An Abductive Approach for
Handling Inconsistencies in SCR Specifications

Alessandra Russo Rob Miller * Bashar Nuseibeh Jeff Kramer”
" Department of Computing *S.L.A.LS.
Imperial College University College London
180, Queens’ Gate, London Gower Street
SW7 2BZ, United Kingdom London WC1E 6BT
{ar3, ban, jk}@doc.ic.ac.uk rsm@ucl.ac.uk
ABSTRACT validity of such requirements [1; 9; 13; 27]. The approach

We present a formal approach for handling inconsistenciesis supported by a suite of automated tools for consistency
in Software Cost Reduction (SCR) specifications. The checking and simulation, and is complemented by model
approach uses an event-based logic, called HEvent checking tools and techniques for checking specification
Calculus to represent SCR mode transition tables. Building invariants [3; 4; 15].

on this formalism, the approach provides an abductive However, while SCR provides a host of tools for analysing
reasoning mechanism that enables the analysis ofiequirements specifications, once a violation of an invariant

inconsistencies between SCR mode transition tables anthas peen detected, the identification of (possible) changes
global requirements (invariants), and the identification of 5 perform on the specification is still primarily a human
alternative changes that would resolve such inconsistenciesiask. Inconsistencies are reported to the requirement

Changes include addition of new invariants, refinement of engineer, who must then investigate ways of changing the
existing invariants, and changes on conditions of mode gpecifications to fix the inconsistencies.
transitions. The methodology is widely applicable, in

particular to systems embedded in complex environmentsbaseol orabduction[19], to suggest ways of changing an
whose initial conditions cannot be completely predicted. A ’ 99 Y ging

case study of an automobile cruise control system is used toS'CR speuflcz_mqn, given the satisfaction Of. an Invariant as
. a goal. In Artificial Intelligence (Al), abduction is used as

:Irlrl]Jsltéﬁgmggr ui?nproii?étinTh(ato;EChfgI?uaebdiizsgb?g iés one of the three fundamental modes of reasoning, the others
rc? rammin 9 9 9 being deduction and induction. Abductive techniques are

prog 9 able to generate “explanations” for a given property

1 INTRODUCTION (“goal”) to be satisfied in a specification. These techniques

Handling inconsistencies in requirements specifications is a have been shown to be particularly suitable for addressing
critical activity in the software development process. Problems such as diagnosis [7], planning [10], theory
Inconsistent specifications can lead to system failures, andupdate [8; 18; 20], and knowledge-based software
defects detected late in development can be more expensivélevelopment [25]. Of particular interest to us in this paper
to correct than specification inconsistencies discovered aré abductive techniques that allow reasoning about
early. Therefore, techniques for the detection and resolution SPecifications expressed in event-based formalisms that can
of inconsistencies in requirements specifications can bePe mapped to and from SCR specifications. One such
crucial for successful development of software systems. ~ formalism is theEvent Calculus[23] based on classical

A variety of techniques have been developed for checking !‘oglc. Alqducfn_/e Event Calculus technqu_les prow_de
specifications for inconsistencies. These range from explanations” in terms of events and domain properties,

informal but structured inspections [11], to more formal and can be used to (automatically) identify instances of

techniques such as those based on model checking Orfsystem behavior that are inconsistent with given system

theorem proving [6]. While many of these approaches nvariants. .
provide rigorous, and often automated, analysis of software The paper describes and demonstrates our approach of
specifications to reveal inconsistencies, they often also doUSing an abductive Event Calculus technique for reasoning

not support the analyst in handling these inconsistencies@Pout discrepancies between required systems properties
after they have been discovered. (invariants) and SCR tabular specifications. In this paper,

. . . we only consider SCR specifications composed of mode
This paper presents an approach to support InCOnS'StenC)fransition tables and system invariantn overview of our

handlmg of requirements specifications, focusing in approach is shown schematically in Figure-1.
particular on requirements expressed as Software Cost

Reduction (SCR) tabular specifications [13]. The choice of SCR mode transition tables and invariants are both
SCR is a pragmatic one — it has been proven useful for
expressing the requirements of a wide range of large-scale' The application of the approach to full SCR specifications
real-world systems, and for checking the consistency andis discussed in section 5.

To address this issue, we have developed an approach

expressed in the Event Calculus language. A table denotesspecifications and their analysis [13; 14; 15]. The method is
a “domain-description”, while invariants denote the goals based on Parnas’s “Four Variable Model” [28], which
that such a domain-description should satisfy. Given a goal describes a required system’s behavior as a set of
and an SCR table, our abductive technique identifies mathematical relations between four types of variables
whether the goal is satisfied by the specification. This monitored and controlled variables, and input and output
consists of checking if there are possible instances of data itemsMonitored variablesare environmental entities
system behavior (i.e. possible system configurations andthat influence the system behavior, arahtrolled variables
input events) that would imply the negation of the goal. are environmental entities that the system controls. Systems
These instances of system behavior (also called are assumed to include an input device to measure
“explanations”) would thus be inconsistent with the system monitored variables and map them into softwimeut data
invariant. Due to the completeness of our approach, SCRitems and an output device to use the softwargput data
specifications would instead be consistent with system items for setting the controlled variables. Four main
invariants if no such explanations can be found. relations characterize this model REQ, NAT, IN, and
Explanations identified by our abductive technique can be QUT. The relations IN and OUT specify the accuracy with
used to determine possible changes. Changes include thevhich the input device measures the monitored variables,
addition of new invariants, the refinement of existing and the output device sets the controlled variables. NAT
invariants, and changes to mode transitions. Heuristics candescribes natural constraints on the system behavior such as
then be used to prune the set of possible changes to aconstraints imposed by physical laws, while REQ defines
smaller set of proposed changes. Of course, performing athe system requirements in terms of relations between
change on a specification often initiates a sequence of monitored and controlled variables. SCR specifications
additional related changes, and so the approach must therjescribe the NAT and REQ relations.

be dt_aployed iteratively, considering either a new table or a The components of an SCR specification are monitored and
new invariant, or both. controlled variables, mode classes and termmd¥le class
partitions the monitored environment’'s state space into
Invariant modes, whereagerms are “internal” variables calculated
and used within the system. Each mode is a collection of
system states sharing common properties on monitored
variables. Variables are of different types Boolean,
Abductive integers, real number, and enumerated domains. Non-
Reasoning Enging boqlean vgrlables can always be reducepl to Boolean
variables, i.e. predicates defined over their values. For
instance, a predicate TempTooHot can be defined to
indicate that a monitored variable RoomTemp, over the real
numbers, has a value RoomTemp>(SetTempZ)3These

SCR Tabular
Specification

Heuristics
for change

Proposed chang predicates are callecbnditionsand are defined over single
L system states. Apventoccurs when a system component
(i.e. a monitored or controlled variable, mode class or term)
Figure 1: The Abductive Event Calculus Approach changes value. Special events arenitored even{swhen

Section 2 of the paper reviews SCR, focusing on mode monitored variables change value, azwhditioned evenis

transition tables and invariants. Section 3 reviews the Event when an event occurs while a specified condition is true.
Calculus and illustrates the kinds of reasoning that it can SCR specifications use three special tables, mode
provide. A review of abductive reasoning in the event transition, event and condition tables. A condition table
calculus is also given. Section 4 provides a case studydescribes a controlled variable or a term as a function of a
based description of our approach. The domain of the casemode and a condition; an event table describes a controlled
study is taken from [4]. It shows how SCR tables and Vvariable or aterm as a function of a mode and an event.
invariants can be mapped into an event-based specificationMode transition tables describe a mode as a function of
the kind of explanations that our abductive technique is another mode and an event. In addition to these tables, SCR
able to provide, and the heuristics that can be used tospecifications also includassertions properties of the
identify possible changes. The tool we used to implement environment, andnvariants (goals) properties that are
our approach is also described. The paper concludes with aequired to hold in the system. As mentioned in section 1,
discussion of lessons learned from our case study, and aor the purpose of this paper, we will regard SCR
summary of related and future work. specifications as consisting simply of a mode transition
2 SCR SPECIFICATIONS. table and a list of system invariants. These two components

SCR is a formal requirements engineering method that are therefore described in more detail in the rest of this
facilitates the tabular definition of requirements Section. For a more detailed description of the SCR

2

approach the reader is referred to [5; 13; 14]. occurrence of conditioned event @F(Ignited) while

Mode Transition Tables. Mode classes are abstractions of Running is false. Different semantics have been used for
the system state space with respect to monitored variablesconditioned events [13]. These are all equally expressible in
Each mode class can be seen as a state machine, defined g @pproach. In this paper, we will adopt the following

the monitored variables, whose states are modes and whos#terpretation. An event @T(C) conditioned to (a

transitions, calledmode transitions are triggered by condition) D means that C is false in the current mode and
changes on the monitored variables. Mode transition tables!S changed to true in the new mode, while D is true in the
represent mode classes and their respective transitions in &Urrent mode and stays true in the new mode. Similarly for

Cl\u/lrorggt Ignited | Running | Toofast | Brake | Activate | Deactivate| Resume me
off @t " a _ - - - Inactive
Inactive @F f ' - - - - o
QF @F - - - . -
" . - f QT @F f Cruise
" n - f @T f @F
Cruise @F @F ' . - - - o
. ar - N ; - - Inactive
t - QT - - - -
n n - @t ; - - Override
t t f - @F or f
¢ t f - f @T Q@F
Override @F @F - - - - - o
n ar - n ; - - Inactive
" n - f QT @F f Cruise
n n - f @T f @F
n t N f f @F @T
. n - f Q@F f QT

Table 1: Mode Transition Table for an automobile cruise control system

tabular format. An example of a mode transition table, an event @F(C) conditioned to D, but with C changing
taken from [4], is given in Table-1 for an automobile cruise truth value from true to false. In a mode transition table,
control system. Note that the table already reflects basiceach row is a transition from a current mode, indicated in
properties on monitored variables. For example, the two the left most column of the table, to a new mode, specified
transitions from “Inactive” to “Cruise” take into account in the right most column. The central part of the table
the environmental property that a cruise control lever is in defines the events that cause the transition. A triggered
exactly one of the three positions “Activate”, “Deactivate” event C can have entries equal to @T or @F. Monitored
and “Resume” at any state. So whenever Activate is variables that condition the occurrence of an event can have
becoming true, it can only be the case that Deactivate is entry equal to “t” or “f”. Monitored variables that are
becoming false or Resume is becoming false. For a moreirrelevant for the transition have a“entry.

detailed description of this case study, the reader is referredgcr mode transition tables can be seen as shorthand for
to [4]. much larger tables in two respects. Two main features need
Mode transition events occur when one or more (condition to be considered when reading an SCR table. The first one
on) monitored variables change their values. Events are ofis that a " entry for a condition in the table is shorthand
two types: ‘@T(C)” when a condition C changes from for any of the four possible condition’s entries “@T”,
false to true, and @FC)”, when a condition C changes “@F”, “t” and “f". This means that any transition between a
from true to false. C is called &iggered condition For current and a new mode specified in a table using n dashes
example, in a temperature control system, the eventis in effect shorthand for "Adifferent transitions, between
@T(TempTooHot) would denote that the temperature in a the same current and new modes, given by the different
room has changed from not being too hot (i.e. RoomTemp combinations of entries for each of the dashed monitored
< (SetTemp + 3C)) to be too hot (i.,e. RoomTemp > variables. For instance, the first transition in Table-1 from
(SetTemp + 3C)). Event occurrences can also depend on mode Inactive to mode Cruise is shorthand for four
the truth/falsity of other conditions. In this case, the events different transitions between Inactive and Cruise given,
are calledconditioned eventd-or example, in Table-1 the respectively, by each of the four entries “t”, “f", “@T” and
mode transition defined in the second row is caused by the“@F”, for the condition Toofast. The second feature to

3

consider and which makes tables concise, is the non-discussed in Section 5, together with a comparative analysis
specification of transitions between identical modes. Mode of our approach with respect to model checking techniques
transition tables are basically functions that define for each A brief overview of the event-based formalism used in our
current mode and each combination of conditions’ values, a approach, and of the basic notion of abductive reasoning, is
new mode of the system. This new mode may or may not given in the next section.

be equal to the current mode. These functions uniquely 3 THE EVENT CALCULUS

“model” the system requirements. However in specifying The Event Calculus [23; 26] is a logic-based formalism for
real system behavior only the transitions between current representing and reasoning about dynamic systems. In
and new modes that are different are explicitly represented contrast to pure state-transition based formalisms, its
in SCR tables; the other (transitions between identical gntology includes an explicit structure of time, which is
current and new modes) are implicitly assumed (i.e. the jhgependent of any (sequence of) events or actions under
system stays in the same mode) and “hidden” away from ¢onsjderation. As we shall see, this characteristic makes it
the table. Models of SCR tables (i.e. full extended SCR straightforward to model concurrent, possibly non-

mode transition tables) thus include, for each possible geterministic, event-driven systems. In this paper, we
combination of pairs of modes, a number of transitions consider only deterministic systems, since SCR

(rows) given by all possible combinations of the four gpecifications assume deterministic system behaviors.
condition’ entries for all the conditions used in the table. However, the approach is equally applicable to non-
into account when analysing invariants with respect to the gpecifications.

concise version of an SCR mode transition table. As For our purposes, a simple classical logic form [26] of the
discussed in section 4, both are indeed often causes for, purp ! p 9

mismatch between SCR tables and invariants, as they ma)}Event Calculus is sufficient, whose ontology consists of (i)

. . . - - a set oftime-pointasomorphic to the non-negative integers,
hide away system behaviors that violate system invariants.
(ii) a set of time-varying properties callédients and (iii) a

Goals as Invariants. Invariants are properties set ofevent typegor actiong. The logic is correspondingly
(specification assertions) of the system behavior regardinggorted, and includes the predicateppens Initiates
mode classes, which ought to be satisfied by the systemTerminates and HoldsAt as well as some auxiliary
specification. Considering an gutomobile cruise control predicates defined in terms of thestappens(a,tindicates
system, an example of invariant is: that event (or actiond occurs at time-poirt, Initiates(a,f,t)
Cruise - (Ignited Z/Running//-Brake) (resp.Terminates(a,f,))means that evera causes fluent

This means that whenever the system is in mode Cruise, thel©® be true (resp. false) immediately afteandHoldsAt(f,t)

conditions Ignited and Running must be true and Brake ndicates that fluent is true att. So, for example, to

must be false. The example property given here is called a|nd.|cate th.at _eventAlllandAZ occur concurrently at time-

mode invariantMode invariants are formulae of the form: ~ Point T4 it is sufficient to assert[Happens(Al,T4)/
M P (INV) Happens(A2,T4)]

h . d | f ai de cl dPi Specifications as AxiomatisationsEvery Event Calculus
wheremis a mode value of a certain mode class an ISa specification (i.e. description) includes a core collection of
logical proposition over the conditions used in the

ated mode t tion table. A mode t tion tabl fdomain-independent axioms (sentences) that describe
associated mode transition table. A mode transition table o general principles for deciding when fluents hold or do not

a given mode class has to' satisfy the mode invariants hold at particular time-points. In addition, each
related to that mode _clas_s. leferent approaches_have_z IoeerEpecification includes a collection of domain- or scenario-
developed for pheckmg invariants of SCR _speC|f|cat_|ons. dependent sentences describing the particular effects of
These are mainly based on mo_del checklng teChr"ques’events or actions (using the predicatéstiates and
such as state-based model checking [4; 16] using Spin [17]’Terminate$. and may also include sentences stating the

and _symbolic model_checking using SMV [24]. This paper particular time-points at which instances of these events
provides an alternative logic-based approach for detectlngocCur (using the predicatdappens

violation of invariants and for generating explanations. The) o)) o
latter are pointers to the rows in the (extended) table that 10 Write the domain-independent axioms succinctly, it is
violate the invariant. A case study investigation of our Convenient to introduce two auxiliary predicat€dipped
approach for the cruise control system given in Table-1 has @nd Declipped Clipped(tl,f,t2) means that some event
highlighted the fact that such rows can be hidden mode OCcurs between the timgs andt2 which terminates the
transitions. This shows that it is often the implicit fluentf.Inlogic, thisis:

assumptions used by the requirements engineer that cause clipped(t1,f,t2)= (EC)
inconsistencies. This is discussed in more detail in Section [&,{[Happens(a,ty7 tl <t < t2 [JTerminates(a,ft)]

4. Extensions of the approach to full SCR specifications
(i.e. event and condition tables, and global requirements
properties that are not necessarily mode invariants) are

4

(In this and all other axioms all variables are assumed to be
universally quantified with maximum scope unless

otherwise stated.) SimilariDeclipped(tl,f,t2)means that sentences to describe the effects of particular events or
some event occurs between the tinieandt2 that initiates combinations of events on the light, and a further four

the fluentf: sentences to describe the effects on the switches
Declipped(tl,f,t2)s (EC2) themselves. Although for readability these sentences are
A t[Hap;r;ens(a 07 t1 <t < t2 Dinitiates(a,f 0] written separately here, it is timmpletiongi.e. the if-and-

. . . only-if transformations) of the sets of sentences describing
Armed with this notational shorthand, we can state the |iiiates and Terminatesthat are actually included in the

three general (commonsense) principles that constitute thespecification (see [26] for details). The completion of the
domain-independent component of the Event Calculus: (i) yyo Terminates clauses above. for example, is:

fluents that have been initiated by event occurrences) L L
continue to hold until events occur that terminate them: 1 erminates(a,f,t=[[a=FlickA [/f=LightOn
[JHoldsAt(SwitchAOnN,t)I7

HoldsAt(f,t2) (EC3) i o
. a=FlickB [/f=LightOn
[A,t1[Happens(a,tl)/Initiates(a,f,t1) [DHoIdsAt(S\?vitchBOn,t)]]

[Jt1 <t2 [7 =Clipped(t1,f,t2)] . . .
i) fluents that h b terminated b ¢ The use of such completions avoids the frame proBlém
(i t_uen S t? ha\|/§ eﬁn erTlna © tf): (i_/e_r;_ E[)c;l:rrer.]cesit allows us to assume that the only effects of events are
continue not to hold until events occur that initiate them: ' explicitly described.

—~HoldsAt(f,t2) — _ (EC4) For many applications, it is appropriate to include similar
[a,t1[Happens(a,t1)/Terminates(a,f,t1) (completions of) sets of sentences describing which events
[Jt1 <t2 [J ~Declipped(t1,f,t2)] occur (when using the predicat@ppeny. However, in the
and (iii) fluents only change status via occurrences of present paper we wish to prove properties of systems under
initiating and terminating events: all possible scenarios, i.e. irrespective of which events
HoldsAt(f,£2) — [HoldsAt(f,tl) [7tl < t2 (EC5) actua[ly occur. Hence our descriptions Igavtappgns
. undefined, i.e. they allow models with arbitrary
[J =Clipped(t1,f,t2)] . i .)
interpretations forHappens In this way, we effectively
~HoldsAt(f,t2) — [-HoldsAt(f,t1) [/l <t2 (EC6) simulate a branching time structure that covers every
L7 =Declipped(t1,f,t2)] possible series of events. In other words, by leaving

To illustrate how the effects of particular events may be Happensundefined we effectively consider, in one model
described in the domain-dependent part of a specificationor another, every possible path through a state-transition
using the predicatesnitiates and Terminates we will graph.

describe an electric circuit consisting of a single light bulb

and two switche® andB all connected in series. We need Efficient Abductive Reasoning in the Event Calculusin
three fluentsSwitchAOn SwitchBOrandLightOn, and two the context of this paper, we wish to take an Event Calculus
actionsFlickA andFlickB. We can describe facts such as (i) SpPecification such as described above and use it to test
that flicking switch A turns the light on, provided that System invariants. In the language of the Event Calculus
switch A is not already on and that switéhis already on these are expressions involvirtgoldsAt and universally

(i.e. connected) and is not simultaneously flicked: quantified over time, such as:
Initiates(FlickA,LightOn,t) [r.[HoldsAt(SwitchAOnt/7-HoldsAt(LightOn,§/
[-HoldsAt(SwitchAONt It is (potentially) computationally expensive to demonstrate
[7HoldsAt(SwitchBOn)t the truth of such sentences by standard (deductive or
[J ~Happens(FlickB,)] abductive) theorem-proving techniques. However,

fortunately we can reduce this inference task to a simpler

i) that if neith itch i , flicking th both .
(i) that if neither switch is on, flicking them bo one as stated by the following theorem.

simultaneously causes the light to come on:

Initiates(FlickA,LightOn,) Theorem 1 I__et EC(._/\/) an Event Calculus description with
[~HoldsAt(SwitchAON & the sort of tlme-pom.tS mFerpreted'as the natural numbers
[I~HoldsAt(SwitchBONt ,/\/ anth.I(t) k?e the invariant we.w!sh to (_jemonstra'Fe. Let
[7 Happens(FlickB,)] is a simple time structure consisting of just two poits

andSnsuch thatSc < Sn ThenEC(V) [.1(t) if and only

and (iii) that if either switch is on, flicking it causes the if ECV) 1(0) andEC() U {I(Sc)} I(Sn)

light to go off (irrespective of the state of the other switch):
Terminates(FlickA,LightOn,t)-

[HoldsAt(SwitchAOnN,t)] 2 B . . .
. . i The “frame problem” is the problem of stating concisely
Terminates(FlickB,LightOn, t)- that in general almost all fluents that hold true at a given
[HoldsAt(SwitchBON,)] instant of time continue to hold after an event has been
In fact, in this example we need a total of five such performed [30].

5

Suppose thaEC(V) is an Event Calculus description with approach. Brigfly, .SCR tables are trar)slated into Event
the sort of time-points interpreted as the natural numbers Calculus specifications of the type described above, system
N, and [t.I(t) is the invariant we wish to demonstrate. invariants are expressed (in the same languagelpidsAt

Then in logical terms we wish to show th&C(\) formulae universally quantified over time, and then
[RI(t). The theorem states that, provided the invariant is abduction is used as an inference method to either confirm

initially true (i.e. 1(0) is true), it is sufficient to show that that the (translation of the) table satisfies the invariants or

EC() U{I(Sc)} I(Sn), where is asimple time structure to |dent|fy the parts where it does'r.lot. To'guarantee the
S - 4 : computational efficiency and scalability of this process, the

consisting of just two pointScand Snsuch thatSc < Sn :

o ; ., o . , L Event Calculus translations are reduced to ground, two

(“c” for “current” and “n” for “next”). In other words, it is

sufficient to consider only a symbolic time-poigtand its time-point versions, of the type described above, prior to

immediate success@n assume the invariant to be true at ¢ application of the abductive reasoning process. The
S¢ and demonstrate that its truth then followsSat (Proof soun(_jness of th_|s reduction is guaranteed b.y Theprem L.1n

. . .) practice, the refinement of an SCR table using this method
of .the theorem IS s.tra|ghtforward by mductlon. OuAf) . will be an iterative process, with the abductive tool being
This theorem is applicable even when complete information

L . . reapplied after each change of the table.
about the initial state of the system is not available. Its h lati lation both giti q
utilisation reduces computational costs considerably The Translation. In our translation both conditions an

because, in the context BC(), it allows us to re-write all ?o?w%?ﬁo?\rilaiart:ﬁgtnig;; L'ﬁg::;éghéi?i\xf W’!lltrhegﬁr :}0 as

our Event Calculus axioms with ground time-point terms. . : . P Y. 9

For example, (EC5) becomes: in reality many Q|fferent typgs of external, real-word events
' ' may affect a given condition, SCR tables abstract these

HoldsAt(f,Sn)~ [HoldsAt(f,Sg L/-Clipped(Sc,f,Sn)] differences away and essentially identify only two types of
Our final logical tool for efficient reasoning about Event events for each condition a “change-to-true” (@T) and a
Calculus specifications iabduction[19]. Abduction is the “change-to-false” (@F) event. Hence in our Event Calculus

process of finding a consistent extension (of a specified translation there are no independent event constants, but
form) to a logical specification such that it then entails a instead two functiong®@T and @F from fluents to events,
given goal. Given an Event Calculus descriptieé@ and a and for each condition fluer@, the two axioms:

goal G expressed as a collection ldbldsAtfacts, abductive [%.Initiates@T(C),C,1) (S1)
tools e.X|st that will attempt to identify (the completion of) a [t Terminates@F(C),C.) (S2)
collection of Happensfacts 4 such thateC 74 G and

EC [J Ais consistent. (In the context pfanning each fact

in Ais then interpreted as an action for the agent to perform

:O allchleve tgg godb.) Molrefvgr,tﬁome of thtisf ?hbductme given row, the procedure for generating thé&iatesrule is
ools (e.g. [22]) arecomplete in the sense that they wi as follows. Thelnitiates literal in the left-hand side of the

always identify such a if one exists. rule has the new mode (on the far right of the row) as its
. . s N . fluent argument, and the first @T or @F event (reading
lrg ézlcse%a?iiwr’ewgr\ﬁ!ltﬁrsee ggggﬁggg g]bg?/\(/eer?/:/ae' Vuvﬁ:ngrtgfe from the left) as its event argument. The right-hand side of
. ! P the rule includes &loldsAtliteral for the current mode and
assertions of the forBC() L/{I(Sc)} I(Sn)by showing 5 hair ofHoldsAtandHappenditerals for each “non-dash”
that a complete abductive procedure fails to produce dset gndition entry in the row. Specifically, if the entry for
of HoldsAt and Happensfacts (groqnded abg suc;h thgt condition C is a “t" this pair is HoldSAY(C,t) (7
EC() {i(Sc)} J 4 =I(Sn) This procedure is valid ~Happens(@F(C),t) for “F" it is -HoldsAt(C,t) /7
given the reasonable assumptions that only a finite number—:Happens(@T(C) f) for “@T" it is —HoldsAt(C,t) {7
of events can occur in a given instant and that the total Happens(@T(C) ta;nd for “@F” it is HoIdsAt(C,t) .
number of system properties (fluents) is finite. The theorem Happens(@F(C),t) The Terminatesrule is generat'ed in
described above then allows us to confirm that, provided exactly the samé way, but with the current mode as the
10) |s.true, Lr1(1) is also true. As we shall seej,'the fluent argument in th&erminatediteral. For example, the
abductive procedure has the added advantage that if instead o anth row in Table-1 is translated as follows:
it does produce such a set, then this4 is an explicit i _ _ '
indicator of where in the specification (i.e. in the SCR Nitiates(@F(Running),Inactive, -

table) there is a problem. [HoldsAt(Cruise g [J _
HoldsAt(Ignited,t)7-Happens(@F(Ignited),t)7

The translation of tables into Event Calculus axioms (rules)
is modular, in the sense that a singihitiates and a single
Terminategule is generated for each row of the table. For a

4 ABDUCTIVE INCONSISTENCY HANDLING HoldsAt(Running,ty7Happens(@F(Running),t)]
We are now in the position to describe our abductive Event Terminates(@F(Running),Cruise 1)

Calculus approach to analysing the consistency between [HoldsAt(Cruise § [

SCR mode transition tables and system invariants. We refer HoIdsAt(Ignited',t)D—rHappens(@F(Ignited),tM

to Table-1 as an example case study to illustrate our
6

HoldsAt(Running,tY/Happens(@F(Running),t)] [HoldsAt(Ignited,t) /7 HoldsAt(Runningf

Clearly, this axiom pair captures the intended meaning of As stated in Section 3, a general theoretical result about the
individual rows as described in Section 2. Event Calculus allows us to use an abductive tool with a
The semantics of the whole table is given by the two réduced version of the Event Calculus specification. The

completions of the collections dhitiates and Terminates ~ SPecification is reduced in the sense that it uses a time
rules. These completions (standard in the Event Calculus)structure consisting of just two symbolic poinSscandSn
reflect the implicit information in a given SCR table that such thatSc < Sn Our abductive procedure attempts to find
combinations of condition values not explicitly identified ~system behaviors described by the transition table that are
are not mode transitions. Indeed, as discussed in Section anconsistent with the system invariants (i.e. potential
we may regard SCR tables as also containing “hidden” or inconsistencies betwedfC(\/) and [.I(t)) by attempting
“default” rows (which the engineer does not bother to list) to generate a consistent seof HoldsAtandHappendacts

in which the current and the new mode are identical. (positive or negative literals grounded 8, such that
Mismatches between the system invariants and the table areeC() 7{I(Sc)} 7 A4 -I(Sn). We can also check the
just as likely to be caused by these hidden rows as by thegpecification against a particular invarianit.li(t) by
explicit rows of the tablg. Becayse our tr'ansla'ltion utilises attempting to abduce Asuch thatEC() 7{I(Sc)} [7 A
corr]pletlons, the abductl_vg tool is able to identify problems _ li(Sn) Because the abductive procedure is complete,
in hidden as well as explicit rows. failure to find such ad ensures that the table satisfies the
Our Event Calculus translation supplies a semantics to jnvariant(s). If, on the other hand, the tool generate4, a

mode transition tables that is independent from other parts this 4 is effectively a pointer to a particular row in the table
of the SCR specification. In particular, the translation does that is problematic.

not include information about the initial state, and the . . e
: : ; For example, in the case of the cruise control specification,
abductive tool does not rely on such information to check ; ; X ;
when checking the table against the invaridénthe tool

system invariants. The technique described here is therefore d the followindd:
also applicable to systems where complete information PFOGUCes the 1o owmg]. .
about the initial configuration of the environment is not 4 = {HoldsAt(Ignited,S¢)HoldsAt(Running,S¢)

available. The abductive tool does not need to use defaults HoldsAt(Toofast,ScyHoldsAt(Brake,Sg)

to “fill in” missing initial values for conditions. HoldsAt(Cruise,S¢Happens(@F(Ignited),Sc)
(Information about the initial state may of course also be -~Happens(@F(Running),Sc)

represented in the Event Calculus; elgaldsAt(Off,0) so -~Happens(@F(Toofast),Sc)

that system invariants may be checked with respect to the Happens(@T(Brake),Sc)

initial state separately). Clearly, thisAidentifies one of the “hidden” rows of the

The Abductive Procedure.For the purposes of discussion, table in which a@T(Brake)event merely results in the
let us suppose that the mode transition table in question hassystem staying in mod€ruise The requirements engineer
been translated into an Event Calculus specificafiG\/) now has a choice: (1) alter the new mode in this (hidden)
(where theA signifies that our structure of time-points is FOW SO that invariant; is satisfied (in this case the obvious
isomorphic to the natural numbers) and that the system choice is to change the new mode fr@mnuiseto Override
invariants have been expressednasniversally quantified and make this previously hidden row explicit in the table),

sentences/t.1y(t),..., (k1) (where eachl, is expressed (2) weaken or delete the system invariant (in this dage
with standard logical connectives and thioldsAt that has been violated, or (3) add an extra invariant that

predicate). We add an additional constraifitly(t) to the forbids the comb_ination dfloldsAtliterals in4 (e.g. ao_lds
specification which simply states (via an exclusive or) that = [HoldsAt(Cruise, — =HoldsAt(Toofast}). Choices
the system is in exactly one mode at any one time. We usesuch as this will be highly domain-specific and therefore

the term (1.1(t) to stand for the conjunctior.lo(t) O ... appropriate for the requirements engineer, rather than the

O [&.1,(b). In the case of the cruise control specification, the FOOl’ to select. After the selected Qhange has been
invariants are (reading “|" as exclusive or): implemented, the tool should be run again, and this process

) repeated until no more inconsistencies are identified (i.e.
lo: [HoldsAt(Off,) | HoldsAt(Inactive, |

HoldSALCrU HoldsAt(Overrid until the tool fails to abductively generate/
oldsAt(Cruise,} | HoldsAt(Override,y This example illustrates in general all the types of choices

I HoldsAt(Off,g = —HoldsAt(Ignited,) for change that will be available when an inconsistency is
I,: HoldsAt(Inactive,t — [HoldsAt(Ignited,p [7 detected. In particular, as described in Section 2 any mode
[=HoldsAt(Running,ty7-HoldsAt(Activate f] transition table employing “-"s as values for monitored

) . . variables is equivalent to a (greatly) expanded table in

ls: Ho;dfﬁt'(afir;lse}_ _)t[gmd:pﬁj(lir;ngd{ﬂ which the “-"s have been eliminated, and in which all
oldsAt(urTnlng,)L =HoldsAt(Brake g “hidden” rows (i.e. rows where the current and new modes

l4: HoldsAt(Overridet — are the same) have been added. Thus any change in the

concise version of the table (e.g. changing a “t” into a the reduction of Event Calculus specifications to two-time-
“@F” or a “-") is equivalent to changing the new mode (i.e. point counterparts, reflects directly the primary intuition
the value in the right-most column) in some collection of behind mode transition tables. This is that the extended
rows in the expanded table. This in turn means that dynamic behavior of the system can be reduced to a
performing a change in the concise version of the table is description involving just two symbolic states labeled
equivalent to replacing zero or more of its rows by a “current mode” and “new mode”. Finally, the use of
collection of rows taken from the newly modified, predicate completion foitiates and Terminatesexactly
expanded version of the table. (Of course, as this collection mirrors the default assumption implicit in mode transition
is added, it should be appropriately collapsed to a tables. This is that combinations of events and conditions,
manageable size by re-introduction of “-"s.) In other words, not explicitly represented in any row, are not transitions
the only real underlying choice that the engineer has whenbetween different modes.

defining or altering a mode transition table is which new A ey characteristic of our approach is that, because the
mode any given set of conditions and events will resultin. computation does not utilise information about the “initial
Tool Support. It is beyond the scope of this paper to state”, it is applicable to systems whose initial
describe in detail the implementation of our abductive tool. environmental conditions are not fully known. This is
However, it is worth briefly mentioning how the tool likely to be the case in many large or complex event-driven
avoids the pitfalls sometimes associated with theorem systems. The downside to this characteristic is that the tool
proving (and in particular abductive theorem proving) will in certain cases be over-zealous in its reporting of
techniques, these being computational inefficient and non- potential problems, in that it will also report inconsistencies
scalable. We are able to avoid both these problems becausassociated with system states that are in reality unreachable
we are able to reduce the representation to a groundfrom the initial state (or set of possible initial states), if
expression with just two symbolic time-poing&c and Sn such information is given elsewhere in the specification.
Furthermore, the particular structure of this expression However, in such cases the resolution of these problems
allows us to largely avoid the consistency checking that would result only in overly robust, rather then incorrect,
often imposes a high computational cost on automated specifications.

abductive procedures as they construct an extengidinis Related Work. A number of logic-based approaches for
is because the particular form of the Event Calculus we use handling inconsistency have been proposed in the literature.
already ensures that any internally consistent, finite Specifically, Zowghi and Offen [32] suggest belief revision
collection ofHappenditerals is consistent with any related for default theories as a formal approach for resolving
specification. Therefore, it is only necessary to check the jnconsistencies arising during the evolution of requirements
consistency of candidatéoldsAtliterals against the system gpecifications. Similarly, Ryan [29] defines (epistemic
invariants, and this can be done efficiently because both entrenchment) ordering relations on default information,
these types of expression are groundefiat and changes on these relations rather then the specifications
Our prototype tool is implemented in Prolog, using a facilitate conflict resolution. A logic-based method more
simplified version of the abductive logic program module closely related to ours has been proposed by van
described in [21]. The logic program conversion of the Lamsweerdeet al. [31]. This describes a goal-driven
given (classical logic) Event Calculus specification is approach to requirement engineering in which “obstacles”
achieved using the method described in [22], which are parts of a specification that lead to a negated goal. This
overcomes the potential mismatch between the negation-asapproach is similar to our abductive technique in that the
failure used in the implementation and the classical notion of goals is comparable to our notion of invariants,

negation used in the specification. and obstacles are comparable to the abduced facts detected
by our abductive technique. However, whereas our
5 DISCUSSION AND CONCLUSIONS approach identifies only explanations that are consistent

Observations.The efficiency and, we believe, intuitiveness with the specification, van Lamsweerde’s approach does
of our approach derives partly from the ontology of the not consider consistency checking as part of the process of
Event Calculus. In particular, the Event Calculus’ explicit generating obstacles. Furthermore, the generation of
representation of event occurrences means that there is abstacles as well as of refined goals is still purely a human
one-to-one correspondence between a given row in thetask [31]. We believe that our abductive proof procedure
mode transition table and a particular pair of sentences inand tool can also be used in the context of van
the translated specification. This correspondence facilitatesLamsweerde’s goal-driven approach to provide a proof
the implementation of automatic translators from SCR procedure and a tool support for the analysis of goals and
specifications to Event Calculus specifications and vice- obstacles. Recent work by Menzies has also demonstrated
versa. This would allow the abductive approach to be usedthe applicability of abductive reasoning to knowledge-
as “back-end” of existing requirements engineering tools based software engineering, using an inference procedure
without requiring engineers to write specifications directly for “knowledge-level modeling” that can support
in the logical form. Furthermore, Theorem 1, by justifying prediction, explanation, and planning [25].

8

Especially relevant to this paper is existing work on specifications. However, a number of specific technical and
inconsistency analysis of SCR requirements specifications general issues are still open to further investigation.

using model checking. Heitmeyet al. [16] illustrate how In this paper, our approach has been applied to single mode
both explicit state model checkers, such as Spin, andtransition tables and system invariants. However, full SCR
symbolic model checkers, like SMV, can be used to detect gpecifications also include event tables and condition
safety violations in SCR specifications. The first type of taples. Our approach could also be extended to facilitate
model checking verifies systems’ invariants by means of yeasoning about such tables. Event tables could be
state exploration. Problems related to state explosion areransjated intdnitiates and Terminategules, where modes
dealt with by the use of sound and complete abstraction 5re expressed byoldsAt literals, events byHappens
techniques, which basically reduce the number of variables jjterals, and the controlled variables or terms defined by the
to just those that are relevant to the invariant to be testedaple are expressed usigitiates or Terminatesliterals.

[16]. In our case, the combination of abduction and Event congition tables, on the other hand, could be formalised as
Calculus has the same effect. Abduction focuses reasoningaqdgitional constraints of the Event Calculus specification
on goals relevant to the invariant, and the Event Calculus py ysing HoldsAt formulae. In a very similar way,
ensures that this reasoning is at the level of relevant gnyironmental constraints could also be included in the
variables (fluents) rather than via the manipulation of entire Eyent Calculus specification adoldsAt constraints. For
states. The essential differences between our approach and,,ch extensions, abducetbldsAtliterals would have also
this type of model checking are that our system (i) can deal o pe checked for consistency with respect to these
with specifications in which information about the initial aqgitional constraints. A second extension of the approach
state is incomplete, and (i) reports problems in terms of \yoyld be to consider SCR specifications with non-Boolean
individual transitions (which correspond directly to rows in yariables. Our approach facilitates the representation of
the tables) rather than in terms of particular paths through ascR specifications with non-Boolean variables only when
state space. such variables can be re-expressed in terms of auxiliary
Symbolic model checking techniques, such as SMV, use Boolean conditions. The approach needs to be extended in
special-purpose languages to represent systemorder to handle specifications that do need to refer to the
specifications, and the (branching time temporal logic) non—Boolean values of their variables explicitly.

CTL language to express system invariants. Whereasp third line of future investigation is to allow for non-
explicit state model checkers detect violation of invariants geterminism. Although the Event Calculus makes it
by enumerating the set of reachable states, symbolic modektrajghtforward to model non-deterministic and concurrent
checkers consider the set of reachable states as logicakystems, in this present paper we have considered only
formulae. The complexity of SMV analysis is therefore geterministic systems. This is also the case for other
given by the number of “possible” (consistent) states, in existing model checking approaches [4; 5]. In our approach
contrast with the first type of model checking, where the poth the abductive reasoning principles and the tool will
complexity depends on the number of reachable states [3ineed to be appropriately adapted in order to reason about

5]. Applications of these two techniques to various case non-deterministic and concurrent event transitions.
studies suggest that explicit state methods are less

expensive than symbolic model checking for error detection
[5]. Our approach is similar to symbolic model checking in

that consistency checking is also needed. However, as
explained in Section 4, this checking can be done

A more general issue for future work is the development of
(i) automated tools for translating SCR tables into Event
Calculus specifications, and (ii) user-friendly interfaces for
the abductive tool. Both these issues are feasible, in

efficiently, as it only applies to abducddoldsAt literals particular because of the systematic way of generating

and system invariants, and both these two types of Event Calculus rules from SCR tables.

expressions are grounded with respect to the current stateAcknowledgements. We gratefully acknowledge the
SMV model checking has also been used to analyseféedback and suggestions of Connie Heitmeyer, Ramesh
requirements specifications expressed in the Requirementdharadwaj, Axel van Lamsweerde, Didar Zowghi,
State Machine Language (RSML) [2; 12], in which state Gianpaolo Cugola, Jonathan Moffet and our colleagues in
explosion problems are addressed by performing the the DSE group at Imperial College. Thanks also to Peter
consistency analysis directly on the model of the Grimm and Bruce Labaw of NRL for assisting us in
specifications. Decomposition and function composition installing SCR* at Imperial College. Tony Kakas also

rules are adopted to guarantee the scalability of the prqvided many insightful comments about abductive Fools.
approach to large system specifications [12]. This work was patrtially funded by the UK EPSRC projects

Future work. The abductive approach described in this MISE (GR/L 55964) and VOICI (GR/M 38582).

paper lays the (theoretical and practical) foundations for the REFERENCES _

development of a logic-based method with efficient tool 1. Alspaugh, Tet al., “Software Requirements for the A-
support for inconsistencies handling in SCR requirements ~ 7E Aircraft’, Technical Report, Naval Research
specifications and more generally in event-driven systems Laboratory, March 1988.

9

10.

11.

12.

13.

14.

15.

16.

Anderson, R, Beame, P. Burns S., Chan, W., Modugno 17. Holzmann, G.J., “The Model Checker SPINEEE
F., Notkin D. and Reese, J., “Model Checking Large Trans. on Soft. Eng23(5): 279-295, May 1997.
Software Specifications’Proc. of 4' ACM Symp. on 18 ngue, K. and Sakam, C., “Abductive Framework for
Foundations of Soft. EngOctober 1996. Non-monotonic Theory ChangeRroc. of Int. Joint
Atlee, J.M. and Buckley, M.A., “A Logic-Model Conf.on Al |1, 204-210, 1995.

Semantics for SCR Software Requirementfoc. of 19. Kakas, A.C., Kowalski, R.A. and Toni, F., “The Role of
the Int. Symp. on Soft. Testing and Analy&i80-292, Abduction in Logic Programming’Handbook of Logic

January 1996. in Artificial Intelligence and Logic Programming, 5,
Atlee, J.M. and Gannon, J., “State-Based Model (1998), D.M. Gabbay, C.J. Hogger and J.A. Robinson
Checking of Event-Driven System Requirements”, eds., Oxford University Press, 235-324,.

IEEE Trans. on Soft. Engl9(1):24-40, January 1993. 5 Kakas, A.C. and Mancarella, P., “Database Updates
Bharadwaj, R. and Heitmeyer, C., “Model Checking Through Abduction”, Proc. of 16th Very Large
Complete Requirements Specifications Using Database Confereng®risbane, Australia, 1990.
Abstraction”, Technical Report NRL-7999 Naval 59 kakas, A.C. and Michael, A., “Integrating Abductive
Research Laboratory, Washington, Iov. 1997. and Constraint Logic ProgrammingProc. of the 18
M.Clarke, E. and M.Wing, J., “Formal Methods, State Int. Conf. on Logic Programmingrokyo 1995.

of the Art and Future Directions"/ACM Computing 25 kakas, A. C. and Miller, R., “A Simple Declarative
Surveys 28(4526-643, December 1996. Language for Describing Narratives with Actions”,
Console, L., Portinale, L. and Theseider Dupre, D., Journal of L.P., 31(1-3):157-200 (Special Issue on
“Using Compiled Knowledge to Guide and Focus Reasoning about Action and Change), 1997.
Abductive Diagnosis”)EEE Trans. on Knowledge and 53 Kowalski, R. A. and Sergot, M. J., “A Logic-Based
Data Eng. 8(5):690-706, 1996. Calculus of Events”’New Generation Computing;67-
Console, L., Sapino, M.L. and Theseider Dupre, D., 95, 1986.

“The Role of Abduction in Database View Updates”, 54 wcwMillan, K.L., Symbolic Model CheckingKluwer
Journal of Intelligent System$994. Academic Publishers. 1993.

Easterbrook, S. and Callahan, J. "Formal Methods for 55 \enzies, T., “Applications of Abduction: Knowledge
Verification and Validation of Partial Specifications: A Level Modeling”, Int. Journal of Human Computer

Case Study”Journal of System and Softwark997. Studies1996.

Esghsi, K., "Abductive Planning with the Event g wjjier, R. and Shanahan, S., “The Event Calculus in
Calculus”,Proc. of Int. Joint Conf. on All, 3-8, 1988. Classical Logic - Alternative Axiomatisations’,

Gilb, T. and Graham, DSoftware Inspectioriddison- Linképing Electronic Articles in Computer and
Wesley 1993. Information Science4(16), 1999.
Heimdahl, M.P.E. and Leveson, N.G., “Completeness 27. Miller, S., “Specifying the Mode Logic of a Flight

and Consistency in Hierarchical State-Based Guidance System in CoRE and SCRProc. of 2"
Requirements”]JEEE Trans. on Soft. Eng22(6):363- Workshop of Formal Methods in Soft. Practid®98.

377, June 1996. 28. Parnas, D. L. and Madey J., “Functional Documentation
Heitmeyer, C.L., Jeffords, R.D. and Labaw, B.G. for Computer SystemsTechnical Report CRL 309,
“Automated Consistency Checking of Requirements McMaster University, Canada, September 1995.

Specifications”, _ACM Trans.l of Soft. Eng. and 29. Ryan, M., “Default in SpecificationlEEE Proc. of Int.
Methodology5(3):231-261, July 1996. Symp. on Req. Eng266-272, San Diego, Jan. 1993.
Heitmeyer, C.L., Labaw, B. and Kiskis, D., 30. Shanahan, M. P., “Solving the Frame Problem: A

“Con.sfilstency "Checking of S?R-Séyle Resquirements Mathematical Investigation of the Common Sense Law
Specifications”, IEEE Proc. of 2nd Int. Symp. on of Inertia”, MIT Press (1997).

Requirements Engineering7-29, York, March 1995.)]
31.van Lamsweerde, A., Darimont, R. and Letier, E.,

Heitmeyer, Cet al, "SCR*: A Toolset for Specifying “Managing Conflicts in Goal-Driven Requirements
and Analyzing Software RequirementsProc. of Engineering” EEE Trans. on Soft. Engov. 1998.

Computer-Aided VerificatigrCanada, 1998.)]

. | “Usi b . d del 32.Zowghi, D. and Offen, R. “A Logical Framework for
He|tm(_ayer, Cet al, "Using A straction an _MO € Modeling and Reasoning about the Evolution of
Checking to Detect Safety Violations in Requirements Requirements”, IEEE Proc. of 3rd Int. Symp. on Req
Specifications” |EEE Trans. on Soft. Eng24(11):927- Eng Annapolis’ USA. Jan ' 1997 ' ' '
947, November 1998. v ’ ' ' '

10

