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Abstract. This paper introduces a distributed Bayesian framework for noise re-
silient context sensing for Body Sensor Networks (BSNs).  By utilizing the 
causal/dependence structure of the Bayesian network and the introduction of 
hidden nodes, the inference processes can be distributed to local clusters with 
added benefit of noise resilience. Issues related to automatic network construc-
tion based on backward propagation for parameter learning and noise sensitiv-
ity/detection are discussed.  

1   Introduction 

With recent advances in low power wireless sensing technologies, the concept of 
Body Sensor Network (BSN) has shown significant strength in continuous monitor-
ing of patients under their natural physiological status [1].  Due to the diversity of the 
environment and physiological conditions they may experience, understanding of the 
context within which the signals are collected plays an important role for the accurate 
prediction of adverse events. Reliable detection of patient activity, however, requires 
the use of a large number of context sensors around the body. This can potentially 
introduce a significant burden to the power consumption and bandwidth utilisation. 
Directly sending all the sensory data to the centralised processing unit requires exten-
sive transmission power and a high bandwidth at the central processing unit.  Reduc-
ing the transmission range and required bandwidth will greatly reduce the power 
consumption and prolong the life span of the sensors. Clustering data transmission 
among neighbourhood can also alleviate the problem of data collision.   
    Existing research has shown that inferencing with message-passing is potentially 
useful for distributed sensing systems. However,  resilience to communication error 
and node failures is major obstacle to overcome. Paskin et al. proposed a robust mes-
sage passing algorithm for reasoning in a junction tree model [2] .  By converting a 
standard multiply connected Bayesian Network (BN) into a cluster tree and combin-
ing nodes into a clique, the problem of non-convergence and incorrect update of the 
posterior probabilities due to the loopy feedback in a multiply connected model can 
be avoided.  Furthermore, existing research in BSN has also highlighted need for 
built-in redundancies in the sensor network for dealing with motion artefact and node 



failures. The purpose of this paper is to propose a Bayesian framework that permits 
distributed inferencing with a high level of noise tolerance.  

2.  Model Description 

The main idea of introducing noise resilience to the sensing architecture is the intro-
duction of hidden nodes to a traditional BN. This allows the transformation of a mul-
tiply connected network into a singly connected network. Pearson’s correlation coef-
ficient was chosen as the dependency measure between a variable pair and complete-
link clustering is used to form clusters of correlated child nodes. Unlike ordinary BNs 
where the conditional probabilities in the link matrices are obtained from the data 
distribution, the close-form representation for deriving link matrices is not possible 
for a network with hidden nodes. A backward propagation method used for parameter 
learning. To assess the overall performance of the proposed method, an ETH refer-
ence dataset was used. This consisted of sensor data obtained from accelerometers in 
performing eight different activities [3].  After extracting the temporal features from 
the dataset, reference data is constructed by selecting six representative features and 
two highly correlated features.  From the reference data set, a BN is obtained by 
learning the structure from the training dataset, and hidden nodes were inserted to 
represent the dependency among correlated children [4], as shown in Fig.1.   
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Fig. 1.  The structure of the BN with hidden nodes learned from the training dataset. 

3.  Noise Resilience  

To assess the noise resilience of the model, both Gaussian and white noises were  
introduced to nodes with redundant features. Gaussian noise was generated from a 
normal distribution with zero mean and the standard deviations (SD) of  ¼, ½, and 1 
of the SD of the corresponding feature in the original dataset.  Fig. 2 and Fig. 3 
demonstrates the performance comparison of a naïve BN, and a BN with hidden 
nodes, and a BN with hidden nodes after re-training with single and dual channel 
noise interference, respectively.  The re-training was performed by using a leaky 
integrator to update the link matrices with a continuously re-sampled training dataset 



stored in a FIFO buffer.  It is evident that the BNs with hidden nodes outperform the 
naïve BNs as the noise level increases.  The graphs have shown that the insertion of 
hidden nodes could effectively filter out the noise and maintain the model accuracy.  
The online updates of the link matrix can further increase the model accuracy.  

 
 
 
 
 
 
 
 
 
 
 
 

0.3

0.4

0.5

0.6

0.7

0.8

no noise 1/4 SD 1/2 SD 1 SD w hite noise
Noise Levels

A
ve

ra
ge

 a
cc

ur
ac

y

Naive BN

BN w ith hidden node

BN w ith hidden node and retraining

Fig. 2.  Performance comparison of different BN models vs. different noise levels in the data 
received from a redundant sensor 
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Fig. 3.  Performance comparison of different BN models vs. different noise levels in the data 
received from two redundant sensors. 

4.  Noise Detection 

The hidden node introduced in this paper is to neutralise the effect of the redundant 
nodes in the network and improve the noise tolerance. In practice, it is also important 
to isolate, rather than filter out, faulty sensor responses. To this end, the framework 
described above provides a convenient way of performing sensor noise detection.  
Since the standard deviation of a static signal is zero, any measurement which in-
volves division by the standard deviation cannot be computed. In  this paper, we have 
used the L1 dependency measure for this purpose, i.e.,   
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For online detection of noise in a subnet, the joint probabilities P(ai&bj) and the prior 
probabilities P(ai) and P(bj) are calculated from the data within a shifted window for 
each pair of nodes in the subnet. Since a hidden node is inserted based on the depend-
ency between the child nodes, the difference between the child-parent dependency 
should be low if their dependency is maintained.  In this case, relatively high differ-
ence in child-parent dependency indicates noise interference. The result shown in Fig 
4. illustrates the comparison between the difference in child-parent dependency be-
fore and after Gaussian noise (with 1SD) was introduced into the subnet.  The prob-
abilities are calculated at each time step by using a shifted time window size of 30. 
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Fig. 4.  Comparison of the difference in L1 dependency measure before and after the Gaussian 
noise is introduced. 
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