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Abstract. Focusing on object-oriented designs, this paper proposes a mapping 
for translating systems modelled in the Unified Modelling Language (UML) 
incorporating Object Constraint Language (OCL) constraints into formal 
software specifications in Object-Z.  Joint treatment of semi-formal model 
constructs and constraints within a single translation framework and conversion 
tool is novel, and leads to the generation of much richer formal specifications 
than is otherwise possible.  This paper complements previous analyses by 
paying particular attention to the generation of complete Object-Z structures.  
Integration of proposals to extend the OCL to include action constraints also 
boosts the expressivity of the translated specifications.  The main features of a 
tool support are described.   
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1   Introduction 

The Unified Modelling Language (UML) provides a graphical notation to express the 
design of object-oriented software systems. It has become the de facto industry 
standard for software design, its widespread use encouraged through intuitive appeal, 
considerable educational resources, and the availability of CASE tools.  Quality and 
consistency in design is enhanced through the development of a rolling UML standard 
under the auspices of the Object Management Group (OMG) [OMG01].   

UML class diagrams are not usually sufficiently precise to set out all relevant 
aspects of a specification.  Beyond straightforward constraints, for example 
concerning association multiplicities, there exist a range of complex and sometimes 
subtle restrictions that are not easily conveyed in diagrammatical form.  The Object 
Constraint Language (OCL) has been integrated into the UML standard as a means of 
precisely expressing side-effect-free constraints on models.  Broadly, these fall under 
the headings introduced by Meyer [M88].  Invariants are used to express a range of 
restrictions over class features.  System behaviour is then clarified through pre and 
postconditions, describing, respectively, the applicability and impact of particular 
operations. 

On the other hand, formal specification languages are intended to provide precise 
and complete models of proposed software systems.  Their goal is the unambiguous 
description of system structure and functionality [DR00].  Like other formal 
techniques, Object-Z, in particular, employs strict notations of mathematics and logic 
that permits rigorous analysis and reasoning about the specifications.  Its main 
strength lies in providing a clear means of establishing consistency between model 
design and implementation, as well as a refined staging post towards executable code. 

Semi-formal modelling methodologies and formal specifications therefore should 
be seen as complementary techniques, each with their own particular strengths and 
limitations. Bruel and France [BF98] characterize informal structured techniques 
(ISTs) as emphasizing ease-of-use and understandability at the cost of rigor, and 



formal specification techniques (FSTs) as emphasizing formality at the expense of 
ease-of-use and understandability.  As such, there are clear benefits in developing 
integrated methodologies. 

Previous research has helped to identify weaknesses in the semi-formal approach.  
In particular, it has been recognised that some UML modelling constructs lack precise 
semantics, sometimes leading to differences of interpretation, and therefore 
inconsistencies between design and implementation [FELR98]. Conceptual mapping 
of UML constructs with Object-Z has helped to clarify such issues, by highlighting 
contentious areas and enforcing an informed interpretation of meaning [KC00].  We 
believe that previous analysis has provided a sufficient semantic base for the UML in 
which model constraints can now be investigated and mapped. 

This paper provides a mapping from an integrated model of UML class diagrams 
and OCL specifications into an Object-Z formal specification. This mapping builds 
upon existing work on the formal specification of diagrammatical modelling 
constructs, which enables the generation of class skeletons in Object-Z, and extends it 
by giving a joint treatment of model constructs and constraints. This leads to richer 
formal specifications than has otherwise been proposed. Arguably, joint treatment of 
UML constructs and OCL constraints may be seen as a prerequisite for the 
development of practical, but formal, modelling tools, which would allow rigorous 
reasoning about the system models developed by the software engineers. 

By building upon the most popular informal modelling techniques, formal 
specification may be seen, as it should be, as a natural process of model refinement as 
opposed to a competing design paradigm. Overall, it is hoped that continued analysis 
of the links between informal and formal modelling methodologies should lead to a 
more mature understanding and use of both technologies, both in the industrial and 
educational contexts. 

The remainder of this paper is organised as follows.  Section 2 describes the 
translation mechanism of UML models with OCL constraints into Object-Z. Section 3 
presents additional features to the OCL aimed at the generation of complete Object-Z 
structures, and also shows how recent proposals to extend the OCL to include action 
constraints may be applied to the formal specification domain.  Section 4 describes the 
main features of a developmental tool support.  Section 5 concludes the paper by 
comparing our work with existing approaches to methods integration and highlighting 
some areas for further work. 

2   Mapping UML and OCL Constructs into Object-Z 

The aim of our work is to define a mapping between UML class diagrams 
incorporating OCL constraints and Object-Z formal specifications.  The choice of 
Object-Z as our target formal specification language has been driven by the following 
considerations. Firstly, Object-Z provides a uniform representation formalism and 
semantics for expressing both diagrammatical models (e.g. UML class diagrams) and 
constraints (e.g. OCL expressions). Secondly, the language preserves most features of 
the object-oriented structure of informal UML/OCL models. This has two main 
advantages: (i) Object-Z models seem to be more accessible to software engineers 
than any other standard formal specification language such as pure first-order logic, 
and (ii) errors detected within the Object-Z specification produced by our mapping 
could more easily be traced back into the initial UML/OCL model. 

The mapping is here described informally but defines a unique relation between 
UML and Object-Z features, as formalised within the translation tool described in 
Section 4.  The underlying functional translation does not cover every construct of the 
UML standard, but focuses on class diagram models. The mapping of the UML 
diagrammatical modelling constructs mainly defines class signatures for the resulting 
Object-Z formal specification, providing the concrete syntax employed in the 
translated OCL constraints.  Only a few features of the class diagram, such as 
multiplicity of attributes and associations, give rise to additional Object-Z predicates.  
In addition, certain restrictions have been imposed over the UML standards in order to 
guarantee the integrity of the translated specifications. 



In Section 2.1 we present our mapping between UML class diagrams into Object-Z 
skeleton structures and signatures, following Kim & Carrington’s Object-Z semantic 
definition of UML class diagrams [KC00]. These structures provide the formal 
context for the examination and translation of associated OCL constraints. In Section 
2.2, we then present the mapping between the OCL constraints into Object-Z 
predicates within the context of the structures generated from the UML diagrams. 

2.1 Formalising UML Model Constructs 

The translation of the UML class diagrams (without OCL) into Object-Z structures is 
presented here using examples based on the UML diagram given in Figure 1. 

Classes.  Consider the simple UML class diagram of Figure 1.  Ordinary UML 
classes like Account and Person may be mapped into an Object-Z class construct of 
the same name, with class features transcribed to the enclosed schemas defining state 
variables, constants and class operations.  Features marked public (+) are included 
within the class construct visibility list, while those that are unadorned or marked 
private (-) are not.   

 
 
 
 
 
 
 
 
 
 

Fig. 1. A UML class diagram for persons and bank accounts 

Attributes.   UML attributes are mapped as variables of the same name, declared 
within the state schema of the corresponding Object-Z class construct or within the 
separate constant definition schema when marked with UML’s {frozen} property 
string.  Attribute type declarations are required for translation to Object-Z, which 
supports a range of well known domains corresponding to most basic programming 
types.1   

User-defined classes may also be employed as types within UML models and 
Object-Z specifications; for example, a person’s sex might have been enumerated 
(male, female) within the UML model corresponding to the definition of a named 
domain, Sex = {male, female} in Object-Z. 

Attributes with multiplicities greater than one may be mapped as finite sequences 
of the base UML type, combined with a cardinality restriction.  A person’s 
dateOfBirth attribute therefore corresponds to the declaration of the state variable 
dateOfBirth: seq Z and predicate #dateOfBirth = 3.  Derived attributes, marked (/) in 
the UML, are distinguished from primary variables within Object-Z schema through 
the ∆ separator. 

Operations.   UML class operations may be translated as individual Object-Z 
operation schema with the same name, with parameters and return values mapped as 
input and output communication variables adorned (?) and (!) respectively.  Although 
parameter names are optional within the UML, and return values are not named, both 
must be supplied for the purposes of translation to Object-Z.  As with attributes, UML 
operations marked public are included within the class construct visibility list. 

Based on the discussion so far, Figure 2 provides a translated class skeleton for 
class Account2. 

                                                           
1 Indeed, since the UML is not prescriptive on types, there seems no reason why specialised 

Object-Z domains should not be included directly in UML class diagrams, even where 
implementation languages lack direct support.  For example, class Account’s overdraftLimit 
has been specified as a non-negative quantity (natural number) in Figure 1. 

2 The visibility list in Object-Z models is here denoted with the symbol “|”. 

Account
-balance: float
-overdraftLimit: natural 

+withdraw(float amount): void
+deposit(float amount): void
+fundsAvailable(): float {query}

Person
-name: string
-dateOfBirth[3]: integer {frozen}
-/totalBalance: float

+addAccount(Account a): void
+removeAccount(Account a): void

0..3 1

Account
-balance: float
-overdraftLimit: natural 

+withdraw(float amount): void
+deposit(float amount): void
+fundsAvailable(): float {query}

Person
-name: string
-dateOfBirth[3]: integer {frozen}
-/totalBalance: float

+addAccount(Account a): void
+removeAccount(Account a): void

0..3 1



Associations may be represented through the instantiation of additional state 
attributes in Object-Z, depending upon the navigability specified across the UML 
association line.3  Figure 1 depicts navigability from class Person to class Account, 
implying an additional attribute within the Object-Z class Person.  Its name is mapped 
from the target class rolename (since none is specified in this example, account by 
default) and its type is the power set of the target class. Bi-directional associations are 
mapped as if they were two separate uni-directional associations. Association 
multiplicities are reflected in additional state axioms constraining the size of such sets, 
in this case 0 <= account <= 3.  Figure 3 provides a mapping for class Person, 
reflecting the navigable association with class Account.  The class association 
management operations are described later. 

 

 

 

 

 

 

 
 
 

 

Fig. 2. Object-Z class skeleton for class Account. 

Aggregation and composition.  UML’s open diamond merely distinguishes the 
compound class from its parts, “no more, no less” [BRJ99].  Translation of 
aggregations therefore proceeds much as for ordinary associations, with the compound 
class construct containing an additional state variable of type power set of the part 
class.  UML composition, by contrast, implies that instances of the part class may 
belong to just one instance of the compound class.  Mapping is straightforward in that 
Object-Z provides a notational shorthand (©) denoting unshared containment.  
Composition between an account and the transactions made on that account, for 
example, may be captured through the declaration of a state variable transactions: 
Transaction© in the state schema of class Account. 

                                                           
3 This treatment assumes that control and management of the association is locally based.  

Alternatively, associations may be centrally controlled through a separate database structure 
maintaining a list of link instances.  Roe [DR02] outlines proposals for specifying central 
control of associations within a UML model, and provides a mapping to Object-Z. 
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Fig. 2. Object-Z class skeleton for class Person reflecting the UML association with class 
Account 

Association classes permit class like features to be added to UML associations.  
Such classes may be formalised in Object-Z as described above, but with the addition 
of two state variables corresponding to the rolenames and types of the classes 
participating in the association.  Depending upon the navigability specified across the 
association line, the participating class constructs will contain an additional attribute 
whose type is a power set of the association class, and constrained in size by the 
multiplicity specified at the opposite association end. 

Generalisation.  Mapping of UML generalisation is straightforward in that Object-
Z provides a simple notation denoting inheritance, with child classes naming inherited 
classes just below their visibility list.  Specialised subclass features may then be 
mapped as described earlier.   

2.2 Translating OCL Constraints into Object-Z Notation 

OCL is intended as a precise, unambiguous language but at the same time one that 
may be used by mainstream practitioners of object technology.  As a result, its 
designers consciously avoided the very strict notations employed in formal 
specification languages including Object-Z.  Warmer and Kleppe [WK99] argue that 
“all experience with formal or mathematical notations leads to the same conclusion: 
The people who can use the notation can express things precisely and unambiguously, 
but very few people can really use such a notation”.    

In the context of full grammars, nevertheless, differences between OCL constraint 
and Object-Z predicate notations are not substantial.  Moreover, a fairly clear 
distinction can be made between restrictions specified over single-valued model 
features (e.g. a class attribute), and those concerning higher order groups or 
collections of objects (e.g. an association set).  In the former case, OCL expressions 
are likely to require only modest amendment to form valid Object-Z predicates.  But 
in the latter case, OCL and Object-Z syntaxes diverge, precisely because formal 
notations dealing with sets and sequences are typically more complex. 

Mapping basic OCL features.  OCL constraints begin with a statement of the 
constraint context, either a model class in the case of invariants or a class operation in 
the case of preconditions and postconditions.  This is followed by a keyword 
indicating the constraint type and a Boolean expression formalising the constraint in 
terms of model features accessible from the contextual class.  Returning to Figure 1, 
class Account may be formalised in OCL as follows: 

context Account 
inv: balance + overdraftLimit >= 0  

 
 
context Account::withdraw(float amount): void 
pre: amount <= balance + overdraftLimit 
post: balance = balance@pre - amount 
 
context Account::deposit(float amount): void 
post: balance = balance@pre + amount 
 
context Account::fundsAvailable(): float fundsAvailable 
post: result = balance + overdraftLimit 

OCL invariants are mapped into either predicates of the class state schema or 
predicates of the class constant definition schema, describing restrictions which must 
be satisfied by all instances of a particular class at all times.  Preconditions and 
postconditions meanwhile are transcribed to the predicate section of the corresponding 
Object-Z operation schemas, again with identical semantics.  Preconditions must be 
satisfied just before execution of the operation and postconditions must hold on 
completion.  No attempt is made in either technology to describe what action should 
be taken in the event that a constraint is broken.   



Joint mapping of the contextual model constructs ensures that the concrete 
constraint terms will have meaning within equivalent Object-Z predicates.  And in 
these examples, the operations have universal meaning.  The boolean expression 
components of these and similar OCL constraints therefore also form valid Object-Z 
predicates with only very minor modifications, as shown in Figure 4.  References to 
object attributes in OCL postconditions are translated in primed (after execution) 
format, except where appended by the @pre keyword.  Similar references in OCL 
preconditions are translated into an unprimed format.  Return value names are 
substituted for OCL’s result keyword in Object-Z.   

Fig. 3. Class Account with state and operation predicates 

OCL constraints may also contain references to contextual class operation that 
return values. Because OCL is intended to be side-effect-free, only references to query 
operations are permitted, i.e. those operation that return a value but do not alter an 
object state.  The mapping of such constraints will replace the references to the query 
operations with the translation of the right-hand side of their respective result post-
conditions. 

For instance, consider the OCL constraint 

context smallCircle::Area(): integer 
post: result = Π * radius * radius 

context smallCircle 

inv: Area() ≤ limit 

The mapping will include in smallCircle class schema the invariant 

Π * radius * radius ≤ limit 

OCL supports a range of predefined basic types including Booleans, integers, real 
numbers and strings.  In each case, standard operations over these types are predefined 
in OCL and Object-Z and so notational translation is largely a matter of substitution of 
formal symbols in place of the natural language operators preferred in OCL.  Boolean 
operators, for example, are written naturally in OCL: not, and, implies and so on.  
Basic type literals, for example true, 2.4 or ‘hello’, may be used freely in both OCL 
and Object-Z constraints.   

Mapping of OCL Constraints over Collections of Objects.  Most UML associations 
define a relationship between one object and a group of other objects.  OCL provides 
an abstract type Collection, and three concrete collection types, set, sequence and bag, 
each supporting predefined operations facilitating the expression of constraints over 
groups of objects.  Table 1 summarises those operations defined over all OCL 
collection types, and provides equivalent Object-Z notation4.  Operations shown in the 

                                                           
4 See Warmer and Kleppe [WK99] for descriptions of operations. 
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lower half of the table employ an iterator variable, which scans across all elements in 
the collection returning either a new collection or Boolean value as a result. 

Table 1. Operations defined over all OCL collection types 

Operation : description 
OCL syntax 

 
Object-Z notation5 

  
size() :  the number of elements in the collection 
collection->size() #collection 
count(object) :  the number of occurrences of an object in the collection 
collection->count(object) #{ c:collection | c = object } 
includes(object) :  true if the object is an element in the collection 
collection->includes(object) object ∈   collection 
includesAll(collection) :  true if all elements of the parameter collection are elements 

of the current collection 
collection->includesAll(parameter) parameter ⊆   collection 
isEmpty() [notEmpty()] :  true if the collection contains no/one or more elements 
collection->isEmpty()[notEmpty()] collection =[<>] ∅  
sum() :  the sum of all elements in the collection where the element type supports 

addition 
collection->sum() Σc:collection 
collection->sum(feature) Σc:collection • c.feature 
  
Operations that iterate over the elements in a collection6: 
  
select(b-exp) [reject(b-exp)] :  results in all elements (e) in the collection for which 

<b-exp> is [not] true 
collection->select[reject](e | <b-exp>) {e | [¬]<b-exp> } 
collect(expression) :  results in a new collection, derived from, but containing different 

objects to the original collection based upon <expression>.  
collection->collect(e | <expression>) {e:collection | <expression>} 
forAll(b-exp) :  true if < b-exp > is true for all elements in the collection 
collection->forAll(e | <b-exp>) ∀ e:collection • <b-exp> 
exists(b-exp) :  true if < b-exp > is true for at least one element in collection 
collection->exists(e | <b-exp>) ∃ e:collection • <b-exp> 

 
OCL also supports a range of well known operations specific to sets such as union, 

intersect, minus, symmetricDifference, including and excluding.  Specialised sequence 
operations likewise are provided in OCL including first, last, at, append and prepend.  
In all cases translation to Object-Z notation largely entails the straightforward 
substitution of formal symbols for natural language operator names.  OCL set and 
sequence literals, e.g. Set{1..10} or Sequence{23,11,67}, likewise require only 
minor amendment in Object-Z notation.  

These notational transformations are best illustrated with some examples.  
Returning to class Person of Figure 1, derivation of the secondary variable 
totalBalance and the class association management operations may now be formalised 
in OCL as follows: 

context Person 
inv: totalBalance = account->sum(balance) 
 
context Person::addAccount(Account a): void 
pre: not(account->includes(a)) 
post: account = account@pre->including(a) 
 
context Person::removeAccount(Account a): void 
pre: account->includes(a) 
post: account = account@pre->excluding(a) 

                                                           
5 Object-Z translations employ set limiters {} as required.  Table 1 collection operations also 

apply to sequences. 
6 In a fuller syntactic form, the iterator type may also be specified.  In a translation context, this 

is only helpful in the case of OCL’s generic iterate collection operation.  This is considered 
beyond the scope of this paper. 



Adding some further constraints for illustrative purposes 

context Person 
inv: account->exists(a | a.balance >= 0) 
--persons may not simultaneously overdraw all accounts 
 
context Person 
inv: account->forAll(a | a.overdraftLimit <= maxLimit) 
--each person’s accounts are subject to some maximum 
  overdraft limit  

Based on the patterns described in Table 1, the earlier skeleton construct for class 
Person may now be enriched with a variety of translated state and operation 
predicates, as shown in Figure 5.  OCL invariants are transcribed to the lower 
predicate section of the class state schema, and pre and postconditions to the relevant 
operation schema.  In general, translation of OCL constraints over association partners 
according to these basic patterns poses few problems.  However, it is worth noting that 
where features of association partners are referenced in OCL constraints, such features 
should be both strictly navigable and also visible to the external environment in order 
to guarantee correctness of the corresponding Object-Z predicates. 

 
 
 
 
 
 

 

 

 

 
 

Fig. 4. Class Person with state and operation predicates 

3 Extensions 

This paper has highlighted some modest restrictions to the UML and OCL standards 
needed to guarantee correctness of the translated Object-Z specifications: declaration 
of attribute types are required; likewise, operation parameters and return values must 
be named.  Some further proposals are outlined below, in a translation context, each 
aimed at the generation of complete and more expressive Object-Z structures.  The 
tool support described in Section 4 incorporates most of these features. 

3.1 Initial Configuration 

Object-Z class constructs also contain an initial schema (always named INIT) which 
sets out additional predicates involving class features.  An object is said to be in its 
initial configuration whenever the values of the class features satisfy the initial schema 
predicates.    

UML attribute declarations may optionally specify a default initial value, which 
might obviously be mapped as a class initial schema axiom.  However, initial 
conditions might not be restricted solely to statements of equality.  Moreover, they 
may equally apply to object associations.  For example, we may wish to specify that 

 

account: P Account 
maxLimit: R 
∆ 
totalBalance: R 
0 <= #account <= 3 
totalBalance =  Σ a:account  • a.balance 
∃  a:account  • a.balance >= 0 
∀  a:account  • a.overdraftLimit ≤ maxLimit  
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| (addAccount, removeAccount) 

a?: Account 
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a?  ∉  account 
account’ = account  ∪  {a?} 

a?: Account 
removeAccount 

a?  ∈  account 
account’ = account  \ {a?} 

account: P Account 
maxLimit: R 

totalBalance: R 
0 <= #account <= 3 
totalBalance =  a:account  • a.balance 

a:account  • a.balance >= 0 
a:account  • 
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| (addAccount, removeAccount) 

a?: Account 
addAccount 

a?  account 
account’ = account  {a?} 

a?: Account 
addAccount 

a?  account 
account’ = account  {a?} 

a?: Account 
removeAccount 

a?  account 
account’ = account  \ {a?} 

a?: Account 
removeAccount 

a?  account 
account’ = account  \ {a?} 



instances of class Person initially have no bank accounts.  In either case, such 
conditions cannot be expressed easily in the UML. 

It is proposed that initial conditions be expressed using OCL definition constraints.   
These are normally used to define pseudo-attributes with the aim of simplifying and 
avoiding repetition in complex OCL expressions, but provide a convenient mechanism 
for expressing initial configurations.  Taking the example above, we may write: 

context Person 
def: let INIT : boolean = (account->isEmpty()) 

which translates as the initial schema predicate: 
account = ∅  

The OCL expression defines a pseudo-attribute INIT of type boolean, like Object-
Z’s INIT schema evaluating true when a person’s account set is empty and false 
otherwise.  This amounts to an elevation of the INIT classifier to reserved status in 
OCL definition constraints.  Beyond this, ordinary OCL definition constraints would 
have to be mapped as full attributes or operations of the corresponding Object-Z class 
construct.  In the context of translations to formal specifications, it is suggested that 
such features are better specified within the UML model itself. 

3.2 Operation delta-lists 

Consider the following hypothetical operation formalised in OCL: 

context someClass::changeState(): void 
post: attribute1 = attribute2 

Postconditions are merely statements of what is true on completion of an operation.  
Tempting as it is to read this postcondition left to right as an assignment, it is not 
possible to know which, or indeed whether both, of the attributes will change when 
the changeState method is executed.  The impact of the operation could be clarified 
through additional postconditions stating explicitly which class features do not 
change, but this requirement is heavy in the case of sophisticated classes.  Under the 
current standard therefore, OCL operation constraints retain a degree of ambiguity. 

Object-Z operation schemas simplify the problem by including a ∆-list, explicitly 
stating those state variables subject to change during the execution of an operation.  In 
order to facilitate a straightforward translation, it is proposed that the OCL syntax be 
extended to include a new keyword modifies in the context of operations.  Class 
Account’s withdraw operation would, for example, be clarified as follows: 

context Account::withdraw(float amount): void 
modifies: balance 
--pre and postconditions as before 

Drawing on the standard UML notation, those operations that do not alter an 
object’s state may be marked modifies: query mapping to an empty ∆-list in Object-Z.   

3.3 System classes 

Dupuy et al [DLC97] propose that each UML class should map to two Object-Z class 
constructs, the first describing class features and the second describing the set of 
existing instances of the class and operations on this set.  Section 2 of this paper 
focused on the first aspect, i.e. the translation of UML classes as templates for object 
instantiation.  Like Kim and Carrington [KC00], we believe that the second function is 
better treated through the specification of a system level class.  Such classes are 
normally explicitly defined within Object-Z specifications but are typically left 
implicit in a UML class diagram. 

The system class may be represented diagrammatically as a class box which 
physically contains the other model classes, see Figure 6.  The use of a new 
«SystemClass» class stereotype helps to make this role a little clearer.  The mapping 
of the contained constructs proceeds as described in earlier sections.  The system class 
construct will incorporate set attributes corresponding to all the contained model 



classes, each constrained by the cardinality restrictions specified in the UML diagram 
(a maximum of 50 persons is imposed for illustrative purposes). 

 

 
Fig. 5. System-level class containing other model classes 

 
The UML PersonSystem system class could, for instance, be accompanied by the 

following package of OCL constraints: 

context PersonSystem 
inv: person->forAll(p | person->includesAll(p.friend)) 
 

context PersonSystem 
inv: person->includesAll(optimist) 
inv: person->includesAll(pessimist) 
 

context Optimist::speak(): string response 
modifies: query 
post: result = ‘the glass is half full’ 

 
context Pessimist::speak(): string response 
modifies: query 
post: result = ‘the glass is half empty’ 

The first constraint reflects the fact that for any class C, attributes of the same type 
C should belong to the system sets; in this case, each person’s friends must also be 
members of the system person set.  The next constraint is needed to denote sub typing; 
i.e. all optimists and pessimists are persons.  Polymorphism is reflected in the 
specialised notation (↓) used in the declaration of the system person set.  The 
remaining constraints formalise polymorphic behaviour within the Person class 
hierarchy.  The integrated UML/OCL model given above can then be mapped into the 
following Object-Z specification shown in Figure 7. 

Fig. 6. Object-Z system specification 
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optimist  5 person 
pessimist  5 person 
[ p: person  • p.friend  5 person 

PersonSystem Optimist 
Person 

response! = ‘the glass is half full’ 

speak 

Person 

!response: seq char 
speak 

Pessimist 
Person 

response! = ‘the glass is half empty’ 

speak 

person:  P ? Person 
optimist: P Optimist 
pessimist: P Pessimist 
0 <= #person <= 50 
optimist  ⊆  person 
pessimist  ⊆  person 
∀  p: person  • p.friend  ⊆  person 

PersonSystem Optimist 
Person 

response! = ‘the glass is half full’ 

speak 

Optimist Optimist Optimist 
Person 

response! = ‘the glass is half full’ 

speak 

response! = ‘the glass is half full’ response! = ‘the glass is half full’ 

speak 

Person 

!response: seq char 
speak 

Person Person 

!response: seq char 
speak 

!response: seq char 
speak 

Pessimist 
Person 

response! = ‘the glass is half empty’ 

speak 

response! = ‘the glass is half empty’ response! = ‘the glass is half empty’ 

speak 



3.4 Action constraints 

The basic OCL constraint types – invariants, preconditions and postconditions – are 
static.  Specifically, there is no means of specifying that events have happened or will 
happen.  Kleppe and Warmer [WK00] have proposed an extension to the current OCL 
standard to incorporate action constraints.  This permits UML operations to be 
formalised in terms of sets of events or method calls being sent to a target set of 
receivers accessible or navigable from the sender context. It is claimed that the 
incorporation of action constraints significantly improves the expressivity of the OCL 
[WK00]. In this section we propose a way of mapping such action constraints into 
Object-Z specifications, by capturing the static properties that such constraints would 
impose on the dynamic system behaviour.   

Syntactically, OCL action constraints are specified in terms of a comma-separated 
list of included actions or events, a target set of receivers, and an optional guard 
condition: 

action: [if <condition>] to <targetSet> send <eventSet> 

In [WK00] it is suggested that such constraints can be used in two different OCL 
contexts, namely as part of an operation specification and as part of the invariant of a 
class. In the first case, the condition is evaluated at postcondition time of the 
operation, and, if true, each event is sent to each target. The effect of this constraint in 
a given operation is, therefore, to extend its postcondition by taking into account the 
performance of the action.  In the second case, the action constraint explicitly extends 
a given invariant of a class by specifying events that ought to occur when otherwise 
the invariant would be violated. As pointed out by Kleppe and Warmer, this second 
case could equally well be described by introducing a new operation that has the 
action clause as its postcondition [WK00]. In view of this, our mapping provides a 
translation of the action constraints as part of an operation specification, which can 
also be used for translating the second kind of action clause.  

An OCL operation specification with action clauses would in general be of the 
following form:  

context classname::operation(args) 
[pre: pre-expression] 
[post: post-expression] 
action: [if <condition>] to <targetSet> send <eventSet> 

We consider first the basic case when the targetSet and the eventSet are singleton 
sets containing respectively a target receiver and an action. The mapping consists of 
four steps:. Step 1 introduces a new operation, say checkConditionTrue, for checking 
the truth of the action condition. This operation is defined as an Object-Z operation 
expression that reflects the Boolean expression of the condition and uses query 
methods to access the condition’s attributes. Step 2 defines an operation 
eventOperation, as a conjunction operation between the checkConditionTrue and the 
target.action; step 3 demotes the current operation to operation0 to include just its 
basic pre and postconditions, and step 4 redefines the given operation as a sequential 
operation expression of the form operation0  ;  eventOperation.  In the case of more 
than one action clause specification for the same operation, steps 1 and 2 have to be 
repeated for each action clause, and step 4 should be the sequential composition of 
operation0  with the conjunction of the different eventOperations.  

Let us consider the following action clauses example taken from [WK00]: 
context CustomerCard::invalidate() 
[post: valid = false] 
action: if Cust.special to Cust send politeInvalidNote() 
action: if not Cust.special to Cust send InvalidNote() 

The mapping will generate within the class Cust two operations IsSpecial 
and IsNotSpecial, which respectively check whether the attribute special is true 
or false, within the class CustomerCard two operations 
EventPoliteInvalidNote and EventInvalidNote given by the two conjunction 
compositions  



EventPoliteInvalidNote=CheckIsSpecialTrue∧ Cust.PoliteInvalidN
ote 

EventInvalidNote = CheckIsNotSpecialTrue ∧  Cust.InvalidNote 

where 
CheckIsSpecialTrue = Cust.IsSpecial  

CheckIsNotSpecialTrue = Cust.IsNotSpecial 

The final composite operation 

 invalidate=  
  invalidate0 ; (EventPoliteInvalidNote ∧  EventInvalidNote) 

Another example of OCL action constraint involving parameter passing and its 
translation is given below. 

 
context PersonSystem::speakSomeone(Person p): void 
action: to p send speak() 

 
EventSomeoneSpeak = [ p?:Person ] • p?.speak 
SpeakSomeone = [p?:Person] • p?.self || EventSomeoneSpeak 
 

Note that more elaborate conditions, for instance those using references to query 
operations and/or possibly involving different contexts, step 1 will still generate one 
single operation checkConditionTrue  using the mapping process illustrated in Section 
2.2. 

In more general cases, event clauses could include more than one action and target 
receiver. In the former case, the current semantics of multiple actions does not 
necessarily specify whether the actions are executed sequentially or in parallel 
[WK00]. In our mapping we assume that such actions are in conjunction with each 
other, in the sense that their overall static effect on the dynamic behaviour of the 
system is given by the conjunction of their respective post-conditions. In this case, the 
mapping process for action clauses described above has step 2 extended to allow the 
definition of an eventOperation, as a conjunction operation between the 
checkConditionTrue and the conjunction of the target.actions for each action included 
in the eventSet7. For example, the following OCL action clause   

context Person::compositeOperation(): void 
action: to self send listen, speak 

is mapped into the following Object-Z operation 

compositeOperation = EventsOperations 

where EventsOperations = self.listen ∧  self.speak 

It is important to notice, however, that the conjunctive composition of operations in 
Object-Z is semantically more powerful than the OCL conjunction, as it assumes that 
values of input parameters with the same name are equal. In the current language of 
OCL action constraints there is no means by which such Object-Z semantics for 
conjunctive composition can be captured. A more general solution for the translation 
of complex action clauses into Object-Z would require specialised extensions of the 
OCL action constraint vocabulary to encompass different types of composition of 
actions in the eventSet, such as sequential (;), conjunction (∧ ), choice ([]) and parallel 
(||) compositions. Because of the weaker expressive power of the OCL language such 
compositions of actions will not necessarily be complete with respect to the 
corresponding composition operators of Object-Z.  

Special cases of action clauses with multiple target receivers are those where 
multiple receivers are collection type attributes in the UML/OCL model. Returning, 
for instance, to the PersonSystem model of Figure 7, we could have action constraints 

                                                           
7 Note that if the targetSet includes only one target receiver, each of these target.action will 

refer to the same target, otherwise there will have to be as many as target.actions (with 
different target and different action) to cover the Cartesian product between the targetSet and 
the eventSet.   



defined over the singleton target set <person>, where person is a collection of objects 
of type Person. Two examples are given below: 
  

context PersonSystem::speakAll(): void 
action: to person send speak() 

context PersonSystem::speakSome(): void 
action: to person->select(p|p.opinionIsValued) send speak() 

In the first case, the target set comprises all objects in the system set person, each 
of which receives the speak message. In Object-Z, this is mapped as follows: 

EventAllSpeak = ∀ p:person • p.speak 
speakAll = EventAllSpeak 

 
In the second case the mapping would generate the following Object-Z operation:  

EventSomeSpeak = ∀ x:{p:person|p.opinionIsValued} • x.speak 
speakSome = EventSomeSpeak 

4 Tool Support  

Based upon the mapping described in this paper, a tool support has been implemented 
in order to provide an automatic generation of comprehensive Object-Z formal 
specifications from a user-defined UML class diagram models incorporating OCL 
constraints. To the best of our knowledge, this is the only tool available supporting a 
translation of UML model constructs and OCL constraints into Object-Z.  Dupuy et 
al’s mappings for OMT static models are supported through a CASE tool [SD], but 
model constraints must be provided as annotations already specified in the Z language.   

The tool comprises of 5 main functionalities: (1) a user input, (2) UML/OCL model 
validation, (3) translation of (UML) model constructs, (4) translation of the (OCL) 
model constraints and (5) visualisation of the resulting Object-Z specification. The 
user interface allows the user to specify UML models incorporating OCL constraints 
in a straightforward fashion: these models are entered as text files, based upon a 
customized XML Document Definition Type (DDT). As part of a standard 
menu/toolbar driven application, the interface offers conventional file storage 
facilities, and, in particular, provision of a custom text editor, which facilitates more 
efficient specification and presentation of user input.  The user-input is then validated 
to check whether the UML model does comply with the UML standard.  

Assuming that there are no critical errors, the UML/OCL model is compiled into an 
internal representation of the corresponding Object-Z specification. The compilation 
process first translates the UML model into an Object-Z skeleton and then translates 
OCL constraints into Object-Z predicates. This ordering is necessary because all 
model constraints are context-specific. Even though the tool does not support full 
OCL syntax and OCL type conformance checking, it does ensure that the translated 
predicates have meaning within the context of the UML model itself. In addition, a 
certain degree of control over the compilation of the Object-Z specifications is 
provided.  In particular, users have the option of viewing subclasses in a flattened 
format, with super-class features imported and conjoined with those of the child.  The 
OCL constraints are translated on a class-by-class basis. In cases of constraint errors 
detection (e.g. a reference to a non-existent or non-accessible UML model feature), 
helpful error messages are reported back to the user, and the faulty OCL constraint is 
included in the final Object-Z specification but with its initial OCL syntax, instead of 
Object-Z translation. This is because the tool does not offer a visualisation of the 
initial UML model, and we believe that inspection of the Object-Z output would help 
the user to understand the causes of the OCL constraint errors.  An example of a 
screenshot of the tool is given in Figure 8. 

From an UML perspective, the automated translation covers all of the most 
commonly used modelling constructs, such as class attributes, operations, associations 
and generalisation. Fowler [FS00] suggests that such features “will comprise 90 
percent of [a modeller’s] effort in building class diagrams”. The tool support goes 



beyond this, covering also features like visibility of attributes, recognition of different 
kinds of associations, frozen variable parameters, provision for association classes and 
enumeration types.   

From the OCL perspective, the vast majority of OCL features and operations may 
be used in the input OCL constraints. The main omission are some mathematical 
operations over integers and real (e.g. “abs”, “max”), “if….then…else”, the collection 
operations “collect” and “iterate”, and the sequence operation “subsequence”.  A 
preliminary implementation of the action constraints has also been incorporated in the 
current version of the tool. 

A detailed description of the design and Java implementation features of the tool 
can be found in [DR02]. The implementation and user documentation can be obtained 
from the first author. 

5  Conclusion & Related Work 

This paper provides a mapping process of UML models incorporating OCL 
constraints into full Object-Z specifications. Extensions to UML class constructs have 
also been suggested, which make the initial UML models more informative and 
facilitate the generation of well-defined Object-Z classes.  A recent extension of the 
OCL language regarding the use of action constraints is also covered by our mapping 
and a translation process for such constraints into Object-Z operation have been 
proposed. A tool support has also been developed, which allows automated generation 
of Object-Z specifications from (XML) type of UML/OCL model.  

A number of approaches have been adopted to integrate formal and informal 
techniques.  The precise UML group (pUML), for instance, focuses on formalising 
UML by developing rigorous semantics for its modelling constructs [FELR98].  
Translation of UML models into formal specifications is not an objective, though the 
group argues that formalisation of the UML is a prerequisite for such work. Mostly 
relevant to this paper are Kim and Carrington’ work on Z semantics for UML [KC00], 
and Beckert et al.’s work on first-order semantics for Object Constraint Language 
[BKS02]. 

Kim and Carrington have suggested a precise and descriptive semantics for basic 
UML modelling concepts using Object-Z, and a formal description for UML class 
constructs. For instance modelling concepts such as “types”, “attributed”, 
“parameters” have been defined in terms of specific Object-Z classes, basic UML 
principles of an UML class construct have also been precisely defined as invariants of 
a special-purpose Object-Z class called “UMLClass” (e.g. attributes have unique 
names, operations have unique signatures, ect..). Similar specifications have been 
given for associations. Such formal Object-Z description of UML class constructs 
provides a precise definition of the UML rules used for developing well-formed class 
diagram models. Building upon this formal underpinning, Kim and Carrington have 
then proposed a formal mapping of UML classes and associations into Object-Z 
classes. Our work builds upon these results and complements them by providing also 
the translation of OCL constraints within the generated Object-Z skeleton. The formal 
Object-Z meta-model of UML constructs is implicitly considered in our tool support 
during the validation phase of the user input, whereas the Object-Z skeleton generated 
by our mapping is, in most respects, similar to that generated by Kim and Carrington’s 
formal mapping. However, in the absence of extensions to UML syntax, Kim and 
Carrington’s resulting Object-Z specifications lack key features such as initial 
configuration, operation ∆-list, fully specified operation return type, which have 
instead been included in our mapping by proposing appropriate extension to the UML 
class constructs. In our opinion, such extensions help complete the UML models. 
Furthermore, by translating OCL constraints, our mapping provides a complete 
Object-Z specification with invariants and predicates for operations.  

Beckert et al. have proposed in [BKS02] a declarative formal representation of 
OCL using first-order predicate logic.  The main difference between this approach and 
ours is that we express the formal specification of an UML/OCL model using Object-
Z language and therefore relaying on a theorem prover for Object-Z, whereas the 



choice of first-order logic as formal language allows the use of existing interactive 
theorem provers for classical logic. Their choice of formal language has mainly be 
driven by the need of facilitating formal reasoning and verification of OCL 
constraints. The driving motivation of our work relies instead on the need of providing 
refinement of informal system modelling into formal system descriptions, which 
preserves some of the features (e.g. object-orientation) of the initial informal model, 
and which can eventually lead to a formal specification for verification purposes. 
Given the first-order classical logic underpinning of Object-Z specification and the 
well defined process of generating Object-Z predicates from OCL constraints, we 
believe that Beckert et al. approach could, for instance, be equally applied to our 
Object-Z specifications, perhaps in a more direct way in order to facilitate automated 
verification of our resulting Object-Z specifications.  

Our formal mapping of UML/OCL model relates therefore to both the above 
existing work.  At the other end of the spectrum, there are efforts to introduce more 
intuitive graphical extensions to formal methods, including Dick and Loubersac’s 
[DL91] treatment of VDM and Duke and Rose’s [DR00] extensions to UML class 
diagrams capturing Object-Z’s promotion and composition of operations using the 
sequential, conjunctive, choice and parallel operators.    

Both the mapping and the tool support presented in this paper could further be 
extended. The mapping of UML models could, for instance, be expanded to cover the 
translation of more complex UML constructs such as interfaces, abstract classes, 
qualified associations and static class features. We believe that all these constructs 
could find a corresponding representation in Object-Z specifications.  The mapping 
process of the OCL constraints could also be extended to include the translation of 
OCL complex action constraints. For instance, the OCL language, and 
correspondently our mapping, could be extended to allow the use of composite 
operators such as parallel, sequential and disjunctive operators. This would allow not 
only a sound and complete translation of OCL action constraints into Object-Z 
composite operations, but also a more expressive way of describing system’s actions 
within the OCL specification. Finally, our tool could also be enhanced to cover in 
particular a more exhaustive automatic translation of OCL action constraints, as well 
as the mapping of those OCL features mentioned in Section 4 which are not yet 
implemented.  

Overall, it is hoped that by building upon the most popular informal modelling 
technique, this work can contribute towards the overall aim of making formal 
specifications into a natural process of model refinement as opposed to a competing 
design paradigm.  The analysis shown in this paper of the links between informal and 
formal modelling methodologies provides a means for gaining more mature 
understanding and use of both technologies.  For modellers familiar with either the 
UML or Object-Z but not both, the conceptual analysis described in this paper and the 
possible use of an associated tool offers a way to familiarise with a new object-
oriented technology.  

 
 



 

Fig. 7. Example run of the generation of an Object-Z class using our tool support 
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