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Abstract. We propose and investigate a framework that utilizes novel
aspects concerning probabilistic and morphological visual processing for
the segmentation, tracking and handshape modeling of the hands, which
is used as front-end for sign language video analysis. Our ultimate goal is
to explore the automatic Handshape Sub-Unit (HSU) construction and
moreover the exploitation of the overall system in automatic sign lan-
guage recognition (ASLR). We employ probabilistic skin color detection
followed by the proposed morphological algorithms and related shape
filtering for fast and reliable segmentation of hands and head. This is
then fed to our hand tracking system which emphasizes robust handling
of occlusions based on forward-backward prediction and incorporation of
probabilistic constraints. The tracking is exploited by an Affine-invariant
Modeling of hand Shape-Appearance images, offering a compact and de-
scriptive representation of the hand configurations. We further propose
that the handshape features extracted via the fitting of this model are
utilized to construct in an unsupervised way basic HSUs. We first pro-
vide intuitive results on the HSU to sign mapping and further quanti-
tatively evaluate the integrated system and the constructed HSUs on
ASLR experiments at the sub-unit and sign level. These are conducted
on continuous SL data from the BU400 corpus and investigate the effect
of the involved parameters. The experiments indicate the effectiveness of
the overall approach and especially for the modeling of handshapes when
incorporated in the HSU-based framework showing promising results.

1 Introduction

Sign languages convey information via visual patterns and serve as an alter-
native or complementary mode of human communication or human-computer
interaction. The visual patterns of sign languages, as opposed to the audio pat-
terns used in the oral languages, are formed mainly by handshapes and manual
motion, as well as by non-manual patterns. The hand localization and tracking
in a sign video as well as the derivation of features that reliably describe the
pose and configuration of the signer’s hand are crucial for the overall success of
an automatic Sign Language Recognition (ASLR) system. Nevertheless, these
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tasks still pose several challenges, which are mainly due to the great variation
of the hand’s 3D shape and pose.

Many approaches of hand detection and tracking have been reported in the
literature, e.g. [1–4]. As far as the extraction of features of the hand configuration
is concerned, several works use geometric measures related to the hand, such as
shape moments [5]. Other methods use the contour that surrounds the hand
in order to extract various invariant features, such as Fourier descriptors [6].
More complex hand features are related to the shape and/or the appearance
of the hand [1, 3, 4]. Segmented hand images are normalized for size, in-plane
orientation, and/or illumination, and Principal Component Analysis (PCA) is
often applied for dimensionality reduction, [7, 8]. In addition, Active Shape and
Appearance Models have been applied to the hand tracking and recognition
problem [9, 10]. Apart from methods that use 2D hand images, some methods
are based on a 3D hand model, in order to estimate the finger joint angles and
the 3D hand pose, e.g. [11].

In the higher level, ASLR provides challenges too. In contrast with spoken
languages, sign languages tend to be monosyllabic and poly-morphemic [12]. A
diversity that also has practical effects concerns phonetic sub-units: A sign unit
has a different nature when compared to the corresponding unit in speech, i.e.
the phoneme. This concerns the multiple parallel cues that are articulated simul-
taneously during sign language generation. Handshape is among the important
phonetic parameters that characterize the signs together with the parameters
of movement and place-of-articulation. In addition, modeling at the sub-unit
level [13,14] provides a powerful method in order to increase the vocabulary size
and deal with more realistic data conditions.

In this paper, we propose a new framework that incorporates skin-color based
morphological segmentation, tracking and occlusion handling, hand Shape - Ap-
pearance (SA) modeling and feature extraction: these are all integrated to serve
the automatic construction of handshape sub-units (HSU), on their employment
in ASLR. Our contribution consists of the following: 1) In order to detect and
refine the skin regions of interest, we combine a basic probabilistic skin-color
model with novel shape filtering algorithms that we designed based on math-
ematical morphology [15]. 2) We track the hands and the head making use of
forward-backward prediction and incorporating rule-based statistical prior in-
formation, 3) We employ SA hand images for the representation of the hand
configurations. These images are modeled with a linear combination of affine-
free eigenimages followed by an affine transformation, which effectively accounts
for modest 3D hand pose variations. 4) Making use of the eigenimage weights
after model fitting, which correspond to the handshape features, we construct in
an unsupervised way data-driven handshape sub-units. These are incorporated
in ASLR as the basic phonetic HSUs that compose the different signs. 5) We
evaluate the overall framework on the BU400 corpus [16]. In the experiments
we investigate the effectiveness of the SA modeling and HSU construction in the
task of ASLR that refers to the modeling of intra-sign segments by addressing
issues such as: a) the variation of involved parameters, as for instance the model
order during sub-unit construction, and the employment of initialization during
clustering; b) the vocabulary size. c) Finally, we provide intuition concerning
the lexicon and the sub-unit to sign maps via qualitative and quantitative ex-
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Fig. 1. Skin color modeling. (Left, Middle) Examples of manual annotations of skin
regions (rectangles) that provide training samples of skin color. (Right) Training sam-
ples in the CbCr space and fitted pdf ps(C). The ellipse bounds the colors that are
classified to skin, according to the thresholding of ps(C(x)). The line determines the
projection that defines the mapping g used in the SA images formation.

periments. Under these points of view the conducted experiments demonstrate
promising results.

2 Visual Front-End Processing

2.1 Segmentation and Skin Detection

Probabilistic Skin Color Modeling First of all, a preliminary estimation of
the hands and head locations is derived from the color cue, similarly to various
existing methods [1–3]. For this, we assume that the signer wears long sleeved
clothes and the colors in the background differ from the skin color. More precisely,
we construct a simple skin color model in the YCbCr space and we keep the two
chromaticity components Cb,Cr. In this way we obtain some degree of robustness
to illumination changes [17]. We assume that the CbCr values C(x) of skin pixels
follow a bivariate gaussian distribution ps(C), which is fitted using a training
set of skin color samples from manually annotated skin areas of the signer,
Fig.1. A first estimation of the skin mask S0 is thus derived by a thresholding
of ps(C(x)) at every pixel x, Figs.1-right, 2(b). The corresponding threshold
constant is determined so that a percentage of the training skin color samples
are classified to skin. This percentage is slightly smaller than 100%, in order to
cope with training samples outliers.

Morphological Refinement of the Skin Mask The extracted skin mask
S0 may contain spurious regions as well as holes inside the head area because
of the signer’s eyes or potential beard. For these reasons, we propose a novel
morphological algorithm to regularize the set S0: First, we use the concept of
holes H(S) of a binary image S; these are defined as the set of background
components which are not connected to the border of the image frame [15, 18].
In order to fill also some background regions that are not holes in the strict sense
but are connected to the image border passing from a small “canal”, we apply
the following generalized hole filling that yields a refined skin mask estimation
S1:

S1 = S0 ∪H(S0) ∪ {H(S0 • B) ⊕ B} (1)

where B is a structuring element of small size and ⊕ and • denotes dilation
and closing respectively. For efficiency reasons, we chose B to be square instead
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(a) Input (b) S0 (c) S2 (d) S2 � Bc (e) segmented S2

Fig. 2. Indicative results of the skin mask extraction and segmentation system.

of disk, since dilations/erosions by a square are much faster to compute while
showing an almost equal effectiveness for this problem.

Afterwards, in order to remove potential spurious regions, we exploit prior
knowledge: the connected components (CCs) of relevant skin regions 1) can be
at most three, corresponding to the head and the hands, and 2) cannot have an
area smaller than a threshold Amin. Therefore, we apply an area opening with
a varying threshold value: we find all the CCs of S1, compute their areas and
finally discard all the components whose area is not on the top 3 or is less than
Amin. This yields the final estimation S2 of the skin mask, Fig. 2(c).

Morphological Segmentation of the Skin Mask Since the pixels of the
binary skin mask S2 correspond to multiple body regions, next we segment it, in
order to separate these regions, whenever possible. For this, we have designed the
following method. In the frames where S2 contains 3 CCs, these yield directly an
adequate segmentation. However, the skin regions of interest may occlude each
other, which makes S2 to have less than 3 CCs. In many such cases though, the
occlusions between skin regions are not essential: different regions in S2 may be
connected via a thin “bridge”, Fig. 2(c), e.g. when one hand touches the other
hand or the head. Therefore we can reduce the set of occluded frames by further
segmenting some occluded regions based on morphological operations as follows:

If S2 contains Ncc connected components with Ncc < 3, find the CCs of
S2 � Bc (e.g. Fig. 2(d)) for a structuring element Bc of small size and discard
those CCs whose area (after a dilation with Bc) is smaller than Amin. A number
of remaining CCs not bigger than Ncc implies the absence of a thin connection,
thus does not provide any occlusion separations. Otherwise, use each one of
these CCs as the seed of a different segment and expand it in order to cover
all the region of S2. For this we propose a competitive reconstruction opening
(see Fig. 2(e)), this is the result of an iterative algorithm, where in every step
1) each evolving segment is expanded using its conditional dilation by the 3× 3
cross relative to S2, 2) the pixels that belong to more than one segment are
determined and excluded from all segments. This means that the segments are
expanded inside S2 but their expansion stops wherever they meet other segments.
This procedure converges since after some steps the segments remain unchanged.

2.2 Tracking and Occlusion handling

After employing the segmentation of the skin mask S2, we tackle the issue of
hands/head tracking. This consists of 1) the assignment of one or multiple body-
part labels, head, left and right hand, to all the segments of every frame and 2) the
estimation of ellipses at segments with multiple labels (occluded). For that, we
distinguish between two cases: the segmentation of S2 yielded a) 3 segments in
the non-occlusion case and b) 1 or 2 segments in the occlusion case.

Workshop on Sign, Gesture and Activity, 11th European Conference on Computer Vision (ECCV), Crete, Greece, September 2010



Hand Tracking & Affine Shape-Appear. Handshape SUs in Continuous SLR 5

(a) (b) HR (c) HR (d) HRL (e) HRL (f) HR

Fig. 3. Hands & head tracking in a sequence of frames where occlusion occurs (b-f),
among Head (H), Right (R) or Left (L) hand.

Non-Occlusion case: The segment with the biggest area is assigned the label
head assuming that its area is always larger than hands. For the hands’ labels,
given that they have been assigned to the previous frames, we employ a linear
prediction of the centroid position of each hand region taking into account the
3 preceding frames; the predictor coefficients correspond to a model of constant
acceleration. Then, we assign the labels based on the minimum distances between
the predicted positions and the centroids of the segments. We also fit one ellipse
on each segment assuming that an ellipse can coarsely approximate the hand or
head contour [2]. We plan to employ the fitted ellipses in cases of occlusions.

Occlusion case: Using the parameters of the body-part ellipses already com-
puted from the last 3 preceding frames, we employ similarly to the previous case
the linear forward prediction for all ellipses parameters of the current frame.
Due to the sensitivity of this linear estimation with respect to the number of the
consecutive occluded frames, non-disambiguated cases still exist. We face this
issue by obtaining an auxiliary centroid estimation of each body-part via tem-
plate matching of the corresponding image region between consecutive frames.
Then, we repeat the prediction and template matching estimations backwards in
time through the reverse frame sequence. Consequently, forward and backward
prediction, are fused yielding a final estimation of the ellipses’ parameters for
the signer’s head and hands. Fig.3 depicts the tracking result in a sequence of
frames with non-occluded and occluded cases. We observe that our system yields
an accurate tracking even during occlusions.

Statistical parameter setting: The aforementioned front-end processing in-
volves various parameters. Most of them are derived automatically by prepro-
cessing some frames of the video(s) of the specific signer. For this, we consider
non-occluded cases of frames on which we compute the following statistics. By
adopting gaussian models we train the probability density functions pH , pRL of
the signer’s head and hand areas respectively. We also compute the maximum
displacement per frame dmax and the hand’s minimum area Amin.

3 Affine Shape-Appearance Handshape Modeling

Our next goal is to extract hand configuration features from the signer’s domi-
nant hand, which is defined manually. For this purpose, we use the modeling of
hand’s 2D shape and appearance that we recently proposed in [19]. This mod-
eling combines a modified formulation of Active Appearance Models [10] with
an explicit modeling of modest pose variations via incorporation of affine image
transformations.
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Fig. 4. (Top row) Cropped images Ik(x) of the hand, for some frames k included in the
200 samples of the SAM training set. (Middle row) Corresponding SA images fk(x).
(Bottom row) Transformed f(Wpk

(x)), after affine alignment of the training set.

First, we employ a hybrid representation of both hand shape and appearance,
which does not require any landmark points: If I(x) is a cropped part of the
current color frame around the hand mask M , then the hand is represented by
the following Shape-Appearance (SA) image: f(x) = g(I(x)), if x ∈ M and
f(x) = −cb otherwise. The function g : �3 → � maps the color values of the
skin pixels to a value that is appropriate for the hand appearance representation
(e.g. we currently use the projection of the CbCr values on the principal direction
of the skin gaussian pdf, Fig. 1). cb is a background constant that controls
the balance between shape and appearance: as cb gets larger, the appearance
variation gets relatively less weighted and more emphasis is given to the shape
part. Figure 4-middle shows examples on the formation of hand SA images.

Further, the SA images of the hand, f(x), are modeled by a linear combina-
tion of predefined variation images followed by an affine transformation:

f(Wp(x)) ≈ A0(x) +
Nc∑
i=1

λiAi(x), x ∈ Ω (2)

A0(x) is the mean image, Ai(x) are Nc eigenimages that model the linear vari-
ation; Wp is an affine transformation with parameters p ∈ �6. The affine trans-
formation models similarity transforms of the image as well as small 3D changes
in pose. It has a highly nonlinear impact on the SA images and drastically re-
duces the variation that is to be explained by the linear combination part. The
parameters of the model are p and λ = (λ1 · · ·λNc

), which are considered as
features of hand pose and shape respectively.

A specific model of hand SA images is defined from images of the linear
combination of the model, Ai(x), i = 0, .., Nc. In order to train this model, we
employ a representative set of handshape images, Fig. 4-top. Given this selec-
tion, the training set is constructed from the corresponding SA images. In order
to exclude the variation that can be explained by the affine transformation part
of the model, we apply an affine alignment of the training set by using a gen-
eralization of the procrustes analysis of [10], Fig. 4-bottom. Afterwards, Ai(x)
are learned using Principal Component Analysis (PCA) on the aligned set and
keeping a relatively small number (Nc = 25) of principal components. In the
PCA results of Fig. 5, we observe that the influence of each eigenimage at the
modeled hand SA image is fairly intuitive.
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Fig. 5. PCA-based learning of the linear variation images of Eq.(2): Mean image A0(x)
and variations in the directions of the first 5 eigenimages.

Fig. 6. SA model Fitting. (Top) SA images and rectangles determining the optimum
affine parameters p. (Middle) Reconstructions at the SA model domain determining
the optimum weights λ. (Bottom) Reconstructions at the domain of input images.

Finally, we extract hand features from the tracked region of the dominant
hand at every frame via the SA model fitting. We find the optimum parameters
p and λ that generate a model-based synthesized image that is “closest” to
the corresponding hand SA image f(x). Thus, we minimize the energy of the
reconstruction error (evaluated at the model domain):

∑
x

{
A0(x) +

Nc∑
i=1

λiAi(x) − f(Wp(x))
}2

, (3)

simultaneously wrt p and λ. This nonlinear optimization problem is solved using
the Simultaneous Inverse Compositional (SIC) algorithm of [20]. We initialize
the algorithm using the result from the previous frame. For the first frame of
a sequence, we use multiple initializations, based on the hand mask’s area and
orientation, and finally we keep the result with the smallest error energy. Note
that we consider here only cases where the hand is not occluded. In most of these
cases, our method yields an effective fitting result, without any need of additional
constraints or priors on the parameters. Figure 6 demonstrates fitting results.
We observe that the results are plausible and the model-based reconstructions
are quite accurate, despite the relatively small number Nc = 25 of eigenimages.
Also, the optimum affine transforms effectively track the changes in the 3D pose.

Note that in works that use the HOG descriptors, e.g. [3,4], the components
of shape and appearance are also combined. However, in contrast to these ap-
proaches, the proposed method offers a direct control on the balance between
these two components. In addition, unlike to [3,8], the used handshape features
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Fig. 7. Rows correspond to handshape sub-units. Left: mean shape-appearance re-
constructed images of the centroids for the corresponding clusters. Next follow five
indicative instances of the handshapes assigned to each centroid.

λ are invariant to translation, scaling and rotation within the image plane. This
property holds also for the methods of [1, 7], but a difference is that in our
model the features are also invariant to modest changes in the 3D hand pose.
Such changes affect only the fitted affine transform parameters p.

4 Handshape Sub-unit Based Recognition Framework

Our sign language recognition framework consists of the following: 1) First, we
employ the handshape features produced by the visual front-end as presented
in the Section 3. 2) Second, follows the sub-unit construction via clustering of
the handshape features. 3) Then, we create the lexicon that recomposes the
constructed handshape sub-units (HSU) to form each sign realization. This step
provides also the labels for the intra-sign sub-units. 4) Next, the HSUs are trained
by assigning one GMM to each one of them. 5) Finally, for the testing at the
handshape sub-unit level we employ the sign-level transcriptions and the created
labels in the lexicon.

4.1 Handshape Sub-unit Construction

We consider as input the visual front-end handshape features, the sign level
boundaries and the gloss transcriptions. The HSUs are constructed in a data-
driven way similar to [14]. All individual frames that compose all signs are con-
sidered in a common pool of features. In that way we take into account all frames
in each sign and not just the start and the end frame. We apply next on this
superset of features a clustering algorithm. The first approach explored is an
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Table 1. Sample indicative part of a lexicon showing the mapping of Signs to hand-
shape sub-unit sequences. HSx denotes the artificial occlusion sub-unit. Each sub-unit
“HSi” consists of a sequence of frames where handshape remains fixed.

Gloss HOSPITAL LOOK FEEL
Pronunciation P1 P2 P1 P2 P1 P2

SU-Seq HSx HS4 HSx HS4 HS5 HSx HS4 HS4 HS7 HSx HS7

unsupervised one. We start with a random initialization of the K centers, and
get a partitioning of the handshape feature space on K clusters. K-means pro-
vides actually in this way a vector quantization of the handshape features space.
The second approach we apply takes advantage of prior handshape information
in the following sense. Once again we employ K-means to partition the hand-
shape feature space. However, this time we employ the clustering algorithm with
Initialization by specific handshape examples that are selected manually.

Herein, we illustrate indicative cases of sub-unit results as they have been
constructed by the second method. Figure 7 presents five selected HSUs. For
each one we visualize 1) the initial cropped handshape images for indicative
instances in the pattern space that have been assigned to the specific sub-unit
after clustering and 2) the reconstructed mean shape that corresponds to the
centroid in the feature space of the specific cluster. It seems that the constructed
HSUs in this way are quite intuitive. However there exist outliers too since the
results depend on the employed model order as well as on the initialization.

Handling Occlusions: After tracking and occlusion disambiguation there are
several cases of occlusion that still remain. This is inevitable due to the nature
of the data and also because of the present visual front-end that takes under
consideration 2D information. During these non-resolved occluded cases we face
a situation where we actually have missing features. We take advantage of the
evidence that the visual front-end provides on the reliability of the features; this
evidence at the present time is of binary type: occluded or non-occluded (i.e.
unreliable). We explicitly distinguish our models by creating an artificial (noise-
like) occlusion model. This is responsible to model all these unreliable cases. In
this way we manage to keep the actual time frame synchronization information
of the non-occluded cases, instead of bagging all of them in a linear pool without
the actual time indices.

4.2 Handshape Sub-unit Lexicon

After the sub-unit construction via clustering we make use of the gloss labels to
recompose the original signs. Next, we create a map of each sign realization to a
sequence of handshape sub-units. This mapping of sub-units to signs is employed
in the recognition stage for the experimental evaluation at the sign level. Each
sub-unit is in this case a symbol HS that is identified by the the arbitrary index
i, as HSi, assigned during clustering. The artificial sub-unit that corresponds to
the occlusion cases is denoted as HSx

An example of a lexicon is shown in Table 1. This illustrates part of a sample
lexicon. Each column consists of 1) a gloss string identifier e.g. LOOK, followen
2) by a pronunciation index, e.g. P1, and the corresponding sub-unit sequence.
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Table 2. Two signs’ realization sharing a single sub-unit sequence. Each sub-unit
“HSi” consists of a sequence of frames where handshape remains fixed.

Signs: LOOK HOSPITAL
SUSeq: HSx + HS4 HSx + HS4
Frames: [1,...,3] [4,...,7] [1,...,4] [5,..,10]

The realization of signs during continuous natural signing introduces factors that
increase the articulation variability. Among the reasons responsible for the mul-
tiple pronunciations as shown in the sample lexicon, is the variation by which
each sign is articulated. For instance, two realizations of the sign HOSPITAL
map on two different sub-unit sequences HSx HS4 and HSx HS4 HS5 (Ta-
ble 1). The extra sub-unit (HS5) is a result of the handshape pose variation
during articulation.

Sub-Unit sequences to Multiple Glosses Map 1) Among the reasons responsi-
ble for the “single sub-unit sequence map to multiple signs” is the non-sufficient
representation during modeling w.r.t. the features employed since in the pre-
sented framework we do not incorporate movement and place-of-articulation
cues. 2) Another factor is the model order we employ during clustering, or in
other words how loose or dense is the sub-unit construction we apply. For in-
stance, if we make use of a small number of clusters in order to represent the
space of handshapes multiple handshapes shall be assigned to the same sub-unit
creating on their turn looser models. 3) Other factors involve front-end ineffi-
ciencies like the tracking errors, 3D to 2D mapping as well as the pose variation
that is not explicitly treated in this approach. An example of the aforementioned
mapping for signs HOSPITAL and LOOK is presented in Tables 1,2. We observe
that both signs, although they consist of different hand movements map on the
same sub-unit sequence HSx HS4: both consist of a segment where the right
hand is occluded followed by a segment with the same HSU (HS4).

Sign dissimilarity: In order to take into account the mapping of sub-unit
sequences to multiple signs we quantify the distance between different signs in
terms of the shared sub-unit sequences. This is realized by counting for the
i-th sign the number of realizations R(i, j) that are represented by each sub-
unit sequence j. For a set of i = 1, 2, · · ·NG signs and j = 1, 2, · · ·NS sub-unit
sequences this yields Rn(i, j) = R(i, j)/Ni where we also normalize with the i-th
sign’s number of realizations Ni. Next, we define the metric ds(m,n) between a
pair of signs m,n as:

ds(m,n) = 1 −
NS∑
j=1

min(Rn(m, j), Rn(n, j)) (4)

When ds between two signs equals zero, signifies that all the sub-unit sequences
that map to the one sign are also shared by the second sign and with the same
distribution among realizations, and vice versa. After computing ds for all pairs
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Fig. 8. Sign dissimilarity dendrogram.

of signs we hierarchically cluster the signs and construct the corresponding den-
drogram. A sample dendrogram case is shown for Fig. 8. This is obtained for
26 randomly selected glosses to facilitate visualization. We observe for instance
the signs “Doctor” and “Play” are quite close to each other as their distance is
low. In this way we manage to find at the top level of the dendrogram the effec-
tive signs that are actually considered during recognition instead of the initial
assumed greater number of sings.

4.3 Handshape Sub-units for Sign Recognition

Statistical modeling of the handshape features given the constructed HSUis im-
plemented via GMMs by assigning one GMM to each one of the HSU. The HSU
GMMs are trained on 60% of the percentage that is selected randomly as the
training set. Given the unsupervised and data-driven nature of the approach
there is no ground truth for the sub-unit level. In contrast for the sign level
we have available the sign level transcriptions. The assignment of the sub-unit
labels in the test data is accomplished by employing k-means: We compute the
distance between each frame and the centroids of the sub-unit clusters that have
been constructed. Eventually we assign the sub-unit label of the sub-unit whose
centroid has the minimum distance error. The evaluation is realized on the rest
unseen data. We apply Viterbi decoding on each test utterance, getting the most
likely model fitting given the trained GMMs.

5 Sign Language Recognition Experiments

The experiments provide evaluation on the main aspects involved. These include
the Number of Subunits and the Vocabulary Size. Sub-unit construction is in all
cases unsupervised. However, we also evaluate the case that the clustering is
initialized with manually selected handshapes.

Data and Experimental Configuration We employ data from the continuous
American Sign Language Corpus BU400 [16]. Among the whole corpus, we se-
lect for processing 6 videos that contain stories narrated from a single signer1.

1 The original color video sequences have resolution of 648x484 pixels. Videos are
identified namely as: accident, biker buddy, boston la, football, lapd story and
siblings. Total number of handshapes in the intra-sign segments is 4349.
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We utilize a number of randomly selected glosses, 26 and 40, among the most
frequent ones. These are sampled from all six stories. For gloss selection we also
take into account the frequency of the non-occluded right-handshape cases: we
constraint gloss selection by jointly considering the most frequent ones in terms
of occurrences and at the same time the ones that have the more reliable seg-
ments of non-occluded right-handshape features. We split the data at a 60-40%
train and test percentages respectively. The partitioning samples data among all
realizations per sign in order to equalize gloss occurrences. At the same time all
experiments are conducted by employing cross-validation: we select three differ-
ent random sets and finally show the average results. The number of realizations
per sign are on average 13, with a minimum and maximum number of realiza-
tions in the range of 4 to 137. The number of non-occluded right handshapes
per sign are on average 9 with a lower acceptable bound of 3. The employed
features Affine Shape-Appearance Modeling are abbreviated as Aff-SAM . The
results contain sub-unit level and sign-level level accuracies. At the same time
we also present results on the average number of independent signs.

Number of Sub-Units and Vocabulary Size: There are two contrasting trends
we take into account. On one hand, the smaller the model order, the easier the
handshape measurements are classified in the correct cluster, since the models
generalize successfully: this implies high recognition results. At the same time
the discrimination among the different points in the handshape feature space
is low. On the other hand, the greater the model order, the more the different
handshapes can be discriminated. Next, we present results while varying the
number of sub-units. We observe, as shown in Fig. 9, that for small number of
clusters we achieve high accuracies i.e. most handshapes are recognized correctly
since there is a small number of clusters. However, because of the single sub-
unit sequence map to multiple signs there is no sign discrimination: as shown
in Fig. 9(c), where the number of effective glosses is very low. On the other
hand when we increase the number of clusters we get higher sign discrimination
Fig. 9(c); at the same time our pattern space is be too fragmented, the models are
overtrained and as a sequence they don’t generalize well. To conclude, we trade-
off between generalization and discrimination by selecting the number of clusters
at the middle range of values. At the same time, although this selection is not
based on explicit prior linguistic information, it refers implicitly in a quantitative
way to a set of main frequent handshapes that are observed in ASL. Next, we
present results of the Aff-SAM while varying the vocabulary size. We observe
that for a higher number of signs Fig.9(b) the feature space is more populated
and sub-unit recognition accuracy increases. At the same time although the task
gets more difficult, the performance is similar in the sign recognition accuracy
Fig.9(a). This is promising as sign recognition performance is not being affected
from the increase of the number of signs.

Sub-unit construction with Initialization: Herein we present results when the
unsupervised sub-unit construction is modified by considering prior initialization
with manually selected handshapes. This initialization is conducted by selecting,
after subjective inspection cases of handshape configurations. The handshapes
are selected so that roughly 1) they span enough variance of observed handshapes
and 2) they are quite frequent. This initialization is not the output of an experts’
study on the more salient handshapes. We rather want to show how the employed
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Fig. 9. ASLR Experiments on the BU400 data. Variation of the vocabulary size (26, 40
glosses) for three cases of clustering K model order parameter (11, 32 and 52). (a) Sign
Accuracy, (b) Sub-unit accuracy and (c) Number of Effective Glosses.
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Fig. 10. ASLR Experiments on the BU400 data. Sub-unit construction with and with-
out initialization of the clustering, while the clustering K model order parameter is in-
creased. (a) Sign Accuracy, (b) Sub-unit accuracy and (c) Number of Effective Glosses.

framework may be employed by experts to initialize the sub-unit construction
and provide more linguistically meaningful results or facilitate specific needs. We
employ different cases of initialization so as to match the sub-unit number in
the corresponding experiments conducted without any initialization. The larger
handshape initialization sets, are constructed by adding supplementary classes.
We observe in Fig. 10(a) that the handshape sub-unit construction with initial-
ization performs on average at least 4% better. However this difference is not
significant and still the accuracy of the non-initialized SU construction is for the
smaller number of SUs acceptable. The average number of effective signs is sim-
ilar for the two cases signify that sign discrimination is not being affected from
the initialization. Concluding, via the presented framework even with the com-
pletely unsupervised data driven scheme the constructed handshape SU seem to
be on average meaningful and provide promising results.

6 Conclusions

We propose an integrated framework for hand tracking and feature extraction
in sign language videos and we employ it in sub-unit based ASLR. For the
detection of the hands we combine a simple skin color modeling with a novel
morphological filtering that results on a fast and reliable segmentation. Then,
the tracking provides occlusion disambiguation so as to facilitate feature extrac-
tion. For handshape feature extraction we propose an affine modeling of hand
shape-appearance images (Aff-SAM), which seems to effectively model the hand
configuration and pose. The extracted features are exploited in unsupervised
sub-unit construction creating in this way basic data-driven handshape phonetic
units that constitute the signs. The presented framework is evaluated on a variety
of recognition experiments, conducted on data from the BU400 continuous sign
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language corpus, which show promising results. At the same time, we provide
results on the effective number of signs among which we discriminate. To con-
clude with, given that handshape is among the main phonological sign language
parameters, we have addressed important issues that are indispensable for auto-
matic sign language recognition. The quantitative evaluation and the intuitive
results presented show the perspective of the proposed framework for further
research as well as for integration with other major sign language parameters
either manual, such as movement and place-of-articulation, or facial.
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