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Abstract. Recent advances in biophotonics have enabled in-vivo, in-situ 

histopathology for routine clinical applications. The non-invasive nature of 

these optical ‘biopsy’ techniques, however, entails the difficulty of identifying 

previously visited biopsy locations, particularly for surveillance examinations. 

This paper presents a novel region-matching approach for narrow-band 

endoscopy to facilitate retargeting the optical biopsy sites. The task of matching 

sparse affine covariant image regions is modelled in a Markov Random Field 

(MRF) framework. The proposed model incorporates appearance based region 

similarities as well as spatial correlations of neighbouring regions. In particular, 

a geometric constraint that is robust to deviations in relative positioning of the 

detected regions is introduced. In the proposed model, the appearance and 

geometric constraints are evaluated in the same space (photometry), allowing 

for their seamless integration into the MRF objective function. The 

performance of the method as compared to the existing state-of-the-art is 

evaluated on both in-vivo and simulation datasets with varying levels of visual 

complexities.  
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1   Introduction 

Oesophageal Adenocarcinoma (OAC) is the most rapidly increasing cancer in Europe 

and the United States, which has a 5-year survival rate of only 10% [1]. Barrett’s 

Oesophagus (BO), referring to the abnormal change of the oesophageal mucosa 

caused by gastro-oesophageal reflux (Fig. 1a-b), is the only recognized precursor to 

OAC. Therefore, for patients diagnosed with BO, periodic surveillance by 

gastrointestinal (GI) endoscopy together with systematic biopsy is important for the 

early detection and prevention of OAC.  

In current surveillance protocols, a new technique called Narrow-Band Endoscopic 

Imaging (NBI), has shown advantage compared to conventional white light 



endoscopy as it allows for detailed visualization of mucosa and the underlying 

vascular patterns (Fig. 1a-b). A further technique called Fibered Confocal Microscopy 

(FCM) which enables real-time visualization of cellular structures in-vivo and in-situ 

(Fig. 1c) is also introduced recently. During GI endoscopy, a fibered confocal 

microprobe can be inserted easily through the instrument channel of a standard 

endoscope (Fig. 1d), providing in-situ histopathology without the need for tissue 

biopsy [2]. This has significant benefits in terms of ease of examination, patient 

comfort and real-time feedback. In practice, however, the non-invasive nature of the 

procedure also makes it difficult to return to previously examined biopsy sites in 

surveillance endoscopy due to the absence of scar on the tissue. The purpose of this 

paper is to present a novel image-based region matching method for biopsy site re-

targeting in NBI. 

              

Fig. 1. Appearance of BO a) in white light endoscopy and b) in NBI. c) The FCM machine and 

d) FCM microprobe passing through the instrument channel of a standard endoscope.  

Region matching in NBI entails several challenges, which include tissue 

deformation, prevalence of similar surface textures and mucosal patterns. As the 

endoscope is very close to the tissue, small differences in the visible scales of the 

same feature can cause a significant change in the visual content. Furthermore, the 

common issue of view-invariant scene matching also needs to be addressed. 

Viewpoint invariant scene matching is a well studied problem in computer vision 

and it typically proceeds by representing the scene as a collection of affine covariant 

regions which are described by a vector computed from the regions’ appearances. 

Usually a nearest neighbour matching of the descriptor vectors incorporating 

geometric constraints is used to eliminate possible outliers ([3-5] and references 

within). In endoscopy, the major focus is directed towards short-baseline 

matching/tracking in the presence of tissue deformation [6].    

Recently, spectral methods have been proposed for region-matching in images 

undergoing non-rigid transformations [7-9]. These methods model a graph for the 

feature set in each image and estimate their correspondences by graph matching. 

Thereby the geometric relations are modelled in terms of point locations where 

distance and/or orientation preservation is enforced. The main focus of these 

approaches lies on estimating the optimal solution for the NP-hard graph matching 

problem rather than on optimal modelling. However, Caetano et al. have 

demonstrated that finding the (near) optimal graphs can greatly simplify the matching 

problem and improve the results [10]. The authors proposed a learning based 

approach for optimal graph extraction. An MRF model [11] and a graph matching 

approach [8] with optimal model parameter learning are also presented for the 

correspondence problem.  



In this paper, we will focus on deriving the (near) optimal MRF model for the 

feature correspondence problem in NBI. The proposed model incorporates appearance 

based region similarities as well as the spatial correlations of neighbouring regions. 

To this end, we introduce a geometric constraint that evaluates the consistency 

between neighbouring matches on their photometric properties. Evaluation of the 

appearance and geometric constraints in the same space (photometry) allows for their 

seamless integration. The performance of the proposed method is evaluated with both 

in-vivo and simulation datasets. 

2   Methods 

The proposed method involves initial affine covariant region detection. This is 

followed by formulating a particular MRF model for the matching problem. Finally, 

the optimal labelling is computed using Belief Propagation. 

2.1 Region Detection and Description 

Affine covariant regions are detected independently on both images using affine 

invariant anisotropic region detector [12], which is shown to be robust against small 

deformations. For viewpoint invariant description, each elliptical region p  is 

normalized by the corresponding affine transformation pM  (determined by the shape 

of the ellipse) and mapped onto the corresponding circular region pp M p= ⋅  (Fig. 

2a). Then, the dominant gradient orientation pϑ  is estimated from the local image 

gradients and the SIFT descriptor [3] p p(p, , )d σ ϑ  is computed from the circular patch 

p  using the characteristic scale pσ  and the dominant gradient orientation pϑ .  

     

Fig. 2. a) Viewpoint invariant region description. b) Unary costs computed from the region 
descriptors, where the diamond indicates the SIFT descriptor computed on the affine 
normalized patches. c) The proposed pair-wise costs. SIFT descriptors are computed on the 
patches q  and ql  using the dominant gradient orientations pϑ , 

pl
ϑ  of the regions p  and pl . 

Two compared image patches are the same, whereas the length and orientation of the line 
segment between two region centres are not preserved as illustrated via the yellow lines in a).  

2.2 Matching through Markov Random Fields 

Given the computed region descriptors, we model the matching problem as global 

optimization of an MRF labelling. We define the regions in the first image to be the 

nodes {1,..,n}=G  of the MRF and the regions in the second image to be the labels 

0 1{ , ,.., }Ml l l+ =L  including the null-label 0l , which is assigned to regions without 

true correspondence in the second image. In this paper, we consider only up to pair-



wise relations. Thus, finding the maximum a posteriori (MAP) estimate of the 

optimum labelling *
l  is equivalent to minimizing the energy function: 

lMRF p p pq p q
p p q (p)

( ) ( ) ( , )E V l V l l
∈ ∈ ∈

= +∑ ∑ ∑
G G N
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where p p( )V l  is the unary cost of assigning the label pl  to the node p , pq p q( , )V l l  is 

the pair-wise cost and N  defines the neighbourhood system. 

2.3  Unary Costs 
 

In our model, photometric similarities between the node and the label regions are 

evaluated via the unary costs by defining p p( )V l  to be the distance of the SIFT 

descriptors of the node p  and label pl  regions (Fig. 1b). We further define the cost 

p 0( )V l  of assigning the null-label 0l  to a node p  to be a function of the photometric 

similarities. The motivation is that assigning the null-label 0l  to a region that has a 

strong correspondence in the second image should have a higher cost than assigning it 

to a region with no (strong) correspondence. We define the null-cost function of the 

node p  as p 0 p( ) (1 min( ()))V l Vα= ⋅ − ⋅ , where pmin( ())V ⋅  is the minimum cost of 

assigning a label to the node p , and α  is the factor regulating the trade-off between 

the quality and the number of matches. (For all our in-vivo datasets, the best 

performance is achieved for 0.5α = ). The final unary costs are computed as: 

p p
p p p p 0

p p

p
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where all costs p()V ⋅  are normalized to the interval [0,1]  by dividing by the maximum 

possible angle between two descriptor vectors; arccos(0) .  

2.4  Neighbourhood Systems  

 

In the context of the matching problem, each region is allowed to have at most one 

correspondence in the second image, i.e., each label can be assigned at most to one 

node. This uniqueness constraint is included into the energy function by connecting 

each node with all the other nodes within the global neighbourhood system N and 

by defining the pair-wise cost for assigning the same label to two nodes to be infinite: 

pq p q( , )V l l = ∞  if p q 0l l l= ≠ . We further define a local neighbourhood system in 

order to impose flexible local geometric constraints. This neighbourhood system is 

defined for both the nodes and the labels to impose neighbourhood preservation as the 

initial geometric constraint (Eq. 3.1). The local neighbourhood local(p)N  of a region 

p  is set to be: local(p) {q p |  || p q || }t= ≠ − <N , where || p q ||−  is the 

Euclidean distance between the centres of p  and q  and t  is a threshold value. (We 

use 10%t =  and 20%t =  of the image size for the node- and label-neighbourhoods 



respectively to ensure the connectivity of two neighbouring regions after a large 

viewpoint change). For regions fulfilling the neighbourhood preservation, a novel 

geometric constraint is imposed measuring the consistency of two matches. 

2.5  Pair-wise Costs 

In this paper, we propose a geometric constraint based on the assumption that 

neighbouring regions move with similar transformations. The idea is as follows: if 

two neighbouring regions p  and q  have the corresponding regions pl  and ql  in the 

second image, then there exist two affine transformations pA  and qA  such; 

x x xp p p p p( ) A p( ) R M p( )l s= ⋅ = ⋅ ⋅ ⋅  and x x xq q q q q( ) A q( ) R M q( )l s= ⋅ = ⋅ ⋅ ⋅  

where ps   and qs  are scale factors. Theoretically, for spatially close regions on the 

same plane it holds p qA A= . However, for neighbouring regions on different planes 

this assumption is too restrictive and can be relaxed by assuming only p qR R R= = , 

where R  is the rotation of the local neighbourhood between two images.  

If two neighbouring matches p p(p, )m l=  and q q(q, )m l=  are true 

correspondences, then the SIFT descriptors q p(q, , )d σ ϑ  and 
q p

q( , , )
l l

d l σ ϑ  computed 

on the patches q  and ql  using their own characteristic scales qσ , 
ql
σ  and the 

dominant gradient orientations pϑ , 
pl
ϑ  of p  and pl  should be similar as the local 

rotation can be determined as 
p

pR=
l
ϑ ϑ−  (Fig. 1c). (Recall that pM p p⋅ =   and 

qM q q⋅ = ). This similarity measure indicates the consistency of the matches pm  

and qm , as the rotation estimated from the match pm  is evaluated on the regions of 

the match qm . Combining with the neighbourhood preservation, the pair-wise costs 

to evaluate geometric constraints are defined as: 

q p

p local q

pq p q

q p q p local q
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Introducing the geometric constraints the final pair-wise costs are defined as: 
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   (4) 

where α  is the same factor used in the unary null-costs.  

The derived geometric constraint (Eq. 3.2) is invariant to changes in the scale and 

relies only on the assumption of similar rotations within a local neighbourhood.  This 

is in contrast to previous methods taking global consistency of the features into 

account. Such methods would fail in case of global deformation, which is present in 

our applications. This constraint also allows us to be locally more flexible than recent 

methods making stronger assumptions, such as invariance of the distance between the 



neighbouring points or the orientation of line segment connecting their centroids [7-

9]. Furthermore, the proposed constraint evaluates local image geometry based on the 

photometric properties of the patches rather than their spatial locations. This allows 

for the evaluation of the unary and the pair-wise costs in the same space and 

combining them in the objective function without using any weighting parameters.  

2.6  MAP Estimation 

The MAP labelling of the proposed MRF model is estimated using Belief Propagation 

(BP) [13].  The non-submodularity of the pair-wise costs restricts the choice of the 

MRF inference algorithms to those without prior constraints on the class of energy 

functions. In this paper, without loss of generality we use the BP algorithm. 

3   Experiments and Results 

The performance of the proposed method is evaluated on 4 in-vivo and 4 simulation 

datasets and compared to 3 matching strategies evaluated in [14]. The regions are 

detected and described as explained in Section 3.1. The threshold-based (TB) [14], 

nearest-neighbour (NN) [14] and the nearest neighbour distance ratio matching 

(NNDR) [3,14] are applied for varying threshold values. MRF-based method is 

performed for different values of the factor α  within the convergence range of the 

optimization. We further compared the hypergraph matching algorithm (HGM) using 

the proposed affine invariant geometric measure via quadripartite point relations [7]. 

However, these graph matching methods are not adapted to large number of non-

matching regions (43%-87% in our datasets). Therefore, the performance of the HGM 

was poor and is not illustrated here in detail. For quantitative analysis, we evaluate 

recall  (the ratio of correct matches to the total number of correspondences) versus 

1 precision−  (the number of false matches with respect to the number of matched 

regions). For the best matching results 1recall =  and 1 0precision− = .  

3.1  Simulation Studies 

For evaluation with known ground truth data, we created 4 simulation datasets (2 for 

viewpoint change and 2 for deformation). In the first study, we generated images 

under different viewpoint conditions by transforming 2 in-vivo images (one veined 

and one structured area) with known homographies. In the second study, we deformed 

2 in-vivo images (one structured and one homogenous area) and tracked the detected 

regions. In both studies, two regions were accepted as a correct match if the distance 

between the centres of the transformed and detected ellipses was less than 1% of the 

image size and the overlap was more than 55%. Figs. 4(a-c) demonstrate that MRF 

matching results in a better performance than all compared methods for structured 

scenes. Fig. 4d shows that in the presence of non-distinctive regions, MRF-matching 

and NNDR (which favours distinctive matches) exhibit a similar performance. The 

matching results of the MRF model are presented in Figs. 3(a-d).  



 

Fig. 3. Matching results of the MRF model on a-b)  viewpoint change c-d) deformation 

simulation datasets  e) first, f) second, g) third and h) fourth in-vivo datasets.  

       
Fig. 4. Validation of the results on simulation datasets. Viewpoint change on images of a) 

veined b) structured tissue. Deformation on images of c) structured d) homogenous tissue.  

3.2  In-vivo Studies 

For the in-vivo studies, we used 4 NBI datasets with different viewpoint and 

photometric conditions. The first 3 datasets contain two distant frames of the same GI 

procedure from different viewpoints showing a veined area (Fig. 3e), structured area 

(Fig. 3f) and homogenous area with large deformation (Fig. 3g). The fourth dataset 

contains images acquired during two different GI examinations with a time difference 

of 3 months where the patient underwent chemotherapy. This results in large changes 

in the visual appearance of the tissue (Fig. 3h). For the in-vivo data sets, the ground 

truth data was provided by manual labelling. Fig. 5 demonstrates that for all in-vivo 

cases the proposed MRF model performs better than the state-of-the art descriptor 

matching techniques. For all datasets (simulation and in-vivo) maximum recall values 

for the acceptable precision interval (80%-100% inliers) are summarized in Table1. 

The matching results for the in-vivo datasets are presented in Fig 3e-f. 

        
Fig. 5. Validation of the results on in-vivo datasets.  a-b-c-d) show the recall versus precision of 

each matching algorithm for the first, second, third and fourth in-vivo dataset, respectively. 

4 Conclusion 

In this paper, we investigate the task of region matching for NBI and propose a new 

method towards an image-based solution for consistent re-targeting of optical biopsy 

sites. To this end, we present an MRF model for matching affine covariant regions 



incorporating a novel geometric constraint for dealing with large changes in the 

observed datasets. Our results demonstrate the robustness of the proposed model for 

deformable wide-baseline matching on in-vivo and simulation datasets. For future 

work, we plan to further extend our approach in order to provide a complete 

framework for this novel and challenging application. This would require both 

detection and tracking taking into account the sequential appearances of features 

within the first and secondary examinations. 

 

 Viewp.1 Viewp.2 Def.1 Def.2 In-vivo1 In-vivo2 In-vivo3 In-vivo4 

MRF 0.75 0.75 0.76 0.31 0.96 0.69 0.71 0.83 

NN 0.58 0.66 0.73 0.31 0.82 0.31 0.13 0.37 

NNDR 0.53 0.68 0.62 0.31 0.75 0.31 0.06 0.21 

TB 0.55 0.63 0.73 0.31 0.78 0.31 0.13 0.32 

Table 1. Summary of the maximum recall values for the precision interval [0.8-1.0] (80%-

100% inliers) for the simulation and in-vivo datasets. 
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