i) a logic program conversion of the given (classical logic) Event Calculus 
specification, based the method described in [29], and (ii) the abductive logic program 
module described in [28]. Building upon the theoretical results illustrated, it has been 
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sufficient to implement our abductive analysis approach only with respect to the reduced 
two timepoints structure S. An implementation example of the case study given in Section 3, 
with some of the abductive analysis results, is also given. Background logic programming 
definitions and related theoretical results are given in the Appendix.    

4.1 The Event Calculus Implementation  
The Event Calculus description given in Section 2.1 is based on standard classical logic. The 
logic program implementation of the Event Calculus used in our tool is instead based on 
“negation-as-failure” [8], whose underlying semantics differs from the semantics of classical 
negation [25]. In our logic program tool, the negation (i.e. negation-as-failure) of a 
predicate, such as \+(HoldsAt(X,T))10 for some fluent X and time point T, is assumed to be 
true whenever its positive instance HoldsAt(X,T) cannot be proven from the specification. 
This semantic definition of negation-as-failure builds upon a notion of “Closed Word 
Assumption” (CWA) [31], which implicitly assumes that all models of a given Event 
Calculus logic program are uniquely defined by only those assertions that are in the program 
or that can be proved from it. Our classical Event Calculus representation of a given 
specification (see Definitions 1 and 2), however, is not based on any general CWA11. It is 
possible for a given Event Calculus domain description ECSpec to be incomplete, in the sense 
that for some fluent constant F and time point T, neither HoldsAt(F,T) nor ¬HoldsAt(F,T) 
can be derived from the description. We have overcome this mismatch by adopting the 
following implementation method [29]. In our tool, negative fluent literals are represented 
inside the HoldsAt predicate. In the program translation of our domain description, 
assertions of the form ¬HoldsAt(F,T) are represented by the positive literal 
HoldsAt(neg(F),T), and assertions of the form HoldsAt(F,T) are represented by the positive 
literal HoldsAt(pos(F),T). In this way, negative literals \+(HoldsAt(F,T)) of our logic 
programs will correctly denote that the predicate HoldsAt(F,T) is not provable from our 
domain description. A mapping function ϑ, called implementation mapping, from the 
classical logic Event Calculus description into a Prolog program is given in Definition A9 in 
the Appendix. The logic program implementation of our Event Calculus description is given 
by a Prolog implementation of the Event Calculus axiomatisation, i.e. LPECAx(S), and a 
Prolog implementation of an Event Calculus system specification LPECSpec(S). These two 
implementations are given in Definitions 9 and 10 respectively. 

Definition 9. [LPECAx(S)] Let S be a time structure consisting of two timepoints Sc and Sn, 
with Sc < Sn, and let ϑ be an implementation mapping. Let ECAx(S) be a ground Event 
Calculus axiomatisation. The set LPECAx(S) is the Prolog implementation of ECAx(S) 
generated by the mapping ϑ, consisting of the following Horn clauses:  

 clipped(pos(F),sc) ← happens(A,sc), possiblyTerminates(A,F,sc). (LPECS1) 

 clipped(neg(F),sc) ← happens(A,sc), possiblyInitiates(A,F,sc). (LPECS2)  

 holdsAt(pos(F),sn) ←    (LPECS3) 

                                                
10 Note that in logic programs symbols starting with capital letters denote variables whereas symbols starting with small 

cases denote constants. The operator “\+” denotes negation-as-failure [21]. 
11 We remind the reader that in our Event Calculus descriptions only Initiates and Terminates clauses are completed but 

not the HoldsAt clauses.  
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  happens(A,sc), initiates(A,F,sc), \+ clipped(pos(F),sc).  

 holdsAt(neg(F),sn) ←    (LPECS4) 
  happens(A,sc), terminates(A,F,sc), \+ clipped(neg(F),sc).    

 holdsAt(pos(F),sn) ← initiallyTrue(F) , \+ clipped(pos(F),sc).   (LPECS5) 

 holdsAt(neg(F),sn) ← initiallyFalse(F) , \+ clipped(neg(F),sc). (LPECS6) 
       � 
The implementation of an Event Calculus system specification ECSpec(S) is also based on the 
mapping ϑ, but it is slightly more elaborate than the implementation of ECAx(S). For each 
initiates and terminates clause of a given ECSpec(S), the implementation includes also a 
possiblyInitiates and possiblyTerminates clauses. This is formally described in the following 
definition.  

Definition 10. [Prolog Specification LPECSpec(S)] Let ECSpec(S) be a ground specification 
and ϑ be an implementation mapping. A Prolog implementation of ECSpec(S) based on ϑ, is 
the set LPECSpec(S) consisting of the following Horn clauses: 

a. For each Initiates clause in ECSpec(S), an initiates clause of the form 

initiates(A,F,Sc)ϑ ← Πϑ  

b. For each Terminates clause in ECSpec(S) a terminates clause of the form 

  terminates (A,F,Sc)ϑ ← Πϑ 

c. For each Initiates clause in ECSpec(S), a possiblyInitiates clause of the form 

  possiblyInitiates(a,f,sc)← Π’  

 where Π’ includes (i) literals \+ holdsAt(neg(f),t), for each positive literal HoldsAt in 
Π, (ii) literals \+ holdsAt(pos(f),t), for each negative literal HoldsAt in Π, (iii) literals 
Happensϑ, for each (positive and/or negative) literal Happens in Π .  

d. For each Terminates clause in ECSpec(S), a possiblyTerminates clause of the form 

possiblyTerminates(a,f,sc)← Π’  

 where Π’ includes (i) literals \+ holdsAt(neg(f),t), for each positive literal HoldsAt in 
Π, (ii) literals \+ holdsAt(pos(f),t), for each negative literal HoldsAt in Π, (iii) literals 
Happensϑ, for each (positive and/or negative) literal Happens in Π .  � 

An example is given below that corresponds to the logic program implementation of the first 
row of the SCR specification given in Table 1: 

 initiates(t(ignited), inactive, sc) ← 
    [holdsAt(pos(off),sc)  ∧ 
      holdsAt(neg(ignited),sc) ∧  happensAt(t(ignited),sc)].   
 terminates(t(ignited),off,sc) ← 
    [holdsAt(pos(off),sc)  ∧ 
     holdsAt(neg(ignited),sc) ∧  happensAt(t(ignited),sc)]. 
 possiblyInitiates(t(ignited), inactive, sc) ← 
    [\+ holdsAt(neg(off),sc)  ∧ 
      \+ holdsAt(pos(ignited),sc) ∧  happensAt(t(ignited),sc)].   
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 possiblyTerminates(t(ignited),off,sc) ← 
    [\+ holdsAt(neg(off),sc)  ∧ 
     \+ holdsAt(pos(ignited)),sc) ∧  happensAt(t(ignited),sc)]. 

The implementation of safety properties and constraints also uses the same implementation 
mapping ϑ defined in the Appendix. The logical assumptions that safety properties hold at 
the current state Sc are implemented as integrity constraints. These are added to any existing 
domain dependent constraint. 

Definition 11. [Prolog safety property I(sn)ϑ] Let I(sn) be a ground safety property with 
timepoint sn and let ϑ be an implementation mapping. Let I1(sn)∧ …∧ In(sn) be the 
conjunction of normal clauses generated from I(sn). The Prolog implementation of the safety 
property I(sn) over the mapping ϑ is the set I(sn)ϑ of Prolog clauses {Ii(sn)ϑ | i ≤ n}. 
Similarly for ¬ I(sn).  � 

Definition 12. [Integrity Constraints set I(sc)ϑ  for safety property] Let I(sc) be an ground 
safety property with timepoint sc and let ϑ be an implementation mapping. Let 
I1(sc)∧ …∧ In(sc) be the conjunction of normal clauses generated from I(sc). The set of 
integrity constraints associated with I(sc) is the set {IC1,…,ICn} where for each 1≤i≤n, ICi is 
the denial form of Ii(sc). � 

4.2 The Abductive Module 
The abductive module is a reasoning engine that takes as input the implementation of an 
Event Calculus specification with constraints (if any), the implementation of a goal, and 
generates a set of assertions of a predefined specific form that are consistent with the 
specification and a given set of constraints, and that allow the given goal to be inferred from 
the specification. The implementation is based on a standard abductive proof procedure for 
logic programming [28; 30; 46]. As mentioned in section 3.2.2, this consists of two types of 
derivations (or phases), the abductive derivation and the consistency derivation, which 
interleave with each other. A formal definition of these derivations is given below. To clarify 
some of the standard logic programming notations used in the following definitions, note 
that the symbol “←” denotes the logic program representation of the classical “if” logical 
operator, a “normal goal” in logic programming is a clause of the form ←L1, …, Ln, which 
means “prove L1, and … and prove Ln”; an empty goal “j” is a goal with no more literals Li 
left to prove. Formal definitions of these concepts and notations are given in the Appendix. 

Definition 13. [Abductive derivation] Let <P, AbP, ICP> be a logic program abductive 
framework and let R be a safe selection rule (see Definitions A12 and A13 in the Appendix). 
An abductive derivation from (G1, ∆1) to (Gn, ∆n), with respect to R, is a sequence:  

(G1, ∆1), …, (Gn, ∆n) 
such that for each 1≤i≤n-1, Gi is a normal goal of the form ←L,Q, where L is the literal 
selected by R and Q is a possibly empty conjunction of literals. For each 1≤i≤n, ∆i is a set of 
Prolog abducibles and Gi+1 is obtained by applying one of the following rules:  

1. If L is not abducible, then  
  Gi+1 = C 
  ∆i+1 = ∆i,  
  where C is the resolvent of Gi with some clause in P that defines L. 
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2. If L is abducible and L∈∆ i, then  
  Gi+1 = ← Q 
  ∆i+1 = ∆i.  

3. If L is abducible, L∉∆ i and ßß∉∆ i and there exists a successful consistency derivation 
(L, ∆i∪ {L}),…,(Å, ∆’), then  

  Gi+1 = ←Q 
  ∆i+1 = ∆’. 
A successful abductive derivation is an abductive derivation of the kind (G1, ∆1),…,(j, 
∆n) with n≥1.            � 

Definition 14. [Consistency derivation] Let <P, AbP, ICP> be a logic program abductive 
framework and let R be a safe selection rule. A consistency derivation from (L, ∆1),…, (Sn, 
∆n) is a sequence (L, ∆1), (S1, ∆1),…, (Sn, ∆n) such that L is an abducible, S1 is the set of all 
normal goals of the form ← φ, obtained by resolving the abducible L with the integrity 
constraints in ICP∪ {⊥←  Q, \+ Q | Q atomic literal in P}, with j∉ S1; for each 1≤ i≤ n-1, Si 
can be rewritten in the form {←L,Q}∪  Si’; for each 1≤ i≤ n-1, ∆i is a set of abducibles; and 
(Si+1,∆i+1) is obtained according to one of the following rules: 

1. If L is not abducible, then  
  Si+1=C’∪ Si’ 
  ∆i+1=∆i 
  where C’ is the set of all resolvents of rules in P with ←L,Q on L and j∉ C’; 

2. If L is an abducible and L∈∆ i and Q ≠j� then  
  Si+1={←Q}∪ Si’ 
  ∆i+1=∆i 

3. If L is an abducible and ßß∈∆ i, then  
  Si+1=Si’ 
  ∆i+1=∆i; 

4. If L is an abducible, L∉∆ i, and ßß∉∆ i, then 

(i) if there exists a successful abductive derivation (←ßß, ∆i),…,(j�∆’) then 
Si+1=Si’ 

 ∆i+1=∆’;  
(ii) otherwise, if Q ≠j, then  

 Si+1={←Q}∪ Si’ 
 ∆i+1=∆i. 

A successful consistency derivation is a consistency derivation of the kind (L, ∆1),…,(Å, 
∆n).            � 

In simple words, the abductive derivation chooses a single (sub)goal to prove and checks if 
it is an abducible predicate. If it is not, it keeps performing resolution steps until it finds a 
sub-goal that is an abducible predicate. When the current sub-goal is an abducible, if it has 
already been identified then the abductive derivation continues to prove the remaining list of 
(sub)goals. If it is a new abducible predicate then it is temporarily added to a set of 
abducible assertions, which have already been generated. The new abducible is then checked 
for consistency with the specification, the temporary set of generated abducibles, and the 
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integrity constraints (step 3 of the abductive derivation). If the consistency checking 
succeeds, the temporary assertion is permanently accepted in the set of abducibles, 
otherwise discharged. The consistency phase may itself invoke the abductive phase (step 4 in 
the consistency derivation), in order to verify the (abductive) inference of some intermediate 
sub-goals. In general this (re)checking for consistency and satisfaction of constraints can be 
computationally expensive, but because of the particular logic program implementation of 
our Event Calculus system descriptions (see Definition 8), the computational costs can be 
further reduced by largely avoiding an exhaustive consistency checking. Any internally 
consistent, finite collection of Happens literals is consistent with our logic program 
implementation of any Event Calculus system descriptions. Therefore, it is necessary only to 
check the consistency of candidate abducibles HoldsAt literals against the system properties, 
and this can be done efficiently because both these types of expression are grounded at Sc. 
An abductive solution ∆ provided by this procedure can therefore be defined as follows. 

Definition 15. [Prolog abductive solution] Let <P, AbP, ICP> be a logic program abductive 
framework and let R be a safe selection rule. Let G be a normal goal. The set ∆ of Prolog 
abducibles is a Prolog abductive solution for G if and only if there exists a successful 
abductive derivation from (G,Å) to (j�∆).       � 

To give an example of how the abductive proof procedure works, in the case study 
described in Section 3 the abductive analysis of the property I3 (given in section 3.2.2), 
includes the proof of the sub-goal holdsAt(pos(brake),sn). Part of the abductive derivation 
for this sub-goal is diagrammatically represented in Figure 2. At the first interaction, the goal 
holdsAt(pos(brake),sn) is not an abducible. So a resolution step is applied with the clause 
(LPECS3), given in Definition 9, which generates the next (intermediate) list of sub-goals 
←happens(A,sc), initiates(A,pos(brake),sc), \+ clipped(pos(brake),sc). In order to succeed 
on the first goal, the abductive derivation has to succeed on each of these three sub-goals. 
The next immediate step is therefore to prove happensAt(t(brake),sc). Since this is an 
abducible predicate and it is not in the given specification, it is temporarily added to the set 
∆ of abducibles already identified (for simplicity we have assumed that at this point of the 
proof ∆ is empty). The consistency derivation (double lined box in Figure 2) is then invoked 
to show that this addition is consistent with the specification and ∆12. For 
happensAt(t(brake),sc)} to be consistent, the abductive derivation should fail to prove 
\+happensAt(t(brake),sc). Failing to prove \+happensAt(t(brake),sc) means, by negation-as-
failure, to show that it is possible to prove happensAt(t(brake),sc) from the specification 
together with ∆, which is obviously the case. Hence the consistency checking succeeds and 
the new ∆ = {happensAt(@t(brake),sc)} is passed to the external cycle of the abductive 
derivation for the proof of the other two intermediate sub-goals.  

The consistency derivation is slightly more complex than the example given above. This is 
because our abductive analysis of safety properties has to take into account any domain 
dependent integrity constraints included in the specification. For instance, as shown in 
Theorem 3, a first class of constraints included in our logic program abductive framework is 
the set of denials corresponding to the assumption I(sc) of the property being true at the 
current state of the system. Another type of constraints in the case of SCR specifications is 

                                                
12 Our case study example did not include any domain dependent constraint. 
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the assumption that “for any @T(C) event occurring at a time point t, the variable C has to 
be false at t”, which captures the SCR semantics of events. Constraints of this form are for 
instance implemented by means of denials of the form: 

⊥  ← happensAt(t(X),T) ∧  holdsAt(neg(X),T). 

where “T” is an arbitrary time point within an hypothetical running behavior of the specified 
system. Such integrity constraint would then provide a way for constructing only 
counterexamples that are correct with respect to the semantics of the event-driven 
specification under consideration. Therefore, if in the example given in Figure 2 the set ∆ 
was not empty but equal to the set {initiallyTrue(brake)}, the consistency derivation on the 
abducible happensAt(t(brake),sc) would have failed. Instantiating the variable T with sc, the 
tool would have attempted to fail to prove either one of the two conditions 
happensAt(t(X),sc), holdsAt(neg(X),sc), of the integrity constraint, in order to show that the 
new abducible is consistent with it. It is easy to see that in each case it would have not 
succeeded.  

The implementation of our abductive framework is based on the property that our logic 
program Event Calculus is sound and complete with respect to the classical Event Calculus 
formalism. This result is fundamental to our approach and it is proved in the following two 
theorems. 

Theorem 3. [Soundness of the Event Calculus abductive implementation] Let S be a time 
structure consisting of two timepoints Sc and Sn, with Sc < Sn and let ϑ be an 
implementation mapping. Let <D(S), Ab, IC> be a classical abductive framework and let 
I(Sn) be a safety property in disjunctive normal form13. Let <LPD(S), AbP, ICP> be the logic 
program abductive framework where ICP includes the Prolog implementation of the 
constraints IC and the integrity constraint set associated with I(Sc). If ∆P is a Prolog 
abductive solution for ¬ I(Sn)ϑ  with respect to LPD(S) then ∆ is an abductive solution for 
¬ I(Sn) with respect to D(S)∪ I(Sc).  

                                                
13 A safety property I is in disjunctive normal form if it is of the form L1∨ ….∨  Ln where Li is a literal for each 1≤i≤n. 

The negation ¬ I is therefore a formula of the form ¬L1∧ ….∧¬ Ln. 

1. Prove HoldsAt(pos(brake),sn). 
1.1 Prove HappensAt(t(brake),Sc) ∧  Initiates(t(brake),brake,sc) ∧  \+clipped(pos(brake),sc). 

2.1 Prove HappensAt(t(brake),Sc) 

    

 3. Assume ∆ = {happensAt(t(brake),sc)} 

3.1 Fail to prove \+happensAt(t(brake),sc). 

¥ 

2.2  --------------------------------------------- 

Figure 2: An example of a partial abductive derivation. 
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Proof. Because of the sets of uniqueness-of-name axioms and existence-of-name axioms 
included in ECSpec(S), the class of models of D(S) is isomorphic to a class of Herbrand 
models. Assume that ∆P is a Prolog abductive solution for ¬ I(Sn)ϑ with respect to LPD(S). 
By the soundness result stated in Theorem A1 in the Appendix, there exists a stable model 
_(∆P) such that _(∆P)^¬ I(Sn)ϑ and _(∆P)^ϕ, for each ϕ∈ ICP. We then reason by 
contradiction and assume that ∆ is not an abductive solution. This means that either 
D(S)∪ I(Sc)∪∆  violate the integrity constraints (or is inconsistent when IC=∅ ) or that 
D(S)∪ I(Sc)∪∆ |¬ I(Sn). In the first case we reach immediately a contradiction since the 
stable model _(∆P) is an Herbrand model of LPD(S) which satisfies ICP by definition, and 
since the program is acyclic14 there is only one such model. Therefore, there exists only one 
isomorphic model _ of D(S)∪ I(Sc)∪∆ , that satisfies the integrity constraints IC. We 
consider now the case when D(S)∪ I(Sc)∪∆ |¬ I(Sn). This second case assumes that all 
models of D(S)∪ I(Sc)∪∆  satisfy IC and that there exists a model _ of D(S)∪ I(Sc)∪∆  such 
that _c¬ I(Sn). Let _ be such a model. It is possible to construct a corresponding 
Herbrand model _(∆P), which satisfies LPD(S)∪∆ P and the integrity constraints ICP, and 
such that _(∆P)c¬ I(Sn)ϑ. It is possible to show, by construction, that the model _(∆P) is a 
minimal Herbrand model for LPD(S)∪∆ P. Since the logic program LPD(S) is acyclic, _(∆P) 
is the only such stable model. Hence, _(∆P)^¬ I(Sn)ϑ by hypothesis and M(∆P)c¬ I(Sn)ϑ by 
construction, which is a contradiction. � 

Theorem 4.[Completeness of the Event Calculus abductive implementation] Let S be a 
time structure consisting of two timepoints Sc and Sn, with Sc < Sn and let ϑ be an 
implementation mapping. Let <D(S), Ab, IC> be a classical abductive framework and let 
I(Sn) be a safety property in disjunctive normal form15. Let <LPD(S), AbP, ICP> be the logic 
program abductive framework where ICP includes the Prolog implementation of the 
constraints IC and the integrity constraint set associated with I(Sc). If ∆ is an abductive 
solution for ¬ I(Sn) with respect to D(S)∪ I(Sc) then there exists a subset ∆’P ⊆  ∆P which is a 
Prolog abductive solution for ¬ I(Sn)ϑ with respect to LPD(S).  

Proof. Assume that ∆ is an abductive solution for ¬ I(Sn) with respect to D(S)∪ I(Sc). 
Therefore D(S)∪ I(Sc)∪∆ �¬ I(Sn) and D(S)∪ I(Sc)∪∆  satisfies IC (or is consistent when 
IC=∅ ). This means that there exists at least one model of D(S)∪ I(Sc)∪∆  and that for each 
model _ of D(S)∪ I(Sc)∪∆ , _^¬ I(Sn) and M^IC. We then reason by contradiction and 
assume that each subset ∆’P ⊆  ∆P is not a Prolog abductive solution for ¬ I(Sn)ϑ  with respect 
to LPD(S). By the completeness result stated in Theorem A1 in Appendix, for all stable 
models _(∆P) of the program LPD(S)∪∆ P such that _(∆P)^ϕ, for each ϕ∈ ICP, it is the 
case that _(∆P)c¬ I(Sn)ϑ. Following an argument similar to that used in Theorem 3, it is 
possible to construct from _(∆P) a corresponding model _ of D(S)∪ I(Sc)∪∆  such that, by 
construction, _c¬ I(Sn) and _^IC, so getting a contradiction with the initial hypothesis. 
          � 

                                                
14 Informally, a logic program is acyclic if it does not include loops. For a formal definition the reader is referred to [3].  
15 A safety property I is in disjunctive normal form if it is of the form L1∨ ….∨  Ln where Li is a literal for each 1≤i≤n. 

The negation ¬ I is therefore a formula of the form ¬L1∧ ….∧¬ Ln. 
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5. Related Work 
A variety of techniques have been developed for analysing requirements specifications. 
These range from informal but structured inspections [16], to more formal techniques such as 
those based on model checking or theorem proving [9] or logic-based approaches (e.g. [35; 

44; 48]). In general terms, techniques based on model checking facilitate automated analysis 
of requirements specifications and generation of counterexamples when errors are detected 
[2; 6; 21]. However, in contrast to our approach they presuppose complete description of the 
initial state(s) of the system, in order to compute successor states; they require the 
application of abstraction techniques to reduce the size of the state space; and infinite state 
systems are abstracted to (possibly equivalent) finite state systems.  

For example, in the context of SCR, Heitmeyer et al. [21] illustrate how both explicit state 
model checkers, such as Spin [23], and symbolic model checkers, like SMV [34], can be used 
to detect safety violations in SCR specifications. The first type of model checking verifies 
system properties by means of state exploration, whereas the second technique uses 
reasoning by refutation. Problems related to state explosion are dealt with by the use of 
sound and complete abstraction techniques that reduce the number of variables to just those 
that are relevant to the property to be tested [21]. The goal-driven nature of our abductive 
Event Calculus has the same effect, in that abduction focuses reasoning on goals relevant to 
the property, and the Event Calculus ensures that this reasoning is at the level of relevant 
variables (fluents) rather than via the manipulation of entire states. 

Both model checking techniques use the standard notion of validity, whereby showing the 
existence of a model of a specification S, which satisfies the negation of a property P is 
sufficient to prove that the specification violates (or does not validate) the property. Our 
abductive Event Calculus, on the other hand, proves the violation of a property by 
identifying a minimal extension of a given specification S, sufficient to identify a class of 
semantic models that violate a given property. The focus is therefore on assumptions to add 
to a given specifications rather then on the construction of a full counter model. As a 
consequence, the abductive answer can be mapped more easily back to the given 
requirements specifications than the answer provided by a model checking technique. Other 
essential differences between our approach and the explicit state model checking technique 
are that our system (i) can deal with specifications in which information about the initial 
state is incomplete, and (ii) reports problems in terms of individual mode transitions (which 
correspond directly to rows in the tables) rather than in terms of particular paths through a 
state space. The answers of our approach can therefore more easily be interpreted within the 
representation of the requirements specification. On the other hand, the approach will in 
certain cases be over-zealous in its reporting of potential errors, in that it will also report 
problems associated with system states that are in reality unreachable from the initial state 
(or set of possible initial states) if such information is given elsewhere in the specifications. 
However, this feature of the system can only result in overly robust, rather then incorrect, 
specifications, and it does not in practice constitute a limitation of our approach. In fact, if 
so desired, we can always reapply the abductive procedure, with the current state as a goal, 
a full rather than a reduced time structure, and information about the initial state, in order to 
test for reachability. 
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Formal techniques based on theorem proving [40] can also provide an alternative way of 
performing analysis on requirements specifications, even for infinite state systems. However, 
in contrast to our approach they do not provide useful diagnostic information when a 
verification fails, and may not always terminate.  

Recent work by Bharadwaj and Sims [7] uses a hybrid approached based on a combination 
of specialised decision procedures and model checking for overcoming some of the 
limitations described above. This approach makes use of induction to prove the safety-
critical properties in SCR specifications, and so again states identified as counterexamples 
may not be reachable. 

Of logic-based approaches, the work of van Lamsweerde et al. [47; 48; 49] is particularly 
relevant. This describes a goal-driven approach to requirement engineering in which 
“obstacles” are parts of a specification that lead to a negated goal. This approach is 
comparable to ours in that its notion of goals is similar to our notion of safety properties, 
and its notion of obstacles is analogous to our notion of abducibles. However, the 
underlying goal-regression technique is not completely analogous to our abductive decision 
procedure. It does use backward reasoning and classical unification in the same way as our 
abductive derivation uses (logic program) resolution, but no checking for consistency or 
satisfaction of domain-dependent constraints is performed once an obstacle is generated. In 
simple terms, from a technical viewpoint, the goal regression technique illustrated in [47; 48; 
49] is comparable to step 1 of our abductive derivation phase (see Definition 13), but our 
approach extends van Lamsweerde’s work on obstacle generation in that it provides a 
minimal counterexample to a given property, which is consistent with the specification and 
with the domain dependent constraints. Moreover, our generation of counterexamples is 
fully automated where as no implementation of identification of obstacles has yet been 
reported. In this respect, we believe that our procedure might also be used effectively to 
support automated identification of obstacles in van Lamsweerde’s framework. The only 
current limitation of our approach with respect to van Lamsweerde’s work regards the class 
of properties that we can analyse using abductive reasoning. Currently, our framework can 
only analyse safety properties that are universally quantified formulae with no nested 
temporal quantifiers, whereas van Lamsweerde’s approach covers a much wider class of 
temporal properties (i.e. goals).  

The notion of abductive explanations, as described in Section 2.1 is also related to the 
notion of Dijkstra’s weakest-precondition for programming languages [12; 13]. These are 
pre-conditions for a list of program statements, for which the execution of these statements 
terminates leaving the system in a state satisfying some desirable post-conditions. However, 
the analogy is not complete since weakest pre-conditions are used mainly to provide an 
axiomatic definition of programming language semantics, and a calculus for a formal 
derivation of programs. This approach is not supported by any automated procedure for the 
generation of weakest-preconditions from given programs and post-conditions. Our 
abductive approach could be considered to be a declarative counterpart of weakest-
precondition calculus, but also provides an automated decision procedure for the generation 
of conditions.  

Recent work has also demonstrated the applicability of abductive reasoning to software 
engineering in general. Menzies has proposed the use of abductive techniques for 
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knowledge-based software engineering, providing an inference procedure for “knowledge-
level modeling” that can support prediction, explanation, and planning [35]. Menzies et al. 
shows how abductive techniques can also be used to reason about inconsistent (multi-
perspective) requirements specifications to identify their consistent subsets [36]. Satoh has 
also proposed the use of abduction for handling the evolution of (requirements) 
specification, by showing that minimal revised specifications can efficiently be computed 
using logic programming abductive decision procedures [44]. Finally, we have also explored 
the use of abduction for handling inconsistencies in requirements specifications using QC 
logic, a paraconsistent logic that allows non-trivial reasoning in the presence of 
inconsistency [39]. 

6. Conclusions & Future Work 
Our case study illustrates the two characteristics of our approach mentioned in the 
introduction. It was able to detect violations of safety properties even though the SCR 
specification used did not include information about an initial state. The counterexamples 
generated acted as pointers to rows in the mode transition tables and to individual properties 
that were problematic. It avoids high computational overheads because of the choice of 
logical representation, and because of our theoretical results, which allow us to reduce the 
reasoning task before applying the tool. Although the case study used an SCR tabular 
representation, early indications are that this approach could be much more widely 
applicable. In particular, we are currently investigating its use in analysing Labeled 
Transition Systems (LTS) specifications [33]. 

The abductive approach described in this paper is a (theoretical and practical) foundation for 
the development of an efficient logic-based method for automated analysis of event-driven 
requirements specifications. However, a number of issues are still open to further 
investigation.  

First, in our case study, our approach has been applied to an SCR specification composed 
only of a single mode transition table and some system invariants. But it seems likely that it 
could also facilitate reasoning about full SCR specifications. A second extension of our 
approach is to consider requirements specifications of systems with infinite states. As 
mentioned in Section 2.2, the Event Calculus allows the representation of such types of 
specifications, but further experimentation is needed. A third direction is to extend our 
approach to facilitate the analysis of other system properties. This might require the 
development of different abductive proof procedures appropriately tailored to the specific 
type of property under consideration. A fourth extension is to allow for non-determinism 
and concurrency in specifications, since again the Event Calculus makes it straightforward to 
represent both. As regards this last point, a natural first step is to tailor our approach for 
analysing LTS specifications, which are prime examples of event-based specifications for 
non-deterministic and concurrent systems.   

Finally, practical tasks for the future include developing automated tools for translating 
event-based requirements specifications into Event Calculus specifications, and a user-
friendly interface for our abductive tool. In the case of SCR specifications, both these tasks 
are feasible because of the systematic way of generating Event Calculus rules from SCR 
tables. 
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Appendix. 
This appendix includes additional technical proofs and definitions used in the paper. These 
are structured by the sections of the paper.  

Our approach 
Definition A1. [Constraint] Let τ be a timepoint term. A constraint is a formulae without 
quantifiers, whose only predicate is HoldsAt, whose fluent terms are ground, and whose only 
timepoint terms is τ.          � 

Definition A2. [Abductive framework] The abductive framework is the triple: 
<D, Ab, C> 

where D is a domain description given by the set ECAx and a specification ECSpec, Ab is the 
set of abductive predicates and C is a (possibly empty) finite set of constraints.  � 

Definition A3. [Model] Let D be a domain description given by the set ECAx and a 
specification ECSpec. A model _ is a classical interpretation such that _ ^ D.  � 

Definition A4. [Agreeing models] Let D be a domain description given by the set ECAx and 
a specification ECSpec. Let _ and _' be two models of D. Then, _ and _' agree up to a 
given timepoint n≥0 if for each timepoint term T≤n, ground event A and fluent F, 

_^HoldsAt(F,T)   iff  _' ^HoldsAt(F,T)   

_^Happens(A,T)  iff  _' ^Happens(A,T)   

         � 

Lemma A1. [Deterministic lemma] Let D be a domain description given by the set ECAx 
and a specification ECSpec, and let _ and _' be two models of D, which agree up to some 
time point n. Then, for all ground fluents F, _^HoldsAt(F,n+1) if and only if 
_'^HoldsAt(F,n+1). 

Proof. Note that because of the deterministic axiom (ECD), the conditions of axioms (EC3)-
(EC6) are mutual exclusive. Therefore, for each event that happens at the time point n, 
which initiates some fluent F, the two models will both satisfy HoldsAt(F,n+1); for each 
event that happens at the time point n, which terminates some fluent F, the two models will 
both satisfy ¬HoldsAt(F,n+1); for each event that happens at the time point n and which 
does neither initiate nor terminate a fluent, the two models will both satisfy HoldsAt(F,n+1) 
or ¬HoldsAt(F,n+1) for each unaffected fluent F for which _^HoldsAt(F,n) and 
_^¬HoldsAt(F,n) respectively.  � 

Corollary A1. Let D be a domain description given by the set ECAx and a specification 
ECSpec, and let _ and _' be two models of D, which agree up to some timepoint n. Then, 
for each ground fluent F, _�∀ t.HoldsAt(F,t) if and only if _'�∀ t.HoldsAt(F,t).  � 

Lemma A2. Let D be a domain description given by the set ECAx and a specification ECSpec. 
Let ∀ t.I(t) be a safety property. Let S be a time structure consisting of two timepoints Sc 
and Sn, with Sc < Sn. Then D �∀ t.I(t) if and only if D � I(0) and D∪ {I(Sc)} � I(Sn).  

Proof. We consider first the “if” part. We assume the time structure underlying D to be 
isomorphic to the set of natural numbers BB. Each timepoint t is therefore interpreted as a 
natural number. To show that D �∀ t.I(t) we use induction over BB. The base case, i.e. 
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D�I(0), is given by the hypothesis. The inductive hypothesis states that for a given natural 
number n, D � I(n). We want to show that D�I(n+1). Note that the time structure S is 
isomorphic to the structure {n, n+1}. We reason by contradiction. We assume that 
D|I(n+1). Thus, there exists a model _ of D such that _cI(n+1). By inductive 
hypothesis, _^I(n) and therefore _^D∪ {I(n)}. This is equivalent to say that there exists 
a model _ such that _^D∪ {I(Sc)} and _cI(Sn), which is in contradiction with the 
hypothesis. We consider now the “only-if” part. By hypothesis D�∀ t.I(t). This trivially 
implies that D�I(0), and that for all n > 0, D�I(n). Note that the time structure S is 
isomorphic to a structure {n, n+1}, for any arbitrary natural number n. We reason by 
contradiction. We assume that D∪ {I(Sc)}|I(Sn). Therefore there exists a model _ of 
D∪ {I(Sc)} such that _cI(Sn). By inductive hypothesis _ is also a model of D. Hence, 
_^D and _cI(Sn) which is in contradiction with the hypothesis.     � 

Lemma A3. Let D be a domain description given by the set ECAx and a specification ECSpec. 
Let ∀ t.I(t) be a safety property. Let S be a time structure consisting of two timepoints Sc 
and Sn, with Sc < Sn. Let D(S) be the ground domain description given by the set ECAx(S) 
and the ground specification ECSpec(S) corresponding to ECSpec. Hence, D∪ {I(Sc)}�I(Sn) if 
and only if D(S)∪ {I(Sc)}�I(Sn).  

Proof. We prove first the “if” part. Note that it is easy to show that D�D(S)16. This implies 
that D∪ {I(Sc)} � D(S)∪ {I(Sc)}. By hypothesis D(S)∪ {I(Sc)}�I(Sn). Hence by transitivity, 
D∪ {I(Sc)}�I(Sn). The “only if” part is proved by contradiction. We assume that 
D(S)∪ {I(Sc)}|I(Sn). This implies that there exists a model _ of D(S)∪ {I(Sc)} such that 
_cI(Sn). The model _ can be extended to a model _' over the time structure B of 
natural numbers such that _'cI(Sn)17. Hence, D∪ {I(Sc)}cI(Sn), which is in contradiction 
with the hypothesis.           � 

Tool support  
Definition A5. [Normal clause] A normal clause is an expression of the form H← L1,…Ln 
where H is a positive literal, called head, and ← L1,…Ln is a (possibly empty) conjunction of 
literals (positive and/or negative) called body.       � 

Definition A6. [Normal goal] A normal goal is a normal clause of the form ← L1,…Ln, 
(with an empty head). A normal goal with empty body, i.e. n = 0, is an empty goal and it is 
denoted with the symbol j� � 

Definition A7. [Normal logic program] A normal logic program P is a finite set of normal 
clauses.            � 

                                                
16 For each model _ of D, consider the assignment that maps t1 to Sc and t2 to Sn. The axioms (EC1) and (EC2) are 

equilvalent to (ECS1) and (ECS2) with t equal to Sc; the axioms (EC3)-(EC6) are equivalent to (ECS3)-(ECS6) and 
the axiom (ECD) is equivalent to the two axioms (ECSD1) and (ECSD2). Therefore, _ is also a model of D(S). 

17 To construct _' consider the values 0 and 1 to be isomorphic to Sc and Sn. Then make _' agrees with _ on the 
interpretation of HoldsAt, Happens, Initiates, Terminates, at the timepoint 0 and Clipped and Declipped between 0 
and 1. Assume that for any timepoint t ≥ 1 nothing happens in the model _', and define the interpretation of the 
predicates over the rest of the natural numbers in such a way that the axioms of ECAx are satisfied.  This construction 
will guarantee _' to be a model of D(S)∪ {I(Sc)} and to be such that _'cI(Sn). 
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Definition A8. [Prolog abducible predicates set AbP] The set AbP of Prolog abducible 
predicates is the set of predicate symbols initiallyTrue, initiallyFalse, Happens. � 

Definition A9. [Implementation mapping] Let D(S) be a domain description given by the 
set ECAx(S) and a ground specification ECSpec(S). An implementation mapping is a function 
ϑ from the set of (ground) literals used in D(S) to a set of Prolog literals, defined as follows: 

i) HoldsAt(F,T)ϑ = holdsAt(pos(f),t). 

ii) [¬  HoldsAt(F,T)]ϑ = holdsAt(neg(f),t). 

iii) [(¬ )Happens(A,T)]ϑ = (\+) happens(a,t). 

iv) [(¬ )Clipped(T1,F,T2)]ϑ = (\+) clipped(t1,pos(f),t2). 

v) [(¬ )Declipped(T1,F,T2)]ϑ = (\+) clipped(t1,neg(f),t2). 

vi) [(¬ )Terminates(A,F,T)]ϑ =(\+) terminates(a,f,t). 

vii) [(¬ )Initiates(A,F,T)]ϑ = (\+) initiates(a,f,t). 

viii) [Γ1∧ …∧Γ n]ϑ = Γ1ϑ,…,Γnϑ, where Γi is a (ground) literal used in D(S). 

            � 

Definition A10. [Prolog abducibles] Let AbP be a Prolog abducible predicates set. A 
Prolog abducible is a literal (positive or negative) constructed from AbP. Let Γ be an 
abducible and let ϑ be an implementation mapping. The Prolog abducible ΓP associated with 
Γ is defined as follows. If Γ is of the form HoldsAt(F,0) then ΓP is the literal initiallyTrue(f); 
if Γ is of the form ¬HoldsAt(F,0) then ΓP

 is the literal initiallyFalse(f); if Γ is of the form 
Happens(A,T) then ΓP = Γϑ. ∆P denotes a (possibly infinite) set of Prolog abducibles 
associated with a given set ∆ of abducibles.     � 

Definition A11. [Logic program abductive framework] A logic program abductive 
framework is a triple <P, AbP, ICP> where P is a normal logic program, AbP is a Prolog 
abducible predicates set, whose predicates are not defined in P, and ICP is a set of integrity 
constraints in denial form, i.e. ⊥  ← L1,…,Ln where each Li is a literal and at least one of 
these literals is an abducible predicate or the negation of an abducible predicate.    � 

Notation. Let L be a literal. Then the contrapositive ßß is the opposite in sign of the literal L.  

Definition A12. [Safe selection rule R] Let ←L1,…Ln be a normal goal (i.e. L1,…Ln is a 
sfinite conjunction of literals). A safe selection rule R is a (partial) function, which applied 
to a normal goal selects a conjunct Li, 1≤i≤n, only if it is ground.   � 

Definition A13. [Stable model] Let P be a normal logic program and let M be an Herbrand 
interpretation of P [22]. M is a stable model of P if and only if M is equal to the minimal 
Herbrand model of ΠM, where ΠM is the set of ground definite18 Horn clauses:  

ΠM={H←B1,..Bk | H←B1,..Bk,¬L1,..,¬Lm is a clause in ground(P), and  

 Li∉ M for each 1≤i≤m}. � 

Definition A14. [Logic program abductive solution] Let <P, AbP, ICP> be a logic program 
abductive framework. Let Q be a goal. Then ∆ is a logic program abductive solution for Q if 

                                                
18 A definite clause is a clause of the form H←B1,..Bk, where H is an atomic literal and for each 1≤i≤k Bi is also a 

positive literal. 
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and only if there exists a stable model M(∆) of P∪ {H←| H∈∆ } such that M(∆)^Q and 
M(∆)^ϕ for each ϕ∈ ICP. � 

Theorem A1. [Soundness & Completeness [27]] Let <P, AbP, ICP> be a logic program 
abductive framework and let R be a safe selection rule. Let G be a normal goal. If there is a 
Prolog abductive solution ∆ for G then there exists a stable model M(∆) of P∪ {H←| H∈∆ } 
such that M(∆)^G and M(∆)^ϕ for each ϕ∈ ICP (Soundness). Let ∆ be a logic program 
abductive solution then there exists a subset ∆’ ⊆  ∆ such that ∆’ is a Prolog abductive 
solution for G (Completeness).  � 


