
An Abductive Approach for
Handling Inconsistencies in SCR Specifications

Alessandra Russo* Rob Miller # Bashar Nuseibeh* Jeff Kramer *

* Department of Computing # S.L.A.I.S.
Imperial College University College London

180, Queens’ Gate, London Gower Street
SW7 2BZ, United Kingdom London WC1E 6BT
{ar3, ban, jk}@doc.ic.ac.uk rsm@ucl.ac.uk

ABSTRACT
We present a formal approach for handling inconsistencies
in Software Cost Reduction (SCR) specifications. The
approach uses an event-based logic, called theEvent
Calculus, to represent SCR mode transition tables. Building
on this formalism, the approach provides an abductive
reasoning mechanism that enables the analysis of
inconsistencies between SCR mode transition tables and
global requirements (invariants), and the identification of
alternative changes that would resolve such inconsistencies.
Changes include addition of new invariants, refinement of
existing invariants, and changes on conditions of mode
transitions. The methodology is widely applicable, in
particular to systems embedded in complex environments
whose initial conditions cannot be completely predicted. A
case study of an automobile cruise control system is used to
illustrate our approach. The technique described is
implemented using existing tools for abductive logic
programming.

1 INTRODUCTION
Handling inconsistencies in requirements specifications is a
critical activity in the software development process.
Inconsistent specifications can lead to system failures, and
defects detected late in development can be more expensive
to correct than specification inconsistencies discovered
early. Therefore, techniques for the detection and resolution
of inconsistencies in requirements specifications can be
crucial for successful development of software systems.

A variety of techniques have been developed for checking
specifications for inconsistencies. These range from
informal but structured inspections [11], to more formal
techniques such as those based on model checking or
theorem proving [6]. While many of these approaches
provide rigorous, and often automated, analysis of software
specifications to reveal inconsistencies, they often also do
not support the analyst in handling these inconsistencies
after they have been discovered.

This paper presents an approach to support inconsistency
handling of requirements specifications, focusing in
particular on requirements expressed as Software Cost
Reduction (SCR) tabular specifications [13]. The choice of
SCR is a pragmatic one – it has been proven useful for
expressing the requirements of a wide range of large-scale
real-world systems, and for checking the consistency and

validity of such requirements [1; 9; 13; 27]. The approach
is supported by a suite of automated tools for consistency
checking and simulation, and is complemented by model
checking tools and techniques for checking specification
invariants [3; 4; 15].

However, while SCR provides a host of tools for analysing
requirements specifications, once a violation of an invariant
has been detected, the identification of (possible) changes
to perform on the specification is still primarily a human
task. Inconsistencies are reported to the requirement
engineer, who must then investigate ways of changing the
specifications to fix the inconsistencies.

To address this issue, we have developed an approach
based onabduction[19], to suggest ways of changing an
SCR specification, given the satisfaction of an invariant as
a goal. In Artificial Intelligence (AI), abduction is used as
one of the three fundamental modes of reasoning, the others
being deduction and induction. Abductive techniques are
able to generate “explanations” for a given property
(“goal”) to be satisfied in a specification. These techniques
have been shown to be particularly suitable for addressing
problems such as diagnosis [7], planning [10], theory
update [8; 18; 20], and knowledge-based software
development [25]. Of particular interest to us in this paper
are abductive techniques that allow reasoning about
specifications expressed in event-based formalisms that can
be mapped to and from SCR specifications. One such
formalism is theEvent Calculus[23] based on classical
logic. Abductive Event Calculus techniques provide
“explanations” in terms of events and domain properties,
and can be used to (automatically) identify instances of
system behavior that are inconsistent with given system
invariants.

The paper describes and demonstrates our approach of
using an abductive Event Calculus technique for reasoning
about discrepancies between required systems properties
(invariants) and SCR tabular specifications. In this paper,
we only consider SCR specifications composed of mode
transition tables and system invariants1. An overview of our
approach is shown schematically in Figure-1.

SCR mode transition tables and invariants are both

1 The application of the approach to full SCR specifications
is discussed in section 5.

2

expressed in the Event Calculus language. A table denotes
a “domain-description”, while invariants denote the goals
that such a domain-description should satisfy. Given a goal
and an SCR table, our abductive technique identifies
whether the goal is satisfied by the specification. This
consists of checking if there are possible instances of
system behavior (i.e. possible system configurations and
input events) that would imply the negation of the goal.
These instances of system behavior (also called
“explanations”) would thus be inconsistent with the system
invariant. Due to the completeness of our approach, SCR
specifications would instead be consistent with system
invariants if no such explanations can be found.
Explanations identified by our abductive technique can be
used to determine possible changes. Changes include the
addition of new invariants, the refinement of existing
invariants, and changes to mode transitions. Heuristics can
then be used to prune the set of possible changes to a
smaller set of proposed changes. Of course, performing a
change on a specification often initiates a sequence of
additional related changes, and so the approach must then
be deployed iteratively, considering either a new table or a
new invariant, or both.

Figure 1: The Abductive Event Calculus Approach

Section 2 of the paper reviews SCR, focusing on mode
transition tables and invariants. Section 3 reviews the Event
Calculus and illustrates the kinds of reasoning that it can
provide. A review of abductive reasoning in the event
calculus is also given. Section 4 provides a case study
based description of our approach. The domain of the case
study is taken from [4]. It shows how SCR tables and
invariants can be mapped into an event-based specification,
the kind of explanations that our abductive technique is
able to provide, and the heuristics that can be used to
identify possible changes. The tool we used to implement
our approach is also described. The paper concludes with a
discussion of lessons learned from our case study, and a
summary of related and future work.

2 SCR SPECIFICATIONS.
SCR is a formal requirements engineering method that
facilitates the tabular definition of requirements

specifications and their analysis [13; 14; 15]. The method is
based on Parnas’s “Four Variable Model” [28], which
describes a required system’s behavior as a set of
mathematical relations between four types of variables−
monitored and controlled variables, and input and output
data items.Monitored variablesare environmental entities
that influence the system behavior, andcontrolled variables
are environmental entities that the system controls. Systems
are assumed to include an input device to measure
monitored variables and map them into softwareinput data
items, and an output device to use the softwareoutput data
items for setting the controlled variables. Four main
relations characterize this model− REQ, NAT, IN, and
OUT. The relations IN and OUT specify the accuracy with
which the input device measures the monitored variables,
and the output device sets the controlled variables. NAT
describes natural constraints on the system behavior such as
constraints imposed by physical laws, while REQ defines
the system requirements in terms of relations between
monitored and controlled variables. SCR specifications
describe the NAT and REQ relations.

The components of an SCR specification are monitored and
controlled variables, mode classes and terms. Amode class
partitions the monitored environment’s state space into
modes, whereasterms are “internal” variables calculated
and used within the system. Each mode is a collection of
system states sharing common properties on monitored
variables. Variables are of different types− Boolean,
integers, real number, and enumerated domains. Non-
boolean variables can always be reduced to Boolean
variables, i.e. predicates defined over their values. For
instance, a predicate TempTooHot can be defined to
indicate that a monitored variable RoomTemp, over the real
numbers, has a value RoomTemp>(SetTemp+ 3°C). These
predicates are calledconditionsand are defined over single
system states. Aneventoccurs when a system component
(i.e. a monitored or controlled variable, mode class or term)
changes value. Special events aremonitored events, when
monitored variables change value, andconditioned events,
when an event occurs while a specified condition is true.

SCR specifications use three special tables, mode
transition, event and condition tables. A condition table
describes a controlled variable or a term as a function of a
mode and a condition; an event table describes a controlled
variable or a term as a function of a mode and an event.

Mode transition tables describe a mode as a function of
another mode and an event. In addition to these tables, SCR
specifications also includeassertions, properties of the
environment, andinvariants (goals), properties that are
required to hold in the system. As mentioned in section 1,
for the purpose of this paper, we will regard SCR
specifications as consisting simply of a mode transition
table and a list of system invariants. These two components
are therefore described in more detail in the rest of this
section. For a more detailed description of the SCR

InvariantSCR Tabular
Specification

Abductive
Reasoning Engine

Heuristics
for change

Proposed change

3

approach the reader is referred to [5; 13; 14].

Mode Transition Tables. Mode classes are abstractions of
the system state space with respect to monitored variables.
Each mode class can be seen as a state machine, defined on
the monitored variables, whose states are modes and whose
transitions, called mode transitions, are triggered by
changes on the monitored variables. Mode transition tables
represent mode classes and their respective transitions in a

tabular format. An example of a mode transition table,
taken from [4], is given in Table-1 for an automobile cruise
control system. Note that the table already reflects basic
properties on monitored variables. For example, the two
transitions from “Inactive” to “Cruise” take into account
the environmental property that a cruise control lever is in
exactly one of the three positions “Activate”, “Deactivate”
and “Resume” at any state. So whenever Activate is
becoming true, it can only be the case that Deactivate is
becoming false or Resume is becoming false. For a more
detailed description of this case study, the reader is referred
to [4].

Mode transition events occur when one or more (condition
on) monitored variables change their values. Events are of
two types: “@T(C)” when a condition C changes from
false to true, and “@F(C)”, when a condition C changes
from true to false. C is called atriggered condition. For
example, in a temperature control system, the event
@T(TempTooHot) would denote that the temperature in a
room has changed from not being too hot (i.e. RoomTemp
≤ (SetTemp + 3°C)) to be too hot (i.e. RoomTemp >
(SetTemp + 3°C)). Event occurrences can also depend on
the truth/falsity of other conditions. In this case, the events
are calledconditioned events. For example, in Table-1 the
mode transition defined in the second row is caused by the

occurrence of conditioned event @F(Ignited) while
Running is false. Different semantics have been used for
conditioned events [13]. These are all equally expressible in
our approach. In this paper, we will adopt the following
interpretation. An event @T(C) conditioned to (a
condition) D means that C is false in the current mode and
is changed to true in the new mode, while D is true in the
current mode and stays true in the new mode. Similarly for

an event @F(C) conditioned to D, but with C changing
truth value from true to false. In a mode transition table,
each row is a transition from a current mode, indicated in
the left most column of the table, to a new mode, specified
in the right most column. The central part of the table
defines the events that cause the transition. A triggered
event C can have entries equal to @T or @F. Monitored
variables that condition the occurrence of an event can have
entry equal to “t” or “f”. Monitored variables that are
irrelevant for the transition have a “−“entry.

SCR mode transition tables can be seen as shorthand for
much larger tables in two respects. Two main features need
to be considered when reading an SCR table. The first one
is that a “−” entry for a condition in the table is shorthand
for any of the four possible condition’s entries “@T”,
“@F”, “t” and “f”. This means that any transition between a
current and a new mode specified in a table using n dashes
is in effect shorthand for 4n different transitions, between
the same current and new modes, given by the different
combinations of entries for each of the dashed monitored
variables. For instance, the first transition in Table-1 from
mode Inactive to mode Cruise is shorthand for four
different transitions between Inactive and Cruise given,
respectively, by each of the four entries “t”, “f”, “@T” and
“@F”, for the condition Toofast. The second feature to

Current
Mode Ignited Running Toofast Brake Activate Deactivate Resume New

Mode
Off @T - - - - - - Inactive

Inactive @F f - - - - - Off
@F @F - - - - -

t t - f @T @F f Cruise
t t - f @T f @F

Cruise @F @F - - - - - Off
t @F - - - - - Inactive
t - @T - - - -
t t f @T - - - Override
t t f - @F @T f
t t f - f @T @F

Override @F @F - - - - - Off
t @F - - - - - Inactive
t t - f @T @F f Cruise
t t - f @T f @F
t t - f f @F @T
t t - f @F f @T

Table 1: Mode Transition Table for an automobile cruise control system

4

consider and which makes tables concise, is the non-
specification of transitions between identical modes. Mode
transition tables are basically functions that define for each
current mode and each combination of conditions’ values, a
new mode of the system. This new mode may or may not
be equal to the current mode. These functions uniquely
“model” the system requirements. However in specifying
real system behavior only the transitions between current
and new modes that are different are explicitly represented
in SCR tables; the other (transitions between identical
current and new modes) are implicitly assumed (i.e. the
system stays in the same mode) and “hidden” away from
the table. Models of SCR tables (i.e. full extended SCR
mode transition tables) thus include, for each possible
combination of pairs of modes, a number of transitions
(rows) given by all possible combinations of the four
condition’ entries for all the conditions used in the table.
Therefore, both hidden rows and dashes need to be taken
into account when analysing invariants with respect to the
concise version of an SCR mode transition table. As
discussed in section 4, both are indeed often causes for
mismatch between SCR tables and invariants, as they may
hide away system behaviors that violate system invariants.

Goals as Invariants. Invariants are properties
(specification assertions) of the system behavior regarding
mode classes, which ought to be satisfied by the system
specification. Considering an automobile cruise control
system, an example of invariant is:

Cruise→ (Ignited∧ Running∧ ¬Brake)

This means that whenever the system is in mode Cruise, the
conditions Ignited and Running must be true and Brake
must be false. The example property given here is called a
mode invariant. Mode invariants are formulae of the form:

m → P (INV)

wherem is a mode value of a certain mode class and P is a
logical proposition over the conditions used in the
associated mode transition table. A mode transition table of
a given mode class has to satisfy the mode invariants
related to that mode class. Different approaches have been
developed for checking invariants of SCR specifications.
These are mainly based on model checking techniques,
such as state-based model checking [4; 16] using Spin [17],
and symbolic model checking using SMV [24]. This paper
provides an alternative logic-based approach for detecting
violation of invariants and for generating explanations. The
latter are pointers to the rows in the (extended) table that
violate the invariant. A case study investigation of our
approach for the cruise control system given in Table-1 has
highlighted the fact that such rows can be hidden mode
transitions. This shows that it is often the implicit
assumptions used by the requirements engineer that cause
inconsistencies. This is discussed in more detail in Section
4. Extensions of the approach to full SCR specifications
(i.e. event and condition tables, and global requirements
properties that are not necessarily mode invariants) are

discussed in Section 5, together with a comparative analysis
of our approach with respect to model checking techniques
A brief overview of the event-based formalism used in our
approach, and of the basic notion of abductive reasoning, is
given in the next section.

3 THE EVENT CALCULUS
The Event Calculus [23; 26] is a logic-based formalism for
representing and reasoning about dynamic systems. In
contrast to pure state-transition based formalisms, its
ontology includes an explicit structure of time, which is
independent of any (sequence of) events or actions under
consideration. As we shall see, this characteristic makes it
straightforward to model concurrent, possibly non-
deterministic, event-driven systems. In this paper, we
consider only deterministic systems, since SCR
specifications assume deterministic system behaviors.
However, the approach is equally applicable to non-
deterministic and concurrent event-driven system
specifications.

For our purposes, a simple classical logic form [26] of the
Event Calculus is sufficient, whose ontology consists of (i)
a set oftime-pointsisomorphic to the non-negative integers,
(ii) a set of time-varying properties calledfluents, and (iii) a
set ofevent types(or actions). The logic is correspondingly
sorted, and includes the predicatesHappens, Initiates,
Terminates and HoldsAt, as well as some auxiliary
predicates defined in terms of these.Happens(a,t)indicates
that event (or action)a occurs at time-pointt, Initiates(a,f,t)
(resp.Terminates(a,f,t)) means that eventa causes fluentf
to be true (resp. false) immediately aftert, andHoldsAt(f,t)
indicates that fluentf is true at t. So, for example, to
indicate that eventsA1 andA2 occur concurrently at time-
point T4 it is sufficient to assert[Happens(A1,T4) ∧
Happens(A2,T4)].

Specifications as Axiomatisations.Every Event Calculus
specification (i.e. description) includes a core collection of
domain-independent axioms (sentences) that describe
general principles for deciding when fluents hold or do not
hold at particular time-points. In addition, each
specification includes a collection of domain- or scenario-
dependent sentences describing the particular effects of
events or actions (using the predicatesInitiates and
Terminates), and may also include sentences stating the
particular time-points at which instances of these events
occur (using the predicateHappens).

To write the domain-independent axioms succinctly, it is
convenient to introduce two auxiliary predicates,Clipped
and Declipped. Clipped(t1,f,t2) means that some event
occurs between the timest1 and t2 which terminates the
fluent f. In logic, this is:

Clipped(t1,f,t2)≡ (EC1)
∃a,t[Happens(a,t)∧ t1 ÿ t < t2 ∧ Terminates(a,f,t)]

(In this and all other axioms all variables are assumed to be
universally quantified with maximum scope unless

5

otherwise stated.) Similarly,Declipped(t1,f,t2)means that
some event occurs between the timest1 andt2 that initiates
the fluentf:

Declipped(t1,f,t2)≡ (EC2)
∃a,t[Happens(a,t)∧ t1 ÿ t < t2 ∧ Initiates(a,f,t)]

Armed with this notational shorthand, we can state the
three general (commonsense) principles that constitute the
domain-independent component of the Event Calculus: (i)
fluents that have been initiated by event occurrences
continue to hold until events occur that terminate them:

HoldsAt(f,t2)← (EC3)
∃a,t1[Happens(a,t1)∧ Initiates(a,f,t1)

∧ t1 < t2 ∧ ¬Clipped(t1,f,t2)]

(ii) fluents that have been terminated by event occurrences
continue not to hold until events occur that initiate them:

 ¬HoldsAt(f,t2)← (EC4)
∃a,t1[Happens(a,t1)∧ Terminates(a,f,t1)

∧ t1 < t2 ∧ ¬Declipped(t1,f,t2)]

and (iii) fluents only change status via occurrences of
initiating and terminating events:

HoldsAt(f,t2)← [HoldsAt(f,t1) ∧ t1 < t2 (EC5)
 ∧ ¬Clipped(t1,f,t2)]

¬HoldsAt(f,t2)← [¬HoldsAt(f,t1) ∧ t1 < t2 (EC6)
 ∧ ¬Declipped(t1,f,t2)]

To illustrate how the effects of particular events may be
described in the domain-dependent part of a specification
using the predicatesInitiates and Terminates, we will
describe an electric circuit consisting of a single light bulb
and two switchesA andB all connected in series. We need
three fluents,SwitchAOn, SwitchBOnandLightOn, and two
actionsFlickA andFlickB. We can describe facts such as (i)
that flicking switch A turns the light on, provided that
switch A is not already on and that switchB is already on
(i.e. connected) and is not simultaneously flicked:

Initiates(FlickA,LightOn,t)←
[¬HoldsAt(SwitchAOn,t)

 ∧ HoldsAt(SwitchBOn,t)
 ∧ ¬Happens(FlickB,t)]

(ii) that if neither switch is on, flicking them both
simultaneously causes the light to come on:

Initiates(FlickA,LightOn,t)←
[¬HoldsAt(SwitchAOn,t)

 ∧ ¬HoldsAt(SwitchBOn,t)
 ∧ Happens(FlickB,t)]

and (iii) that if either switch is on, flicking it causes the
light to go off (irrespective of the state of the other switch):

Terminates(FlickA,LightOn,t)←
[HoldsAt(SwitchAOn,t)]

Terminates(FlickB,LightOn,t)←
[HoldsAt(SwitchBOn,t)]

In fact, in this example we need a total of five such

sentences to describe the effects of particular events or
combinations of events on the light, and a further four
sentences to describe the effects on the switches
themselves. Although for readability these sentences are
written separately here, it is thecompletions(i.e. the if-and-
only-if transformations) of the sets of sentences describing
Initiates and Terminatesthat are actually included in the
specification (see [26] for details). The completion of the
two Terminates clauses above, for example, is:

Terminates(a,f,t)≡ [[a=FlickA ∧ f=LightOn
 ∧ HoldsAt(SwitchAOn,t)]∨

[a=FlickB ∧ f=LightOn
 ∧ HoldsAt(SwitchBOn,t)]]

The use of such completions avoids the frame problem2, i.e.
it allows us to assume that the only effects of events are
those explicitly described.

For many applications, it is appropriate to include similar
(completions of) sets of sentences describing which events
occur (when using the predicateHappens). However, in the
present paper we wish to prove properties of systems under
all possible scenarios, i.e. irrespective of which events
actually occur. Hence our descriptions leaveHappens
undefined, i.e. they allow models with arbitrary
interpretations forHappens. In this way, we effectively
simulate a branching time structure that covers every
possible series of events. In other words, by leaving
Happensundefined we effectively consider, in one model
or another, every possible path through a state-transition
graph.

Efficient Abductive Reasoning in the Event Calculus.In
the context of this paper, we wish to take an Event Calculus
specification such as described above and use it to test
system invariants. In the language of the Event Calculus
these are expressions involvingHoldsAt and universally
quantified over time, such as:

∀t.[HoldsAt(SwitchAOn,t) ∨ ¬HoldsAt(LightOn,t)]
It is (potentially) computationally expensive to demonstrate
the truth of such sentences by standard (deductive or
abductive) theorem-proving techniques. However,
fortunately we can reduce this inference task to a simpler
one as stated by the following theorem.

Theorem 1. Let EC(�) an Event Calculus description with
the sort of time-points interpreted as the natural numbers
�, and∀t.I(t) be the invariant we wish to demonstrate. Let
� is a simple time structure consisting of just two pointsSc
andSnsuch thatSc < Sn. ThenEC(�) � ∀t.I(t) if and only
if EC(�) � I(0) andEC(�) U {I(Sc)} � I(Sn).

2 The “frame problem” is the problem of stating concisely
that in general almost all fluents that hold true at a given
instant of time continue to hold after an event has been
performed [30].

6

Suppose thatEC(�) is an Event Calculus description with
the sort of time-points interpreted as the natural numbers
�, and ∀t.I(t) is the invariant we wish to demonstrate.
Then in logical terms we wish to show thatEC(�) �
∀t.I(t). The theorem states that, provided the invariant is
initially true (i.e. I(0) is true), it is sufficient to show that
EC(�) U {I(Sc)} � I(Sn), where� is a simple time structure
consisting of just two pointsSc and Sn such thatSc < Sn
(“c” for “current” and “n” for “next”). In other words, it is
sufficient to consider only a symbolic time-pointScand its
immediate successorSn, assume the invariant to be true at
Sc, and demonstrate that its truth then follows atSn. (Proof
of the theorem is straightforward by induction over�.)
This theorem is applicable even when complete information
about the initial state of the system is not available. Its
utilisation reduces computational costs considerably
because, in the context ofEC(�), it allows us to re-write all
our Event Calculus axioms with ground time-point terms.
For example, (EC5) becomes:

HoldsAt(f,Sn)← [HoldsAt(f,Sc) ∧ ¬Clipped(Sc,f,Sn)]

Our final logical tool for efficient reasoning about Event
Calculus specifications isabduction[19]. Abduction is the
process of finding a consistent extension (of a specified
form) to a logical specification such that it then entails a
given goal. Given an Event Calculus descriptionEC and a
goalG expressed as a collection ofHoldsAtfacts, abductive
tools exist that will attempt to identify (the completion of) a
collection ofHappensfacts ∆ such thatEC ∪ ∆ � G and
EC ∪ ∆ is consistent. (In the context ofplanning, each fact
in ∆ is then interpreted as an action for the agent to perform
to achieve the goalG.) Moreover, some of these abductive
tools (e.g. [22]) arecomplete, in the sense that they will
always identify such a∆ if one exists.

In this paper, we will use abduction “in reverse”. Using the
reduced time structure described above, we will prove
assertions of the formEC(�) ∪ {I(Sc)} � I(Sn)by showing
that a complete abductive procedure fails to produce a set∆
of HoldsAt and Happensfacts (grounded atSc) such that
EC(�) ∪ {I(Sc)} ∪ ∆ � ¬I(Sn). This procedure is valid
given the reasonable assumptions that only a finite number
of events can occur in a given instant and that the total
number of system properties (fluents) is finite. The theorem
described above then allows us to confirm that, provided
I(0) is true, ∀t.I(t) is also true. As we shall see, the
abductive procedure has the added advantage that if instead
it does produce such a set∆, then this∆ is an explicit
indicator of where in the specification (i.e. in the SCR
table) there is a problem.

4 ABDUCTIVE INCONSISTENCY HANDLING
We are now in the position to describe our abductive Event
Calculus approach to analysing the consistency between
SCR mode transition tables and system invariants. We refer
to Table-1 as an example case study to illustrate our

approach. Briefly, SCR tables are translated into Event
Calculus specifications of the type described above, system
invariants are expressed (in the same language) asHoldsAt
formulae universally quantified over time, and then
abduction is used as an inference method to either confirm
that the (translation of the) table satisfies the invariants or
to identify the parts where it does not. To guarantee the
computational efficiency and scalability of this process, the
Event Calculus translations are reduced to ground, two
time-point versions, of the type described above, prior to
the application of the abductive reasoning process. The
soundness of this reduction is guaranteed by Theorem 1. In
practice, the refinement of an SCR table using this method
will be an iterative process, with the abductive tool being
reapplied after each change of the table.

The Translation. In our translation both conditions and
modes are represented as fluents, which we will refer to as
condition fluentsand mode fluentsrespectively. Although
in reality many different types of external, real-word events
may affect a given condition, SCR tables abstract these
differences away and essentially identify only two types of
events for each condition− a “change-to-true” (@T) and a
“change-to-false” (@F) event. Hence in our Event Calculus
translation there are no independent event constants, but
instead two functions@T and @F from fluents to events,
and for each condition fluentC, the two axioms:

∀t.Initiates(@T(C),C,t) (S1)
∀t.Terminates(@F(C),C,t) (S2)

The translation of tables into Event Calculus axioms (rules)
is modular, in the sense that a singleInitiates and a single
Terminatesrule is generated for each row of the table. For a
given row, the procedure for generating theInitiates rule is
as follows. TheInitiates literal in the left-hand side of the
rule has the new mode (on the far right of the row) as its
fluent argument, and the first @T or @F event (reading
from the left) as its event argument. The right-hand side of
the rule includes aHoldsAt literal for the current mode and
a pair ofHoldsAtandHappensliterals for each “non-dash”
condition entry in the row. Specifically, if the entry for
condition C is a “t” this pair is HoldsAt(C,t) ∧
¬Happens(@F(C),t), for “f” it is ¬HoldsAt(C,t) ∧
¬Happens(@T(C),t), for “@T” it is ¬HoldsAt(C,t) ∧
Happens(@T(C),t),and for “@F” it is HoldsAt(C,t) ∧
Happens(@F(C),t). The Terminatesrule is generated in
exactly the same way, but with the current mode as the
fluent argument in theTerminatesliteral. For example, the
seventh row in Table-1 is translated as follows:

Initiates(@F(Running),Inactive,t)←
[HoldsAt(Cruise,t) ∧

 HoldsAt(Ignited,t)∧ ¬Happens(@F(Ignited),t) ∧
 HoldsAt(Running,t)∧ Happens(@F(Running),t)]

Terminates(@F(Running),Cruise,t)←
[HoldsAt(Cruise,t) ∧

 HoldsAt(Ignited,t)∧ ¬Happens(@F(Ignited),t) ∧

7

 HoldsAt(Running,t)∧ Happens(@F(Running),t)]

Clearly, this axiom pair captures the intended meaning of
individual rows as described in Section 2.

The semantics of the whole table is given by the two
completions of the collections ofInitiates and Terminates
rules. These completions (standard in the Event Calculus)
reflect the implicit information in a given SCR table that
combinations of condition values not explicitly identified
are not mode transitions. Indeed, as discussed in Section 2
we may regard SCR tables as also containing “hidden” or
“default” rows (which the engineer does not bother to list)
in which the current and the new mode are identical.
Mismatches between the system invariants and the table are
just as likely to be caused by these hidden rows as by the
explicit rows of the table. Because our translation utilises
completions, the abductive tool is able to identify problems
in hidden as well as explicit rows.

Our Event Calculus translation supplies a semantics to
mode transition tables that is independent from other parts
of the SCR specification. In particular, the translation does
not include information about the initial state, and the
abductive tool does not rely on such information to check
system invariants. The technique described here is therefore
also applicable to systems where complete information
about the initial configuration of the environment is not
available. The abductive tool does not need to use defaults
to “fill in” missing initial values for conditions.
(Information about the initial state may of course also be
represented in the Event Calculus; e.g.,HoldsAt(Off,0), so
that system invariants may be checked with respect to the
initial state separately).

The Abductive Procedure.For the purposes of discussion,
let us suppose that the mode transition table in question has
been translated into an Event Calculus specificationEC(�)
(where the� signifies that our structure of time-points is
isomorphic to the natural numbers) and that the system
invariants have been expressed asn universally quantified
sentences∀t.I1(t),…,∀t.In(t) (where eachIn is expressed
with standard logical connectives and theHoldsAt
predicate). We add an additional constraint∀t.I0(t) to the
specification which simply states (via an exclusive or) that
the system is in exactly one mode at any one time. We use
the term∀t.I(t) to stand for the conjunction∀t.I0(t) ∧ …
∧ ∀t.In(t). In the case of the cruise control specification, the
invariants are (reading “|” as exclusive or):

I0: [HoldsAt(Off,t) | HoldsAt(Inactive,t) |
 HoldsAt(Cruise,t) | HoldsAt(Override,t)]
I1: HoldsAt(Off,t) ≡ ¬HoldsAt(Ignited,t)
I2: HoldsAt(Inactive,t) → [HoldsAt(Ignited,t) ∧

 [¬HoldsAt(Running,t)∨ ¬HoldsAt(Activate,t)]]
I3: HoldsAt(Cruise,t) → [HoldsAt(Ignited,t) ∧

 HoldsAt(Running,t) ∧ ¬HoldsAt(Brake,t)]
I4: HoldsAt(Override,t) →

 [HoldsAt(Ignited,t) ∧ HoldsAt(Running,t)]
As stated in Section 3, a general theoretical result about the
Event Calculus allows us to use an abductive tool with a
reduced version of the Event Calculus specification. The
specification is reduced in the sense that it uses a time
structure� consisting of just two symbolic pointsScandSn
such thatSc < Sn. Our abductive procedure attempts to find
system behaviors described by the transition table that are
inconsistent with the system invariants (i.e. potential
inconsistencies betweenEC(�) and ∀t.I(t)) by attempting
to generate a consistent set∆ of HoldsAtandHappensfacts
(positive or negative literals grounded atSc), such that
EC(�) ∪ {I(Sc)} ∪ ∆ � ¬I(Sn). We can also check the
specification against a particular invariant∀t.Ii(t) by
attempting to abduce a∆ such thatEC(�) ∪ {I(Sc)} ∪ ∆ �
¬ Ii(Sn). Because the abductive procedure is complete,
failure to find such a∆ ensures that the table satisfies the
invariant(s). If, on the other hand, the tool generates a∆,
this ∆ is effectively a pointer to a particular row in the table
that is problematic.

For example, in the case of the cruise control specification,
when checking the table against the invariantI3 the tool
produces the following∆:

 ∆ = { HoldsAt(Ignited,Sc), HoldsAt(Running,Sc),
HoldsAt(Toofast,Sc), ¬HoldsAt(Brake,Sc),
HoldsAt(Cruise,Sc), ¬Happens(@F(Ignited),Sc),
¬Happens(@F(Running),Sc),
¬Happens(@F(Toofast),Sc),
Happens(@T(Brake),Sc)}

Clearly, this∆ identifies one of the “hidden” rows of the
table in which a@T(Brake)event merely results in the
system staying in modeCruise. The requirements engineer
now has a choice: (1) alter the new mode in this (hidden)
row so that invariantI3 is satisfied (in this case the obvious
choice is to change the new mode fromCruiseto Override,
and make this previously hidden row explicit in the table),
(2) weaken or delete the system invariant (in this caseI3)
that has been violated, or (3) add an extra invariant that
forbids the combination ofHoldsAtliterals in∆ (e.g. addI5

= [HoldsAt(Cruise,t) → ¬HoldsAt(Toofast,t)]). Choices
such as this will be highly domain-specific and therefore
appropriate for the requirements engineer, rather than the
tool, to select. After the selected change has been
implemented, the tool should be run again, and this process
repeated until no more inconsistencies are identified (i.e.
until the tool fails to abductively generate a∆).

This example illustrates in general all the types of choices
for change that will be available when an inconsistency is
detected. In particular, as described in Section 2 any mode
transition table employing “-”s as values for monitored
variables is equivalent to a (greatly) expanded table in
which the “-”s have been eliminated, and in which all
“hidden” rows (i.e. rows where the current and new modes
are the same) have been added. Thus any change in the

8

concise version of the table (e.g. changing a “t” into a
“@F” or a “-”) is equivalent to changing the new mode (i.e.
the value in the right-most column) in some collection of
rows in the expanded table. This in turn means that
performing a change in the concise version of the table is
equivalent to replacing zero or more of its rows by a
collection of rows taken from the newly modified,
expanded version of the table. (Of course, as this collection
is added, it should be appropriately collapsed to a
manageable size by re-introduction of “-”s.) In other words,
the only real underlying choice that the engineer has when
defining or altering a mode transition table is which new
mode any given set of conditions and events will result in.

Tool Support. It is beyond the scope of this paper to
describe in detail the implementation of our abductive tool.
However, it is worth briefly mentioning how the tool
avoids the pitfalls sometimes associated with theorem
proving (and in particular abductive theorem proving)
techniques, these being computational inefficient and non-
scalable. We are able to avoid both these problems because
we are able to reduce the representation to a ground
expression with just two symbolic time-pointsSc and Sn.
Furthermore, the particular structure of this expression
allows us to largely avoid the consistency checking that
often imposes a high computational cost on automated
abductive procedures as they construct an extension∆. This
is because the particular form of the Event Calculus we use
already ensures that any internally consistent, finite
collection ofHappensliterals is consistent with any related
specification. Therefore, it is only necessary to check the
consistency of candidateHoldsAtliterals against the system
invariants, and this can be done efficiently because both
these types of expression are grounded atSc.

Our prototype tool is implemented in Prolog, using a
simplified version of the abductive logic program module
described in [21]. The logic program conversion of the
given (classical logic) Event Calculus specification is
achieved using the method described in [22], which
overcomes the potential mismatch between the negation-as-
failure used in the implementation and the classical
negation used in the specification.

5 DISCUSSION AND CONCLUSIONS
Observations.The efficiency and, we believe, intuitiveness
of our approach derives partly from the ontology of the
Event Calculus. In particular, the Event Calculus’ explicit
representation of event occurrences means that there is a
one-to-one correspondence between a given row in the
mode transition table and a particular pair of sentences in
the translated specification. This correspondence facilitates
the implementation of automatic translators from SCR
specifications to Event Calculus specifications and vice-
versa. This would allow the abductive approach to be used
as “back-end” of existing requirements engineering tools
without requiring engineers to write specifications directly
in the logical form. Furthermore, Theorem 1, by justifying

the reduction of Event Calculus specifications to two-time-
point counterparts, reflects directly the primary intuition
behind mode transition tables. This is that the extended
dynamic behavior of the system can be reduced to a
description involving just two symbolic states labeled
“current mode” and “new mode”. Finally, the use of
predicate completion forInitiates and Terminatesexactly
mirrors the default assumption implicit in mode transition
tables. This is that combinations of events and conditions,
not explicitly represented in any row, are not transitions
between different modes.

A key characteristic of our approach is that, because the
computation does not utilise information about the “initial
state”, it is applicable to systems whose initial
environmental conditions are not fully known. This is
likely to be the case in many large or complex event-driven
systems. The downside to this characteristic is that the tool
will in certain cases be over-zealous in its reporting of
potential problems, in that it will also report inconsistencies
associated with system states that are in reality unreachable
from the initial state (or set of possible initial states), if
such information is given elsewhere in the specification.
However, in such cases the resolution of these problems
would result only in overly robust, rather then incorrect,
specifications.

Related Work. A number of logic-based approaches for
handling inconsistency have been proposed in the literature.
Specifically, Zowghi and Offen [32] suggest belief revision
for default theories as a formal approach for resolving
inconsistencies arising during the evolution of requirements
specifications. Similarly, Ryan [29] defines (epistemic
entrenchment) ordering relations on default information,
and changes on these relations rather then the specifications
facilitate conflict resolution. A logic-based method more
closely related to ours has been proposed by van
Lamsweerdeet al. [31]. This describes a goal-driven
approach to requirement engineering in which “obstacles”
are parts of a specification that lead to a negated goal. This
approach is similar to our abductive technique in that the
notion of goals is comparable to our notion of invariants,
and obstacles are comparable to the abduced facts detected
by our abductive technique. However, whereas our
approach identifies only explanations that are consistent
with the specification, van Lamsweerde’s approach does
not consider consistency checking as part of the process of
generating obstacles. Furthermore, the generation of
obstacles as well as of refined goals is still purely a human
task [31]. We believe that our abductive proof procedure
and tool can also be used in the context of van
Lamsweerde’s goal-driven approach to provide a proof
procedure and a tool support for the analysis of goals and
obstacles. Recent work by Menzies has also demonstrated
the applicability of abductive reasoning to knowledge-
based software engineering, using an inference procedure
for “knowledge-level modeling” that can support
prediction, explanation, and planning [25].

9

Especially relevant to this paper is existing work on
inconsistency analysis of SCR requirements specifications
using model checking. Heitmeyeret al. [16] illustrate how
both explicit state model checkers, such as Spin, and
symbolic model checkers, like SMV, can be used to detect
safety violations in SCR specifications. The first type of
model checking verifies systems’ invariants by means of
state exploration. Problems related to state explosion are
dealt with by the use of sound and complete abstraction
techniques, which basically reduce the number of variables
to just those that are relevant to the invariant to be tested
[16]. In our case, the combination of abduction and Event
Calculus has the same effect. Abduction focuses reasoning
on goals relevant to the invariant, and the Event Calculus
ensures that this reasoning is at the level of relevant
variables (fluents) rather than via the manipulation of entire
states. The essential differences between our approach and
this type of model checking are that our system (i) can deal
with specifications in which information about the initial
state is incomplete, and (ii) reports problems in terms of
individual transitions (which correspond directly to rows in
the tables) rather than in terms of particular paths through a
state space.

Symbolic model checking techniques, such as SMV, use
special-purpose languages to represent system
specifications, and the (branching time temporal logic)
CTL language to express system invariants. Whereas
explicit state model checkers detect violation of invariants
by enumerating the set of reachable states, symbolic model
checkers consider the set of reachable states as logical
formulae. The complexity of SMV analysis is therefore
given by the number of “possible” (consistent) states, in
contrast with the first type of model checking, where the
complexity depends on the number of reachable states [3;
5]. Applications of these two techniques to various case
studies suggest that explicit state methods are less
expensive than symbolic model checking for error detection
[5]. Our approach is similar to symbolic model checking in
that consistency checking is also needed. However, as
explained in Section 4, this checking can be done
efficiently, as it only applies to abducedHoldsAt literals
and system invariants, and both these two types of
expressions are grounded with respect to the current state.
SMV model checking has also been used to analyse
requirements specifications expressed in the Requirements
State Machine Language (RSML) [2; 12], in which state
explosion problems are addressed by performing the
consistency analysis directly on the model of the
specifications. Decomposition and function composition
rules are adopted to guarantee the scalability of the
approach to large system specifications [12].

Future work. The abductive approach described in this
paper lays the (theoretical and practical) foundations for the
development of a logic-based method with efficient tool
support for inconsistencies handling in SCR requirements
specifications and more generally in event-driven systems

specifications. However, a number of specific technical and
general issues are still open to further investigation.

In this paper, our approach has been applied to single mode
transition tables and system invariants. However, full SCR
specifications also include event tables and condition
tables. Our approach could also be extended to facilitate
reasoning about such tables. Event tables could be
translated intoInitiatesandTerminatesrules, where modes
are expressed byHoldsAt literals, events byHappens
literals, and the controlled variables or terms defined by the
table are expressed usingInitiates or Terminatesliterals.
Condition tables, on the other hand, could be formalised as
additional constraints of the Event Calculus specification
by using HoldsAt formulae. In a very similar way,
environmental constraints could also be included in the
Event Calculus specification asHoldsAt constraints. For
such extensions, abducedHoldsAt literals would have also
to be checked for consistency with respect to these
additional constraints. A second extension of the approach
would be to consider SCR specifications with non-Boolean
variables. Our approach facilitates the representation of
SCR specifications with non-Boolean variables only when
such variables can be re-expressed in terms of auxiliary
Boolean conditions. The approach needs to be extended in
order to handle specifications that do need to refer to the
non–Boolean values of their variables explicitly.

A third line of future investigation is to allow for non-
determinism. Although the Event Calculus makes it
straightforward to model non-deterministic and concurrent
systems, in this present paper we have considered only
deterministic systems. This is also the case for other
existing model checking approaches [4; 5]. In our approach
both the abductive reasoning principles and the tool will
need to be appropriately adapted in order to reason about
non-deterministic and concurrent event transitions.

A more general issue for future work is the development of
(i) automated tools for translating SCR tables into Event
Calculus specifications, and (ii) user-friendly interfaces for
the abductive tool. Both these issues are feasible, in
particular because of the systematic way of generating
Event Calculus rules from SCR tables.

Acknowledgements. We gratefully acknowledge the
feedback and suggestions of Connie Heitmeyer, Ramesh
Bharadwaj, Axel van Lamsweerde, Didar Zowghi,
Gianpaolo Cugola, Jonathan Moffet and our colleagues in
the DSE group at Imperial College. Thanks also to Peter
Grimm and Bruce Labaw of NRL for assisting us in
installing SCR* at Imperial College. Tony Kakas also
provided many insightful comments about abductive tools.
This work was partially funded by the UK EPSRC projects
MISE (GR/L 55964) and VOICI (GR/M 38582).

REFERENCES
1. Alspaugh, T.et al., “Software Requirements for the A-

7E Aircraft”, Technical Report, Naval Research
Laboratory, March 1988.

10

2. Anderson, R, Beame, P. Burns S., Chan, W., Modugno
F., Notkin D. and Reese, J., “Model Checking Large
Software Specifications”,Proc. of 4th ACM Symp. on
Foundations of Soft. Eng., October 1996.

3. Atlee, J.M. and Buckley, M.A., “A Logic-Model
Semantics for SCR Software Requirements”,Proc. of
the Int. Symp. on Soft. Testing and Analysis, 280-292,
January 1996.

4. Atlee, J.M. and Gannon, J., “State-Based Model
Checking of Event-Driven System Requirements”,
IEEE Trans. on Soft. Eng.,19(1):24-40, January 1993.

5. Bharadwaj, R. and Heitmeyer, C., “Model Checking
Complete Requirements Specifications Using
Abstraction”, Technical Report NRL-7999, Naval
Research Laboratory, Washington, 10th Nov. 1997.

6. M.Clarke, E. and M.Wing, J., “Formal Methods, State
of the Art and Future Directions”,ACM Computing
Surveys 28(4):626-643, December 1996.

7. Console, L., Portinale, L. and Theseider Dupre, D.,
“Using Compiled Knowledge to Guide and Focus
Abductive Diagnosis”,IEEE Trans. on Knowledge and
Data Eng.,8(5):690-706, 1996.

8. Console, L., Sapino, M.L. and Theseider Dupre, D.,
“The Role of Abduction in Database View Updates”,
Journal of Intelligent Systems,1994.

9. Easterbrook, S. and Callahan, J. “Formal Methods for
Verification and Validation of Partial Specifications: A
Case Study”,Journal of System and Software, 1997.

10. Esghsi, K., “Abductive Planning with the Event
Calculus”,Proc. of Int. Joint Conf. on AI,1, 3-8, 1988.

11. Gilb, T. and Graham, D.,Software Inspection,Addison-
Wesley 1993.

12. Heimdahl, M.P.E. and Leveson, N.G., “Completeness
and Consistency in Hierarchical State-Based
Requirements”,IEEE Trans. on Soft. Eng., 22(6):363-
377, June 1996.

13. Heitmeyer, C.L., Jeffords, R.D. and Labaw, B.G.
“Automated Consistency Checking of Requirements
Specifications”, ACM Trans. of Soft. Eng. and
Methodology,5(3):231-261, July 1996.

14. Heitmeyer, C.L., Labaw, B. and Kiskis, D.,
“Consistency Checking of SCR-Style Requirements
Specifications”, IEEE Proc. of 2nd Int. Symp. on
Requirements Engineering, 27-29, York, March 1995.

15. Heitmeyer, C.et al., “SCR*: A Toolset for Specifying
and Analyzing Software Requirements”,Proc. of
Computer-Aided Verification, Canada, 1998.

16. Heitmeyer, C.et al., “Using Abstraction and Model
Checking to Detect Safety Violations in Requirements
Specifications”,IEEE Trans. on Soft. Eng.,24(11):927-
947, November 1998.

17. Holzmann, G.J., “The Model Checker SPIN”,IEEE
Trans. on Soft. Eng.,23(5): 279-295, May 1997.

18. Inoue, K. and Sakam, C., “Abductive Framework for
Non-monotonic Theory Change”,Proc. of Int. Joint
Conf. on AI,1, 204-210, 1995.

19. Kakas, A.C., Kowalski, R.A. and Toni, F., “The Role of
Abduction in Logic Programming”,Handbook of Logic
in Artificial Intelligence and Logic Programming, 5,
(1998), D.M. Gabbay, C.J. Hogger and J.A. Robinson
eds., Oxford University Press, 235-324,.

20. Kakas, A.C. and Mancarella, P., “Database Updates
Through Abduction”, Proc. of 16th Very Large
Database Conference, Brisbane, Australia, 1990.

21. Kakas, A.C. and Michael, A., “Integrating Abductive
and Constraint Logic Programming”,Proc. of the 12th

Int. Conf. on Logic Programming, Tokyo 1995.

22. Kakas, A. C. and Miller, R., “A Simple Declarative
Language for Describing Narratives with Actions”,
Journal of L.P., 31(1-3):157-200 (Special Issue on
Reasoning about Action and Change), 1997.

23. Kowalski, R. A. and Sergot, M. J., “A Logic-Based
Calculus of Events”,New Generation Computing,4:67-
95, 1986.

24. McMillan, K.L., Symbolic Model Checking,Kluwer
Academic Publishers, 1993.

25. Menzies, T., “Applications of Abduction: Knowledge
Level Modeling”, Int. Journal of Human Computer
Studies,1996.

26. Miller, R. and Shanahan, S., “The Event Calculus in
Classical Logic − Alternative Axiomatisations”,
Linköping Electronic Articles in Computer and
Information Science,4(16), 1999.

27. Miller, S., “Specifying the Mode Logic of a Flight
Guidance System in CoRE and SCR”,Proc. of 2nd

Workshop of Formal Methods in Soft. Practice, 1998.

28. Parnas, D. L. and Madey J., “Functional Documentation
for Computer Systems,Technical Report CRL 309,
McMaster University, Canada, September 1995.

29. Ryan, M., “Default in Specification”,IEEE Proc. of Int.
Symp. on Req. Eng., 266-272, San Diego, Jan. 1993.

30. Shanahan, M. P., “Solving the Frame Problem: A
Mathematical Investigation of the Common Sense Law
of Inertia”, MIT Press (1997).

31. van Lamsweerde, A., Darimont, R. and Letier, E.,
“Managing Conflicts in Goal-Driven Requirements
Engineering”,IEEE Trans. on Soft. Eng.,Nov. 1998.

32. Zowghi, D. and Offen, R. “A Logical Framework for
Modeling and Reasoning about the Evolution of
Requirements”, IEEE Proc. of 3rd Int. Symp. on Req.
Eng.,Annapolis, USA, Jan. 1997.

