
Mapping UML Models incorporating OCL Constraints
into Object-Z

David Roe, Krysia Broda, and Alessandra Russo

Department of Computer Science, Imperial College London
180 Queen's Gate, London SW7 2BZ

{ar3}@doc.ic.ac.uk

Imperial College Technical Report No. 2003/9

Abstract. Focusing on object-oriented designs, this paper proposes a mapping
for translating systems modelled in the Unified Modelling Language (UML)
incorporating Object Constraint Language (OCL) constraints into formal
software specifications in Object-Z. Joint treatment of semi-formal model
constructs and constraints within a single translation framework and conversion
tool is novel, and leads to the generation of much richer formal specifications
than is otherwise possible. This paper complements previous analyses by
paying particular attention to the generation of complete Object-Z structures.
Integration of proposals to extend the OCL to include action constraints also
boosts the expressivity of the translated specifications. The main features of a
tool support are described.

Keywords. UML, OCL, Object-Z, constraints, actions.

1 Introduction

The Unified Modelling Language (UML) provides a graphical notation to express the
design of object-oriented software systems. It has become the de facto industry
standard for software design, its widespread use encouraged through intuitive appeal,
considerable educational resources, and the availability of CASE tools. Quality and
consistency in design is enhanced through the development of a rolling UML standard
under the auspices of the Object Management Group (OMG) [OMG01].

UML class diagrams are not usually sufficiently precise to set out all relevant
aspects of a specification. Beyond straightforward constraints, for example
concerning association multiplicities, there exist a range of complex and sometimes
subtle restrictions that are not easily conveyed in diagrammatical form. The Object
Constraint Language (OCL) has been integrated into the UML standard as a means of
precisely expressing side-effect-free constraints on models. Broadly, these fall under
the headings introduced by Meyer [M88]. Invariants are used to express a range of
restrictions over class features. System behaviour is then clarified through pre and
postconditions, describing, respectively, the applicability and impact of particular
operations.

On the other hand, formal specification languages are intended to provide precise
and complete models of proposed software systems. Their goal is the unambiguous
description of system structure and functionality [DR00]. Like other formal
techniques, Object-Z, in particular, employs strict notations of mathematics and logic
that permits rigorous analysis and reasoning about the specifications. Its main
strength lies in providing a clear means of establishing consistency between model
design and implementation, as well as a refined staging post towards executable code.

Semi-formal modelling methodologies and formal specifications therefore should
be seen as complementary techniques, each with their own particular strengths and
limitations. Bruel and France [BF98] characterize informal structured techniques
(ISTs) as emphasizing ease-of-use and understandability at the cost of rigor, and

formal specification techniques (FSTs) as emphasizing formality at the expense of
ease-of-use and understandability. As such, there are clear benefits in developing
integrated methodologies.

Previous research has helped to identify weaknesses in the semi-formal approach.
In particular, it has been recognised that some UML modelling constructs lack precise
semantics, sometimes leading to differences of interpretation, and therefore
inconsistencies between design and implementation [FELR98]. Conceptual mapping
of UML constructs with Object-Z has helped to clarify such issues, by highlighting
contentious areas and enforcing an informed interpretation of meaning [KC00]. We
believe that previous analysis has provided a sufficient semantic base for the UML in
which model constraints can now be investigated and mapped.

This paper provides a mapping from an integrated model of UML class diagrams
and OCL specifications into an Object-Z formal specification. This mapping builds
upon existing work on the formal specification of diagrammatical modelling
constructs, which enables the generation of class skeletons in Object-Z, and extends it
by giving a joint treatment of model constructs and constraints. This leads to richer
formal specifications than has otherwise been proposed. Arguably, joint treatment of
UML constructs and OCL constraints may be seen as a prerequisite for the
development of practical, but formal, modelling tools, which would allow rigorous
reasoning about the system models developed by the software engineers.

By building upon the most popular informal modelling techniques, formal
specification may be seen, as it should be, as a natural process of model refinement as
opposed to a competing design paradigm. Overall, it is hoped that continued analysis
of the links between informal and formal modelling methodologies should lead to a
more mature understanding and use of both technologies, both in the industrial and
educational contexts.

The remainder of this paper is organised as follows. Section 2 describes the
translation mechanism of UML models with OCL constraints into Object-Z. Section 3
presents additional features to the OCL aimed at the generation of complete Object-Z
structures, and also shows how recent proposals to extend the OCL to include action
constraints may be applied to the formal specification domain. Section 4 describes the
main features of a developmental tool support. Section 5 concludes the paper by
comparing our work with existing approaches to methods integration and highlighting
some areas for further work.

2 Mapping UML and OCL Constructs into Object-Z

The aim of our work is to define a mapping between UML class diagrams
incorporating OCL constraints and Object-Z formal specifications. The choice of
Object-Z as our target formal specification language has been driven by the following
considerations. Firstly, Object-Z provides a uniform representation formalism and
semantics for expressing both diagrammatical models (e.g. UML class diagrams) and
constraints (e.g. OCL expressions). Secondly, the language preserves most features of
the object-oriented structure of informal UML/OCL models. This has two main
advantages: (i) Object-Z models seem to be more accessible to software engineers
than any other standard formal specification language such as pure first-order logic,
and (ii) errors detected within the Object-Z specification produced by our mapping
could more easily be traced back into the initial UML/OCL model.

The mapping is here described informally but defines a unique relation between
UML and Object-Z features, as formalised within the translation tool described in
Section 4. The underlying functional translation does not cover every construct of the
UML standard, but focuses on class diagram models. The mapping of the UML
diagrammatical modelling constructs mainly defines class signatures for the resulting
Object-Z formal specification, providing the concrete syntax employed in the
translated OCL constraints. Only a few features of the class diagram, such as
multiplicity of attributes and associations, give rise to additional Object-Z predicates.
In addition, certain restrictions have been imposed over the UML standards in order to
guarantee the integrity of the translated specifications.

In Section 2.1 we present our mapping between UML class diagrams into Object-Z
skeleton structures and signatures, following Kim & Carrington’s Object-Z semantic
definition of UML class diagrams [KC00]. These structures provide the formal
context for the examination and translation of associated OCL constraints. In Section
2.2, we then present the mapping between the OCL constraints into Object-Z
predicates within the context of the structures generated from the UML diagrams.

2.1 Formalising UML Model Constructs

The translation of the UML class diagrams (without OCL) into Object-Z structures is
presented here using examples based on the UML diagram given in Figure 1.

Classes. Consider the simple UML class diagram of Figure 1. Ordinary UML
classes like Account and Person may be mapped into an Object-Z class construct of
the same name, with class features transcribed to the enclosed schemas defining state
variables, constants and class operations. Features marked public (+) are included
within the class construct visibility list, while those that are unadorned or marked
private (-) are not.

Fig. 1. A UML class diagram for persons and bank accounts

Attributes. UML attributes are mapped as variables of the same name, declared
within the state schema of the corresponding Object-Z class construct or within the
separate constant definition schema when marked with UML’s {frozen} property
string. Attribute type declarations are required for translation to Object-Z, which
supports a range of well known domains corresponding to most basic programming
types.1

User-defined classes may also be employed as types within UML models and
Object-Z specifications; for example, a person’s sex might have been enumerated
(male, female) within the UML model corresponding to the definition of a named
domain, Sex = {male, female} in Object-Z.

Attributes with multiplicities greater than one may be mapped as finite sequences
of the base UML type, combined with a cardinality restriction. A person’s
dateOfBirth attribute therefore corresponds to the declaration of the state variable
dateOfBirth: seq Z and predicate #dateOfBirth = 3. Derived attributes, marked (/) in
the UML, are distinguished from primary variables within Object-Z schema through
the ∆ separator.

Operations. UML class operations may be translated as individual Object-Z
operation schema with the same name, with parameters and return values mapped as
input and output communication variables adorned (?) and (!) respectively. Although
parameter names are optional within the UML, and return values are not named, both
must be supplied for the purposes of translation to Object-Z. As with attributes, UML
operations marked public are included within the class construct visibility list.

Based on the discussion so far, Figure 2 provides a translated class skeleton for
class Account2.

1 Indeed, since the UML is not prescriptive on types, there seems no reason why specialised

Object-Z domains should not be included directly in UML class diagrams, even where
implementation languages lack direct support. For example, class Account’s overdraftLimit
has been specified as a non-negative quantity (natural number) in Figure 1.

2 The visibility list in Object-Z models is here denoted with the symbol “|”.

Account
-balance: float
-overdraftLimit: natural

+withdraw(float amount): void
+deposit(float amount): void
+fundsAvailable(): float {query}

Person
-name: string
-dateOfBirth[3]: integer {frozen}
-/totalBalance: float

+addAccount(Account a): void
+removeAccount(Account a): void

0..3 1

Account
-balance: float
-overdraftLimit: natural

+withdraw(float amount): void
+deposit(float amount): void
+fundsAvailable(): float {query}

Person
-name: string
-dateOfBirth[3]: integer {frozen}
-/totalBalance: float

+addAccount(Account a): void
+removeAccount(Account a): void

0..3 1

Associations may be represented through the instantiation of additional state
attributes in Object-Z, depending upon the navigability specified across the UML
association line.3 Figure 1 depicts navigability from class Person to class Account,
implying an additional attribute within the Object-Z class Person. Its name is mapped
from the target class rolename (since none is specified in this example, account by
default) and its type is the power set of the target class. Bi-directional associations are
mapped as if they were two separate uni-directional associations. Association
multiplicities are reflected in additional state axioms constraining the size of such sets,
in this case 0 <= account <= 3. Figure 3 provides a mapping for class Person,
reflecting the navigable association with class Account. The class association
management operations are described later.

Fig. 2. Object-Z class skeleton for class Account.

Aggregation and composition. UML’s open diamond merely distinguishes the
compound class from its parts, “no more, no less” [BRJ99]. Translation of
aggregations therefore proceeds much as for ordinary associations, with the compound
class construct containing an additional state variable of type power set of the part
class. UML composition, by contrast, implies that instances of the part class may
belong to just one instance of the compound class. Mapping is straightforward in that
Object-Z provides a notational shorthand (©) denoting unshared containment.
Composition between an account and the transactions made on that account, for
example, may be captured through the declaration of a state variable transactions:
Transaction© in the state schema of class Account.

3 This treatment assumes that control and management of the association is locally based.

Alternatively, associations may be centrally controlled through a separate database structure
maintaining a list of link instances. Roe [DR02] outlines proposals for specifying central
control of associations within a UML model, and provides a mapping to Object-Z.

name: seq char
account: P Account
∆
totalBalance: R
0 <= #account <= 3

Person

dateOfBirth: seq Z

#dateOfBirth = 3

| ()

name: seq char
account: P Account

totalBalance: R
0 <= #account <= 3

Person

dateOfBirth: seq Z

#dateOfBirth = 3

| ()

balance: R
overdraftLimit: N

amount?: R
withdraw

fundsAvailable!: R
fundsAvailabl

Account

amount?: R
deposit

| (withdraw, deposit, fundsAvailable)

withdraw

withdraw

fundsAvailabl

fundsAvailable

Account

Fig. 2. Object-Z class skeleton for class Person reflecting the UML association with class
Account

Association classes permit class like features to be added to UML associations.
Such classes may be formalised in Object-Z as described above, but with the addition
of two state variables corresponding to the rolenames and types of the classes
participating in the association. Depending upon the navigability specified across the
association line, the participating class constructs will contain an additional attribute
whose type is a power set of the association class, and constrained in size by the
multiplicity specified at the opposite association end.

Generalisation. Mapping of UML generalisation is straightforward in that Object-
Z provides a simple notation denoting inheritance, with child classes naming inherited
classes just below their visibility list. Specialised subclass features may then be
mapped as described earlier.

2.2 Translating OCL Constraints into Object-Z Notation

OCL is intended as a precise, unambiguous language but at the same time one that
may be used by mainstream practitioners of object technology. As a result, its
designers consciously avoided the very strict notations employed in formal
specification languages including Object-Z. Warmer and Kleppe [WK99] argue that
“all experience with formal or mathematical notations leads to the same conclusion:
The people who can use the notation can express things precisely and unambiguously,
but very few people can really use such a notation”.

In the context of full grammars, nevertheless, differences between OCL constraint
and Object-Z predicate notations are not substantial. Moreover, a fairly clear
distinction can be made between restrictions specified over single-valued model
features (e.g. a class attribute), and those concerning higher order groups or
collections of objects (e.g. an association set). In the former case, OCL expressions
are likely to require only modest amendment to form valid Object-Z predicates. But
in the latter case, OCL and Object-Z syntaxes diverge, precisely because formal
notations dealing with sets and sequences are typically more complex.

Mapping basic OCL features. OCL constraints begin with a statement of the
constraint context, either a model class in the case of invariants or a class operation in
the case of preconditions and postconditions. This is followed by a keyword
indicating the constraint type and a Boolean expression formalising the constraint in
terms of model features accessible from the contextual class. Returning to Figure 1,
class Account may be formalised in OCL as follows:

context Account
inv: balance + overdraftLimit >= 0

context Account::withdraw(float amount): void
pre: amount <= balance + overdraftLimit
post: balance = balance@pre - amount

context Account::deposit(float amount): void
post: balance = balance@pre + amount

context Account::fundsAvailable(): float fundsAvailable
post: result = balance + overdraftLimit

OCL invariants are mapped into either predicates of the class state schema or
predicates of the class constant definition schema, describing restrictions which must
be satisfied by all instances of a particular class at all times. Preconditions and
postconditions meanwhile are transcribed to the predicate section of the corresponding
Object-Z operation schemas, again with identical semantics. Preconditions must be
satisfied just before execution of the operation and postconditions must hold on
completion. No attempt is made in either technology to describe what action should
be taken in the event that a constraint is broken.

Joint mapping of the contextual model constructs ensures that the concrete
constraint terms will have meaning within equivalent Object-Z predicates. And in
these examples, the operations have universal meaning. The boolean expression
components of these and similar OCL constraints therefore also form valid Object-Z
predicates with only very minor modifications, as shown in Figure 4. References to
object attributes in OCL postconditions are translated in primed (after execution)
format, except where appended by the @pre keyword. Similar references in OCL
preconditions are translated into an unprimed format. Return value names are
substituted for OCL’s result keyword in Object-Z.

Fig. 3. Class Account with state and operation predicates

OCL constraints may also contain references to contextual class operation that
return values. Because OCL is intended to be side-effect-free, only references to query
operations are permitted, i.e. those operation that return a value but do not alter an
object state. The mapping of such constraints will replace the references to the query
operations with the translation of the right-hand side of their respective result post-
conditions.

For instance, consider the OCL constraint

context smallCircle::Area(): integer
post: result = Π * radius * radius

context smallCircle

inv: Area() ≤ limit

The mapping will include in smallCircle class schema the invariant

Π * radius * radius ≤ limit

OCL supports a range of predefined basic types including Booleans, integers, real
numbers and strings. In each case, standard operations over these types are predefined
in OCL and Object-Z and so notational translation is largely a matter of substitution of
formal symbols in place of the natural language operators preferred in OCL. Boolean
operators, for example, are written naturally in OCL: not, and, implies and so on.
Basic type literals, for example true, 2.4 or ‘hello’, may be used freely in both OCL
and Object-Z constraints.

Mapping of OCL Constraints over Collections of Objects. Most UML associations
define a relationship between one object and a group of other objects. OCL provides
an abstract type Collection, and three concrete collection types, set, sequence and bag,
each supporting predefined operations facilitating the expression of constraints over
groups of objects. Table 1 summarises those operations defined over all OCL
collection types, and provides equivalent Object-Z notation4. Operations shown in the

4 See Warmer and Kleppe [WK99] for descriptions of operations.

| (withdraw, deposit, fundsAvailable)

balance: R
overdraftLimit: N
overdraftLimit >= 0
balance + overdraftLimit >= 0

amount?: R
withdraw

amount? <= balance + overdraftLimit
balance’ = balance - amount?

Account

amount?: R
deposit

balance’ = balance + amount?

fundsAvailable!: R
fundsAvailable

fundsAvailable! = balance + overdraftLimit

| (withdraw, deposit, fundsAvailable)
balance: R

overdraftLimit >= 0
balance + overdraftLimit >= 0

balance: R

overdraftLimit >= 0
balance + overdraftLimit >= 0

amount?: R
withdraw

balance’ = balance -

amount?: R
withdraw

balance’ = balance -

Account

amount?: R
deposit

amount?: R
deposit

fundsAvailable!: R
fundsAvailable

fundsAvailable! = balance + overdraftLimit

fundsAvailable!: R
fundsAvailable

fundsAvailable! = balance + overdraftLimit

lower half of the table employ an iterator variable, which scans across all elements in
the collection returning either a new collection or Boolean value as a result.

Table 1. Operations defined over all OCL collection types

Operation : description
OCL syntax

Object-Z notation5

size() : the number of elements in the collection
collection->size() #collection
count(object) : the number of occurrences of an object in the collection
collection->count(object) #{ c:collection | c = object }
includes(object) : true if the object is an element in the collection
collection->includes(object) object ∈ collection
includesAll(collection) : true if all elements of the parameter collection are elements

of the current collection
collection->includesAll(parameter) parameter ⊆ collection
isEmpty() [notEmpty()] : true if the collection contains no/one or more elements
collection->isEmpty()[notEmpty()] collection =[<>] ∅
sum() : the sum of all elements in the collection where the element type supports

addition
collection->sum() Σc:collection
collection->sum(feature) Σc:collection • c.feature

Operations that iterate over the elements in a collection6:

select(b-exp) [reject(b-exp)] : results in all elements (e) in the collection for which

<b-exp> is [not] true
collection->select[reject](e | <b-exp>) {e | [¬]<b-exp> }
collect(expression) : results in a new collection, derived from, but containing different

objects to the original collection based upon <expression>.
collection->collect(e | <expression>) {e:collection | <expression>}
forAll(b-exp) : true if < b-exp > is true for all elements in the collection
collection->forAll(e | <b-exp>) ∀ e:collection • <b-exp>
exists(b-exp) : true if < b-exp > is true for at least one element in collection
collection->exists(e | <b-exp>) ∃ e:collection • <b-exp>

OCL also supports a range of well known operations specific to sets such as union,

intersect, minus, symmetricDifference, including and excluding. Specialised sequence
operations likewise are provided in OCL including first, last, at, append and prepend.
In all cases translation to Object-Z notation largely entails the straightforward
substitution of formal symbols for natural language operator names. OCL set and
sequence literals, e.g. Set{1..10} or Sequence{23,11,67}, likewise require only
minor amendment in Object-Z notation.

These notational transformations are best illustrated with some examples.
Returning to class Person of Figure 1, derivation of the secondary variable
totalBalance and the class association management operations may now be formalised
in OCL as follows:

context Person
inv: totalBalance = account->sum(balance)

context Person::addAccount(Account a): void
pre: not(account->includes(a))
post: account = account@pre->including(a)

context Person::removeAccount(Account a): void
pre: account->includes(a)
post: account = account@pre->excluding(a)

5 Object-Z translations employ set limiters {} as required. Table 1 collection operations also

apply to sequences.
6 In a fuller syntactic form, the iterator type may also be specified. In a translation context, this

is only helpful in the case of OCL’s generic iterate collection operation. This is considered
beyond the scope of this paper.

Adding some further constraints for illustrative purposes

context Person
inv: account->exists(a | a.balance >= 0)
--persons may not simultaneously overdraw all accounts

context Person
inv: account->forAll(a | a.overdraftLimit <= maxLimit)
--each person’s accounts are subject to some maximum
 overdraft limit

Based on the patterns described in Table 1, the earlier skeleton construct for class
Person may now be enriched with a variety of translated state and operation
predicates, as shown in Figure 5. OCL invariants are transcribed to the lower
predicate section of the class state schema, and pre and postconditions to the relevant
operation schema. In general, translation of OCL constraints over association partners
according to these basic patterns poses few problems. However, it is worth noting that
where features of association partners are referenced in OCL constraints, such features
should be both strictly navigable and also visible to the external environment in order
to guarantee correctness of the corresponding Object-Z predicates.

Fig. 4. Class Person with state and operation predicates

3 Extensions

This paper has highlighted some modest restrictions to the UML and OCL standards
needed to guarantee correctness of the translated Object-Z specifications: declaration
of attribute types are required; likewise, operation parameters and return values must
be named. Some further proposals are outlined below, in a translation context, each
aimed at the generation of complete and more expressive Object-Z structures. The
tool support described in Section 4 incorporates most of these features.

3.1 Initial Configuration

Object-Z class constructs also contain an initial schema (always named INIT) which
sets out additional predicates involving class features. An object is said to be in its
initial configuration whenever the values of the class features satisfy the initial schema
predicates.

UML attribute declarations may optionally specify a default initial value, which
might obviously be mapped as a class initial schema axiom. However, initial
conditions might not be restricted solely to statements of equality. Moreover, they
may equally apply to object associations. For example, we may wish to specify that

account: P Account
maxLimit: R
∆
totalBalance: R
0 <= #account <= 3
totalBalance = Σ a:account • a.balance
∃ a:account • a.balance >= 0
∀ a:account • a.overdraftLimit ≤ maxLimit

Person
| (addAccount, removeAccount)

a?: Account
addAccount

a? ∉ account
account’ = account ∪ {a?}

a?: Account
removeAccount

a? ∈ account
account’ = account \ {a?}

account: P Account
maxLimit: R

totalBalance: R
0 <= #account <= 3
totalBalance = a:account • a.balance

a:account • a.balance >= 0
a:account •

Person
| (addAccount, removeAccount)

a?: Account
addAccount

a? account
account’ = account {a?}

a?: Account
addAccount

a? account
account’ = account {a?}

a?: Account
removeAccount

a? account
account’ = account \ {a?}

a?: Account
removeAccount

a? account
account’ = account \ {a?}

instances of class Person initially have no bank accounts. In either case, such
conditions cannot be expressed easily in the UML.

It is proposed that initial conditions be expressed using OCL definition constraints.
These are normally used to define pseudo-attributes with the aim of simplifying and
avoiding repetition in complex OCL expressions, but provide a convenient mechanism
for expressing initial configurations. Taking the example above, we may write:

context Person
def: let INIT : boolean = (account->isEmpty())

which translates as the initial schema predicate:
account = ∅

The OCL expression defines a pseudo-attribute INIT of type boolean, like Object-
Z’s INIT schema evaluating true when a person’s account set is empty and false
otherwise. This amounts to an elevation of the INIT classifier to reserved status in
OCL definition constraints. Beyond this, ordinary OCL definition constraints would
have to be mapped as full attributes or operations of the corresponding Object-Z class
construct. In the context of translations to formal specifications, it is suggested that
such features are better specified within the UML model itself.

3.2 Operation delta-lists

Consider the following hypothetical operation formalised in OCL:

context someClass::changeState(): void
post: attribute1 = attribute2

Postconditions are merely statements of what is true on completion of an operation.
Tempting as it is to read this postcondition left to right as an assignment, it is not
possible to know which, or indeed whether both, of the attributes will change when
the changeState method is executed. The impact of the operation could be clarified
through additional postconditions stating explicitly which class features do not
change, but this requirement is heavy in the case of sophisticated classes. Under the
current standard therefore, OCL operation constraints retain a degree of ambiguity.

Object-Z operation schemas simplify the problem by including a ∆-list, explicitly
stating those state variables subject to change during the execution of an operation. In
order to facilitate a straightforward translation, it is proposed that the OCL syntax be
extended to include a new keyword modifies in the context of operations. Class
Account’s withdraw operation would, for example, be clarified as follows:

context Account::withdraw(float amount): void
modifies: balance
--pre and postconditions as before

Drawing on the standard UML notation, those operations that do not alter an
object’s state may be marked modifies: query mapping to an empty ∆-list in Object-Z.

3.3 System classes

Dupuy et al [DLC97] propose that each UML class should map to two Object-Z class
constructs, the first describing class features and the second describing the set of
existing instances of the class and operations on this set. Section 2 of this paper
focused on the first aspect, i.e. the translation of UML classes as templates for object
instantiation. Like Kim and Carrington [KC00], we believe that the second function is
better treated through the specification of a system level class. Such classes are
normally explicitly defined within Object-Z specifications but are typically left
implicit in a UML class diagram.

The system class may be represented diagrammatically as a class box which
physically contains the other model classes, see Figure 6. The use of a new
«SystemClass» class stereotype helps to make this role a little clearer. The mapping
of the contained constructs proceeds as described in earlier sections. The system class
construct will incorporate set attributes corresponding to all the contained model

classes, each constrained by the cardinality restrictions specified in the UML diagram
(a maximum of 50 persons is imposed for illustrative purposes).

Fig. 5. System-level class containing other model classes

The UML PersonSystem system class could, for instance, be accompanied by the

following package of OCL constraints:

context PersonSystem
inv: person->forAll(p | person->includesAll(p.friend))

context PersonSystem
inv: person->includesAll(optimist)
inv: person->includesAll(pessimist)

context Optimist::speak(): string response
modifies: query
post: result = ‘the glass is half full’

context Pessimist::speak(): string response
modifies: query
post: result = ‘the glass is half empty’

The first constraint reflects the fact that for any class C, attributes of the same type
C should belong to the system sets; in this case, each person’s friends must also be
members of the system person set. The next constraint is needed to denote sub typing;
i.e. all optimists and pessimists are persons. Polymorphism is reflected in the
specialised notation (↓) used in the declaration of the system person set. The
remaining constraints formalise polymorphic behaviour within the Person class
hierarchy. The integrated UML/OCL model given above can then be mapped into the
following Object-Z specification shown in Figure 7.

Fig. 6. Object-Z system specification

Optimist

Pessimist

Person

+speak(): string response

0..50

<<SystemClass>>
PersonSystem

*
*

friend

Optimist

Pessimist

Optimist

Pessimist

Person

+speak(): string response

0..50

<<SystemClass>>
PersonSystem

*
*

friend

person: P ? Person
optimist: P Optimist
pessimist: P Pessimist
0 <= #person <= 50
optimist 5 person
pessimist 5 person
[p: person • p.friend 5 person

PersonSystem Optimist
Person

response! = ‘the glass is half full’

speak

Person

!response: seq char
speak

Pessimist
Person

response! = ‘the glass is half empty’

speak

person: P ? Person
optimist: P Optimist
pessimist: P Pessimist
0 <= #person <= 50
optimist ⊆ person
pessimist ⊆ person
∀ p: person • p.friend ⊆ person

PersonSystem Optimist
Person

response! = ‘the glass is half full’

speak

Optimist Optimist Optimist
Person

response! = ‘the glass is half full’

speak

response! = ‘the glass is half full’ response! = ‘the glass is half full’

speak

Person

!response: seq char
speak

Person Person

!response: seq char
speak

!response: seq char
speak

Pessimist
Person

response! = ‘the glass is half empty’

speak

response! = ‘the glass is half empty’ response! = ‘the glass is half empty’

speak

3.4 Action constraints

The basic OCL constraint types – invariants, preconditions and postconditions – are
static. Specifically, there is no means of specifying that events have happened or will
happen. Kleppe and Warmer [WK00] have proposed an extension to the current OCL
standard to incorporate action constraints. This permits UML operations to be
formalised in terms of sets of events or method calls being sent to a target set of
receivers accessible or navigable from the sender context. It is claimed that the
incorporation of action constraints significantly improves the expressivity of the OCL
[WK00]. In this section we propose a way of mapping such action constraints into
Object-Z specifications, by capturing the static properties that such constraints would
impose on the dynamic system behaviour.

Syntactically, OCL action constraints are specified in terms of a comma-separated
list of included actions or events, a target set of receivers, and an optional guard
condition:

action: [if <condition>] to <targetSet> send <eventSet>

In [WK00] it is suggested that such constraints can be used in two different OCL
contexts, namely as part of an operation specification and as part of the invariant of a
class. In the first case, the condition is evaluated at postcondition time of the
operation, and, if true, each event is sent to each target. The effect of this constraint in
a given operation is, therefore, to extend its postcondition by taking into account the
performance of the action. In the second case, the action constraint explicitly extends
a given invariant of a class by specifying events that ought to occur when otherwise
the invariant would be violated. As pointed out by Kleppe and Warmer, this second
case could equally well be described by introducing a new operation that has the
action clause as its postcondition [WK00]. In view of this, our mapping provides a
translation of the action constraints as part of an operation specification, which can
also be used for translating the second kind of action clause.

An OCL operation specification with action clauses would in general be of the
following form:

context classname::operation(args)
[pre: pre-expression]
[post: post-expression]
action: [if <condition>] to <targetSet> send <eventSet>

We consider first the basic case when the targetSet and the eventSet are singleton
sets containing respectively a target receiver and an action. The mapping consists of
four steps:. Step 1 introduces a new operation, say checkConditionTrue, for checking
the truth of the action condition. This operation is defined as an Object-Z operation
expression that reflects the Boolean expression of the condition and uses query
methods to access the condition’s attributes. Step 2 defines an operation
eventOperation, as a conjunction operation between the checkConditionTrue and the
target.action; step 3 demotes the current operation to operation0 to include just its
basic pre and postconditions, and step 4 redefines the given operation as a sequential
operation expression of the form operation0 ; eventOperation. In the case of more
than one action clause specification for the same operation, steps 1 and 2 have to be
repeated for each action clause, and step 4 should be the sequential composition of
operation0 with the conjunction of the different eventOperations.

Let us consider the following action clauses example taken from [WK00]:
context CustomerCard::invalidate()
[post: valid = false]
action: if Cust.special to Cust send politeInvalidNote()
action: if not Cust.special to Cust send InvalidNote()

The mapping will generate within the class Cust two operations IsSpecial
and IsNotSpecial, which respectively check whether the attribute special is true
or false, within the class CustomerCard two operations
EventPoliteInvalidNote and EventInvalidNote given by the two conjunction
compositions

EventPoliteInvalidNote=CheckIsSpecialTrue∧ Cust.PoliteInvalidN
ote

EventInvalidNote = CheckIsNotSpecialTrue ∧ Cust.InvalidNote

where
CheckIsSpecialTrue = Cust.IsSpecial

CheckIsNotSpecialTrue = Cust.IsNotSpecial

The final composite operation

 invalidate=
 invalidate0 ; (EventPoliteInvalidNote ∧ EventInvalidNote)

Another example of OCL action constraint involving parameter passing and its
translation is given below.

context PersonSystem::speakSomeone(Person p): void
action: to p send speak()

EventSomeoneSpeak = [p?:Person] • p?.speak
SpeakSomeone = [p?:Person] • p?.self || EventSomeoneSpeak

Note that more elaborate conditions, for instance those using references to query
operations and/or possibly involving different contexts, step 1 will still generate one
single operation checkConditionTrue using the mapping process illustrated in Section
2.2.

In more general cases, event clauses could include more than one action and target
receiver. In the former case, the current semantics of multiple actions does not
necessarily specify whether the actions are executed sequentially or in parallel
[WK00]. In our mapping we assume that such actions are in conjunction with each
other, in the sense that their overall static effect on the dynamic behaviour of the
system is given by the conjunction of their respective post-conditions. In this case, the
mapping process for action clauses described above has step 2 extended to allow the
definition of an eventOperation, as a conjunction operation between the
checkConditionTrue and the conjunction of the target.actions for each action included
in the eventSet7. For example, the following OCL action clause

context Person::compositeOperation(): void
action: to self send listen, speak

is mapped into the following Object-Z operation

compositeOperation = EventsOperations

where EventsOperations = self.listen ∧ self.speak

It is important to notice, however, that the conjunctive composition of operations in
Object-Z is semantically more powerful than the OCL conjunction, as it assumes that
values of input parameters with the same name are equal. In the current language of
OCL action constraints there is no means by which such Object-Z semantics for
conjunctive composition can be captured. A more general solution for the translation
of complex action clauses into Object-Z would require specialised extensions of the
OCL action constraint vocabulary to encompass different types of composition of
actions in the eventSet, such as sequential (;), conjunction (∧), choice ([]) and parallel
(||) compositions. Because of the weaker expressive power of the OCL language such
compositions of actions will not necessarily be complete with respect to the
corresponding composition operators of Object-Z.

Special cases of action clauses with multiple target receivers are those where
multiple receivers are collection type attributes in the UML/OCL model. Returning,
for instance, to the PersonSystem model of Figure 7, we could have action constraints

7 Note that if the targetSet includes only one target receiver, each of these target.action will

refer to the same target, otherwise there will have to be as many as target.actions (with
different target and different action) to cover the Cartesian product between the targetSet and
the eventSet.

defined over the singleton target set <person>, where person is a collection of objects
of type Person. Two examples are given below:

context PersonSystem::speakAll(): void
action: to person send speak()

context PersonSystem::speakSome(): void
action: to person->select(p|p.opinionIsValued) send speak()

In the first case, the target set comprises all objects in the system set person, each
of which receives the speak message. In Object-Z, this is mapped as follows:

EventAllSpeak = ∀ p:person • p.speak
speakAll = EventAllSpeak

In the second case the mapping would generate the following Object-Z operation:

EventSomeSpeak = ∀ x:{p:person|p.opinionIsValued} • x.speak
speakSome = EventSomeSpeak

4 Tool Support

Based upon the mapping described in this paper, a tool support has been implemented
in order to provide an automatic generation of comprehensive Object-Z formal
specifications from a user-defined UML class diagram models incorporating OCL
constraints. To the best of our knowledge, this is the only tool available supporting a
translation of UML model constructs and OCL constraints into Object-Z. Dupuy et
al’s mappings for OMT static models are supported through a CASE tool [SD], but
model constraints must be provided as annotations already specified in the Z language.

The tool comprises of 5 main functionalities: (1) a user input, (2) UML/OCL model
validation, (3) translation of (UML) model constructs, (4) translation of the (OCL)
model constraints and (5) visualisation of the resulting Object-Z specification. The
user interface allows the user to specify UML models incorporating OCL constraints
in a straightforward fashion: these models are entered as text files, based upon a
customized XML Document Definition Type (DDT). As part of a standard
menu/toolbar driven application, the interface offers conventional file storage
facilities, and, in particular, provision of a custom text editor, which facilitates more
efficient specification and presentation of user input. The user-input is then validated
to check whether the UML model does comply with the UML standard.

Assuming that there are no critical errors, the UML/OCL model is compiled into an
internal representation of the corresponding Object-Z specification. The compilation
process first translates the UML model into an Object-Z skeleton and then translates
OCL constraints into Object-Z predicates. This ordering is necessary because all
model constraints are context-specific. Even though the tool does not support full
OCL syntax and OCL type conformance checking, it does ensure that the translated
predicates have meaning within the context of the UML model itself. In addition, a
certain degree of control over the compilation of the Object-Z specifications is
provided. In particular, users have the option of viewing subclasses in a flattened
format, with super-class features imported and conjoined with those of the child. The
OCL constraints are translated on a class-by-class basis. In cases of constraint errors
detection (e.g. a reference to a non-existent or non-accessible UML model feature),
helpful error messages are reported back to the user, and the faulty OCL constraint is
included in the final Object-Z specification but with its initial OCL syntax, instead of
Object-Z translation. This is because the tool does not offer a visualisation of the
initial UML model, and we believe that inspection of the Object-Z output would help
the user to understand the causes of the OCL constraint errors. An example of a
screenshot of the tool is given in Figure 8.

From an UML perspective, the automated translation covers all of the most
commonly used modelling constructs, such as class attributes, operations, associations
and generalisation. Fowler [FS00] suggests that such features “will comprise 90
percent of [a modeller’s] effort in building class diagrams”. The tool support goes

beyond this, covering also features like visibility of attributes, recognition of different
kinds of associations, frozen variable parameters, provision for association classes and
enumeration types.

From the OCL perspective, the vast majority of OCL features and operations may
be used in the input OCL constraints. The main omission are some mathematical
operations over integers and real (e.g. “abs”, “max”), “if….then…else”, the collection
operations “collect” and “iterate”, and the sequence operation “subsequence”. A
preliminary implementation of the action constraints has also been incorporated in the
current version of the tool.

A detailed description of the design and Java implementation features of the tool
can be found in [DR02]. The implementation and user documentation can be obtained
from the first author.

5 Conclusion & Related Work

This paper provides a mapping process of UML models incorporating OCL
constraints into full Object-Z specifications. Extensions to UML class constructs have
also been suggested, which make the initial UML models more informative and
facilitate the generation of well-defined Object-Z classes. A recent extension of the
OCL language regarding the use of action constraints is also covered by our mapping
and a translation process for such constraints into Object-Z operation have been
proposed. A tool support has also been developed, which allows automated generation
of Object-Z specifications from (XML) type of UML/OCL model.

A number of approaches have been adopted to integrate formal and informal
techniques. The precise UML group (pUML), for instance, focuses on formalising
UML by developing rigorous semantics for its modelling constructs [FELR98].
Translation of UML models into formal specifications is not an objective, though the
group argues that formalisation of the UML is a prerequisite for such work. Mostly
relevant to this paper are Kim and Carrington’ work on Z semantics for UML [KC00],
and Beckert et al.’s work on first-order semantics for Object Constraint Language
[BKS02].

Kim and Carrington have suggested a precise and descriptive semantics for basic
UML modelling concepts using Object-Z, and a formal description for UML class
constructs. For instance modelling concepts such as “types”, “attributed”,
“parameters” have been defined in terms of specific Object-Z classes, basic UML
principles of an UML class construct have also been precisely defined as invariants of
a special-purpose Object-Z class called “UMLClass” (e.g. attributes have unique
names, operations have unique signatures, ect..). Similar specifications have been
given for associations. Such formal Object-Z description of UML class constructs
provides a precise definition of the UML rules used for developing well-formed class
diagram models. Building upon this formal underpinning, Kim and Carrington have
then proposed a formal mapping of UML classes and associations into Object-Z
classes. Our work builds upon these results and complements them by providing also
the translation of OCL constraints within the generated Object-Z skeleton. The formal
Object-Z meta-model of UML constructs is implicitly considered in our tool support
during the validation phase of the user input, whereas the Object-Z skeleton generated
by our mapping is, in most respects, similar to that generated by Kim and Carrington’s
formal mapping. However, in the absence of extensions to UML syntax, Kim and
Carrington’s resulting Object-Z specifications lack key features such as initial
configuration, operation ∆-list, fully specified operation return type, which have
instead been included in our mapping by proposing appropriate extension to the UML
class constructs. In our opinion, such extensions help complete the UML models.
Furthermore, by translating OCL constraints, our mapping provides a complete
Object-Z specification with invariants and predicates for operations.

Beckert et al. have proposed in [BKS02] a declarative formal representation of
OCL using first-order predicate logic. The main difference between this approach and
ours is that we express the formal specification of an UML/OCL model using Object-
Z language and therefore relaying on a theorem prover for Object-Z, whereas the

choice of first-order logic as formal language allows the use of existing interactive
theorem provers for classical logic. Their choice of formal language has mainly be
driven by the need of facilitating formal reasoning and verification of OCL
constraints. The driving motivation of our work relies instead on the need of providing
refinement of informal system modelling into formal system descriptions, which
preserves some of the features (e.g. object-orientation) of the initial informal model,
and which can eventually lead to a formal specification for verification purposes.
Given the first-order classical logic underpinning of Object-Z specification and the
well defined process of generating Object-Z predicates from OCL constraints, we
believe that Beckert et al. approach could, for instance, be equally applied to our
Object-Z specifications, perhaps in a more direct way in order to facilitate automated
verification of our resulting Object-Z specifications.

Our formal mapping of UML/OCL model relates therefore to both the above
existing work. At the other end of the spectrum, there are efforts to introduce more
intuitive graphical extensions to formal methods, including Dick and Loubersac’s
[DL91] treatment of VDM and Duke and Rose’s [DR00] extensions to UML class
diagrams capturing Object-Z’s promotion and composition of operations using the
sequential, conjunctive, choice and parallel operators.

Both the mapping and the tool support presented in this paper could further be
extended. The mapping of UML models could, for instance, be expanded to cover the
translation of more complex UML constructs such as interfaces, abstract classes,
qualified associations and static class features. We believe that all these constructs
could find a corresponding representation in Object-Z specifications. The mapping
process of the OCL constraints could also be extended to include the translation of
OCL complex action constraints. For instance, the OCL language, and
correspondently our mapping, could be extended to allow the use of composite
operators such as parallel, sequential and disjunctive operators. This would allow not
only a sound and complete translation of OCL action constraints into Object-Z
composite operations, but also a more expressive way of describing system’s actions
within the OCL specification. Finally, our tool could also be enhanced to cover in
particular a more exhaustive automatic translation of OCL action constraints, as well
as the mapping of those OCL features mentioned in Section 4 which are not yet
implemented.

Overall, it is hoped that by building upon the most popular informal modelling
technique, this work can contribute towards the overall aim of making formal
specifications into a natural process of model refinement as opposed to a competing
design paradigm. The analysis shown in this paper of the links between informal and
formal modelling methodologies provides a means for gaining more mature
understanding and use of both technologies. For modellers familiar with either the
UML or Object-Z but not both, the conceptual analysis described in this paper and the
possible use of an associated tool offers a way to familiarise with a new object-
oriented technology.

Fig. 7. Example run of the generation of an Object-Z class using our tool support

References
[BKS02] B. Beckert, U. Keller and P. Schmitt, “Translating the Object Constraint Language

into First-order Predicate Logic”, to appear in Proceedings, VERIFY, Workshop at Federated
Logic Conferences (FloC), Copenhagen, Denmark, 2002.

[BRJ99] G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modelling Language User
Guide, Addison-Wesley, 1999.

[BF98] J-M. Bruel and R. France, “Transforming UML models to Formal Specifications” in
L. Andrade, A. Moreira, A. Deshpande, S. Kent (eds), Proceedings of the OOPSLA’98
Workshop on Formalizing UML: Why? How?, October 1998, Vancouver, Canada.

[DL91] J. Dick and J. Loubersac, “Integrating Structured and Formal Methods: a visual
approach to VDM” in 3rd International Conference ESEC’91, October 1991, Milan, Italy,
Lecture Notes in Computer Science, Volume 550, Springer, 1991.

[DR00] R. Duke and G. Rose, Formal Object-oriented Specification using Object-Z,
MacMillan Press, 2000.

[SD] S. Dupuy. RoZ version 0.3: an environment for the integration of UML and Z,
www-lsr.imag.fr/Les.Groupes/PFL/RoZ/.

[DLC97] S. Dupuy, Y. Ledru and M. Chabre-Peccoud, Integrating OMT and Object-Z in
Proceedings of BCS FACS/EROS ROOM Workshop, 1997.

[FS00] M. Fowler with K. Scott, UML Distilled (second edition), Addison-Wesley, 2000.
[FELR98] R. France, A. Evans, K. Lano and B. Rumpe, “Developing the UML as a Formal

Modelling Notation”, Computer Standards and Interfaces, No 19, 1998.
[KC00] S. Kim and D. Carrington, “A Formal Mapping between UML Models and Object-Z

Specifications” in J. Bowen, S. Dunne, A. Galloway and S. King (eds), ZB2000: Formal
Specification and Development in Z and B, First International Conference of B and Z users,
York, UK, Aug/Sept 2000, Proceedings, Lecture Notes in Computer Science, Volume 1878,
Springer, 2000.

[M88] B. Meyer. Object-oriented Software Construction, Prentice-Hall, 1988.
[WK00] A. Kleppe and J. Warmer, “Extending OCL to Include Actions” in A. Evans, S. Kent,

B. Selic (eds), UML 2000 – The Unified Modelling Language, Advancing the Standard,
Third International Conference, York, UK, October 2000, Proceedings, Lecture Notes in
Computer Science, Volume 1939, Springer, 2000.

[OMG01] Object Management Group, Unified Modelling Language(UML), Version 1.4,
www.omg.org, 2001.

[DR02] D. Roe, “Mapping UML Models incorporating OCL Constraints into Object-Z”, MSc
individual dissertation, Imperial College, 2002.

[SF97] M. Shroff and R. France, “Towards a Formalization of UML Class Structures in Z” in
COMPSAC, Proceedings, 21st International Computer Software and Applications
Conference (COMPSAC’97), August 1997, Washington DC.

[WK99] J. Warmer and A. Kleppe, The Object Constraint Language: Precise Modelling with
UML, Addison-Wesley, 1999.

