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Abstract. Training a fully convolutional network for pixel-wise (or voxel-
wise) image segmentation normally requires a large number of training
images with corresponding ground truth label maps. However, it is a chal-
lenge to obtain such a large training set in the medical imaging domain,
where expert annotations are time-consuming and difficult to obtain. In
this paper, we propose a semi-supervised learning approach, in which a
segmentation network is trained from both labelled and unlabelled data.
The network parameters and the segmentations for the unlabelled data
are alternately updated. We evaluate the method for short-axis cardiac
MR image segmentation and it has demonstrated a high performance,
outperforming a baseline supervised method. The mean Dice overlap
metric is 0.92 for the left ventricular cavity, 0.85 for the myocardium
and 0.89 for the right ventricular cavity. It also outperforms a state-of-
the-art multi-atlas segmentation method by a large margin and the speed
is substantially faster.

1 Introduction

Recent development in deep learning, especially the proposal of fully convolu-
tional networks (FCN) [8], has greatly advanced the state-of-the-art in semantic
image segmentation. The fully convolutional network has the advantage of of-
fering end-to-end training and it has achieved a high accuracy for natural image
segmentation [5]. Typically, such a network consists of millions of parameters
and learning these parameters requires a large training set, which is formed of
pairs of training images and corresponding pixel-wise label maps. In the med-
ical imaging domain, however, it is a major challenge to obtain such a large
training set due to several reasons. First, it is not easy to recruit experts who
can reliably annotate medical images. Second, accurate pixel-wise annotation is
time-consuming and tedious. Third, there are various modalities and imaging
protocols, a training set generated for one study may not be easily transferable
to another study.



To address this challenge, we propose a semi-supervised learning approach for
network-based medical image segmentation, in which the segmentation network
is trained from both labelled and unlabelled data, so that the need for a large
training set is alleviated. The method is applied to the task of cardiac MR image
segmentation, which is a crucial step for quantifying ventricular volumes and
assessing cardiac function. Experimental results demonstrate that the proposed
method effectively improves the segmentation accuracy, compared to a baseline
method that only utilises the labelled data. It achieves a high performance for
left and right ventricular segmentations. In addition, it outperforms a state-of-
the-art multi-atlas segmentation method in both accuracy and speed.

1.1 Related Works

Many works have proposed using FCN for medical image segmentation [3,4},[12].
For cardiac MR image segmentation, FCN and other network architectures have
also been explored [1,9,11}/16{17]. Most of these approaches learn image features
from fine to coarse scales using convolutions and poolings and then combine
multi-scale features to predict a pixel- or voxel-wise label map. These networks
are normally trained in a fully supervised manner. The contribution of this work
is that we have developed a semi-supervised way to train the network so that
not only labelled images, but also unlabelled images can be utilised for training.

In the domain of computer vision, several works have proposed weakly-
supervised learning, where labelled training data is augmented by data with
image-level annotations, bounding boxes or scribbles [7,[10]. Our work explores
semi-supervised learning with unlabelled images and evaluates its effect within a
medical imaging scenario, or more specifically, cardiac MR image segmentation.

2 Methods

2.1 Semi-Supervised Learning

Let = denote an image and y denote its pixel-wise label map. A training set S
consists of pairs of images and label maps, S = {X,Y}, where X = {z;|i =
1,2,...,N}, Y = {y;]i = 1,2,...,N} and ¢ denotes the image index. Sup-
pose we have two sets, a labelled set S;, = {X.,Y.} and an unlabelled set
Su = {Xv,Yu}. The label maps Y7, are known and they normally come from
manual segmentations by experts on images X, whereas the label maps Yy are
unknown. We build a network parameterised by @ for image segmentation, i.e.
to predict label map y from image x.

In the supervised setting, estimating the segmentation model is formulated
as an optimisation problem for the following loss function,
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where j denotes the pixel index, P(y; j|z;, ©) is the softmax probability provided
by the network at pixel j for image 7 and L(©) is the cross-entropy loss function.



This loss function is defined on labelled set Sy, and it is usually optimised w.r.t.
© by stochastic gradient descent (SGD).

In the semi-supervised setting, we introduce the unlabelled set Sy to the
optimisation problem,
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where the second term on the right is the cross-entropy for the unlabelled set
and A is a weight for this term. The loss function needs to be optimised against
both the network parameters @ and the unknown label maps Y. We solve this
problem by alternately updating @ and Yy:

1. With O fixed, estimate Yy . Only the second term in the loss function Eq.
needs to be optimised. This step performs segmentation for the unlabelled
images based on the current network.

2. With Yy fixed, estimate @. This step updates the network parameters by
training on both Y7, and estimated segmentations Yu.

The initial values of @ are obtained by training the network only on the
labelled maps Y7, for a number of epochs. Step 1 is performed by computing the
softmax probability from the network and deploying a conditional random field
(CRF) [6] to estimate a refined segmentation from the probability map. Step 2
is performed by using SGD to optimise the cross-entropy loss function, similar
to supervised learning. We iteratively alternate between the two steps, in the
hope that after each iteration, the network parameters are improved due to the
updated segmentations and vice versa.

2.2 Conditional Random Field (CRF)

During the iterative approach, a CRF is used to refine the segmentation for the
unlabelled data. The CRF optimises the following energy function [6],

E(y) = 0;(y) +>_ 0 x(ys,uk), (3)
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where the first term 6;(y;) = —log P(y;) is a unary potential which encourages
the output to be loyal to the softmax probability, the second term 0; x(y;, yx) is
a pairwise potential between labels on pixel j and pixel k,
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where p(y;,yx) = 1 if y; # yr and 0 otherwise. This term penalises pixels with

similar positions p and intensities  but with different labels y. The CRF can

improve the localisation property of the network and refine the segmentation as
shown in [6].
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Fig. 1: The network consists of convolutional (conv), upsampling (up), concate-
nation (concat) and loss (loss) layers. A typical layer name “3x3 conv, 128, /2"
means convolutional with 3x3 kernel, 128 output features and a stride of 2.

2.3 Network Architecture

We use a fully convolutional network architecture, as illustrated in Figure[l] It is
adapted from the VGG-16 net [14] and similar to the DeepLab architecture used
in [5]. A major difference is that DeepLab predicts label maps downsampled by
a factor of 8, whereas our network predicts label maps in the original resolution.
In the network, each convolutional layer is followed by batch normalisation and
ReLu, except the last one, which is followed by the softmax function. After ev-
ery two or three convolutional layers, a stride of 2 is used in the convolution to
downsample the feature map so as to learn features at a more global scale. Fea-
ture maps learnt at different scales are upsampled using bilinear interpolation
back to the original resolution, then combined using a concatenation layer. Fi-
nally, convolutional layers of a kernel size 1x1 are used to generate the softmax
probability maps of K classes for pixel-wise segmentation. It has to be noted
our main focus in this work is to investigate the idea of semi-supervised learning
and other network architectures may also be used here for segmentation.

3 Experiments and Results

3.1 Data and Pre-Processing

Experiments were performed using short-axis cardiac MR images from the UK
Biobank study, with the typical image resolution 1.8x1.8x10.0 mm?. Due to the
large spacing between short-axis slices and the possible inter-slice shift caused by
respiratory motion, we use a 2D convolutional network and segment each slice
separately, similar to how a human would annotate the image. A clinical expert



manually segmented the left-ventricular (LV) cavity, the myocardium and the
right-ventricular (RV) cavity for 100 subjects at end-diastolic (ED) and end-
systolic (ES) frames. Manual segmentation took about 20 minutes per subject,
with each subject containing 10 to 12 slices at two time frames.

Out of 100, 20 subjects were used as testing set. The 20 testing subjects were
also manually segmented twice by the same expert for evaluating intra-observer
variability of human. The other 80 subjects and some unlabelled subjects were
used for training. We experimented with two training settings: (1) 20 training
subjects as labelled data (422 slices), 60 unlabelled subjects (1208 slices); (2)
80 training subjects as labelled data (1630 slices), 240 unlabelled subjects (4790
slices). For pre-processing, all training images were cropped to the same size of
224x224, intensity normalised to the range of [0, 1] and randomly shuffled before
being fed to the network. Intensity inhomogeneity correction was not performed.

3.2 Parameters

For SGD, a mini-batch size of 20 and a learning rate of 0.001 were used. Data
augmentation was performed on-the-fly, including random translation, rotation,
scaling and intensity rescaling. The parameters for CRF were w; = 1, wy =
2, 0o = 0.5, 05 = 1, 04 = 1. These values were chosen by evaluating the
segmentation performance on a small validation set.

To initialise semi-supervised learning, the network was trained on the la-
belled data in a supervised way for 500 epochs until the change of loss function
was minimal. This network with CRF refinement is regarded as the baseline
method for comparison. For semi-supervised learning, we performed alternate
optimisation for 3 iterations, with 100 epochs for each iteration. We found the
performance improvement after 3 iterations became negligible. We tested two
values, 0.5 and 1.0, for the weight A in the unlabelled data cross-entropy term,
and found A = 1.0 performed slightly better so adopted this value.

The method was implemented using Python and Theano [15]. In terms of
computation time, it took about 10 hours to train the network for 100 epochs
on a Nvidia Tesla K80 GPU, when 20 labelled data and 60 unlabelled data were
used. It took about 35 hours to train for 100 epochs, when 80 labelled data and
240 unlabelled data were used. When the trained network was deployed, it took
about 6 seconds to segment all the images slices for one subject at ED and ES.

3.3 Evaluation of Segmentation Performance

The segmentation performance was evaluated by computing the Dice overlap
metric between automated segmentation and expert manual segmentation for
three structures: LV cavity, LV myocardium and RV cavity. The average Dice
metric of ED and ES time frames is reported.

First, we evaluate the impact of semi-supervised learning. Table [1| compares
the segmentation performance between a baseline supervised learning method
and the proposed semi-supervised learning method. It shows that if the same
number of labelled data is used, semi-supervised learning generally improves



Table 1: Comparison of supervised and semi-supervised learning for varying num-
ber of labelled data in terms of the Dice metric.

#labelled +#unlabelled LV Myo RV
supervised 20 - 0.900 0.808 0.855
semi-super. 20 60 0.903 0.822 0.865
supervised 80 - 0.917 0.841 0.888
semi-super. 80 240 0.920 0.848 0.888

performance. Adding 60 unlabelled data to 20 labelled data increases the my-
ocardium Dice from 0.808 to 0.822 (p < 0.001 for paired t-test) and the RV Dice
from 0.855 to 0.865 (p < 0.001). When there are more labelled data, however,
the increase becomes less prominent. Adding 240 unlabelled data to 80 labelled
data only increases the myocardium Dice by 0.007 (p < 0.001) and there is
no increase for the RV Dice. This is probably because the network can already
be trained to perform well when large training data is available and thus the
improvement introduced by semi-supervised learning becomes marginal.

(a) Manual 1 (b) Manual 2 (¢) Multi-atlas (d) Proposed

Fig.2: Comparison of manual segmentations of the same observer two times,
multi-atlas segmentation and the proposed method. LV cavity and myocardium
are delineated using red contours. RV cavity is delineated using green contours.

We also compare the performance of the proposed method to a publicly
available multi-atlas based segmentation methO(ﬂ and to the intra-observer
variability of the human expert. For multi-atlas segmentation, we use the same
80 labelled data as atlases, using non-rigid image registration to warp the atlases
and cross-correlation as the similarity metric for patch-based label fusion.
Figure |2| compares the manual segmentations of the same observer two times,
the multi-atlas segmentation and the proposed method. Both the multi-atlas
method and the proposed method achieves a good job for segmenting the LV
cavity and myocardium. However, the multi-atlas method segments wrongly at
the RV, probably because the weak contrast of the RV myocardium leads to less
optimal target to atlas registration.

* https://github.com/baiwenjia/CIMAS
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Table 2: Comparison of the proposed method to multi-atlas segmentation and
intra-observer variability, in terms of Dice metric and computation time at test-
ing stage. For intra-observer variability, manual segmentation time is reported.

#labelled #unlabelled LV Myo RV Time
multi-atlas 80 - 0.896 0.828 0.840 ~ 5 hr
proposed 80 240 0.920 0.848 0.888 ~ 6 sec
intra-observer - - 0.940 0.860 0.893 ~ 20 min

Table [ reports the Dice metric and shows that the proposed method out-
performs the multi-atlas method in terms of the Dice metric for all the three
structures (p < 0.001). Compared to intra-observer variability, the proposed
method is about 1 or 2% lower in the LV or myocardium Dice but the RV Dice
is close to the human performance. Table [2| also compares the computation time
at testing stage and the time for manual segmentation. The multi-atlas method
takes about 5 hours to segment one subject, when 80 atlases are used. The main
computation cost is on the non-rigid image registration for multiple atlases. On
the contrary, the proposed method only takes 6 seconds at testing stage.

4 Conclusion and Discussion

In this paper, we propose a novel, semi-supervised and network-based method
for cardiac MR image segmentation. The main contribution is that we propose a
semi-supervised way to train the network to address a major challenge with med-
ical image segmentation, the limited number of training data. We have shown
that the introduction of unlabelled data leads to an improvement in segmenta-
tion performance, especially when the size of the existing training set is small.
We have also shown that the method outperforms a state-of-the-art multi-atlas
segmentation method. Once the network is trained, it only takes a few seconds
to segment one subject. Therefore, it can efficiently analyse large-scale cardiac
MR image sets, such as the UK Biobank dataset, which will eventually consist
of 100,000 subjects.

For future work, we are interested in improving the quality of automated
segmentations for unlabelled data. A drawback with the current approach is
if an error or bias (over- or under-segmentation) occurs in the initial segmen-
tation of the unlabelled data, the error will be learnt by the network during
the following iterations. This negative effect is currently alleviated by refining
the segmentation using CRF and by assuming that the majority of the auto-
mated segmentations are correct so the average gradient that the network learns
is still roughly correct. We are interested in exploring using level-sets to refine
the segmentation as in [9] and correcting the segmentation with minimal man-
ual intervention. Another interesting direction is to incorporate segmentation
uncertainty estimation into semi-supervised learning.
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