
Searching the Subsumption Lattice

by a Genetic Algorithm

Alireza Tamaddoni-Nezhad and Stephen H. Muggleton

Department of Computer Science
University of York, York, YO1 5DD, UK

{alireza,stephen}@cs.york.ac.uk

Abstract. A framework for combining Genetic Algorithms with ILP
methods is introduced and a novel binary representation and relevant
genetic operators are discussed. It is shown that the proposed represen-
tation encodes a subsumption lattice in a complete and compact way. It
is also shown that the proposed genetic operators are meaningful and can
be interpreted in ILP terms such as lgg(least general generalization) and
mgi(most general instance). These operators can be used to explore a
subsumption lattice efficiently by doing binary operations (e.g. and/or).
An implementation of the proposed framework is used to combine Inverse
Entailment of CProgol with a genetic search.

1 Introduction

Using complete and efficient methods for searching the refinement space of hy-
pothesis is a challenging issue in current ILP systems. Different kinds of greedy
methods as well as heuristics (e.g. information gain) have been successfully em-
ployed to cope with complexity of search for inducing first-order concepts from
examples. However, more powerful heuristics are required for inducing complex
concepts and for searching very large search spaces. Genetic Algorithms (GAs)
have great potential for this purpose. GAs are multi-point search methods (and
less sensitive to local optima) which can search through a large space of symbolic
as well as numerical data. Moreover, because of their robustness and adaptive
characteristics, GAs are suitable methods for optimization and learning in many
real world applications [6, 4]. In terms of implementation, GAs are highly parallel
and can be easily implemented in parallel and/or distributed environments [4].
However, GAs are syntactically restricted and cannot represent a priori knowl-
edge that already exists about the domain. On the other hand, ILP is a well
known paradigm that benefits from the expressive power inherited from logic
and logic programming [12]. Hence, it is likely that a combination of ILP and
GAs can overcome the limitation of each individual method and can be used to
cope with some complexities of real-world applications.

Even though GAs have been used widely for optimization and learning in
many domains, a few genetic-based systems in first-order domain already exist.
Some of these systems [3, 2, 5] follow conventional genetic algorithms and rep-
resent problem solutions by fixed length bit-strings. Other systems [16, 10, 7]

J. Cussens and A. Frisch (Eds.): ILP 2000, LNAI 1866, pp. 243–252, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

244 Alireza Tamaddoni-Nezhad and Stephen H. Muggleton

use a hierarchical representation and evolve a population of logic programs in
a Genetic Programming (GP) [9] manner. These genetic-based systems confirm
that genetic algorithms and evolutionary computing can be interesting alterna-
tives for learning first-order concepts from examples. However, in most of these
systems genetic algorithm is the main learning mechanism and therefore they
cannot benefit from background knowledge during the learning process.

This paper aims to present a framework for combining GAs with ILP meth-
ods by introducing a novel binary encoding and relevant genetic operators. In
this framework, unlike other genetic-based systems, representation and operators
can be interpreted in well known ILP terms such as θ-subsumption, lgg (least
general generalization) and mgi(most general instance) [14, 15]. This represen-
tation and its ILP interpretation are introduced in the next section. Genetic
operators and their relationship with ILP concepts are examined in section 3.
Section 4 describes an implementation of the proposed framework for combining
Inverse Entailment in CProgol [13] with a genetic algorithm. Evaluations and
related works are discussed in section 5. Finally, section 6 summarizes the results
and concludes this paper.

2 Representation and Encoding

Every application of GAs requires formulating problem solutions in such a way
that they can be processed by genetic operators. According to the principle of
minimal alphabet in GAs [4], a binary representation could be the best coding
for representing problem solutions in GAs. The lack of a proper binary represen-
tation (and consequently difficulties for definition and implementation of genetic
operators) has been the main problem for applying GAs in first-order domain.

In this section we present a binary representation which encodes the refine-
ment space of a clause. Consider clause C with n variable occurrences in head
and body. The relationships between these n variable occurrences can be rep-
resented by a graph having n vertices in which there exists an edge between
vertices vi and vj if ith and jth variable occurrences in the clause represent the
same variable. For example variable binding in clause p(A,B):-q(A,C),r(C,B)
can be represented by an undirected graph as shown in Figure 1, this clause
also can be represented by the binary matrix shown in the figure. In this matrix
entry mij is 1 if ith and jth variable occurrences in the clause represent the
same variable and mij is 0 otherwise. We show that this simple representation
has interesting properties for searching the subsumption lattice bounded below
by clause C. First, we need to show the mappings between clauses and binary
matrices.

Definition 1 (Binding Set). Let B and C both be clauses. C is in binding set
B(B) if there exists a variable substitution 1 θ such that Cθ = B.

In Definition 1, the variables in B induce a set of equivalence classes over the
variables in any clause C ∈ B(B). Thus we could write the equivalence class of
1 substitution θ = {vi/uj} is a variable substitution if all vi and uj are variables.

Searching the Subsumption Lattice by a Genetic Algorithm 245

1 0 1 0 0 0

1 0 1 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0
0 1 0 0 0 1

v6

v1

v2

v5 v3

0 1 0 0 0 1

1 2 3 4 5 6

p(A,B) : - q(A,C) , r(C,B)

v4

v1 v2

1
2
3
4
5
6

v3 v4 v5 v6

Fig. 1. Binding Graph and Binding Matrix for clause p(A,B):-q(A,C),r(C,B).

u in variable substitution θ as [v]u, the set of all variables in C such that v/u
is in θ. We define a binary matrix which represents whether variables vi and vj

are in the same equivalence class or not.

Definition 2 (Binding Matrix). Suppose B and C are both clauses and there
exists a variable substitution θ such that Cθ = B. Let C have n variable oc-
currences in head and body representing variables 〈v1, v2, . . . , vn〉. The binding
matrix of C is an n× n matrix M in which mij is 1 if there exist variables vi,
vj and u such that vi/u and vj/u are in θ and mij is 0 otherwise. We write
M(vi, vj) = 1 if mij = 1 and M(vi, vj) = 0 if mij = 0.

Definition 3. Let M be an n× n binary matrix. M is in the set of normalized
binding matrices Mn if M is symmetric and for each 1 ≤ i ≤ n, 1 ≤ j ≤ n and
1 ≤ k ≤ n, mij = 1 if mik = 1 and mkj = 1.

Definition 4. The mapping function M : B(B) → Mn is defined as follows.
Given clause C ∈ B(B) with n variable occurrences in head and body representing
variables 〈v1, v2, . . . , vn〉, M(C) is an n × n binary matrix in which mij is 1 if
variables vi and vj are identical and mij is 0 otherwise.

Definition 5. The mapping function C : Mn → B(B) is defined as follows.
Given a normalized n× n binding matrix M , C(M) is a clause in B(B) with n
variable occurrences 〈v1, v2, . . . , vn〉, in which variables vi and vj are identical if
mij is 1.

246 Alireza Tamaddoni-Nezhad and Stephen H. Muggleton

Definition 6. Let P and Q be in Mn. It is said that P ⊆ Q if for each entry
pij ∈ P and qij ∈ Q , pij is 1 if qij is 1. P = Q if P ⊆ Q and Q ⊆ P . P ⊂ Q if
P ⊆ Q and P �= Q.

Definition 7. Clause C subsumes clause D, C � D if there exists a substitution
θ such that Cθ ⊆ D (i.e. every literal in Cθ is also in D). C properly subsumes
D, C
 D if C � D and D �� C.

In Definition 7, θ can be every substitution, however, in this paper we assume
that θ is a variable substitution. The following theorems represent the relation-
ship between binary matrices and the subsumption of clauses.

Lemma 1. For each M1 and M2 in Mn, if C(M1)
 C(M2) and there does
not exist clause C′ such that C(M1)
 C′
 C(M2) then there exists unique
〈vi, vj〉, i < j such that M1(vi, vj) = 0 and M2(vi, vj) = 1 and for each u′ and
v′, M1(u′, v′) = M2(u′, v′) if 〈u′, v′〉 �= 〈vi, vj〉.
Proof. Suppose C(M1)
 C(M2) and there does not exist clause C′ such that
C(M1)
 C′
 C(M2). Therefore there exist variables vi and vj , i < j such
that C(P1){vi/vj} = C(P2). According to Definition 2 it must be the case that
M1(vi, vj) = 0 and M2(vi, vj) = 1 and M1(u′, v′) = M2(u′, v′) if 〈u′, v′〉 �=
〈vi, vj〉. ��

Theorem 1. For each M1 and M2 in Mn if C(M1)
 C(M2) and there does
not exist clause C′ such that C(M1)
 C′
 C(M2) then M1 ⊂ M2.

Proof. Suppose M1 �⊂ M2, thus there exists u′ and v′ such that M1(u′, v′) = 1
and M2(u′, v′) = 0. But according to Lemma 1 there exists unique 〈vi, vj〉,
i < j such that M1(vi, vj) = 0 and M2(vi, vj) = 1 and for each u′ and v′,
M1(u′, v′) =M2(u′, v′) if 〈u′, v′〉 �= 〈vi, vj〉. This contradicts the assumption and
completes the proof. ��

Theorem 2. For each clause B and matrices M1 and M2 in Mn such that
C(M1) ∈ B(B) and C(M2) ∈ B(B), C(M1)
 C(M2) if and only if M1 ⊂ M2.

Proof. ⇒ : Either there does not exists clause C′ such that C(M1)
 C′

C(M2) or there exist clauses C1 and C2 and . . .Cn such that C(M1)
 C1

C2
 . . . Cn
 C(M2). In case 1 theorem holds from Theorem 1, in case 2
theorem holds by transitivity.

⇐ : Suppose M1 ⊂ M2. Therefore there exist variables vi and vj , i < j
such that M1(vi, vj) = 0 and M2(vi, vj) = 1. Then according to Definition 2,
C(P1){vi/vj} = C(P2). Hence, C(M1)
 C(M2). ��

Definition 8 (Subsumption Set). Let B and C both be clauses. C is in sub-
sumption set S(B) if C ∈ B(B) and M(C) ⊂ M(B).

Searching the Subsumption Lattice by a Genetic Algorithm 247

p(A,B) :- q(A,C) , r(C,D)

p(A,B) :- q(A,C) , r(C,B)

p(A,B) :- q(C,D) , r(D,B)

(Binary Encoding: 000)

(Binary Encoding: 110)

(Binary Encoding: 111)

(Binary Encoding: 011)

p(A,B) :- q(C,D) , r(E,F)

p(A,B) :- q(A,C) , r(D,E)
(Binary Encoding: 100)

p(A,B) :- q(C,D) , r(E,B)
(Binary Encoding: 010)

p(A,B) :- q(C,D) , r(D,E)
(Binary Encoding: 001)

p(A,B) :- q(A,C) , r(D,B)
(Binary Encoding: 101)

Fig. 2. Subsumption lattice bounded below by clause p(A,B):-q(A,C),r(C,B)
and relevant binary encodings.

Theorem 3. For each clause C and B such that C ∈ S(B), C
 B.

Proof. Suppose C ∈ S(B), then M(C) ⊂ M(B). But according to Theorem 2
C
 B. ��
A binding matrix is a symmetric matrix in which diagonal entries are 1. In prac-
tice, we only maintain entries in top (or down) triangle of the matrix. Further-
more, in our implementation (see section 4), we are interested in a subsumption
lattice bounded below by a particular clause. According to Theorem 3, S(B)
represents a subsumption lattice bounded below by clause B. Each member of
S(B) can be encoded by a bit-string in which each bit corresponds to a 1 entry
of the matrix.

Example 1. Figure 2 shows the subsumption lattice bounded below by the clause
p(A,B) : −q(A,C), r(C,B). Entries m13, m26 and m45 of the binding matrix in
Figure 1 are encoded by three bits as shown in Figure 2.

3 Genetic Refinement Operators

After a proper representation, well designed genetic operators are important fac-
tors for success of a genetic algorithm. Genetic operators introduce new individu-
als into population by changing or combining the genotype of best-fit individuals
during an evolutionary process. In this section we present three genetic operators
which can be interpreted in ILP terms if applied on the binary representation in-
troduced in the previous section. These operators are and-operator, or-operator
and one-point crossover. We show that these operators are equivalent to some

248 Alireza Tamaddoni-Nezhad and Stephen H. Muggleton

of ILP concepts such as lgg (least general generalization) and mgi(most general
instance) [15].

Definition 9. Let M1 and M2 be in Mn. M = (M1 ∧M2) is an n× n matrix
and for each aij ∈ M , bij ∈ M1 and cij ∈ M2, aij = 1 if bij = 1 and cij = 1 and
aij = 0 otherwise.

Similar to and-operator, or-operator (M1∨M2) is constructed by bitwise OR-ing
of M1 and M2 entries.

Definition 10. Let M1 and M2 be in Mn. M = (M1 ∨M2) is an n× n matrix
and for each aij ∈ M , bij ∈ M1 and cij ∈ M2, aij = 1 if bij = 1 or cij = 1 and
aij = 0 otherwise.

Definition 11. Let M1 and M2 be in Mn and 1 ≤ s1 ≤ n and 1 ≤ s2 ≤ n be
randomly selected natural numbers. M = M1 ⊗M2 is an n × n matrix and for
each aij ∈ M , bij ∈ M1 and cij ∈ M2 it is the case that aij = bij if i < s1 or
i = s1 and j ≤ s2 and aij = cij otherwise.

In Definition 11 operator ⊗ is equivalent to one-point crossover as defined in
genetic algorithms’ literatures [4]. Now, we show some interesting properties of
these simple operators.

Theorem 4. For each clause B and matrices M1, M2 and M in Mn such that
C(M1) ∈ B(B), C(M2) ∈ B(B) and C(M) ∈ B(B), C(M) = lgg(C(M1), C(M2))
if and only if M = (M1 ∧M2).

Proof. ⇒ : Suppose C(M) = lgg(C(M1), C(M2)). According to the definition
of lgg, firstly C(M)
 C(M1) and C(M)
 C(M2) and according to Theorem
2 and Definition 9 M ⊂ (M1 ∧ M2). Secondly for each binding matrix M ′ if
C(M ′)
 C(M1) and C(M ′)
 C(M2) then C(M ′)
 C(M), therefore if M ′ ⊂
(M1 ∧ M2) then M ′ ⊂ M . Therefore (M1 ∧ M2) ⊂ M and M ⊂ (M1 ∧ M2),
hence M = M1 ∧M2.

⇐ : Suppose M =M1∧M2. ThereforeM ⊂ M1 and M ⊂ M2 and according
to Theorem 2 C(M)
 C(M1) and C(M)
 C(M2). Therefore C(M) is a
common generalization of C(M1) and C(M2). We show that C(M) is the least
general generalization of C(M1) and C(M2). For each binding matrixM ′ inMn

it must be the case that if C(M ′)
 C(M1) and C(M ′)
 C(M2) then C(M ′)

C(M). Suppose C(M ′) �
 C(M) then there exist u and v such that M ′(u, v) = 1
and M(u, v) = 0. If M ′(u, v) = 1 then M1(u, v) = 1 and M2(u, v) = 1 and this
contradicts M(u, v) = 0 and completes the proof. ��
By a similar proof it can be shown that the or-operator is equivalent to mgi 2.

Theorem 5. For each clause B and matrices M1, M2 and M in Mn such that
C(M1) ∈ L(B), C(M2) ∈ L(B) and C(M)∈ L(B), C(M)=mgi(C(M1), C(M2))
if and only if M =M1 ∨M2.

Proof. Symmetric with proof of Theorem 4. ��
2 The result of operator ⊗ can be compared with the result of W operator (predicate

invention) in ILP. This property is not discussed in this paper.

Searching the Subsumption Lattice by a Genetic Algorithm 249

Example 2. In Figure 2, lgg and mgi of each pair of clauses can be obtained by
AND-ing and OR-ing of their binary strings.

Because these operators randomly change some entries of the binding matrices,
it is possible that the resulting matrix be inconsistent with Definition 2. Such a
matrix can be normalized by a closure using Definition 3 before mapping it into
a clause.

4 Implementation

In our first attempt, we employed the proposed representation to combine In-
verse Entailment in CProgol4.4 with a genetic algorithm. In this implementation
genetic search is used for searching the subsumption lattice bounded below by
the bottom-clause (⊥). According to Theorem 3 the search space bounded by
the bottom clause can be represented by S(⊥). We encoded members of S(⊥)
by bit-strings (as described in section 2) and then applied a genetic algorithm
to evolve a randomly generated population of clauses in which each individ-
ual corresponds to a member of S(⊥). Because of simple representation and
straightforward operators any standard genetic algorithm can be used for this
purpose.

We used a variant of Simple Genetic Algorithm(SGA) [4] and modified it to
suit the representation introduced in section 2. This genetic search is guided by
an evaluation function which is similar to one used in A∗-like search of Progol
but normalized between 0 and 1. Unlike Progol’s refinement operators which
non-deterministically decide to include (or exclude) each atom of ⊥ in current
hypothesis, genetic refinement operators evolve bindings of the hypothesis in
S(⊥). Atoms which violate the mode declaration language [13], defined by the
user, are filtered from each clause before evaluation. The details for Progol’s
refinement operator, algorithm for building ⊥ and A∗-like search can be found
in [13] and the algorithm and other details of Simple Genetic Algorithm(SGA)
can be found in [4]. In the first experiment, we applied the genetic search to learn
Michlaski’s trains problem [11]. Figure 3 compares the performance of the genetic
search with a random search in which each population is generated randomly
as in the initial generation. In all experiments (10/10) a correct solution was
discovered by the genetic search before generation 20 (standard deviations for the
average fitness mean over 10 runs are shown as error bars). In this experiment,
the following setting was used for SGA parameters: popsize = 30, pc = 0.6 and
pm = 0.0333.

Preliminary results show that the standard Progol A∗-like search exhibits
better performance in learning hypothesis with small and medium complexities.
However, the performance of genetic search is less dependent on the complexity
of hypothesis, whereas A∗-like search shows a great dependency on this factor.
Moreover, genetic search can find the correct solution for some special cases
which the solution is beyond the exploration power of A∗-like search due to its
incompleteness [13, 1].

250 Alireza Tamaddoni-Nezhad and Stephen H. Muggleton

0.6

0.65

0.7

0.75

0.8

0.85

0 5 10 15 20 25 30

A
vg

. F
itn

es
s

Generations

Genetic Search
Random Search

Fig. 3. Convergence of the genetic search in the trains problem.

5 Discussion and Related Works

The actual completeness and complexity exhibited by the standardA∗-like search
of Progol depends upon the order of atoms in the bottom clause and upon the
distance of the acceptable hypothesis from the root of the search tree. In contrast,
because of a multi-point strategy it uses, the genetic algorithm is more regular
search method and is not affected by the order of atoms in the bottom clause.
Therefore it is reasonable that genetic algorithm is able to find some solutions
which are beyond the exploration power of the A∗-like search.

As mentioned earlier, one main difficulty in order to apply GAs in first-
order domain concerns formulating first-order hypothesis into bit-strings. GA-
SMART [3] and later REGAL [2] and DOGMA [5] were relation learning systems
which tackled this problem by restricting concept description language and intro-
ducing language templates. A template, in GA-SMART, is a fixed length CNF
formula which must be obtained from domain theory (or defined by the user).
Mapping a formula into bit-string is done by setting the corresponding bits to
represent the occurrences of predicates in the formula. The main problem of
this method is that the number of conjuncts in the template grows combina-
torially with the number of predicates. In REGAL and DOGMA a template is
a conjunction of internally disjunctive predicates which introduce a more com-
plicated language, but still incomplete and poor for representing some features
(e.g. continuous attributes). Other systems including GILP [16], GLPS [10] and
STEPS [7] use hierarchical representations rather than using fixed length bit-
strings. These systems evolve a population of logic programs in a Genetic Pro-

Searching the Subsumption Lattice by a Genetic Algorithm 251

gramming (GP) [9] manner. Most of the above mentioned systems cannot use
any form of intensional background knowledge and a few of them use limited
forms of background knowledge just for generating initial population or seeding
the population.

On the other hand, in our proposed framework, binary representation of hy-
pothesis is compact and complete in comparison to all other methods which use a
binary encoding. Encoding of solutions is based on a bottom clause constructed
according to the background knowledge using some ILP methods such as In-
verse Entailment. Moreover, as shown in section 2 and section 3, the proposed
encoding and operators can be interpreted in well known ILP concepts. Hence,
in terms of genetic algorithms theory, the proposed framework is not only con-
sistent with the principal of minimal alphabets in GAs but also it is along the
right lines of the principle of meaningful building blocks [4].

6 Conclusions and Further Work

In this paper we have introduced a framework for combining GAs with ILP
methods. Simple but complete and compact binary representation for encoding
clauses and ILP interpretations of this representation (and relevant operators)
are the major novelty of the proposed framework.

An implementation of this framework is used to combine Inverse Entailment
of CProgol with a genetic search. Even though this implementation justifies the
properness of the proposed framework, it could be improved in many ways. An
improvement might be using more sophisticated genetic algorithms (e.g. dis-
tributed genetic algorithms) rather than using a simple genetic algorithm. More
experiments are also required in complex domains and noisy domains. The ILP
interpretation of the proposed genetic operators can be used to guide the genetic
search towards the interesting areas of the search space by specialization and/or
generalization as it is done in usual ILP systems. As genetic refinement oper-
ators introduced in this paper concern specialization as well as generalization,
the proposed framework could be useful for theory revision as well.

Undoubtedly, GAs and ILP are on opposite sides in the classification of
learning processes [8]. While GAs are known as empirical or BK-poor, ILP could
be considered as BK-intensive method in this classification. We conclude that the
framework proposed in this paper can be considered as a bridge between these
two different paradigms to utilize the distinguishable benefits of each method in
a hybrid system.

Acknowledgements

Alireza Tamaddoni-Nezhad would like to thank his wife, Parisa Nejabati, for her
support during the writing of this paper. Many thanks are also due to the three
anonymous referees for their comments, Suresh Manandhar for discussions on
the related topics and Alen Varšek for providing us a summary of [16].

252 Alireza Tamaddoni-Nezhad and Stephen H. Muggleton

References

[1] L. Badea and M. Stanciu. Refinement operators can be (weakly) perfect. In
S. Džeroski and P. Flach, editors, Proceedings of the 9th International Workshop
on Inductive Logic Programming, volume 1634 of Lecture Notes in Artificial In-
telligence, pages 21–32. Springer-Verlag, 1999.

[2] A. Giordana and F. Neri. Search-intensive concept induction. Evolutionary Com-
putation Journal, 3(4):375–416, 1996.

[3] A. Giordana and C. Sale. Learning structured concepts using genetic algorithms.
In D. Sleeman and P. Edwards, editors, Proceedings of the 9th International Work-
shop on Machine Learning, pages 169–178. Morgan Kaufmann, 1992.

[4] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison Wesley, Reading, MA, 1989.

[5] J. Hekanaho. Dogma: A ga-based relational learner. In D. Page, editor, Proceed-
ings of the 8th International Conference on Inductive Logic Programming, volume
1446 of Lecture Notes in Artificial Intelligence, pages 205–214. Springer-Verlag,
1998.

[6] J.H. Holland. Adaption in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, Michigan, 1975.

[7] Claire J. Kennedy and Christophe Giraud-Carrier. An evolutionary approach to
concept learning with structured data. In Proceedings of the fourth International
Conference on Artificial Neural Networks and Genetic Algorithms, pages 1–6.
Springer Verlag, April 1999.

[8] Y. Kodratoff and R. Michalski. Research in machine learning: Recent progress,
classification of methods and future directions. In Y. Kodratoff and R. Michalski,
editors, Machine learning: an artificial intelligence approach, volume 3, pages 3–
30. Morgan Kaufman, San Mateo, CA, 1990.

[9] J. R. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1991.
[10] K. S. Leung and M. L. Wong. Genetic logic programming and applications. IEEE

Expert, 10(5):68–76, 1995.
[11] R.S. Michalski. Pattern recognition as rule-guided inductive inference. In Proceed-

ings of IEEE Transactions on Pattern Analysis and Machine Intelligence, pages
349–361, 1980.

[12] S. Muggleton. Inductive logic programming. New Generation Computing,
8(4):295–318, 1991.

[13] S. Muggleton. Inverse entailment and Progol. New Generation Computing,
13:245–286, 1995.

[14] S-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-
ming. Springer-Verlag, Berlin, 1997. LNAI 1228.

[15] G.D. Plotkin. A note on inductive generalisation. In B. Meltzer and D. Michie,
editors, Machine Intelligence 5, pages 153–163. Edinburgh University Press, Ed-
inburgh, 1969.

[16] A. Varšek. Inductive Logic Programming with Genetic Algorithms. PhD thesis,
Faculty of Electrical Engineering and Computer Science, University of Ljubljana,
Ljubljana, Slovenia, 1993. (In Slovenian).

	Introduction
	Representation and Encoding
	Genetic Refinement Operators
	Implementation
	Discussion and Related Works
	Conclusions and Further Work

