
1

Unit 1: Theories and Schemas Slide Number 1

Course: Software Engineering – Design I

• Course: Software Engineering - Design I

• Lecturer: Dr. Alessandra Russo
 email: ar3@doc.ic.ac.uk

 office hours: available in my office (Room 560)
 between 1:30-3:30pm on Wednesday.

• Duration: 6 lectures and 3 tutorials

Formal Specifications

2

Unit 1: Theories and Schemas Slide Number 2

Course: Software Engineering – Design I

Aims and Objectives

This part of the course is about formal specification and its role in
software development.

It aims to illustrate:

 what are the basic logical ideas underlying formal specification,

 how to write simple formal specifications from some given
informal requirements.

 what are the main components of a formal specification,

This part of the course is about formal specification and its role in software development. Formal
specifications can help make the development of (large) computer systems successful, by helping
understand what the system is supposed to achieve and why.

The aims are:

 To understand the role that logical theories play in specifying computer systems. Conventional
 logic will be used, adopting notation similar to that used in the Z specification language, in order
 to illustrate the basic logical ideas underlying a formal specification.

 To understand what the main components of a formal specification are and why.

 To learn how to write formal specifications.

 To illustrate some of the issues involved in developing formal specification from informal
 requirements, by looking at an example case study.

 To illustrate how formal specifications and formal derivations can be used to check if a product
 meets its requirements.

Objectives:

At the end of this part of the course, you should be able to:
• discuss advantages and disadvantages of formal specifications in software development,
• understand the logical ideas underlying a formal specification,
• define logical theories as formal specifications (i.e. using the schema notation) of computer
 systems, and
• use them in order to verify if the resulting system meets its requirements.

3

Unit 1: Theories and Schemas Slide Number 3

Course: Software Engineering – Design I

Overview

Logical theories as specifications;
schema notation for theories

What is a specification

Specifying change: states and operations
Specifying object-oriented features
Case Study

Video recorder

Logical deduction as a verification process

A very brief introduction to what formal specifications are, why and when they are useful for the
development of (large) computer systems is given in the additional notes distributed at this lecture.

We will begin with a brief description of a real example of a computer-based system failure and
explanation of why formal specifications are important in software development. We’ll then
concentrate for the next two lectures on summarising basic concepts of logic and logical theories that
are going to be needed in this part of the course. For both Computing and JMC students this
introduction will be a simple recap of concepts already learned during the first year course on logic.

We will then show how to write logical theories as formal specifications. Much of the formal
specification notation is borrowed from the Z specification language, for instance the schema
notation. Please note that it is not the purpose of this course to teach how to use Z, but rather to show
some basic features of formal specifications and how they can be expressed using classical logic.

Once we have introduced the concepts of logical theories and schemas, we will see how these
concepts can be used to specify

 change in a software system (i.e. operations that take a system from one state to another), and

 object-oriented features of systems, such as the notions of classes and objects as instances of
 classes. We’ll then look at one example case study in detail to illustrate the entire process of
 pecifying a (software) system starting from an initial diagrammatical description of the system

behaviour.

4

Unit 1: Theories and Schemas Slide Number 4

Course: Software Engineering – Design I

Reading Material
• Books recommended are:

 “The Way of Z”, J. Jacky, Cambridge University Press, 1997.

 “Formal Specification Using Z”, L. Bottaci & J. Jones,
 International Thomson Publishing, 1995.

 “Z in Practice”, by R. Barden, S. Stepney & D. Cooper,
 Prentice Hall, 1994.

 “An Introduction to Formal Specification and Z”, B. Potter,
 Prentice Hall, 1991.

 “Safeware: System Safety and Computers”, N. Leveson,
 Addison-Wesley, 1995.

• Slides and notes, complemented with information given
 during lectures and tutorials.

The most useful books are those that use the Z language to discuss specification. The first few
chapters in each book are basic introductions to formal specification (or more generally to
formal methods). But remember that we are not adhering to the strict Z notation.

The first book explains well (re. first three chapters) what a formal specification is, why and
and when to use it. The second book is a very simple book. I’m suggesting it mainly because
it is an easy introductory reading about mathematical modelling and formal specification.
You might also find some of the examples useful to understand the procedure of defining a
formal specification of a computer system from given informal user requirements. The third
and forth books are general books about specification and Z.
Finally, the last text book is on formal specifications in a more general sense. It provides a
collection of interesting real examples of computer-based system failures that could have
been avoided if formal specifications had been used during the development cycle. It is listed
here for your own general interest.

The slides are available on the Web at

http://www.doc.ic.ac.uk/~ar3/lectures/Sed/NewCourseStructure.html,

or following the links from my Web page at http://www.doc.ic.ac.uk/~ar3.

5

Unit 1: Theories and Schemas Slide Number 5

Course: Software Engineering – Design I

3

2

1

Radiation therapy machine massively overdosed 6 patients.

A Computer-initiated Disaster: Therac-25

Three turntable positions:
Electron beam generator

•

Accessory turntable

Patient

2
13

Low energy electrons

High energy electrons

“Field light” for
 positioning purposes.

Software fault:
 turntable in wrong position ⇒ unsafe high radiation dose

This case study is about a computer-controlled radiation therapy machine, called Therac-25, which
has massively overdosed 6 people. This type of machine consists of both hardware and software
components able to accelerate electrons to create high-energy beams that can destroy tumors with a
minor impact on the surrounding healthy tissues. In this type of treatment, shallow tissues are
treated with low energy accelerated electrons, whereas deeper tissues are treated with electron
beams converted into X-ray photons. The special feature of this machine was to be able to deliver
photons as well as electrons at various energy levels.

A major hardware component of the system was a turntable, which rotated accessory equipment
into the beam path to produce the two therapeutic modes: the electron mode (position 1) and the
photon mode (position 2). The third position of the turntable did not involve any beam, but it was
used for facilitating correct positioning of the patient under the machine. Therefore proper
operation of the machine strictly depended on the positioning of the turntable. Three micro
switches monitored the position of the turntable.

In the electron therapy, the accelerator beam can be generated at different energy levels. In the
photon therapy, only one (high) energy level is available, which is attenuated by a “beam
flattener”. If the machine produces a photon beam, with the flattener not in position, then the
patient will receive an unsafe high output dose. If the turntable is in the wrong position, the beam
flattener will not be in place.

When the turntable is in the third position, no accelerator beam should be delivered.

In Therac-25, the computer was responsible for the positioning of the turntable.

6

Unit 1: Theories and Schemas Slide Number 6

Course: Software Engineering – Design I

Unsafe situations
A high energy electron beam can be needed but mustn’t hit
patient directly.

• Predecessors Therac-6, Therac-20 had hardware interlocks.
 Therac-25 relied only on software checks.

• Unsafe situations weren’t detected and patients were killed.

• Main Cause:
Unsafe architecture & lack of specs → software bugs

High electron beam + turntable in position 1 or 3 = unsafe

As mentioned in the previous slide, to deliver X-ray (photon) treatments, a high energy electron
beam is generated and flatted by a beam flattener attached to the turntable (i.e. position 2). One of
the safety properties of the system is that such a high energy beam should never hit the patient
directly. Positions 1 or 3 are then wrong positions of the turntable, when the machine is
programmed to deliver an X-ray treatment. Extremely unsafe circumstances would therefore
arise when the system is in X-ray mode, delivering a high energy electron beam and the
turntable is in one of these wrong positions.

Previous versions of Therac-25, called respectively Therac-6 and Therac-20 used only hardware
interlocks to guarantee that the turntable and attached equipment were in the correct position before
starting any treatment. The software component merely added convenience (e.g. interface) to the
existing hardware system. In Therac-25, hardware interlocks were fully substituted by software
checks. The software in Therac-25 had, therefore, more responsibility for maintaining safety than
its predecessors. BUT software from the previous version systems were used in Therac-25 and some
unsafe situations were not detected. As a consequence six accidents occurred of massive overdose
and, for some, this resulted in death of the patient.

The main failing factors were that Therac-25 was built by taking into account design features and
modules of Therac-6 and by re-using some of the software routines developed for Therac-20.
However, hidden bugs and problems of these two predecessors had been covered in these previous
systems by their hardware interlock mechanisms. This wasn’t the case for Therac-25.

The unsafe architecture of Therac-25 and the lack of formal specifications of the software developed
for Therac-20 hadn’t therefore revealed existing software bugs, which were aggravated by problems
such as quality control, lack of good documentation of previous failures, etc.

7

Unit 1: Theories and Schemas Slide Number 7

Course: Software Engineering – Design I

Lesson Learned

• Formal specifications and rigorous analysis of
existing software with respect to the new system
architecture would have highlighted the problems.

• A disaster would have been avoided.

8

Unit 1: Theories and Schemas Slide Number 8

Course: Software Engineering – Design I

Why use Formal Specifications?

Quality & Correctness
Formal specification brings together

quality software and correctness.

Quality software:
Building the right system:
(system fits its purposes)

Correctness:
Building the system right:

(system conforms with the specs)

Formal semantics and reasoning laws

What we are interested in software engineering is to have quality software, i.e. software that fits its
purpose and that does something of value for the user, as well as correct software, i.e software that
respects (satisfies) the specifications.

Formal specification brings these two aspects together. It helps achieve quality by facilitating an
understanding of the user requirements and therefore helps to not loose sight of user needs. At the
same time, it provides a means for proving that the system satisfies the users’ requests in a correct
way.

Specifications can be used to both validate and verify a (computer) system. Its precise semantics
and reasoning laws enable these two tasks to be performed. Users’ needs can be formalized and
proved to be satisfied by the specifications of the system. In the same way, program code can be
proved to verify the specifications. In your first year course of reasoning about programs, you have
already seen some simple examples of verification, when you were proving that (little) procedures
satisfy their pre- and post-conditions. The definition of specifications helps implementers to focus
on small parts of the system and forget about the rest, just working blindly to what has been
decided. The verification of each part of the system with respect to its specifications contribute
towards the correctness of the entire system.

9

Unit 1: Theories and Schemas Slide Number 9

Course: Software Engineering – Design I

Theories and Schemas

This lecture aims to:

• Recall some concepts from last year: structures and models.

• Define the notion of logical theories as specifications.

• Define the schema notation used to represent logical theories.

• Define the notion of schema inclusion.

The remaining of this lecture and the next one aim (1) to represent some basic concepts of
classical logic. We will start with recalling some basic concepts from your first year course on
classical logic. We will in particular see what a logical theory, structures and models are in
standard classical logic. These include the notions of logical theories, structures and models. (2)
Then, we will see, via some example, how classical logic theories can be written as formal
specifications. Through this examples we will gradually introduce the notion of a schema
notation, borrowed from Z, and show how schemas can be used to write logical theories as
specifications. We will then define and illustrate with an example the fundamental notion of
schema inclusion. Finally we will briefly see how to extend classical first-order logic in order to
use logical theories for specifying real-world systems.

By the end of this Unit 1, you will know most of the formal notation that we are going to use in
the remaining four lectures, and will have learned how to define schemas to specify simple
system states.

10

Unit 1: Theories and Schemas Slide Number 10

Course: Software Engineering – Design I

Propositional Logic
Language:

• logical operators: ∧, → , ¬, ∨, have a fixed meaning (truth tables)

• extra-logical symbols: P, Q, R, propositional letters don’t have a
fixed meaning

Theory:
A set of logical formulae (axioms), constructed using extra-logical symbols and
the logical operators, which can be evaluated to either true or false.

e.g.: P∧Q → R is a theory

Structure:
An assignment of a truth value (true or false) to each extra-logical symbol. Given
an assignment, a theory can be evaluated to be true or false.

e.g.: P is true
Q is true
R is false

P∧Q → R is false

In conventional propositional logic, logical symbols are the logical operators (or connectives) “∧”,
“∨”, “¬”, “→”. These have a fixed meaning given by the truth tables of the connectives. But in
order to evaluate, via these tables, whether a formula is true or false, we need to assign a truth
value to the extra-logical symbols in the formula.

The extra-logical symbols (i.e the propositional letters) do not have a fixed meaning. An
assignment of truth values to the propositional letters is called a structure, or sometimes an
interpretation. (Note that in your first year course of Logic, structures were also called
“situations”.)

Given a structure, we can then evaluate any formula written in that language, using the meaning of
the propositional letters and the truth tables for calculating the meaning of the complex formulae.
If this calculation (i.e. evaluation) makes a given formula true, then we say that the formula is true
in that structure, and that this chosen structure (interpretation) is a model of that formula.

11

Unit 1: Theories and Schemas Slide Number 11

Course: Software Engineering – Design I

First-order Logic
Language:

• logical operators: ∧, → , ¬, ∨, ∀, ∃ have a fixed meaning

• extra-logical symbols: • Constants
• Function symbols
• Predicate symbols

don’t have a fixed
meaning

Constants refer to objects in a given domain:
e.g. a refers to Peter, if the domain is a set of people

Functions map (tuples of) objects to objects in a domain
e.g. -(5,7) refers to a minus operation over the integer numbers (Z)

Predicates describe relations on (tuples of) objects in a given domain
e.g. brother(John, Susan) refers to a brotherhood relation

In first-order logic, the language is much richer. Logical symbols include not only logical
connectives, but also quantifiers (existential and universal) over variables. Extra-logical symbols
include propositional letters, constants, variables, function symbols (with different arities) and
predicate symbols (with different arities).

Constants are used to refer to individual elements of an underlying domain of discourse, function
symbols are used to express function-like elements, such as the subtraction function between two
integers, and predicate symbols are used to express relation-like concepts, e.g. the relation of
brotherhood between people. Variables are, in our case, always assumed to be within the scope of
a quantifier.

12

Unit 1: Theories and Schemas Slide Number 12

Course: Software Engineering – Design I

First-order Logic (continued)

Theory:
Set of logical formulae (axioms), constructed using extra-logical symbols and
logical operators, which can be evaluated to either true or false.

e.g.: ∃x. ∀y. (P(a,y) → Q(f(y),x)) is a theory

Structure:
Define the meaning of each extra-logical symbol. It includes:

Constant: a Element ā of D
Function: f(x1,…,xn) Function F :¯ D ×… × D → D

Predicate: P(x1,…,xm) ¯ Relation P ⊆ D ×… × D

A domain of discourse, D

Extra logical symbols Structure

Also in the case of first-order logic, a structure assigns meanings to the extra-logical symbols.
Variable symbols range over a domain, also called a carrier, which can be thought of as a domain
of discourse. Values of variables are elements of this domain. Constant symbols are interpreted
in this domain as well. Functions are mapped into functions defined from the domain to itself.
Cartesian products of the domain need to be considered as domains of those functions that have
arity greater than one. Predicate symbols are instead mapped into subsets of (Cartesian products
of) the domain.

Given a theory, we call “signature” the set of extra-logical symbols used in the theory. In the
example theory above, the signature is given by the constant “a”, the function “f”, the binary
predicates “P”, and “Q”.

Again, given a structure (i.e a meaning for all extra-logical symbols in the language), first-order
formulae can be evaluated true or false within this structure. Let’s see some examples of
structures and evaluations of first-order formulae.

13

Unit 1: Theories and Schemas Slide Number 13

Course: Software Engineering – Design I

Evaluation in First-order Logic
Once we have a structure, we can say if formulae are true or false.

Structure ∃x. ∀y. (P(a,y) → Q(f(y),x))

∃x∈N.∀y∈N. (2 ≤ y → x multiple
 of y2)
false

X = NN, a = 2, f(x) = x2

P = {(x,y)| x ≤ y}
Q = {(x,y)| y is a multiple of x}

∃x∈ZZ.∀y∈ZZ.(0=y → (y+1)2+x2 ≤ 100)

true (x = 0)

X = Z, a = 0, f(x) = x+1
P = {(x,y)| x = y}
Q = {(x,y)| x2+y2 ≤ 100}

∃x∈{T,M,H}.∀y∈{T,M,H}.
(P(T,y) → f(y)=x)

true (x = Harry)

X = {Tom, Mark, Harry}, a = Tom
f(Tom) = Mark, f(Mark) = f(Harry) = Harry
P = {(Tom,Mark),(Tom,Harry),(Mark,Harry)}
Q = {(x,y)| x = y}

We consider here some examples of structures for the first-order theory given by the formula ∃x.
∀y. (P(a,y) → Q(f(y),x)), where the extra-logical symbols are the constant “a”, the predicate
symbols “P” and “Q”, and the function symbol “f”. For each of these structures we evaluate if this
formula is true or false.

The structures provide meaning to the extra-logical symbols in set-theoretic terms. Once this
meaning is fixed, the truth or falsity of a formula is given by the truth or falsity of its interpretation
in the given structure. On the left-hand side of the slide, we have three alternative structures, on the
right-hand side of the slide the interpretation of the given formulae in each of these structures. As
we said before, structures that make a formula true are models for that formula and structures that
make a formula false are not models.

The first structure makes the formula false. In the second structure, a model for the formula is
given by taking x=0, whereas in the third structure a model is given by taking x=Harry.

14

Unit 1: Theories and Schemas Slide Number 14

Course: Software Engineering – Design I

Signature of a Theory
Given a theory, a signature is the set of extra-logical symbols
used in the theory:

theory signature
∃x. ∀y. (P(a,y) → Q(f(y),x))

P ⊆ D × D; Q ⊆ D × D; a;
f: D → D

Models of a Theory
Given a set of formulae, or a theory, written in a given signature
models are those structures that make each formula in the
theory true.

Let’s us emphasis once more two main concepts. Given a theory a signature is the set of extra-
logical symbols that appear in the theory. Given a theory and its associated signature, a model is a
structure for all the symbols in the signature which makes the formulae of the theory true.

15

Unit 1: Theories and Schemas Slide Number 15

Course: Software Engineering – Design I

Signatures, Theories, Structures, Models

A signature (or vocabulary or language) describes
the extra-logical ingredients that need to be
interpreted.

A theory comprises a signature and some logical
formulae (axioms) constructed using the signature’s
symbols.

Signatures are interpreted using structures (in which
the ingredients are interpreted set-theoretically).

Theories are interpreted using models (structures in
which the axioms are true).

To summarise this review part of logic, the basic concepts in standard classical logic, are
signatures, theories, structures and models.

A signature is the set of extra-logical symbols (i.e. vocabulary or language) that is used to describe
a problem. These symbols need to be interpreted. Signatures are interpreted using structures, where
all the symbols of the signature are interpreted set-theoretically.

A theory specifies a set of logical formulae (axioms), constructed using the symbols of a given
signature. Therefore, a theory comprises both a signature and a set of formulae written in that
signature. Theories are interpreted using models, i.e. those structures that makes the axioms of the
theory true.

To draw an analogy between these formal concepts and our basic topic of formal specifications,
logical theories will be for us formal specifications of a system behavior, whereas system
behaviors are “real-world” models of our logical theory.

ModelsTheories

StructureSignature

SemanticsSyntax

16

Unit 1: Theories and Schemas Slide Number 16

Course: Software Engineering – Design I

Schemas: Basic Idea
 “Mathematical modelling” – describe a theory of which
 system should be model.

 Schemas specify system by describing its basic
 features and assumptions.

 System is to be a “real-world model” of the schema (e.g. domain
 of discourse are collections of objects in real world, not
 mathematical sets).

 Logical inference predicts properties of system.

In the introduction lecture distributed together with the notes, it is mentioned that a formal
specification is a mathematical model that describes the system behaviour; “specifying” is therefore
the process of “mathematically modelling” our system. Such a process gives us a logical theory, i.e.
our formal specification, of which the system should be a model.

I have also mentioned in the introduction lecture notes that building a mathematical model of a
system’s behaviour involves focusing on some main aspects of the system, leaving out inessential
details. These aspects are basic features and assumptions. Logical theories, or schemas, specify a
system by describing its basic features (e.g., specific variables, functions symbols, predicates, etc.) and
assumptions (e.g., axioms about the predicates).

Systems that are often specified, are more then just small programs with few variables. They are “real-
world models” of schemas. Domains of discourse (or carriers) in the schemas are often collections of
objects in the real world, not necessarily mathematical sets.

Logical inferences on defined schemas can be used to predict (or infer) properties of the systems.
These properties are formulae inferred from the assumptions in the schema.

17

Unit 1: Theories and Schemas Slide Number 17

Course: Software Engineering – Design I

Schemas
We shall use schemas as notation for theories. A schema has
two parts: signatures and axioms.

 Theory name [carrier name]

Signature (in Z: declarations)

Axioms (in Z: predicate)

• Schema notation is adapted from Z.

• Our logical view of schemas is different from that of Z

– but their use in practice is very similar.

In the next few slides we will describe, and illustrate with examples, how the notion of a logical
theory can be re-formulated using a Z notation called schema.

Schemas in Z.

The Z specification language includes two types of notation: the axiomatic description and the
schema notation. The first is mainly used to declare the types of the variables used in a
specification. Axiomatic descriptions, also called axiomatic definitions, correspond to the
declarative part of a program: they specify the types of the variables and some constraints on their
possible values, but not their actual value. The schema is, instead, a notation used to model the
“states” of a system, in terms of state variables and their values. Operations on schemas can be
used to formalise system operations. A schema has a name and is a “closed box” to denote that the
variables defined inside are local to that schema.

Our use of schemas.

In this course we see schemas as (logical) theories. So, a schema includes two main parts, the top
part, above the line, which describes the signature of a logical theory, the bottom part, below the
line, which describes the axioms of the theory. Each schema is identified by its own “name”,
which is also the theory name. Next to the schema’s name, we can specify the domain of concern,
i.e. the (real-life) domain the theory is referring to. Some examples are given in the additional set
of notes. We can call the domain of discourse “carrier”.

Comparing the two.

Our logical view of schemas is not exactly the same as that used in Z, e.g., the specification
language Z includes also special types which are not definable in pure first-order logic. However,
our use of schemas is in practice similar to that of Z. For instance, in standard Z definition of a
schema, the signature part is called the declaration and is used to define the variables used within
the schema and their types. The axioms part is called the predicate and includes constraints that
restrict the variables’ values.

18

Unit 1: Theories and Schemas Slide Number 18

Course: Software Engineering – Design I

Terminology

• Vocabulary, signature, extra-logical symbols
and (in Z) declaration all mean more or less the
same.

• So do assumptions, premisses, axioms and (in Z)
the predicate.

• “Predicate” in Z is not the same as “predicate” in
 first-order logic.

Before seeing some examples of logical theories as schemas, it is necessary to make some small
remarks about the terminology that we are going to used in the rest of this course.

We have just to remember that:

1) “Vocabulary”, “signature”, “extra-logical symbols” mean more or less the same thing. In Z the
 term “declaration” is used instead.

2) Assumptions and axioms also mean the same thing. Z uses the term “predicate” instead.

Be careful: The term “predicate” in Z is not the same as in logical theories. They denote two different
things. What? You should know the answer by now!

19

Unit 1: Theories and Schemas Slide Number 19

Course: Software Engineering – Design I

Example: a logical theory as schema

• “Prems” is just a name we’ve invented for this schema
• Given a schema, we can draw inferences from it

– logical consequences of the axioms using the symbols in the signature.

Prems [X]

a: X
f: X → X

P, Q ⊆ X×X

∃x:X. ∀y:X. (P(a,y) → Q(f(y),x))

• A schema can be used to describe vocabulary and axioms.

Consider the logical theory defined by:
 ∃x. ∀y. (P(a,y) → Q(f(y),x))

The schema

Schemas can be used to describe the signature and the axioms that form a logical theory. In this
example we consider, for instance, the logical theory defined by the formula:

∃x.∀y.(P(a,y) → Q(f(y),x)))

Signature: { P, Q, a, f, x, y }, where “P” and “Q” were binary predicates, “a” is a constant symbol,
“f” a function symbol and “x” and “y” two bounded variables.

Axioms: {∃x.∀y.(P(a,y) → Q(f(y),x))}.

We have also seen different structures where the domain of interpretation, X, was either the set of
natural numbers, or the set of integers or a specific set of people.

We can represent this theory as a schema in the following way. Define in the part above the line
the signature of the theory, except the bounded variable symbols. In the part below the line include
the axioms part of the theory. We then define a name for the schema, e.g. Prems, and specify the
domain of discourse in square brackets, e.g. [X].

Given a logical theory, formal proofs can be constructed, which allow the inference of new
formulae from the given axioms, using only the symbols in the given signature. For instance, it
could be shown that from the premise ∃x.∀y.(P(a,y) → Q(f(y),x))) it is possible to derive
∀y.(P(a,y) →∃x.Q(f(y),x)), which also uses the same signature. In the same way, given a schema,
it is possible to draw inferences from it. Time permitted, we might briefly introduce the concept of
derivation processes from schemas at the end of this six lectures.

What is important to learn at the moment is that, as far as formal specifications of systems is
concerned, logical theories are formal specifications, systems are real-world models of the
specification, and reasoning processes can be used on formal specifications to infer properties of
the system.

20

Unit 1: Theories and Schemas Slide Number 20

Course: Software Engineering – Design I

Notation

• “:” means “of type”
• “→” means functions - so f: X → X means f is a function with one argument

• “⊆” is used for predicates

• “×” means Cartesian product - so P ⊆ X×X means P is a predicate with two
 arguments

• The bound variables, x and y, don’t need declaring in the signature.

Prems [X]

a: X
f: X → X

P, Q ⊆ X×X

∃x:X. ∀y:X. (P(a,y) → Q(f(y),x)))

These are some of the notation rules used to write logical theories as schemas.

The elements of a signature need to have their types declared. To specify the type, we use the
“:” symbol.

Constant symbols of a schema need to be declared individually with their respective types. (We
will see later on that it is possible to specify constant symbols of different types in a logical
theory and therefore in a schema.) In this case variables and constant symbols are of only one
type, X, left unspecified , e.g. they could be of type natural numbers if for instance X is given by
N.

Function symbols need to be declared to be functions, i.e. using the symbol “→” and specifying
the domain and co-domain. This type declaration also states the arity of the function symbol. In
this example, f is a function with one argument.

Predicate symbols are declared using the set inclusion ⊆ symbol. Their arity is defined in terms
of the Cartesian product of the type(s) of its arguments. The symbol for Cartesian product is ×.

Variables that are quantified, i.e. bound variables, do not need to be declared in a schema.

Hence, the signature of a schema defines the signature of a logical theory in terms of
(extra-logical) symbols and their respective types; the axioms of a schema define the
axioms of a theory.

21

Unit 1: Theories and Schemas Slide Number 21

Course: Software Engineering – Design I

Example of a schema

 NN is a special purpose set with its own operators, predicates
 and reasoning principles already defined.
 No carrier needed!

Structure needs carrier to show “domain specific” range of
variation of variables - but in this case, the carrier is fixed
for variables of type NN.

 No need to declare 0 or + in the signature.

S: NN → NN

S(0) = 0
∀x:NN. S(x+1) = S(x)+x+1

This is an example of a schema that specifies the mathematical concept of induction over natural
numbers.

The signature includes the constants 0 and 1, the predicate “=“ (“=“ ⊆ NN××N)N), the function symbol S,
which takes a natural number and gives a new natural number (after performing some operations),
and the function symbols +. The domain is the set of natural numbers NN.

The set NN is a special purpose set, which comes with its own operators (e.g., + and *), predicates
(e.g., =) and reasoning principles such as induction. These are already defined together with NN.

Because NN is a special purpose domain, it does not need to be defined as the carrier of the schema.
The definition of a carrier in a schema is mainly to show system dependent domains (i.e. range of
values for the variables). Once we know that the variables are natural numbers, we know already the
possible values that they can assume. So this schema does not need any carrier.

What about its signature? If we eliminate from the signature of the theory, the symbols which are
already defined within the domain of natural numbers, the only extra-logical symbol that needs to be
declared is just the function S. This is a function from N N → N N, as shown in the picture.

The axioms part of the schema includes the two axioms of the theory.

So, to summarise, when we define a schema, carriers are only used to specify particular (system
dependent) sets of values for the variables.
Let’s consider another example.

22

Unit 1: Theories and Schemas Slide Number 22

Course: Software Engineering – Design I

A list example

 seqX is the type of finite sequences (lists) from X
 “:” is sometimes “of type”, sometimes “cons”

» you can tell which by the context
 ++ and […] are ordinary list notation
“scrub” means “delete all instances of a given element
from the list”.

ScrubFn [X]
scrub: X × seqX → seqX
∀y:X. scrub(y,[]) = []
∀y,x:X. ∀xs: seqX.

(y≠x → scrub(y, x:xs) = [x] ++ scrub(y,xs))
∀x:X. ∀xs: seqX. scrub(x, x:xs) = scrub(x,xs)

This is another example of a schema, where instead a carrier is needed and specified. This is
because we want the schema to be general for any given set of elements. The schema describes a
function, called “scrub”, which eliminates from a given list of elements all the occurrences of a
given element. The elements assume a value in the carrier X, and lists of elements are constructed
from X and denoted by the constructed sort seqX.

The type seqX is therefore constructed from the carrier X. Again we have a special purpose domain
which is a set of lists of elements. Given any domain of this type, we know already operators such
as ++, for concatenation of lists, the symbol […] which denote a list, the symbol [] which denotes an
empty list, and the function “:”, called cons (for constructing lists), which can also be used to
identify the head and tail of a list. All these elements are already known and defined, once a domain
of type seqX is considered. Again, they don’t need to be specified in the signature of a schema.

Let’s work out how the function scrub is defined. (Done during the lecture).

23

Unit 1: Theories and Schemas Slide Number 23

Course: Software Engineering – Design I

Schema inclusion (an example)
Consider now the extended theory:

{ ∃x. ∀y. (P(a,y) → Q(f(y),x)),
∀y. (P(a,y) → Q(f(y),x0))),
P(a,y0)}

ExtPrems

Prems[X]

x0, y0: X
∀y. (P(a,y) → Q(f(y),x0)))

P(a,y0)

In real world scenarios, it is possible that parts of a system to be specified can be defined in terms of
other parts of the system already specified. We can use the notion of schema inclusion to capture
this modularity when writing a formal specification. We present here the concept of schema
inclusion in terms of logical theories. In the next slide, we will see the general definition of schema
inclusion.

Let’s consider again the theory given in slide 15. For simplicity we refer to this theory with the
schema name Prems. Let’s assume now that we want to express as a schema a new theory which
extends Prems with additional two axioms. The new theory, referred to as ExtPrems, is then defined
by the axioms {∃x. ∀y. (P(a,y) → Q(f(y),x)), ∀y. (P(a,y) → Q(f(y),x0))), P(a,y0)}.

Note that, the two new axioms in ExtPrems use new symbols x0 and y0, respectively, which were
not included in the signature of the theory Prems.

We can define the new theory ExtPrems with a new schema called “ExtPrems”. This new schema
includes the theory Prems, the new symbols x0 and y0, and the new two axioms. This is shown in the
slide above. Note that there is no need to specify also the axioms of the initial theory, as these are
already included in (the predicate part of) Prems[X].

The operation of using an already defined schema inside the signature of another schema is called
schema inclusion.

In the same way as the initial logical theory is included in the new theory, the initial schema
Prems[X] is included in the new schema ExtPrems..

We define the schema inclusion operation in more detail in the next slide.

24

Unit 1: Theories and Schemas Slide Number 24

Course: Software Engineering – Design I

Schema inclusion (definition)

ExtPrems

Prems[X]

x0, y0: X
∀y. (P(a,y) → Q(f(y),x0))

P(a,y0)

It means everything in schema Prems is also part of schema ExtPrems.

a, x0, y0: X
f: X → X

P, Q ⊆ X×X

∃x. ∀y. (P(a,y) → Q(f(y),x))

∀y. (P(a,y) → Q(f(y),x0))

P(a,y0)

 ExtPrems[X]

ExtPrems written out in full.ExtPrems with Prems as inclusion.

 Very useful shorthand
 Shows hierarchy of schemas
 and sub-schemas

Prems[X] written in ExtPrems is a schema inclusion

Schema inclusion is a shorthand notation for defining schemas. In the left-hand side of the slide,
we have the definition of the schema ExtPrems which uses Prems[X] as a schema inclusion.

Prems[X] can be expanded within the definition of ExtPrems, writing explicitly the signature of
Prems[X] in the signature of ExtPrems and writing explicitly the axioms of Prems[X] in the
axiom part of ExtPrems. This gives the expanded definition of ExtPrems, which is in the right-
hand side of the slide.

Schema inclusion is useful not only because it provides a shorthand notation, but also because it
shows a hierarchy of schemas and sub-schemas, which turns out to be particularly useful in the
specification of object oriented features.

25

Unit 1: Theories and Schemas Slide Number 25

Course: Software Engineering – Design I

Many-sorted Logic
Signature

A set of sorts
Sorts are like types in a programming language

A set of predicate symbols, each with a given arity
Arity is a finite list of sorts, e.g. Xs = [X1, …, Xn],
P is of this arity: P⊆ X1 × … × Xn

A set of function symbols, each with a given arity
Arity is a pair (Xs,Y) where Xs is a list of sorts and Y is a sort,
F is a function of this arity: F: X1 × … × Xn →Y

Formulae can be meaningless simply because they are not “well-
typed”.

A set of constant symbols, each with its own sort

Real-world systems often include parameters, or components, of different types. Specifications of
large systems need therefore to take into account these differences. For instance, imagine that you
are specifying the interaction between a system and its environment. Such a specification would
therefore describe the overall process “environment-system”. Environmental features and system
features then constitute two different types (categories) of features in this overall process.

One way of formalising such specifications is by using many-sorted logic. This is a predicate logic
whose signature is a many-sorted vocabulary, and as such, helps capture different categories of
features of the underlying system.

A detailed definition of many sorted logic is given in the additional notes.

26

Unit 1: Theories and Schemas Slide Number 26

Course: Software Engineering – Design I

 For each sort X,
Ν a corresponding set [X], or carrier (or domain) of X

 For each constant a of sort X,
Ν an element of [X],

 For each predicate symbol P ⊆ X1 × … ×Xn,

Ν a corresponding subset of the Cartesian product [[X1]] × … × [[Xn]]

 For each function symbol f: X1 × … × Xn → Y,
Ν a corresponding function from [[X1]] ×… ×[[Xn]] to [[Y]].

Structures for Many-sorted logic
Assume a given signature, then a structure for it comprises:

ā

P̄

F̄

27

Unit 1: Theories and Schemas Slide Number 27

Course: Software Engineering – Design I

Examples of many-sorted formulae

1)
∀s:StudentIC. (grade(s)=first)
All IC students graduate with a first

2)
∀e:Employees. (salary(e) < 20000).
All employees whose salary is under 20000 pounds

3)
∀b:books, ∀p:people. [(italian(p)∧read(p,b)) → b=topolino]
Italians read only Topolino

4)
∀b:Lib_books. (borrowed(b) → status(b) = out_library).
All borrowed books are not in the library

5)
∀t:Time, ∀s:Students, ∀b,b1:Lib_books.
 (borrowing(s,b,t) ∧ borrowing(s,b1,t) →b=b1).

Students can borrow only one book

28

Unit 1: Theories and Schemas Slide Number 28

Course: Software Engineering – Design I

Many-sorted Logic Example of Schema
Consider this:

[people, towns]
birthplace: people → towns

• Needs two carriers!
– Structure = pair of sets with function between them.

• “people” and “towns” are two sorts in a many-sorted
signature.

• One sort (ordinary predicate logic).
• No sorts (propositional logic).

The example above is a schema, with two sorts (i.e. two carriers) “people” and “town”. The signature
includes two carriers and a function symbol defined between these two carriers.

Note that : ordinary predicate logic is also, in effect, a particular many-sorted logic, with only one
sort! In the same way we can see propositional logic as a particular many-sorted logic with zero sorts!

29

Unit 1: Theories and Schemas Slide Number 29

Course: Software Engineering – Design I

Sorts and types
• Sorts (logic) and types (programming) are roughly the

same.

• Can construct lots, e.g. N, seqX, etc.

• The only ones that go in square brackets at the top of the
schema are the “primitive sorts”, which are not special
purpose sets or sets constructed out of others.

 [X]
a:NN etc.
…..

right

 [X,NN,seq X]
a:NN etc.
…..

wrong

You can consider sorts in logic as types in programming languages. They are roughly the same
thing. Functions and predicates can be defined on different sorts. The arities of predicates and
function symbols are used to specify the sorts of their arguments and (in the case of functions) their
results. So the arity of a predicate P is a finite list of sorts, (e.g., Xs= [X1,…,Xn]). Then P can be
used only with n arguments, P(x1,..xn), where each argument xi has to belong to its associated sort
Xi. Similarly for functions. The arity of a function is a pair (Xs, Y), where Xs is a list of sorts
defining the number and sorts of its arguments and Y is the sort of the function value. Formulae are
“well-typed” if the use of arguments of predicates and functions respects their sorts! This is similar
to the idea of “well-typed” expressions in programming languages.

A many-sorted theory can include any number (starting from zero) of sorts. Structures for a many-
sorted signature therefore include, for each sort, an associated domain or carrier.

Sorts can be constructed from other sorts. For instance, given a sort X, we can construct the sort
seq X, or the sort FX of finite power set of X. When a signature includes constructed sorts like
this, a structure for it must have its carriers constructed in the corresponding way.

In the schema representation, however, only the primitive sorts need to be specified, as the other
constructed sorts can be automatically and unambiguously defined. Examples of correct and wrong
schema definitions are given here.

30

Unit 1: Theories and Schemas Slide Number 30

Course: Software Engineering – Design I

Summary
• A schema is a way of describing a logical theory.

• The description has

– sorts (primitive sorts, constructed sorts like NN, seqX)

– constants, functions, predicates, propositions

– axioms.

• A schema inclusion is a shorthand notation for schemas.

• A schema has models.

• If the schema is a specification, then a model is a system
implementation that satisfies it.

To summarise, a logical theory comprises a signature and some axioms. Signatures are
interpreted in structures, where each extra-logical symbol finds its own meaning. Models are
those structures that give interpretations to the signature in such a way as to make the axioms
of the theory hold. So we can say the following.

A schema is a way of describing a logical theory. It includes a name, sorts (the base sorts are
specified in square brackets next to the name), and symbols of the theory’s signature, such as
constants, functions, predicates. The axioms of the theory are also specified in the schema. Large
schemas can be shortened by using the notation of schema inclusion.

Schemas have models in the same way as theories have models.

Now, if we consider a schema as a formal specification, the implemented system specified by the
schema can be seen, in effect, as a model of the schema, in the sense that the implemented system
has to satisfy or meet the schema specifications.

In Unit 2 we are going to see how schemas can be used to describe systems’ behaviours. To do so
we will need to define two main notions: state schemas and operation schemas. The additional
notes distributed at this lecture include additional material on the definition of first-order and many-
sorted logics as well as on the topics that we are going to cover in the remaining lectures.

