
Revision by Translation

Dov Gabbay Odinaldo Rodrigues

Department of Computer Science, Department of Computer Science,
King's College, London King's College, London

dg@dcs.kcl.ac.uk rodrigu@dcs.kcl.ac.uk

Alessandra Russo

Department of Computing,
Imperial College, London

ar3@doc.ic.ac.uk

Abstract

In this paper, we show that it is possible to accomplish belief revision

in any logic which is translatable to classical logic. We start with the

example of the propositional modal logic K and show that a belief oper-

ation in K de�ned in terms of K0s translation to classical logic veri�es

the AGM postulates. We also consider the case of non-classical logics

by taking Belnap's four-valued logic [5] as an example. A sound and

complete axiomatization of that logic in classical logic is given and then

used in the de�nition of a belief revision operator for the logic in terms

of a classical AGM operator. We show that the operator also veri�es the

AGM postulates whenever they make sense in the context of non-classical

logics.

1 Introduction

This paper will present a method for revision of theories in logics other than
classical logic. The idea is to translate the other logic into �rst-order classical
logic, perform the revision there and then translate back. The general schema
looks as follows.

Let �a be a revision process in classical logic. Typically, given a classical
logic theory � an input formula 1, the operation �a gives us a new theory
� = ��a , corresponding to the result of the revision of � by . Ideally, �a
has some desirable properties, for instance, the well known AGM postulates

for belief revision (see Section 2).
We would like to export this machinery to other logics. For example, given

a theory � of some logic L and an input L-sentence , can we de�ne a revision
operation �L such that ��L is a revised L theory and �L satis�es the AGM
postulates? Can we make use of the revision operator of classical logic?

This paper presents such a method. The idea is to translate the object logic
L into classical logic, perform the AGM revision there and translate the results
back. Suppose that � denotes a translation function from L into classical logic
and T � is a classical logic theory encoding the basic properties of the logic L.

1There is no special need that the input is a single formula . It can be a theory 	. The

AGM postulates work for input theories as well.

1

If the axiomatization given by T � is sound and complete, we have that for all
� and � of the logic L

� `L � i� T �
[��

` �� (1)

Therefore, we can de�ne a revision operator �L in the logic L as follows:

De�nition 1 [Belief revision in L] Let �a be a revision operator for classical
logic, and let � , T � be as above. We de�ne

��L = f� j ��
�a(

�
^ T �) ` ��g

The motivation for this de�nition is as follows. �� is the translation of the
original L-logic theory �. � is to be revised by , which in classical logic is
translated as � . We revise instead �� by � . However, in classical logic the
properties of the object logic (T �) have to be added as well, since it describes
how the object logic works, and we want it to be preserved in the revision
process (i.e. we want the resulting revised theory to satisfy T �), so we revise
by � ^ T �2.

Of course, the details have to be worked out. The diÆculties mainly have
to do with the notion of inconsistency in L. L may have theories � which are
considered L-inconsistent while their translation �� is classically consistent3.
Thus, we may have a situtation in L where � is L-consistent, the input is
L-consistent, but � [f g is L-inconsistent and requires L-revision. However,
when we translate into classical logic we set �� [f �g [T � and this theory
is classically consistent and so classical revision will be an expansion. We
therefore need to write some additional axioms say Acc(for acceptability) in
classical logic that will make �� [f �g [T � [Acc classically inconsistent,
whenever � [f g is L-inconsistent, and thus trigger a real revision process in
classical logic.

There is a problem, however, with this approach. Classical revision of
�� [f �g [T � [Acc may give us a theory �c of classical logic such that the
reverse translation �L = f� j �c ` �

�g is not a theory we are happy with
in L. Put in other words, when we look at the relation between � [f g and
�L we are not happy in L to consider �L as the L-revision of � [f g. The
reason that such a situation may arise has to do with the fact that the notion
of inconsistency in classical logic is too strong. We now explain why: if K is a
consistent theory in classical logic and K[f g is inconsistent in classical logic,
then Cn(K [f g) is the set of all w�s. Our revision intuition wants to take a
consistent subset K 0 of Cn(K [f g).

In the logic L with KL and L and with a di�erent notion of inconsistency,
the theory CnL(KL[f Lg) may not be the set of all w�s of L. We still want to

2Our method is restricted to logics L which have a translation � which can be characterized

by a classical theory T � . If the translation is, for example, semantically based, this means

that the semantics of L can be expressed by a �rst-order theory T � , as is the case in many

modal logics.
3In paraconsistent logics, for example, p ^ :p is considered inconsistent but we do not

have p ^ :p ` q. Equation (1) of the translation still holds, i.e., for all �, p ^ :p ` � i�

(p ^ :p)� [T � ` �� , but in classical logic (p ^ :p)� [T � is consistent.

2

get a consistent subset K 0

L of CnL(KL[f Lg) as the revision. Our strategy of
revision by translation may give us a revised theory via translation which is not
a subset of CnL(KL[f Lg) because in classical logic Cn(K

�
L[f

�
Lg[T

� [Acc)
is too large (i.e., all w�s) and gives the revision process too much freedom. One
way to solve this diÆculty is to tighten up the revision process in classical logic.

The structure of the paper is as follows: in Section 2, we provide a quick
introduction to the theory of Belief Revision. We analyse the meaning of these
postulates for both classical and non-classical logics. This is followed in Sec-
tion 3, by the application of the idea of revision by translation to the modal logic
K. In Section 4 we present Belnap's four-valued logic along with a sound and
complete axiomatization in classical logic. In Section 5, we analyse in more de-
tail the application of the revision method proposed previously for non-classical
logics, by taking Belnap's logic as an example. We �nish the paper with some
conclusions and comments in Section 6.

2 Belief Revision

The term Belief Revision is used to describe the kind of information change
in which an agent reasoning about his beliefs about the world is forced to
adjust them in face of new (possibly contradictory) information. One impor-
tant assumption in the process is that the world is taken as a static entity.
Even though changes in the world itself are not considered, the agent reasons
about his knowledge about the world, which may be incorrect or incomplete.
Therefore, Belief Revision is an intrinsically non-monotonic form of reasoning.

When the set of beliefs held by an agent is closed under the consequence
relation of some formal language, it is usually called a belief set. Some variants
of the standard belief revision approach also consider the case when the focus is
done on a �nite set of beliefs, called the belief base. These variants are usually
called base revision. If Cn is the consequence relation of a given logic and K
is a belief set, then it is assumed that K = Cn(K). Similarly, if for a belief '
and a belief set K, ' 2 K, we say that ' is accepted in K.

The whole framework of Belief Revision is governed by some desiderata
of the operations on belief sets, called the AGM postulates for belief revision.
The term \AGM" stands for the initials of the main proposers of the theory,
namely, Alchourr�on, G�ardenfors and Makinson. According to the AGM theory
[9], there are three main types of belief change:

� Expansion, when new information is consistent with the current belief
set. All is necessary to do is to close the union of the previous belief set
together with the new sentence under the consequence relation.

� Contraction, when the agent is forced to retract some beliefs. Notice that,
since the belief set is closed under the consequence relation, in order to
retract a belief ', it is also necessary to remove other beliefs that imply
'.

� Revision, which is the acceptance of new information contradicting the
current belief set and the subsequent process of restoring the consistency

3

of that belief set whenever the new information is not itself contradictory.

Thus, the interesting cases are contractions and revisions. In fact, there are
corresponding identities to translate between the two processes: the Levi Iden-
tity de�nes revisions in terms of contractions and the Harper Identity de�nes
contractions in terms of revisions. We will concentrate on the revision part
here.

The general task of the revision process is to determine what is rational to
support after a new contradictory belief is accepted. As we mentioned before,
some general postulates describe ideal properties of the operation. One of these
properties is sometimes referred to as the principle of informational economy

[9, page 49]:

\: : : when we change our beliefs, we want to retain as much as
possible of our old beliefs { information is not in general gratuitous,
and unnecessary losses of information are therefore to be avoided."

One of the main references to the general theory of belief revision is the
book \Knowledge in Flux", by Peter G�ardenfors [9]. Other references include,
for instance, [2, 3, 1, 10].

We now present the postulates for the revision operation as given in [9],
pages 54{56. The following conventions are assumed: K is a set of formulae
of the language representing the current belief set and A (B) is a formula
representing the new piece of information. We use the symbol �a to denote
an AGM belief revision operator. Thus, K�aA stands for the revision of K by
A. The symbol K

?
denotes the inconsistent belief set, and is equivalent to the

consequences of all formulae in the language.

AGM postulates for Belief Revision (in classical logic)

(K�1) K�aA is a belief set

This postulate requires that the result of the revision operation is also a
belief set. One can perceive this as the requirement that the revised set be also
closed under the consequence relation.

(K�2) A 2 K�aA

(K�2) is known as the success postulate and corresponds to Dalal's principle
of primacy of the update [6]. It basically says that the revision process should
be successful in the sense that the new belief is e�ectively accepted in the
revised belief state.

(K�3) K�aA � Cn(K [fAg)

(K�4) If :A 62 K, then Cn(K [fAg) � K�aA

(K�5) K�aA = K
?
only if A is unsatis�able

To understand what the above three postulates (K�3){(K�5) say, we need
to consider two cases. Let K1 = K�aA.

4

Case 1: K [fAg is consistent in classical logic.
In this case, AGM says that we want K1 = K�aA to be equal to the closure

of K [fAg:

� postulate (K�3) says that K�aA � Cn(K [fAg).

� postulate (K�4) says that Cn(K [fAg) � K�aA.

� postulate (K�5) is not applicable, since K�aA is consistent.

Case 2: K [fAg is inconsistent.
In this case, let us see what the postulates (K�3){(K�5) say about K1:

� postulate (K�3) says nothing about K1. If K [fAg is classically incon-
sistent, then any theory whatsoever is a subset of Cn(K [fAg), because
this theory is the set of all formulae.

� postulate (K�4) says nothing. Since K [fAg is inconsistent in classical
logic, we have :A 2 K (since K is a closed theory), so (K�4) is satis�ed,
because it is an implication whose antecedent is false.

� To understand what postulate (K�5) says in our case, we distinguish two
subcases:

(2.1) A is consistent.

(2.2) A is inconsistent.

Postulate (K�5) says nothing about K1 = K�aA in case (2.2) above, it
however requires K1 to be consistent, whenever A is a consistent { case
(2.2).

The above case analysis shows that the AGM postulates (K�3){(K�5) have
something to say only whenK[fAg is consistent, or if not when A is consistent.
The particular way of writing these postulates as above makes use of technical
properties of classical logic (the way inconsistent theories prove everything).

When we check the AGM postulates for logics other than classical, we may
have a di�erent notion of consistency and so we are free to interpret what
we want the revision to do in the case of inconsistency according to what is
reasonable in the object (non-classical) logic). AGM for classical logic gives us
no clue beyond (K�5) as to what to require when (K�aA)[fBg is inconsistent.

Summary of (K�3){(K�4)

Postulates (K�3){(K�4) e�ectively mean the following:

(K�

3;4) If A is consistent with K, then K�aA = Cn(K [fAg).

If K is �nite, we can take it as a formula and the postulate above corre-
sponds to one of the rules in Katsuno and Mendelzon's rephrasing of the AGM

5

postulates for �nite knowledge bases ([11], page 187):

(R2) If K ^ A is satis�able, then K�aA$ K ^ A.

For non-classical logics, where the notion of consistency is di�erent, we need
check only (K�

3;4) and (K�5).

(K�6) If A � B, then K�aA � K�aB

(K�6) speci�es that the revision process should be independent of the syn-
tactic form of the sentences involved. It is called the principle of irrelevance of

syntax by many authors, see for instance, [6].

(K�7) K�a(A ^ B) � Cn((K�aA) [fBg)

(K�8) If :B 62 K�aA, then Cn(K�aA [fBg) � K�a(A ^B)

To understand what postulates (K�7){(K�8) are saying, we again have to
make a case analysis. The postulates have to do with the relationship of in-
puting (A;B) as a sequence (�rst revising by A, then expanding by B), as
compared with revising by fA;Bg at the same time (i.e, revising by A ^ B).
It is well known that AGM does not say enough about sequences of revisions
and their properties. These postulates are the bare minimum (see, for instance,
[7, 8]).

We distinguish the following cases:

Case 1: A is consistent with K.
In this case, K1 = K�aA is equal (by previous postulates) to Cn(K [fAg).

(1.1) B is consistent with K1. In this case, the antecendet of (K�8) holds
and (K�7) and (K�8) together e�ectively say that Cn((K�aA) [fBg) =
K�a(A ^ B).

We can use previous postulates to say more than AGM says in this case,
namely, that

(K�aA)�aB = Cn(K�aA [fBg):

(1.2) B is inconsistent with K1 = K�aA, but B itself is consistent.

In this case, Cn(K�aA [fBg) is the set of all w�s.

{ (K�7) holds because the right hand side of the inclusion is the set
of all w�s and any other set of formulae is included in this set.

{ (K�8) holds vacuously, since the antecedent of the implication is
false.

(1.3) B is itself inconsistent.

{ (K�7) requires that K�a(A ^B) � Cn((K�aA) [fBg) and

{ (K�8) holds vacuously.

The postulates say nothing new in this case, since the sets on either side
of the inclusion in (K�7) are equal to the set of all w�s of the language
and (K�8) is not applicable.

6

Case 2: A is not consistent with K, but A is itself consistent.
In this case, K1 can be any consistent theory (by previous postulates), such

that A 2 K1.

(2.1) B is consistent with K1.

(2.2) B is inconsistent with K1, but B itself is consistent.

(2.3) B is itself inconsistent.

These three cases follow, respectively, the same reasoning of cases (1.1),
(1.2) and (1.3) above.

Case 3: A is itself inconsistent.
In this case, K�aA is the set of all w�s of the language. Whether or not

B is consistent is irrelevant in the postulates in this case. Cn(K�aA [fBg) is
equal to the set of all w�s and as for case (1.2) above

� (K�7) holds because any set of w� is included in Cn(K�aA [fBg).

� (K�8) holds vacuously, since the antecedent of the implication is false.

Summary of (K�7){(K�8)

Postulates (K�7){(K�8) do not tell us anything new (beyond what we can
deduce from earlier postulates), except in the case where B is consistent with
K�aA (case 1.1), when (K�7) and (K�8) together are equivalent to the postulate
below:

(K�

7;8) Cn((K�aA)[fBg) = K�a(A^B), when B is consistent with K�aA

Therefore, for non-classical logics, we are committed only to (K�

7;8). Other
cases involving inconsistency can have properties dictated by the local logic
requirements.

(K�7) and (K�8) are the most interesting and controversial postulates. They
capture in general terms the requirement that revisions are performed with a
minimal change to the previous belief set. In order to understand them, recall
that in a revision of K by A, one is interested in keeping as much as possible
of the informational content of K and yet accept A. In semantical terms, this
can be seen as looking for the models4 of A that are somehow most similar to
the models of the previous belief state K. The postulates do not constrain the
operation well enough to give a precise meaning to the term similar, and this
is how it should be, since they represent only general principles.

(K�7) says that if an interpretation I is among the models of A which are
most similar to the models ofK and it happens that I is also among the models
of B, then I should also be among the models of A^B which are most similar
to models of K.

4We consider models of a formula A, interpretations (or valuations) of the language which

make A true.

7

Similarly, to understand the intuitive meaning of (K�8) consider the follow-
ing situation: suppose that (K�aA)^B is satis�able. It follows that some mod-
els of A which are closest to models of K are also models of B. These models
are obviously in mod(A ^ B), since by (K�1), mod(K�aA) � mod(A). Now,
every model in mod(A ^ B) which is closest to models of K, must also be a
model of (K�aA) ^ B.

This situation is depicted in Figure 1, where interpretations are represented
around K according to their degree of similarity. The closer to mod(K) the
more similar toK an interpretation is (the exact nature of this similarity notion
is irrelevant to the understanding of the postulates).

mod(B)

mod(A)

mod(A)
mod()

interpretations in �aA

interpretations in mod(A ^B)

mod(B)

mod(A)
mod()

interpretations in �a(A ^B)

Figure 1: Illustrating postulate (K�8).

3 Revising in the modal logic K

We consider the case of the propositional modal logic K. The �rst thing we
need to do is to provide the translation method from formulae and theories of
K into formulae and theories of classical logic. This is done via the translation
scheme described as follows.

8

Translation of modal K into classical logic

We need a binary predicate R in classical logic to represent the accessibility
relation and unary predicates P1; P2; P3; : : :, for each propositional symbol pi
of K. We will use the subscript k whenever we wish to emphasize that we
mean an operation (relation) in k and di�erentiate it from its classical logic
counterpart (which will not be subscripted).

The idea is to encode the information of satis�ability of modal formulae by
worlds into the variable of each unary predicate. In general, for a given world
w and formula � the translation method can be stated as follows, where �� (w)
represents w
k �.

p�i (w) = Pi(w)

(:�)� (w) = :(�� (w))

(� ^
)� (w) = �� (w) ^
� (w)

(� !
)� (w) = �� (w)!
� (w)

(��)� (w) = 8y(wRy ! �� (y))

Finally, for a modal theory �, we de�ne

�� (w) = f�� (w) j � 2 �g:

We have, where w0 is a completely new constant to � and �, and represents
the actual world, that:

� `k � i� in every Kripke model with actual world w0, we have w0
k �
implies w0
k � i� in classical logic we have that �� (w0) ` �

� (w0).
(Correspondence)

� `k � i� T �
[�� (w0) ` �

� (w0) (2)

The theory T � in the case of the logic K is empty (i.e., Truth)5.
If � is �nite we can let Æ =

V
� and we have

Æ `k � i� ` 8x(Æ� (x) ! �� (x))

We can de�ne a revision operator �k for K, as outlined before (we will omit
the reference to the actual world w0 in the rest of this section).

De�nition 2 [Belief revision in K]

��k = f� j ��
�a(

�
^ T �) ` ��g

We can now speak more speci�cally of properties of �k:

5The logic K imposes no properties on R. Had we been translating S4, we would have

T � = f8x(xRx)^8x8y8z(xRy^yRz! xRz)g. Our notion also allows for non-normal logics,

e.g., if w0 is the actual world, we can allow re
exivity in w0 by setting T � = fw0Rw0g.

9

Properties of �k:

1. ��k is closed under `.

This can be easily shown.

2. ��k `k .

By (K�2), � ^T � 2 ���a(
� ^T �). Since ���a(

� ^T �) is closed under
`, ���a(

� ^ T �) ` � and hence 2 ��k , by (K�1), ��k `k .

3. If is (modally) consistent with �, then ��k = Cnk(� [f g).

We �rst show that if is modally consistent with �, then �� (k) is
classically consistent with � (k)^ T � . This holds because �[f g has a
Kripke model which will give rise to a classical model of the translation.
Therefore, � = �� (k)�a(

� (k) ^ T �) is the classical provability closure
of �� (k) [f � (k) ^ T �g.

We now have to show that if �� (k) 2 � then ��k ` �.

Lemma 1 Let � be a closed theory. Let �� be its translation and let

Cn(��) be its T � -closure in classical logic. Let � be such that �� 2

Cn(��). It follows that � 2 �.

Proof: If � 62 �, then there exists a Kripke model of � [f:�g. This
gives a classical model of �� [fT �g [f:��g, and so �� 62 Cn(��). �

Lemma 2 Let �� be a closed classical theory such that �� ` T � and let

� = f� j �� 2 ��g. Then if � ` �, then �� 2 �� .

Proof: If �� 62 �� , there exists a model of �� [f:��g. This can be
viewed as a kripke model of � [f:�g. �

4. ��k is modally inconsistent, only if is modally contradictory.

If ��k is inconsistent, then so is ���a(
� ^ T �), since ���a(

� ^ T �)
is closed under `. By (K�5), � ^ T � is contradictory. But by the
correspondence, � ^ T � ` ? i� `k ?.

5. If �k ', then ��k � ��k'.

By correspondence ((2), page 9) and since `k ' and ' `k , it follows
that T � [� � T � ['� . Therefore, by (K�6), ��a(T

� [�) � ��a(T
� [

'�) and hence ��k � ��k'.

6. ��k(^ ') � Cnk((��k) [f'g).

Suppose that ��k(^ ') `k �, for some �. By the de�nition of �k,
���a(

� ^ '� ^ T �) ` �� . By (K�7), it follows that Cn(���a(
� ^

T �) [f'�g ` �� . Notice that for every
� 2 ���a(
� ^ T �), there is a

corresponding
 in ��k (by the de�nition of �k) and similarly for '� .
By correspondence, Cnk((��k) [f'g) ` �.

10

7. If ' is modally consistent with ��k , then Cn((��k)[f'g) ���k(^
').

If ' is modally consistent with ��k , then '� is modally consistent
with ��a(

� ^ T �) and then by (K�8), Cn(��a(
� ^ T �) [f'�g) �

Cn(���a((^ ')
� ^ T �)). But, f� j ���a(

� ^ T �) ` ��g [f'g `k
� i� ���a(

� ^ T �) [f'�g ` �� .

What we have just proven is that �k veri�es all eight conditions of an AGM
operation. Item 3, is actually a proof for postulates (K�3) and (K�4).

The actual process of revision brie
y discussed in the example above may
be more complex than this. For instance, the object language might have a
consistency notion other than that of classical logic or even none at all. In
Section 5, we examine such a case, by considering Belnap's four-valued logic.

4 Translating Belnap's four-valued logic into

classical logic

Standard familiar systems such as classical logic, modal logic, intuitionistic
logic have in common the principle that contradicting information entails any
arbitrary sentence. This principle, known as ex falsum quod libet, is, however,
not always appropriate to describe real application deduction processes, where
information are often deduced from quite possibly inconsistent databases. Al-
ternative systems have been developed, examples of which include the logic
of �rst-degree entailment (also known as system E) and the relevant implica-

tion system (or system R), in which deductions between formulae hold only
when there is some \connection" between the formulae (e.g. the formulae share
some sentential variable). In [5] Belnap provides a semantic characterization
of �rst-degree entailment together with a sound and complete axiomatisation,
emphasising its connection with the problem of \how a computer should think"
[4].

We provide a translation of Belnap's semantics into a set of �rst-order logic
formulae. Sets of Belnap formulae are translated into a conjunction of atomic
predicates. An appropriate classical axiomatisation is de�ned, which captures
the semantic behaviour of Belnap connectives, thus allowing Belnap's notion of
entailment to be expressed in terms of classical entailment from the translated
theories. This embedding into classical logic has two main advantages. The
�rst one is to provide the basis for analysing belief revision operations for these
types of logics, as we have done for modal propositional logic in Section 3.
Secondly, theorem provers for four-valued logic can be developed by applying
existing classical theorem provers on the classical logic translation of these
logics.

In Section 4.1, we illustrate Belnap's semantics, showing some of the fea-
tures of the deduction process that it formalises and its di�erences with re-
spect to familiar classically-based deductive systems. In Section 4.2, we de�ne
our translation approach and the classical axiomatization of Belnap's four-
valued semantics, providing some illustrative derivation examples. We prove

11

the soundness and completeness results of the translation approach, showing
that it preserves Belnap's deductive process.

Notation & Terminology

We introduce speci�c notation as and when necessary throughout the rest of
the paper. However, the reader might like to bear the following in mind: propo-
sitional symbols will usually begin with a lower-case letter, whereas predicate
symbols will often begin with an upper{case letter. Greek{letter meta{variables
will be used to refer in general to w�s of the Belnap logic (i.e. \object logic"),
whereas upper-case meta-variable letters will be used to denote w�s of �rst-
order logic (i.e. \target logic"). Larger entities such as structures, sets, theories
and languages will often be symbolised in caligraphic font, A;B; C; : : :.

4.1 Belnap's four-valued Logic

As mentioned in [4], Belnap describes its semantic characterisation of four-
valued logics as an appropriate logic for expressing practical deductive pro-
cesses. In database management or question-answer systems, collections of
data are proned to include either explicit or hidden inconsistencies. This is due
for instance to the fact that information may come from di�erent contradict-
ing sources. The use of a classical deductive process would not be appropriate
in this case { since any arbitrary information is classically derivable from an
inconsistent collection of data. Explicit inconsistencies may come from di�er-
ent sources equally reliable, whereas hidden inconsistencies are identi�ed only
by means of deductive reasoning. The motivation for Belnap's approach is to
provide a logic less sensitive to inconsistencies.

Syntax Let LB be the Belnap propositional language composed of a count-
able set of propositional letters fp; q; r; : : :g and the connectives :, ^ and _.
The set of w�s is given by the standard construction of formulae. For the �nite
case, a Belnap theory can be seen as a single formula given by the conjunction
of a given �nite set of w�s. The formula :p ^ (:q _ r) ^ :r is an example of
a �nite Belnap theory. Because of the soundness and completeness results of
Section 4.2, it would not be diÆcult to extend this logic to deal with in�nite
theories, and we assume that such an extension exists in some of the proofs

done in Section 5, where the AGM postulates are analysed.
In a proof theoretical terms, Belnap's four-valued logic is characterised by

a �nite axiomatization. Given two Belnap w�s � and �, the expression �! �

denotes that � entails �. In this sense, the symbol ! can be seen as a deriv-
ability relation between formulae, or equally between theories and a formula.
The expression � $ � denotes that � can be derived from � (� ! �) and
vice-versa, or, semantically, that � and � are equivalent. The axiomatization
given below is known to be sound and complete with respect to the semantics
of the logic presented later.

De�nition 3 [Axiomatization] Let �1; : : : ; �n, �1; : : : ; �m and
 be Belnap
w�s. A proof theory for Belnap four-valued logic, denoted with AxB , is the

12

following set of expressions:

1. ::�$ �.

2. :(� ^ �)$:� _ :�.

3. :(� _ �)$:� ^ :�.

4. � _ � $ � _ �.

5. � _ (� _
)$ (� _ �) _
.

6. � _ (� ^
)$ (� _ �) ^ (� _
).

7. � ^ � $ � ^ �.

8. � ^ (� ^
)$ (� ^ �) ^
.

9. � ^ (� _
)$ (� ^ �) _ (� ^
).

10. �1 ^ : : : ^ �n ! �1 _ : : : _ �m provided that �j = �i for some i and j.

11. �! � and � !
 then �!
.

12. �$ � and � $
 then �$
.

13. �! � if and only if :� ! :�.

14. (� _ �)!
 if and only if �!
 and � !
.

15. �! � if and only if � $ (� _ �)

16. �! � if and only if �$ (� ^ �)

17. �! (� ^
) if and only if �! � and �!
. �

The �rst nine expressions correspond to standard classical properties of nega-
tion, disjunction and conjunction (e.g., commutativity, associativity, De Mor-
gan laws). We will sometimes refer to them as the Belnap axioms. Expressions
10, 11 and 13 capture respectively the re
exivity, transitivity and contrapositive
properties of the derivability relation!, whereas expressions 14-17 correspond
to standard classical rules for introduction and elimination of _ and ^ respec-

tively. We will sometimes refer to expressions 11-17 as the Belnap rules. Any
Belnap expression of the form ! ' can be either an instantiation of one of
the axioms 1-10 in de�nition 3, or obtained using some of the Belnap rules 11-
17, together with some axiom instantiations. For any given expression ! ',
we therefore de�ne the notion of length as the \least number" of Belnap rule
applications needed to show ! '.

The similarity between the above rules and classical rules shows that four-
valued logics are indeed very close to standard classical logic. The basic classical
rule, which is missing in Belnap logic and which makes this logic paraconsistent
is the rule (� ^ :�) ! �, often referred to as ex falsum quod libel. This rule
allows within a classical framework to derive any arbitrary information from
inconsistent assumptions. Belnap logic does not allow so.

13

Semantics The semantics underlying Belnap's logic is four-valued. Let 4 be
the set fT, F, Both, Noneg. The elements of this set are the four di�erent truth-
values which an atomic sentence can have within a given \state of information".
The intuitive meaning of these values is given as follows:

1. p is stated to be true only (T)

2. p is stated to be false only (F)

3. p is stated to be both true and false, for instance, by di�erent sources, or
in di�erent points of time (Both), and

4. p's status is unknown. That is, neither true, nor false (None).

The four values form a lattice, called the approximation lattice and denoted
by A4 where the ordering relation v goes \uphill" and respects the monotonic-
ity property, in the sense that information about the truth-value of a formula
\grows" from None to Both. A4 can be seen in Figure 2.

Both

F

None

T

Figure 2: The approximation lattice A4.

The truth values of complex formulae are de�ned based on A4 and result
in the truth tables shown in Figure 3.

The truth tables constitute a lattice, called logical lattice and denoted by
L4 (Figure 4). In L4, logical conjunction is identi�ed with the meet operation
and logical disjunction with the join operation.

The notion of a interpretation of formulae is expressed in Belnap's logic in
terms of set-ups. A set-up s is a mapping of the atomic formulae into 4. Using
the truth tables given in Figure 3, each set-up can be extended to a mapping
of all formulae into 4, in the standard inductive way. We call this extended
set-up a 4-valuation and denote it with v. Thus, for any given Belnap formula
� and set-up s, the valuation v(�) is always well-de�ned. This makes Belnap's
semantic somewhat di�erent from the classical semantics, because the notion
of model, that is, an interpretation that makes a formulae true is non-existent.

The notion of semantic entailment is then expressed in terms of a partial
ordering � associated with the logical lattice L4. We will denote the semantic
entailment relation with) to distinguish it from the proof theoretic notion
of entailment !. The two notions are equivalent, as given by the correspon-
dence 3, and the symbols ! and) will be often used interchangeably.

14

^ None F T Both

None None F None F

F F F F F

T None F T Both

Both F F Both Both

Truth-table for the connective ^

_ None F T Both

None None None T T

F None F T Both

T T T T T

Both T Both T Both

Truth-table for the connective _

None F T Both

: None T F Both

Truth-table for the connective :

Figure 3: Truth-tables for Belnap's connectives.

T

BothNone

F

Figure 4: The logical lattice L4.

De�nition 4 Let � and � be two Belnap formulae. We say that � entails �,
written �) �, if for all 4-valuations v, v(�) � v(�), where � is the partial
ordering associated with the lattice L4. Analogously, a non empty �nite set of
formulae � entails �, if the conjunction of all formulae in � entails �.

�

(Correspondence)
�! � i� �) � (3)

Notice that if we restrict our attention to valuations into fF;Tg only, we get
the familiar classic logic notions. We need a parallel to the notion of consistency,
this would be acceptability. We say a Belnap theory � is acceptable, if for any
w� �, � does not prove both � and :�. This is our de�nition and it seems
reasonable to us. A consistent/acceptable theory can tell us that a given � is
true (T), false (F) or don't know (None), but if it says that it is both true and
false (Both), then something in the knowledge about � went wrong.

15

De�nition 5 [Acceptability of Belnap theories] A theory � is acceptable, if

f
 j �!
 and �! :
g = ?

�

Note that we do not have that if � is not acceptable, then it can prove
everything. We now introduce some terminology which will be used throughout
this paper.

De�nition 6 Let � be a Belnap formula and let v be a 4-valuation. We say
that � is

� at least true under v if v(�) = T or v(�) = Both.

� at least false under v if v(�) = F or v(�) = Both.

� not true under v if v(�) = F or v(�) = None.

� not false under v if v(�) = T or v(�) = None. �

Using the above terminology, the notion of semantic entailment between a
theory and a formula given in De�nition 4 can be equivalently expressed as
follows.

De�nition 7 Let � be a set of Belnap formulae and � a Belnap formula. �
entails � if and only if for every 4-valuation v,

i) if all the formulae in � are at least true under v, then � is at least true
under v;

ii) if all the formulae in � are not false under v, then � is not false under v.
�

This de�nition will play an important role in the soundness and complete-
ness proofs of the �rst-order Belnap translation with respect to Belnap seman-
tics.

4.2 The translation into classical logic

In this section, we describe a translation approach of Belnap logic into �rst-
order logic and show that it is sound and complete with respect to Belnap's
semantic notion of entailment. Let L be a two sorted �rst-order language
composed of the sort F , called B-formulae, and the sort V called truth values.

The set of constants of the sort F is the set of propositional letters in
Belnap's logic, whereas terms of F are constructed using three main functions
:, ^, and _ which correspond to the Belnap connectives. The set of ground
terms of F is therefore equivalent to the set of Belnap w�s. The sort V is
instead composed of two constant symbols ftt;�g, the basic constants from
which Belnap's four-valued semantics can be constructed. L also contains the
two-sorted binary predicate holds. holds takes as �rst arguments, F terms,

16

and as second arguments V terms. F variables will be denoted with x, y, z,
: : :. First-order formulae are constructed in the usual way.

Ground atomic formulae can be of two types holds('; tt) and holds(;�)
for any Belnap w�s ' and . Atomic formulae of the �rst type mean that
\tt 2 v(')", for some 4-valuation v, which is equivalent to say that for some
4-valuation, ' is at least true. Atomic formulae of the second type state instead
that \� 2 v()", for some 4-valuation v, which is equivalent to say that for
some 4-valuation, is at least false. With these two types of atomic formulae
it is possible to express Belnap's full four-valued semantics. In order to simplify
the proof, we extend the sort V with four constant symbols T , F , None and
Both, as follows:

De�nition 8 Let � be a Belnap formula. The four truth values that � can
assume in Belnap semantics is expressed in the �rst-order translation by the
following additional types of atomic formulae:

holds(�;T)
def
= holds(�; tt) ^ :holds(�;�)

holds(�; F)
def
= :holds(�; tt) ^ holds(�;�)

holds(�;None)
def
= :holds(�; tt) ^ :holds(�;�)

holds(�;Both)
def
= holds(�; tt) ^ holds(�;�)

�

The atomic formulae on the left-hand side express that under a 4-valuation v,
v(�) =T, v(�) =F, v(�) = None and v(�) =Both respectively. However, these
additional four types of atomic formulae are in reality a short-hand for �rst-
order formulae constructed from the basic language L. We will therefore use
throughout the paper only the basic atomic formulae of L.

The semantic behavior of Belnap connectives is fully captured by the fol-
lowing �rst-order axiomatisation.

De�nition 9 Given the two languages LB and L, AB is the �rst-order axioma-
tisation of Belnap four-valued semantics given by the following six axioms:

8x[holds(x;�)$ holds(:x; tt)] (Ax 1)
8x[holds(x; tt)$ holds(:x;�)] (Ax 2)
8x; y[holds(x ^ y; tt)$ (holds(x; tt) ^ holds(y; tt))] (Ax 3)
8x; y[holds(x ^ y;�)$ (holds(x;�) _ holds(y;�))] (Ax 4)
8x; y[holds(x _ y; tt)$ (holds(x; tt) _ holds(y; tt))] (Ax 5)
8x; y[holds(x _ y;�)$ (holds(x;�) ^ holds(y;�))] (Ax 6)

�

The translation function � is a mapping from the set of Belnap w�s to the
set of ground atomic �rst-order formulae of the form holds('; tt). For a given
Belnap formula ', its �rst order translation, denoted with �(') or simply '� , is
the �rst-order atomic formula holds('; tt). The translation of a Belnap theory
(i.e. �nite sets of Belnap formulae) is therefore given by the translation of the
conjunction of all Belnap formulae included in the theory. For instance, let

17

� = f'1; : : : ; 'ng be a Belnap theory, its translation �(�), or �� , is the atomic
�rst-order formula holds('1 ^ : : : ^ 'n; tt).

We are now going to prove that the above translation function together
with the axiomatisation AB is sound and complete with respect to the Belnap
semantic notion of entailment.

Theorem 1 (Correspondence) Let and ' be two Belnap formulae.

 ! ' i� AB ; holds(; tt) ` holds('; tt)

and AB ;:holds(;�) ` :holds(';�):

The proof of the above theorem uses Lemmas 3 and 4. Lemma 3 expresses
the completeness of the translation function and the �rst-order axiomatisation
with respect to the notion of Belnap entailment.

The statement captures, in �rst-order terms, the notion of entailment, given
in De�nition 7, whenever is of the form �1^ : : :^�n, with f�1; : : : ; �ng being
a Belnap theory.

For the �rst conjunct of the statement, the assumption holds(; tt) is equiv-
alent, by axiom (Ax 3), to holds(�1; tt)^ : : :^holds(�n; tt), which can be read
as \all �i, for each 1 � i � n, are at least true". The consequence holds('; tt)
can also be read as ' is at least true. Analogously, for the second conjunct in
the statement, the assumption :holds(;�) is equivalent, by axiom (Ax 4), to
:holds(�1;�) ^ : : : ^ :holds(�n;�), where each :holds(�i;�) can be read as
\�i is not false". Lemma 4 expresses instead the soundness of the translation
function and the �rst-order axiomatisation with respect to Belnap's notion of
entailment.

Lemma 3 (Completeness) Let and ' be two Belnap formulae.

If ! ' then AB ; holds(; tt) ` holds('; tt) and

AB ;:holds(;�) ` :holds(';�).

Proof: The proof is by induction on the length n of the derivation ! '.
Base Case: n = 0. Then ! ' can only be an instantiation of one of the
axioms 1-10 given in De�nition 3. The proof is therefore by cases on each of
these axioms. Only some of the cases are shown here. The remaining ones are
proved following the same type of argument.
Case 1: ! ' is an instantiation of �1 ^ : : : ^ �h ! �1 _ : : : _ �k, for some
h and k such that �i = �j for some i and j. We show in Figure 5 that
AB ; holds(�1 ^ : : : ^ �h; tt) ` holds(�1 _ : : : _ �k; tt) and in Figure 6 that
AB ;:holds(�1 ^ : : : ^ �h;�) ` :holds(�1 _ : : : _ �k;�).
Case 2: ! ' is an instantiation of �_ (� ^
)! (� _ �) ^ (� ^
). We show
in Figure 8 that AB ; holds(� _ (� ^
); tt) ! holds((� _ �) ^ (� ^
); tt), and
in Figure 7 that AB ;:holds(� _ (� ^
);�) ! :holds((� _ �) ^ (� ^
);�).
Similar argument is applied in the case where ! ' is an instantiation of
(� _ �) ^ (� ^
)! � _ (� ^
).
Inductive Step: We assume that there exists a �rst part of a derivation proving
an expression of the form � ! � with n� 1 applications of Belnap rules; and
that the n-th application of a Belnap rule gives us the expression ! '. We

18

AB ; holds(�1 ^ : : : ^ �h; tt) (Ax 3)

holds(�1; tt) ^ : : : ^ holds(�h; tt) (E^)

holds(�i; tt) (equiv. rewriting)

holds(�j ; tt) (I_)

holds(�1; tt) _ : : : _ holds(�k; tt) (Ax 5)

holds(�1 _ : : : _ �k; tt)

Figure 5: First-order proof of Belnap axiom 10.

AB ;:holds(�1 ^ : : : ^ �h;�)

holds(�1 _ : : : _ �k;�) (assumption)

holds(�1;�) ^ : : : ^ holds(�k;�) (Ax 6)

holds(�j ;�) (E^)

holds(�i;�) (equiv.rewriting)

holds(�1;�) _ : : : _ holds(�h;�) (I_)

holds(�1 ^ : : : ^ �h;�) (Ax 4)

? (I:)

:holds(�1 _ : : : _ �k;�)

Figure 6: First-order proof of Belnap axiom 10.

reason by cases on each Belnap rule that could have been applied on this n-th
step.
Case 1: We assume that last rule application is the \if-part" of Belnap rule
13 in De�nition 3. Therefore, we have that there exists a proof of :' ! : ,
with n � 1 rule applications. So by inductive hypothesis we can say that
AB ; holds(:'; tt) ` holds(: ; tt) and that AB ;:holds(:';�) `:holds(: ;�).
We want then to show that

AB ; holds(; tt) ` holds('; tt)

and that
AB ;:holds(;�) ` :holds(';�):

From the inductive hypothesis AB ;:holds(:';�) ` :holds(: ;�), we get,

19

AB ;:holds(� _ (� ^
);�) (Ax 6)

:holds(�;�) _ :holds(� ^
;�) (Ax 4)

:holds(�;�) _ (:holds(�;�) ^ :holds(
;�)) (De Morgan Law)

(:holds(�;�) _ :holds(�;�)) ^ (:holds(�;�) _ :holds(
;�)) (Ax 6)

:holds(� _ �;�) ^ :holds(� _
;�) (Ax 4)

:holds((� _ �) ^ (� _
);�)

Figure 7: First-order proof of left-to-right part of Belnap axiom 6.

AB ; holds(� _ (� ^
); tt) (Ax 5)

holds(�; tt) _ holds(� ^
; tt) (Ax 3)

holds(�; tt) _ (holds(�; tt) ^ holds(
; tt)) (De Morgan Law)

(holds(�; tt) _ holds(�; tt)) ^ (holds(�; tt) _ holds(
; tt)) (Ax 5)

holds(� _ �; tt) ^ holds(� _
; tt) (Ax 3)

holds((� _ �) ^ (� _
); tt)

Figure 8: First-order proof of left-to-right part of Belnap axiom 6.

by contrapositive of classical logic, that

AB ; holds(: ;�) ` holds(:';�)

Hence, using Belnap axiom 2, we get AB ; holds(; tt) ` holds('; tt). To
show that AB ;:holds(;�) ` :holds(';�) we consider the second part of the
inductive hypothesis. AB ; holds(:'; tt) ` holds(: ; tt) gives, by contraposi-

tive of classical logic that

AB ;:holds(: ; tt) ` :holds(:'; tt):

Hence, by Belnap axiom 1, AB ;:holds(;�) ` :holds(';�). The case for the
\only if-part" of Belnap rule 13 follows the same argument.

Case 2: We assume that last rule application is the \if-part" of Belnap rule 15 in
De�nition 3. Therefore, we have there exists a proof of �! � with n�1 rule ap-
plications, where is equal to � and ' is equal to �_�. So by inductive hypoth-
esis, AB ; holds(�; tt) ` holds(�; tt) and that AB ;:holds(�;�) ` :holds(�;�).
We want to show that

20

1. AB ; holds(�; tt) ` holds(� _ �; tt) and
AB ; holds(� _ �; tt) ` holds(�; tt)

2. AB ;:holds(�;�) ` :holds(� _ �;�) and
AB ;:holds(� _ �;�) ` :holds(�;�).

The �rst part of (1) is quite straightforward. We show the second part.
Assume AB ; holds(�_�; tt). By axiom (Ax 5) and re
exivity of classical logic,
AB ; holds(� _ �; tt) ` AB ; holds(�; tt) _ holds(�; tt). By inductive hypothesis,
AB ; holds(�; tt) ` holds(�; tt) and by re
exivity of classical logic

AB ; holds(�; tt) ` holds(�; tt):

Therefore, using classical _-introduction rule,

AB ; holds(�; tt) _ holds(�; tt) ` holds(�; tt):

Hence, AB ; holds(� _ �; tt) ` holds(�; tt). The proof for (2) follows the same
argument.
All the other cases can be easily proved using appropriate properties and rules
of classical logic and, if necessary, the Belnap axioms. �

Lemma 4 (Soundness) Let and ' be two Belnap formulae.

If AB ; holds(; tt) ` holds('; tt) and AB ;:holds(;�) ` :holds(';�),
then ! '.

Some additional propositions and de�nitions need to be given before proving
the above lemma. The soundness of the classical translation is based on the
idea that for any given Belnap 4-valuation it is always possible to construct
a classical interpretation I which satis�es the classical axioms AB and which
preserves Belnap's semantic entailment. We show �rst how this classical inter-
pretation can be constructed and its properties.

De�nition 10 Let v be a Belnap 4-valuation from the set of Belnap w�s to the
power set }(ftt;�g). A classical interpretation associated with v, and denoted
with Iv, is a function de�ned as follows

� Iv(tt) = tt and Iv(�) = �.

Also, for each ground term � of sort F :

� Iv(�) = �, for each ground term � of sort F .

� Iv(holds) = fh�; tti j tt 2 v(�)g [fh�;�i j � 2 v(�))g �

It is easy to show, by de�nition of Iv , that the following properties hold for
any Belnap formula � and 4-valuation v.

� v(�) = T if and only if Iv j= holds(�; tt) ^ :holds(�;�)

� v(�) = F if and only if Iv j= holds(�;�) ^ :holds(�; tt)

21

� v(�) = Both if and only if Iv j= holds(�; tt) ^ holds(�;�)

� v(�) = None if and only if Iv j= :holds(�; tt) ^ :holds(�;�)

The following proposition shows that a classical interpretation Iv associated
to a given 4-valuation v is a model of the �rst-order axioms AB .

Proposition 1 Let v be a 4-valuation and let Iv be its associated classical

interpretation. Then Iv is a model of the classical axiomatisation AB.

Proof: The proof is by cases of each axiom of AB .

Case 1: (Ax 1). We want to show that Iv j= 8x[holds(x;�) $ holds(:x; tt)].
We reason by contradiction. We assume that, for some x, Iv j= holds(x;�)
and Iv 6j= holds(:x; tt). By de�nition of Iv , � 2 v(x), which implies by the
: truth table that tt 2 v(:x). Hence Iv j= holds(:x; tt) which contradicts
the hypothesis. Similarly for the other case, i.e. Iv 6j= holds(x;�) and Iv j=
holds(:x; tt).

Case 3: (Ax 3). We want to show that Iv j= 8x; y[holds(x^y; tt)$ (holds(x; tt)
^ holds(y; tt))]. We reason by contradiction. Assume that, for some x, Iv j=
holds(x^ y; tt), and Iv 6j= holds(x; tt) or Iv 6j= holds(y; tt). By de�nition of Iv,
tt 2 v(x ^ y), which implies by the ^ truth table that tt 2 v(x) and tt 2 v(y).
Therefore, Iv j= holds(x; tt) and Iv j= holds(y; tt), which is in contradiction
with the initial hypothesis. The second case, i.e. assume that, for some x,
Iv 6j= holds(x ^ y; tt), and Iv j= holds(x; tt) and Iv j= holds(y; tt), can be
proved following the same argument.

Case 5: (Ax 5). We want to show that Iv j= 8x; y[holds(x_y; tt)$ (holds(x; tt)
_ holds(y; tt))]. We reason by contradiction. Assume that, for some x, Iv j=
holds(x _ y; tt), and Iv 6j= holds(x; tt) and Iv 6j= holds(y; tt). By de�nition of
Iv, tt 2 v(x_y), which implies by the _ truth table that tt 2 v(x) or tt 2 v(y).
Therefore, Iv j= holds(x; tt) or Iv j= holds(y; tt), which is in contradiction
with the initial hypothesis. The second case, i.e. assume that, for some x,
Iv 6j= holds(x_ y; tt), and Iv j= holds(x; tt) or Iv j= holds(y; tt), can be proved
following the same argument.

Axioms 2,4 and 6 are proved in an analogous way of the proofs of Axioms, 1,3
and 5, respectively. �

Proof of Lemma 4. We prove the contrapositive statement. We assume
that 6! ' and we want to show that either AB ; holds(; tt) 6` holds('; tt)
or AB ;:holds(;�) 6` :holds(';�). The hypothesis 6! ' implies di�erent
cases or truth values for and ' according to the ordering relation � over the
logical lattice L4. We consider these cases individually. 6! ' implies that
for some 4-valuation v, v() 6� v(').

Case 1: v() = T and v(') = Both. From v, we can construct the as-
sociated classical interpretation Iv . By de�nition, Iv j= holds(; tt) and
Iv j= :holds(;�). But Iv 6j= :holds(';�).

22

Case 2: v() = T and v(') = None. Then tt 62 v('). From v, we can construct
the associated classical interpretation Iv . By de�nition, Iv j= holds(; tt) and
Iv j= :holds(;�). But Iv 6j= holds('; tt).

Case 3: v() = T and v(') = F. Then tt 62 v('). From v, we can construct
the associated classical interpretation Iv . By de�nition, Iv j= holds(; tt) and
Iv j= :holds(;�). But Iv 6j= holds('; tt).

Case 4: v() = None and v(') = F. Then tt 62 v(), � 62 v() and tt 62
v('). From v, we can construct the associated classical interpretation Iv. By
de�nition, Iv j= :holds(;�), but but Iv 6j= :holds(';�).

Case 5: v() = Both and v(') = F. Then tt 2 v(), � 2 v() and tt 62
v('). From v, we can construct the associated classical interpretation Iv. By
de�nition, Iv j= holds(; tt), but but Iv 6j= holds('; tt). �

Proof of Theorem 1. The \if-part" is given by Lemma 4 whereas the \only-
if" part is given by Lemma 3. �

5 Revising Belnap's four-valued logic

The main idea of doing Belief Revision by translation is that a revision operator
for classical logic can be used for other logics as well, as long as a sound and
complete translation of the target language into classical logic is given. Given
a theory in the target language, the revision is performed on its translation
together with the axioms which describe the behaviour of the logic in classical
logic.

In this section we illustrate this idea by considering in depth the steps
necessary to implement it. We take as an example the Belnap's logic discussed
in the previous sections.

The notion of consistency play therefore a very important role in the process.
In fact, one of the postulates ensures that the result of the revision process is
always consistent provided that the new information is itself inconsistent.

In order to perform belief revision in one logic through its translation to
classical logic, it is necessary to ensure that the notion of inconsistency in
the object language is translated into inconsistency in classical logic. More
precisely, it is not even necessary to be limited to the notion of inconsistency in
the object language. As a matter of fact, some logics do not even have such a
notion, e.g., Belnap's logic seen in the previous section. In such cases, one must
de�ne a notion of acceptability of object theories via classical logic axioms.

Take for instance Belnap's theories. We have de�ned a Belnap theory �
acceptable, if for no �, it is the case that �! � and �! � (De�nition 5).

This notion of acceptability is then be translated into classical logic incon-
sistency to ensure that revisions of Belnap's theories performed in classical logic
will correspond to acceptable Belnap theories. The notion of acceptability seen
above is translated into classical logic in the following way:

23

De�nition 11 Acceptability in the translation to classical logic is de�ned as

Acc = 8�[(holds(�; tt) ^ holds(�;�))! ?]

As we expected, the co-existence of contradictory (Belnap) information will
not be tolerated by the revision process, and only one of tv or fv (or none)
will be accepted. Intuitively, this �lters out Belnap formulae with truth-value
Both.

Let and ' be two Belnap formulae. The revision of by ', in symbols
 �b' is de�ned in terms of a First-order AGM compliant revision operator �a
in the following way (we use the previously mentioned notion of acceptability
Acc). In order to lighten the notation, we use the following convention:

holds(�; tt) = �+ :holds(�; tt) = :�+

holds(�;�) = �� :holds(�;�) = :��

holds(:�; tt) = �+ :holds(:�; tt) = :�+

holds(:�;�) = �� :holds(:�;�) = :��

De�nition 12 [Belief Revision in Belnap's four-valued logic] Let and ' be
two Belnap formulae and + (�) and '+ ('�) their translation to classical
logic as described above, respectively. Let AB be the translation of Belnap's
axioms into classical logic and Acc a suitable notion of acceptability of Belnap's
theories.

The revision of be ', in symbols �b', is de�ned as

 �b' = f
 j +
�a('

+
^AB ^Acc) `

+ and : ��a(:'
�

^AB ^Acc) ` :

�

g

Motivation

The motivation for the above de�nition is as follows. The translation of any
Belnap theory to classical logic is always consistent. What introduces inconsis-
tency into the classical logic translation is the axiom for acceptability. There-
fore, without acceptability, the revision of a Belnap theory in classical logic is
equivalent to its expansion by the new formula, This is guaranteed by postu-
lates (K�3) and (K�4), and is indeed as it should be, since the object logic is
paraconsistent.

To get this correspondence, we need the revision of by ' (without Acc)
to be simply ^ '. The correspondence axiom tell us that ^ ' !
 i�
AB ^ (^ ')

+ `
+ and AB ^ :(^ ')
� ` :
�. Since '+ ^AB is consistent

with +, +�a('
+ ^ AB) is just + ^ '+ ^ AB (the same for the negative

part). The revision then gives us all
0s such that + ^ '+ ^ AB `

+ and

: � ^ :'� ^ AB ` :

�. Notice that in the presence of AB ,

+ ^ '+ $

(^ ')+ and : � ^ :'� $:(^ ')� (from Ax 3 and Ax 4, respectively, in
De�nition 9, page 17). Therefore, we get all
0s such that AB ^ (^')

+ `
+

and AB ^ :(^ ')
� ` :
�, which is f
 j ^ '!
g.

There are in fact only minor di�erences between the de�nition above and
De�nition 2. The extra bits come from the fact that Belnap's translation is
more complicated, since we need the negated \holds" to ensure that the other
half of the lattice L4 is also taken into account. The positive holds, checks the

24

values for Both and T, where the negative one checks None and T. F does not
need to be checked since it is smaller than all the other values in L4 anyway.

Discussion of the AGM postulates under Belnap's perspective

(K�1) �b' is a belief set

In our terms, this means that the set of Belnap sentences that we receive
back from the revision process should be closed under Belnap's consequence
relation. In other words,
 2 �b' i� �b' !
. (only if) This is simple, if

 2 �b', it follows by re
exivity of ! that �b' !
. (if) Suppose that
 �b'!
, we need to show that
 2 �b'. But look at the sentences in �b':

 �b' = f� j +
�a('

+
^AB ^Acc) ` �

+ and : ��a(:'
�

^AB ^Acc) ` :�
�

g

By the correspondence theorem, if �b'!
, then

fABg [f�
+
j +
�a('

+
^ AB ^Acc) ` �

+
g `
+

and
fABg [f:�

�

j : ��a(:'
�

^ AB ^Acc) ` :�
�

g ` :
�

Notice that

fABg [f�
+
j +
�a('

+
^ AB ^ Acc) ` �

+
g � +

�a('
+
^ AB ^Acc)

since by (K�2), AB 2
+�a('

+^AB^Acc) and by (K
�1), +�a('

+^AB^Acc)
is closed under classical logical consequence and hence contains all such �+.
By monotonicity of classical logic, it follows that +�a('

+ ^ AB ^ Acc) `

+.

By a similar argument, we can show that : ��a(:'
� ^AB ^Acc) ` :

� and
hence
 2 �b'.

(K�2) ' 2 �b'

We expect that the set containing the Belnap's sentences obtained from the
(classical) revision process includes the revising sentence.

This is simple. Remember that by (K�2), '+ ^ AB ^ Acc 2 +�a('
+ ^

AB ^ Acc) and :'� ^ AB ^ Acc 2 :
��a(:'

� ^ AB ^ Acc). By (K�1),
 +�a('

+ ^AB ^Acc) ` '
+ ^AB ^Acc and hence +�a('

+ ^AB ^Acc) ` '
+.

Similarly, : ��a(:'
� ^AB ^ Acc) ` :'

�. By De�nition 12, ' 2 �b'.

(K�3) �b' � Cnb([f'g)

(K�4) If :' 62 , then Cnb([f'g) � �b'

We have argued in Section 2, page 5, that for non-classical logics, these two
postulates have the meaning expressed by (K�

3;4) below:

(K�

3;4) If A is consistent with K, then K�aA = Cnb(K [fAg).

In this case, being \consistent" means acceptable. In other words, that

25

acceptability plays no role in the revision process. The equivalence above was
shown previously in the motivation for De�nition 12.

(K�5) �b' =
?
only if ' is unsatis�able

Similarly, this should have the following interpretation

\ �b' is non-acceptable, only if ' is (itself) non-acceptable."

This can be shown, if we remember that we arti�cially forced the translation
of non-acceptable Belnap theories to be classically inconsistent. This means,
for instance, that if ' is not itself non-acceptable, then +�a('

+ ^ AB ^ Acc)
is classically consistent.

Suppose �b' is non-acceptable, we must show that ' is non-acceptable.
From the assumption, it follows that

 �b'!
 (4)

and
 �b'! :
; (5)

for some
 in Belnap's language. By the correspondence theorem, it follows
from (4) that

fABg [f�
+
j +
�a('

+
^ AB ^Acc) ` �

+
g `
+

Notice that

fABg [f�
+
j +
�a('

+
^ AB ^ Acc) ` �

+
g � +

�a('
+
^ AB ^Acc)

since by (K�2), AB 2
+�a('

+^AB^Acc) and by (K
�1), +�a('

+^AB^Acc)
is closed under classical logical consequence and hence contains all such �+.
Also notice that by the correspondence theorem and (5)

fABg [f�
+
j +
�a('

+
^ AB ^Acc) ` �

+
g `
+

For the same reason,

fABg [f�
+
j +
�a('

+
^ AB ^ Acc) ` �

+
g � +

�a('
+
^ AB ^Acc)

and therefore

 +
�a('

+
^ AB ^ Acc) `

+
^
+ = holds(
; tt) ^ holds(:
; tt)

Now AB ^ holds(:
; tt) ` holds(
;�), the revision operation above is closed
and hence

 +
�a('

+
^AB ^ Acc) ` holds(
; tt) ^ holds(
;�)

By (K�2) and (K�1), +�a('
+^AB ^Acc) ` Acc and is therefore inconsistent,

hence ' must be non-acceptable.

(K�6) If ' �b
, then �b' �b �b

If two Belnap formulae are equivalent, then so are the results of revising
the same belief set by either of the formulae.

26

In Belnap's logic, ' �b
 means ' !
 and '
. By correspondence
we have that AB ` holds('; tt) $ holds(
; tt) and also AB ` :holds(';�) $
:holds(
;�). We show the positive part only. The negative part is similar. It
is easy to see that ` (AB ^ '

+) $ (AB ^

+). By (K�6), +�a('

+ ^ AB ^

Acc) � +�a(

+ ^ AB ^ Acc). The same happens with the negative part and

therefore, by the de�nition of revision in Belnap's logic, �b' = �b
, and
hence �b' �b �b
.

(K�7) �b(' ^
) � Cnb((�b') [f
g)

(K�8) If :
 62 �b', then Cnb(�b' [f
g) � �b(' ^
)

We have argued in Section 2, page 7, that these two postulates have the
meaning expressed by (K�

7;8) below:

(K�

7;8) Cnb(�b' [f
g) = �b(' ^
), when
 is consistent with �b'

In this case, being \consistent" means acceptable. Acceptability plays there-
fore no role in the revision process above, and hence �b' [f
g is acceptable.
In �rst order logic terms, this means that the acceptability axioms is never
used in the derivation of translated Belnap formulae.

We sketch the proof as follows. Let us look �rst at the formulae in the set
 �b' [f
g. These are the formulae in the set f� j +�a('

+ ^ AB ^ Acc) `
�+ and : ��a(:'

�^AB^Acc) ` :�
�g[f
g. On the other hand, the formulae

in the set �b('^
) are the same formulae in the set f� j +�a(('^
)
+^AB^

Acc) ` �+ and : ��a(:('^)
�^AB ^Acc) ` :�

�g. Now by the assumption
and (K�

7;8) for �a, we have that Cn(
+�a('

+^AB ^Acc)[f

+g) = +�a(('^

)+^AB ^Acc). Notice that AB 2
+�a('

+ ^AB ^Acc)[f

+g. It is easy to

show that +�a('
+ ^AB ^Acc) [f

+g ` �+ and : ��a(:'
� ^AB ^Acc) [

f:
�g ` :�� i� � 2 Cnb(f� j
+�a('

+ ^ AB ^ Acc) ` �
+ and : ��a(:'

� ^

AB ^ Acc) ` :�
�g [f
g). Similarly, +�a((' ^
)

+ ^ AB ^ Acc) ` �
+ and

: ��a(:(' ^
)
� ^ AB ^ Acc) ` :�

� i� � 2 Cnb(f� j
+�a((' ^
)

+ ^ AB ^

Acc) ` �+ and : ��a(:(' ^
)
� ^ AB ^ Acc) ` :�

�g).

6 Conclusions

We have presented a way of exporting an AGM revision process in classical
logic to other non-classical logics by translating into classical logic. There are
considerable bene�ts to such a revision by translation over any direct revision
in the non-classical logic itself.

1. It is a standard for many non-classical logics to be translated into classical
logic. Such translations are done for a variety of reasons:

� to give the logic a meaning

� to give semantics to the logic

� to compare it with other logics

� to get decidability/undecidability results

27

� to make use of automated deduction of classical logic

Adding to this culture a revision capability makes sense.

2. Revision theory is very well developed in classical logic. There are various
notions and �ne tuning involved and translation into classical logic will
not only open a wealth of distinctions for the source logic but also enrich
classical logic revision itself with new ideas and problems arising from
non-classical logics.

3. From the point of view of classical logic, what we are doing is a relative

revision. This concept can be de�ned as follows. Given a theory T of
classical logic (for example a theory of linearly ordered Abelian groups6),
we can talk about a set of sentences � being acceptable (i.e., Cn(T [�)
being acceptable)7. We can talk about revision relative to T of � by
(denoted by � �T) yielding a new acceptable theory �0 = � �T . The
case where T arises in connection with a translation from another logic
is only one instance of this general relative revision.

We need to distinguish two cases in our studies of relative revision

(a) The notion of acceptability can be easily handled in classical logic.

This case is simpler to handle and includes the translation from modal
logics seen in Section 3.

b) The concept of acceptability is not directly expressible. Here we have
problems to overcome, as in the Belnap's logic translations.

We leave the investigations of relative revision for a future paper.

7 Acknowledgments

Dov Gabbay, Odinaldo Rodrigues and Alessandra Russo were supported by the
UK EPSRC projects \Temporal Logics of Knowledge and Belief" (GR/K57268),
\Data Driven Algorithms" (GR/L91818) and \Managing Inconsistency in Soft-
ware Engineering" (GR/L55964), respectively.

References

[1] C. A. Alchourr�on, P. G�ardenfors, and D. Makinson. On the logic of theory
change: partial meet contraction and revision functions. The Journal of

Symbolic Logic, 50:510{530, 1985.

[2] C. A. Alchourr�on and D. Makinson. On the logic of theory change: Con-
traction functions and their associated revision functions. Theoria, 48:14{
37, 1982.

6We are preparing here for the future, when we examine revision in fuzzy logic.
7Let M be a class of models of T . � is T -consistent if � [T has a model. � is M-

acceptable if �[T has a model in M. Given � and , we want the result of the revision of
� by to be M-acceptable.

28

[3] C. A. Alchourr�on and D. Makinson. The logic of theory change: Safe
contraction. Studia Logica, 44:405{422, 1985.

[4] N. Belnap. How a computer should think. In G. Ryle, editor, Contempo-

rary Aspects of Philosophy, pages 30{56. Oriel Press, 1977.

[5] N. Belnap. A useful four-valued logic. In J. M. Dunn and G. Epstein,
editors,Modern Uses of Multiple-valued Logic, pages 8{37. D. Reidel, 1977.

[6] M. Dalal. Updates in propositional databases. Technical report, Depart-
ment of Computer Science, Rutgers University, February 1988. Technical
Report DCS-TR-222.

[7] Adnan Darwiche and Judea Pearl. On the logic of iterated belief revision.
Technical Report R-202, Cognitive Science Laboratory, Computer Science
Department, University of California, Los Angeles, CA 90024, November
1996.

[8] Adnan Darwiche and Judea Pearl. On the logic of iterated belief revision.
Arti�cial Intelligence, 89:1{29, 1997.

[9] Peter G�ardenfors. Knowledge in Flux: Modeling the Dynamics of Epis-

temic States. A Bradford Book - The MIT Press, Cambridge, Mas-
sachusetts - London, England, 1988.

[10] Peter G�ardenfors, editor. Belief Revision, number 29 in Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1992.

[11] Hirofumi Katsuno and Alberto O. Mendelzon. On the di�erence between
updating a knowledge base and revising it. Belief Revision, pages 183{203,
1992.

29

