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Abstract. In this paper we demonstrate that machine learning (using
Abductive ILP) can generate plausible and testable food webs from eco-
logical data. In this approach, unlike previous applications of Abductive
ILP, the abductive predicate ‘eats’ is entirely undefined before the start
of the learning. We also explore a new approach, called Hypothesis Fre-
quency Estimation (HFE), for estimating probabilities for hypothetical
‘eats’ facts based on their frequency of occurrence when randomly sam-
pling the hypothesis space. The results of cross-validation tests suggest
that the trophic networks with probabilities have higher predictive accura-
cies compared to the networks without probabilities. The proposed trophic
networks have been examined by domain experts and comparison with the
literature shows that many of the links are corroborated by the literature.
In particular, links ascribed with high frequency are shown to correspond
well with those having multiple references in the literature. In some cases
novel high frequency links are suggested, which could be tested.

1 Introduction

Machine Learning has the potential to address many challenging problems in
ecological sciences [5]. Discovery of trophic links (food chains) which describe
the flow of energy/biomass between species is one of these problems. Networks
of trophic links (food webs) are important for explaining ecosystem structure
and dynamics [3]. However, relatively few ecosystems have been studied through
detailed food webs because finding out the predation relationships between the
many hundreds of species in an ecosystem is difficult and expensive. Hence, any
technique which can automate the discovery of trophic links from ecological data
is highly desirable. Similar problems of network construction have been tackled
in other complex systems, such as metabolic networks (e.g. [16]). In this paper
we demonstrate that Abductive ILP can generate plausible and testable food
webs from ecological data. In this approach the abductive predicate ‘eats’ is
entirely undefined before the start of the learning process. This contrasts with
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Fig. 1. A farmland food web. Networks of trophic links (food web) are the primary
routes for translocation of energy/biomass between species at different levels and are
important for explaining ecosystem structure and dynamics.

previous applications of Abductive ILP where partial, non-empty, definitions ex-
ist and the gaps are filled by abduced hypotheses. In this paper we also explore
a new approach, called Hypothesis Frequency Estimation (HFE), for estimat-
ing probabilities for hypothetical ‘eats’ facts based on their frequency of occur-
rence when random permutations of the training data (and hence different seeds
for defining the hypothesis space) are considered. We empirically evaluate the
hypothetical trophic networks using leave-one-out cross-validation tests on the
observable data. The results of cross-validation tests for the networks with and
without probabilities are presented. The proposed trophic networks have been
examined by domain experts and the results of comparison with the literature
are presented.

This paper is organised as follows. In Section 2 we describe the ecological
problem and data. In Section 3 we explain how Abductive ILP has been used
to learn trophic networks from ecological data. Hypothesis Frequency Estima-
tion (HFE), a method which we used for estimating probabilities, is described
in Section 4. Empirical and ecological evaluations of the hypothetical trophic
networks are presented and discussed in Sections 5 and 6 respectively. Related
and further work are discussed in Section 7. Section 8 concludes the paper.

2 Ecological Problem and Data

Ecosystems are structured by flows of energy/biomass between primary pro-
ducer plants (autotrophs) and consumers (heterotrophs), such as invertebrates,
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mammals and birds. Networks of trophic links (food web) are the primary routes
for translocation of energy/biomass between species at different levels. For ex-
ample, Figure 1 shows a food web in farmland in which the food chains link
plants, herbivores and predators; herbivores eat plants, predators eat herbivores
or other predators and so on. There is much concern about anthropogenic and
natural degradation of ecosystems worldwide, and the knock-on consequences
for ecosystem functioning. Much research that seeks to identify mechanisms of
ecosystem change and devise methods for mitigating its effects is being hampered
by an inability to construct food webs efficiently and effectively. Put simply, it
takes considerable time and effort to establish trophic relationships between the
many hundreds of species in an ecosystem - this means that only a relatively few
systems have been studied to any depth making it difficult to produce general
theories about ecosystem change. A method that yields plausible and testable
food webs from already collected field data would be a major step forward in
the identification of rules about how ecosystems react when perturbed.

In this paper we try to answer the following question. Can machine learning
be used to construct food webs from ecological data? We think the answer is yes
and in fact the food web shown in Figure 1 has been learned from ecological data.
In this paper we show how this food web has been constructed using Abductive
ILP.

The training data we use comes from arable farmland where anthropogenic
disturbance and farm management has led to great increases in crop productiv-
ity, but often at cost to biodiversity. The data set was sampled from 257 fields
across the UK in the Farm Scale Evaluations (FSE) of GM, herbicide tolerant
(GMHT) crops. This national-scale experiment evaluated the change in weed
plants and invertebrates between the current, conventional herbicide manage-
ment of spring-sown Maize, Beet and Oilseed Rape and winter-sown Oilseed
Rape, and the herbicide management of GMHT varieties of the same crops us-
ing a split-field design. We use data from the Vortis suction sampling protocol
for epigeal invertebrates [7,1] to calculate a treatment effect ratio. The counts
from each conventional and GMHT half-field pair were converted to multiplica-
tive treatment ratio, R, and as in [7,1] treatment ratio values of R < 0.67 and
R > 1.5 were regarded as important changes in count with direction of down
(decreased) and up (increased), respectively. This information on up and down
abundances is regarded as our primary observational data for the learning.

3 Machine Learning of Trophic Links Using Abductive
ILP

The main role of abductive reasoning in machine learning and its use in the
development of scientific theories [6] is to provide hypothetical explanations of
the empirical observations. Then based on these explanations we try to inject
back into the current scientific theory, new information that helps complete the
theory. This process of generating abductive explanations and then updating the
theory with them can be repeated several times when new observational data is



Machine Learning a Probabilistic Network of Ecological Interactions 335

Fig. 2. Learning trophic links from ecological data using Abductive ILP

made available. In many implementations of abductive reasoning, such as that
of Progol 5 [11], which is used in this paper, the approach taken is to choose
an explanation that best generalises under some form of inductive reasoning
(e.g. simplest explanation approximated by compressibility). We refer to this
approach as Abductive ILP (A/ILP). We believe that ecological data in this
study fulfil the conditions for the use of A/ILP: firstly, the given background
knowledge is incomplete; and secondly, the problem requires learning in the
circumstance in which the hypothesis language is disjoint from the observation
language. In our problem, the set of observable data can be represented by
predicate abundance(X,S, up) (or abundance(X,S, down)) expressing the fact
that the abundance of X at site S is up (or down). This information is compiled
from FSE data as described in Section 2. The knowledge gap that we initially
aim to fill is a predation relationship between species. Thus, we declare abducible
predicate eats(X,Y ) capturing the hypothesis that species X eats species Y . In
order to use abduction, we also need to provide the rules which describe the
observable predicate in terms of the abducible predicate. An example of such a
rule is shown below.

abundance(X, S, up):-
predator(X),
co occurs(S, X, Y),
bigger than(X, Y),
abundance(Y, S, up),
eats(X, Y).

Similarly, a rule for abundance(X,S, down) can be defined. This Prolog rule
expresses the inference that following a perturbation in the ecosystem (caused
by the management), the increased (or decreased) abundance of species X at site
S can be explained by the fact that X eats species Y which is further down in
the food chain and the abundance of species Y is increased (or decreased). It also
includes additional conditions to constraint the search for abducible predicate
eats(X,Y ), i.e. X should be a predator, X and Y should co-occur and that
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X should be bigger than Y . Predicates predator(X), co occurs(S,X, Y ) and
bigger than(X,Y ) are provided as part of the background knowledge. Given
this model and the observable data, Progol 5 generates a set of ground abductive
hypotheses in the form of ‘eats’ relations between species as shown in Figure 2.
These abductive hypotheses are automatically generated by matching the given
information to the rule in order to abduce a fact which explains the observations.
In this example, given the inputs, abduction will generate the hypotheses that
a particular species a eats a particular species b. In general, many choices for
matching could be made, leading to a variety of alternative hypotheses and a
preference is imposed by Progol 5 using an information-theoretic criterion known
as compression [11]. Here, compression = p − n − h, where p is the number of
observations correctly explained by the hypothesis, n is the number incorrectly
explained and h is the length of the hypothesis (e.g. 1 for a single fact). The set
of ground hypotheses can be visualised as a network of trophic links (food webs)
as shown in Figure 3. In this network a ground fact eats(a, b) is represented by
a trophic link from species b to species a.

4 Hypothesis Frequency Estimation (HFE)

In order to get probability estimates for hypotheses, we use a technique which is
based on direct sampling from the hypothesis space. In some ILP systems, includ-
ing Progol, training examples also act as seeds to define the hypothesis space (e.g.
a most specific clause is built from the next positive example). Hence, different
permutations of the training examples define different parts of the hypothesis
space. We use this property to sample from the hypothesis space by random
permutations of the training data. Probability of ground hypotheses can be es-
timated based on the frequency of occurrence when random permutations of the
training data (and hence different seeds for defining the hypothesis space) are
considered. Using this technique, the thickness of trophic links in Figure 3 rep-
resent probabilities which are estimated based on the frequency of occurrence
from 10 random permutations of the training data. As shown in Figure 4, the
probabilistic trophic network can be also represented using standard probabilis-
tic representations in ILP such as SLPs [12] or ProbLog [13]. For this we can use
relative frequencies in the same way probabilities are used in probabilistic ILP.
We can then use the probabilistic inferences based on these representations to
estimate probabilities. For example, the probability p(abundance(a, s, up)) can
be estimated by relative frequency of hypotheses which imply a at site s is up.
Similarly, p(abundance(a, s, down)) can be estimated and by comparing these
probabilities we can decide to predict whether the abundance is up or down. We
have used this method in leave-one-out experiments in Section 5 to measure the
predictive accuracies of probabilistic tropic networks.

5 Empirical Evaluation

The purpose of the experiments in this section is to empirically evaluate hypo-
thetical trophic networks constructed from real ecological data using the methods
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Fig. 4. Hypothesis Frequency Estimation (HFE) and probabilistic representation and
inference

described in the previous sections. In these experiments, firstly, we determine if
trophic networks can be learned from real ecological data such that their pre-
dictive accuracies on unseen data are higher than the default accuracy of the
majority class. Secondly, we examine if using probabilities estimated by the
permutation based HFE method (see Section 4) leads to increased predictive
accuracy.

5.1 Experiment 1

In this experiment we test the following null hypothesis:

Null Hypothesis 1: A trophic network with predictive accuracy greater than
the default accuracy cannot be constructed from ecological data using Ab-
ductive ILP.

Materials and Methods. In this experiment Progol 5.0 1 is used to generate
abductive hypotheses (i.e. ‘eats’ relations between species) from observable data
(i.e. up/down abundance of species at different sites). The observable data has
been compiled from FSE data as described in Section 2. The up/down abundance
of species at different sites are then encoded as predicates abundance(X,S, up)

1 Available from: http://www.doc.ic.ac.uk/~shm/Software/progol5.0/

http://www.doc.ic.ac.uk/~shm/Software/progol5.0/
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for j in [1..300] do
Tsj= test example; abundance of species-site j
Trj = E − Tsj
for k in (25,50,75,100) do

for i in [1..10] do
Trji = ith permutation of Trj
Trjik = training examples; k% random sample from Trji

end
end

end
for j in [1..300] do

for k in (25,50,75,100) do
for i in [1..10] do

Hjik = learned hypotheses using the training set Trjik
Atji = predictive accuracy of Hjik = on the test set Tsj

end
end

end
for k in (25,50,75,100) do

Plot average of Ajik versus k (j ∈ [1..300] and i ∈ [1..10])

Fig. 5. Experimental method using a leave-one-out test strategy. E is the set of abun-
dance data, variable j ∈ [1..300] represents all species-sites combination, variable
i ∈ [1..10] represents 10 random permutation and variable i = (25, 50, 75, 100) rep-
resents the varying size of training data.

and abundance(X,S, down). The background knowledge includes information
about sites and species and Prolog rules for abundance as well as predicates
predator(X), co occurs(S,X, Y ) and bigger than(X,Y ) as described in Sec-
tion 3. In order to empirically evaluate the hypothetical trophic networks, we
use a leave-one-out cross-validation test on the observable data for species in the
network. This cross-validation test was done by leaving out the abundance of
each predator at each site and then trying to predict whether the abundance is
up or down, given the trophic network generated from the rest of the data. The
experimental method is detailed in Figure 5.

Results and Discussion. Figure 6 compares the predictive accuracy of non-
probabilistic networks, i.e. networks generated from a single run or from 10
random permutations as well as probabilistic networks. In all cases the predictive
accuracies are significantly higher than the default accuracy of the majority class
(i.e. down for 53% of all abundance data). We can thus refute null hypothesis 1.

5.2 Experiment 2

In this experiment we test the following null hypothesis:

Null Hypothesis 2: Using the permutation based HFE method for estimating
probabilities of trophic links does not lead to increased predictive accuracies
compared to the non-probabilistic trophic network.
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Fig. 6. Predictive accuracies of probabilistic trophic network vs. non-probabilistic net-
works from leave-one-out cross-validation tests

Materials and Methods. As in Experiment 1, we use a leave-one-out cross-
validation test on the observable data for species in the network, i.e. leaving
out the abundance of each predator at each site and trying to predict whether
the abundance is up or down, given the trophic network generated from the
rest of the data. For the trophic network with probabilities, we first need to
calculate the relative frequencies of hypotheses which imply that the abun-
dance of the test example is up or down. Let p(abundance(a, s, up)) be the
relative frequency of hypotheses which imply the abundance of a at site s is up
and p(abundance(a, s, down)) is defined analogously. If p(abundance(a, s, up)) >
p(abundance(a, s, down)) then we predict that the abundance of the test example
a is up and otherwise it is down.

Results and Discussion. As shown in Figure 6 the predictive accuracies for the
non-probabilistic networks are significantly lower than the probabilistic networks
when more than 50% of the training data are provided. Hence, we can reject null
hypothesis 2.

6 Ecological Evaluation

The trophic network in Figure 3 has been examined by the domain experts and
corroboration of many of the links in the literature have been found. A detailed
analysis of this hypothetical trophic network is presented in [2]. Table 7 is a
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Fig. 7. Tabulated trophic links for some prey (columns) and predator (rows) species
combination in Figure 3. Each pairwise hypothesised link has a strength (i.e. frequency
between 1 to 10) followed by references (in square brackets) in the literature (listed in
Appendix) supporting the link. Multiple references are indicated by yellow and green
circles and potential novel hypotheses by dashed red circles.

tabular representation for some prey (columns) and predator (rows) species
combination in Figure 3. Each pairwise hypothesised link has a strength (i.e.
frequency between 1 to 10) followed by references (in square brackets) in the liter-
ature (listed in Appendix) supporting the link. In this table, only prey/predators
are shown which have at least one link with strength more than or equal to 7. This
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table shows that many of the links, suggested by the model, are corroborated by
the literature. In particular, links in the model ascribed with high frequency are
shown to correspond well with those having multiple references in the literature.
For example, there are 15 links with more than two references and 8 of these
are with frequency 10 and from these all the three links with three references
(marked by green circles) have frequency 10. But there are also highly frequent
links with no references in the literature which could potentially be novel hy-
potheses. It should be noted that the corroboration of the links in the literature
was started by the domain experts based on a network from single runs (without
probabilities) and the probabilities were added to the table after the references
were assigned. Hence, the corroboration of the links was done independently and
could have not been affected by the frequency assignments. Figure 8a shows the
correspondence between the frequencies of hypothetical trophic links, the num-
ber of multiple references and the total number of references in the literature.
We use the numbers in this table to test the following null hypothesis.

Null Hypothesis 3: The frequency of hypothetical trophic links in the learned
trophic network are not correlated with the number of references in the
literature for those trophic links.

Figure 8b shows the correlation between frequencies and the total number of
references. If we use Spearman’s correlation between the frequencies and the
total number of references then the ρ value and the p-value are 0.77 and 0.009
respectively. Hence, hypothesis 3 is refuted.

As mentioned before, according to Figure 7 in some cases novel high frequency
links (with no references in the literature) are suggested, which could be tested.
New experimental studies are needed to test these potential novel hypotheses.

7 Discussion and Related Work

In this section we first try to answer the following questions. Can the synthesis
of trophic networks, in the way described in this paper, be regarded as machine
learning? and if so, how this can be compared to other related work? In or-
der to answer these questions, first we note that abduction is normally defined
as an inference based on formulation of explanations. The abductive inference
(i.e. A/ILP) described in this paper has been used to construct a graph given
a relational background knowledge. This is also related to other forms of graph
learning in ILP which consider graphs as relations (e.g. [8]). It is therefore im-
portant to note that in this approach we use first-order background knowledge
in the construction of relations. Moreover, according to the definition of machine
learning, a system learns if it improves on prediction performance when provided
with observational data [10]. In this paper we have demonstrated that the con-
structed trophic networks improve predictive accuracy on “out of sample” test
data. Therefore it follows from definition that the construction of trophic net-
works, in the way described in this paper, can be regarded as machine learning.
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Freq. 1 Ref. 2 Ref. 3 Ref. Total refs.

1 0 0 0 0
2 0 1 0 1
3 0 0 0 0
4 0 1 0 1
5 0 0 0 0
6 0 0 0 0
7 1 1 0 2
8 0 1 0 2
9 8 3 0 14

10 23 5 3 42

(a)

(b)

Fig. 8. a) Correspondence between the frequencies, the number of multiple references
and the total number of references in the literature. b) Correlation between frequencies
and the total number of references. Spearman’s correlation ρ value is 0.77 with p-value
0.009.

This work is closely related to previous applications of A/ILP for the analysis
of biological networks at the molecular and cellular scale. In particular, the logi-
cal models for up/down abundances and the flow of biomass at species level can
be compared with the logical models for up/down concentration of metabolites
and the bio-chemical reactions in metabolic networks (e.g. [16]). However, there
are major differences and in particular two aspects of the use of A/ILP in this
paper are novel. Firstly, unlike previous applications of A/ILP, the abductive
predicate ‘eats’ is entirely undefined before the start of the learning process.
The second novel aspect of the approach relates to the Hypothesis Frequency
Estimation (HFE) method for the assignment of probabilities to hypothetical
‘eats’ facts based on their frequency of occurrence when randomly sampling the
hypothesis space. This approach helps to separate those trophic links with low
probabilities, which represent unstable artefacts, possibly of example ordering,
from those with high probabilities that can be viewed as stable and reliable
hypotheses. The resulting probabilistic network is a compact summary of the
hypothesis space with a posterior distribution which could be viewed as a Bayes
predictor.

The permutation based Hypothesis Frequency Estimation (HFE) is compara-
ble to the probabilistic learning methods such as [15] and [9] which use an EM al-
gorithm in an abductive learning setting and [14] which can learn ground acyclic
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ProbLog programs by transforming them into Bayesian networks. Even though
these methods provide advanced parameter learning algorithms, the advantage
of our simple frequency based method (which directly samples the hypothesis
space) is that the structure and the parameters of the network can be learned
at the same time in an incremental learning approach.

In this paper we have only reported the predictive accuracies for binary classi-
fication. However, we have also used expected utilities implemented as Decision-
Theoretic Logic Programs (DTLPs) [4] for estimating R values (treatment effect
ratio as described in Section 2). Initial results suggest that using probabilities
leads to reduced mean square errors when estimating R values in cross-validation
tests. The probabilistic trophic network together with the expected utility ap-
proach can be viewed as a Decision-Theoretic representation which we call an
Acyclic Expectation Network (AEN). We intend to study different aspects of
this representation in a follow up paper.

8 Conclusions

We have shown that machine learning, using A/ILP, can produce a convinc-
ing food web from sample ecological data. We have also demonstrated a new
approach, called Hypothesis Frequency Estimation (HFE), for estimating prob-
abilities for hypothetical trophic links based on their frequency of occurrence
when randomly sampling the hypothesis space. The results of cross-validation
tests suggest that the trophic networks with probabilities have higher predictive
accuracies compared to the networks without probabilities. Many of the abduced
trophic links, especially those with high frequencies, are supported either by the
literature or the expert knowledge of agricultural ecologists. The food web rep-
resenting probabilistic interactions between species can readily be interpreted
by ecologists and the logical framework for learning trophic links can be openly
discussed, a priori, and the hypothesised links are not an abstract, statistical
product of the data.

This is to our knowledge the first time that machine learning (using ILP) has
been used to generate plausible and testable food webs from ecological data.
We believe that automated discovery of food webs from ecological data could
lead to important advances in ecological theory and improved management of
ecosystems under environmental change. The ecological aspects of this work and
a more detailed analysis of the learned trophic links are discussed in [2].
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