
4D Ventriular Segmentation and Wall MotionEstimation Using EÆient Disrete OptimizationAhmed Besbes1, Nikos Komodakis1, Ben Gloker2, Georgios Tziritas3, andNikos Paragios11 GALEN Group, Laboratoire MAS, Eole Centrale de Parisfahmed.besbes,nikos.komodakis,nikos.paragiosg�ep.fr2 Chair for Computer Aided Medial Proedures (CAMP)Tehnishe Universit�at M�unhengloker�in.tum.de3 University of Crete, Computer Siene Departmenttziritas�sd.uo.grAbstrat. In this paper we propose a novel approah to ventriularmotion estimation and segmentation. Our method is based on a MRFformulation where an optimal intensity-based separation between the en-doardium and the rest of the ardia volume is to be determined. Suh aterm is de�ned in the spatiotemporal domain, where the ventriular wallmotion is introdued to aount for orrespondenes between the on-seutive segmentation maps. The estimation of the deformations is donethrough a ontinuous deformation �eld (FFD) where the displaementsof the ontrol points are determined using disrete labeling approah.Priniples from linear programming and in partiular the Primal/DualShema is used to reover the optimal solution in both spaes. Promis-ing experimental results obtained on 13 MR spatiotemporal data setsdemonstrate the potentials of our method.1 IntrodutionThe segmentation of the left ventrile has been a problem well addressed inmedial imaging. Prior art either refers to model-free approahes or model-based.Model-free methods do not make an expliit assumption on the form/geometriproperties as well as the appearane of the ventrile. MRFs [1℄, snakes [2℄, levelsets [3℄, shortest path [4℄ have been onsidered in this ontext. On the other hand,model-based methods often onsider ertain geometri priors for the ventrilewhih ould range from simple 2D shapes [4℄ and 3D models whih also enodeloal variations [1℄ to omplex biomehanial ardia models [5℄.Ventriular wall motion estimation was often addressed through the use ofMR-Tagging [6℄ [7℄ tehniques that onsist of introduing a retangular patternon the aquisition. Diret 3D motion estimation in MR is a more hallengingproblem sine it is known that the left ventrile undergoes a rather omplexdeformation within the ardia yle. In order to aount for the ill-posednessof the problem, the use of shape models towards establishing visual orrespon-denes and traking was often onsidered [8℄ or 4D models have been onstruted



2 A. Besbes, N. Komodakis, B. Gloker, G. Tziritas, N. Paragioswith spatial and temporal deformations being enoded [9℄. Voxel-based methodsoften explore the visual preservation assumption [10℄ while being onstrainedto provide a smooth deformation map. More omplex models use biomehanialonstraints to determine suh a deformation [11℄, an approah whih might failwhen proessing diseased data.In most of the ases, these methods do not relate segmentation with ventriu-lar motion estimation. Furthermore, one an laim that they are sensitive to theinitial onditions either beause of the non-onvexity of the designed ost fun-tion or due to the sub-optimal optimization approah. In this paper, we propose anovel approah to address both segmentation and ventriular motion estimation.We overome the ill-posedness of the motion estimation problem through the useof interpolation tehniques with higher order polynomials, while we introduetemporal segmentation onsisteny through the use of deformations �eld. In or-der to eÆiently reover the optimal solution to the problem, we re-formulate theost funtion in a fully disrete domain where the latest developments of linearprogramming are onsidered to determine the lowest potential of the ost fun-tion. Very promising results and omparisons with manual segmentation fromphysiians demonstrate the potentials of our approah.2 Ventriular Segmentation and Wall Motion Estimation2.1 Spatiotemporal SegmentationLet us onsider a spatiotemporal volume V(x; t) : 
 � [0::� ℄! R, with 
 beingthe volume domain. The task of segmenting the endoardium an be reformu-lated using a labeling approah, or assigning a label �(x; t) : 
 � [0::� ℄! f0; 1g.Here, label 0 orresponds to the foreground (i.e., the ventrile), whereas label 1orresponds to the bakground. Without loss of generality, let us assume thatertain statistial properties on the intensities of the left ventrile p(Vj� = 0),as well as on the intensities of the bakground p(Vj� = 1) are available or anbe determined on the y. Let us also assume that we have a prior left ventrilelosed surfae (St)�t=0 de�ned as:�S(x; t) = 8><>:0 if x 2 St�D(x;S) if x 2 StinD(x;S) if x 2 Stout : (1)with D being the Eulidean distane between a given voxel and the surfae,and(St; Stin; Stout) being the partition of 
 de�ned by St, 8t 2 [0::� ℄. We de�nea penalization funtion p�(�;�) : R� f0; 1g ! R, with � > 0 as a dereasing(respetively inreasing) funtion of � if � = 0 (respetively � = 1), and equalto identity for � < �.In suh a ase, the optimal labeling should refer to the maximum onditionalposterior between the deisions and the data support. If spatial and temporal



Ventriular Segmentation & Motion Estimation 3independene are assumed between voxels, that labeling an then be reoveredthrough the minimum of:Eseg;dt(�) = �Xt=0 Xx2
�log [p (V(x; t)j�(x; t)) :p� (�S(x; t);�(x; t))℄= �Xt=0 Xx2
 V pdt(�(x; t)) : (2)whih is equivalent to assigning to eah voxel the label whih is optimally sup-ported from the observation. Suh a simplisti formulation ould produe sub-optimal results due the presene of noise and therefore one should introdueadditional smoothness onstraints on the label spae, whih aims to enfore reg-ularity on the deisions, or:Eseg;sp(�)= �Xt=0 Xx2
0� Xy2N (x) (�(x; t); �(y; t))1A= �Xt=0 Xx2
y2N (x)Vsp(�(x; t); �(y; t)) :(3)with  being a funtion measuring the dissimilarity between labels of neighboringpixels and N (x) de�nes the loal neighborhood of x in the 3D spatial domain.For more robustness, one an also onsider temporal onstraints on the labelingif the deformations from one volume to the next are not so important, whih is,however, de�nitely not the ase for the left and right ventriular motion. On theother hand, if we assume that this deformation is known, say, d(x; t), then onean imagine using d(x; t) towards determining the temporal derivative on thelabel spae and introdue a smoothness onstraint of the following form:Eseg;tm(�j d) = ��1Xt=0 Xx2
  (�(x; t); �(x + d(x; t); t + 1))dx= ��1Xt=0 Xx2
 Vtm(�(x; t); �(x + d(x; t); t + 1)) : (4)The interpretation of this term is straightforward, assuming known orrespon-denes one would expet a oherent labeling between anatomial strutureswithin the ardia yle. Based on this fat, we an therefore proeed as fol-lows: we will �rst estimate the deformation d(x; t), i.e. register the 3D volumes,and then we will extrat the optimal segmentation (i.e. the optimal labeling�(x; t))) by minimizing the total energy E4D of the resulting binary 4D MarkovRandom Field, where the total energy is given by:Eseg(�j d) = Eseg;dt(�) + �Eseg;sp(�) + �Eseg;tm(�j d) : (5)Intuitively, the edges of the resulting 4D MRF will onsist of regular links, on-neting (in a grid-like manner) voxels belonging to the same 3D volume. On



4 A. Besbes, N. Komodakis, B. Gloker, G. Tziritas, N. Paragiosthe other hand, they refer to irregular links in the temporal domain, onnetingvoxels between adjaent 3D volumes, being determined via the previously esti-mated deformation d(x; t). We also note that beause our MRF is binary, theexat global optimum an be easily extrated [12℄.However, establishing orrespondenes between volumes is an ill-posed prob-lem. Even if we assume the visual preservation assumption to be valid (not oftenthe ase for medial image modalities), one should determine three unknownvariables from a single onstraint. To deal with this issue, in the next setion weshow how we an regularize this motion estimation problem by reformulating itas another disrete MRF optimization problem.2.2 Ventriular Motion EstimationLet us thus assume that we wish to ompute the deformation d(x; t) betweentwo adjaent 3D volumes at time t. To this end, we will introdue a sparse defor-mation grid G super-imposed on the soure volume (no partiular assumption ismade on the grid exept that it is sparser than the original volume). The entralidea of our approah is to deform the grid (with a 3D displaement vetor d(p; t)for eah ontrol point p) suh that the underlying volumes are perfetly aligned.Without loss of generality, we an then assume that the displaement of a voxelx an be expressed using a linear or non-linear ombination of the grid points,or: d(x; t) =Xp2G �(jx� pj) d(p; t) : (6)where �(�) is the weighting funtion measuring the ontribution of the ontrolpoint p to the displaement �eld d(x; t). The use of suh a model is motivated bythe fat that the observations refer to anatomial strutures with a rather naturaltemporal deformation. Furthermore, suh an approah ould help us to aountfor the ill-posedness of the problem due to the fat that the estimation of a single3D displaement is now an over-onstrained problem with many observationsbeing available. For �(�), we use a three-dimensional Free Form Deformation(FFD) model based on ubi B-splines [13℄ (other interpolation models an alsobe onsidered).Therefore, based on (6), to estimate d(x; t) it suÆes to speify the displae-ments for the ontrol points. To this end, we will onsider a quantized versionof the deformation spae, say, fd1; :::; dig - being 3D deformation vetors - aswell as a orresponding set of disrete labels, say, L = f1; :::; ig. A label assign-ment, say, !(p) 2 L to a grid point p is assoiated with displaing p by theorresponding vetor d!(p), i.e.:d(p; t) = d!(p) : (7)The visual preservation imposes the onstraint that the observation of the sameanatomial path should be onsistent aross volumes, i.e., V(x; t) � V(x +d(x; t); t+1). In our disrete framework the deformation d(x; t) is de�ned basedon (6), (7), i.e. displaements are assoiated with labels, one an reformulate



Ventriular Segmentation & Motion Estimation 5ventriular deformation estimation as a labeling problem. Consequently, the goalis to assign a set of appropriate labels f!(p)g (to the grid points) so that thevisual preservation onstraint is satis�ed as muh as possible, or equivalently sothat the following data ost is minimized:Emot;dt(!) = Xx2
 jV(x; t)� V(x+ d(x; t); t + 1)j (6);(7)� Xp2GUpdt(!(p)) : (8)Here, the singleton potential funtions Updt(�) are not independent, thus the de-�ned data term an only be approximated. Hene, we preompute the jLj � jGj(where jGj is the number of grid points) data term in a look-up table. The entryfor label !(p) and node p is determined by:Updt(!(p)) = ZZ
(p) ��1(jx� pj) � ���V(x; t)� V(x+ d!(p); t+ 1)��� dx : (9)with the sum of absolute di�erenes being onsidered as measure of similarity(��1 is the inverse projetion between x and p). The use of an interpolation teh-nique to determine the deformations of the volume will inherit natural smooth-ness to the estimates. However, one should also expet sine we aim to reovermeasurements for physial objets deformations that the same assumption issatis�ed for the deformation of the orresponding ontrol points. Similar to thesegmentation ase, one an onsider a term whih enfores spatial similaritiesaross labels, or: Emot;sm(!) = Xp2
q2N (p)Usm(!(p); !(q)) : (10)where N represents the neighborhood system assoiated with the deformationgrid G. For the distane Usm(�; �), we onsider a simple pieewise smoothnessterm based on the Eulidean distane between the deformations orrespondingto the assigned labels, i.e.:Usm(!(p); !(q)) = �pq �jd!(p) � d!(q)j� : (11)with �pq being a (spatially varying) weighting to ontrol the inuene of thesmoothness/prior term. Suh a smoothness term, together with the data term,allows to onvert the problem of volume registration into a disrete MRF opti-mization problem with the following energy [14℄:Emot(!) = Emot;dt(!) +Emot;sm(!) : (12)2.3 4D Segmentation & Ventriular Motion EstimationOne an now onsider an objetive funtion whih reovers both the 4D segmen-tation map as well as the orresponding deformation �elds:Eseg;mot(�; !) = Eseg(�j!) + Emot(!) : (13)
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(a) The primal-dual priniple (b) The primal-dual shemaFig. 1: (a) By weak duality, the optimal ost Tx� will lie between the osts bTy and Tx of anypair (x;y) of integral-primal and dual feasible solutions. Therefore, if bTy and Tx are lose enough(e.g. their ratio r1 is � f), so are Tx� and Tx (e.g. their ratio r0 is � f as well), thus proving thatx is an f-approximation to x�. (b) Aording to the primal-dual shema, dual and integral-primalfeasible solutions make loal improvements to eah other, until the �nal osts bTyt, Txt are loseenough (e.g. their ratio is � f). We an then apply the primal-dual priniple (as in Fig. (a)) andthus onlude that xt is an f-approximation to x�whih is a fully disrete optimization problem. For optimizing the resulting MRF,we seek to assign a pair of labels (�(p); !(p)) to eah node p 2 G, so that theMRF energy in (13) is minimized. To this end, a reently proposed method,alled Fast-PD (Fast Primal Dual), will be used. This is an optimization teh-nique, whih builds upon priniples drawn from the duality theory of linearprogramming in order to eÆiently derive almost optimal solutions for a verywide lass of NP-hard MRFs. For more details about the Fast-PD algorithm, thereader is referred to [12℄. Here, we will just provide a brief, high level desriptionof the basi driving fore behind that algorithm.3 Linear ProgrammingThe driving fore of the algorithm onsists of the primal-dual shema, whih is awell-known tehnique in the Linear Programming literature. To understand howthe primal-dual shema works in general, we will need to onsider the followingpair of primal and dual Linear Programs (LPs):Primal: min Tx Dual: max bTys.t. Ax = b;x � 0 s.t. ATy �  (14)Here A represents a oeÆient matrix, while b;  are oeÆient vetors. Also,x, y represent the vetors of primal and dual variables respetively. We seekan optimal solution to the primal program, but with the extra onstraint of xbeing integral. Due to this integrality requirement, this problem is in generalNP-hard and so we need to settle with estimating approximate solutions. Aprimal-dual f -approximation algorithm ahieves that by use of the followingpriniple (illustrated also in Fig. 1(a)):Primal-Dual Priniple 1 If x and y are integral-primal and dual feasible so-lutions having a primal-dual gap less than f , i.e.:Tx � f � bTy; (15)



Ventriular Segmentation & Motion Estimation 7then x is an f-approximation to the optimal integral solution x�, i.e. Tx� �Tx � f � Tx�.Based on the above priniple, that lies at the heart of any primal-dual tehnique,the following iterative shema an be used for deriving an f -approximate solution(this shema is also illustrated graphially in Fig. 1(b)):Primal-Dual Shema 1 Keep generating pairs of integral-primal, dual solu-tions f(xk;yk)gtk=1, until the elements xt, yt of the last pair are both feasibleand have a primal-dual gap whih is less than f , i.e. ondition (15) holds true.In order to apply the above shema to MRF optimization, it suÆes that weast the MRF optimization problem as an equivalent integer program. TheFast-PD algorithm is then derived by applying the primal-dual shema to thispair of primal-dual LPs, while using f=2dmaxdmin (dmax �maxa6=b d(a; b); dmin �mina6=b d(a; b)) as the approximation fator in (15). Fast-PD is a very generalMRF optimization method, whih an handle a very wide lass of MRFs. Essen-tially, it only requires that the MRF pairwise potential funtion is nonnegative.Furthermore, as already mentioned, it an guarantee that the generated solu-tion is always within a worst-ase bound from the optimum. In fat, besides thisworst-ase bound, it an also provide per-instane approximation bounds, whihprove to be muh tighter, i.e. very lose to 1, in pratie. It thus allows the globaloptimum to be found up to a user/appliation bound. Finally, it provides greatomputational eÆieny, sine it is typially 3-9 times faster than any otherMRF optimization tehnique with guaranteed optimality properties [12℄.4 ValidationIn order to validate the performane of the method we have onsidered a setof 13 MR spatiotemporal volumes of the heart, with manual segmentation fromtwo linial experts being available for the diastole and the systole. These datasets had a spatial resolution of around 100x100x12 and a voxel size of around1.77x1.77x6 millimeters. We used as prior information two learned distributionsof endoardium voxels and bakground voxels expressed as mixture of Gaus-sians. These distributions were time-independent, and were used in diastole andsystole as well. We also added a shape prior onstraint (�xed shape S, initializedby the user) to aount for the ellipti geometry of the left ventrile. In termsTable 1: Comparison of automati and experts' segmentations in diastoleComparison DSC Mean (Std) Sensitivity Spei�ity ASD Mean (Std)Our Method vs Expert1 0.86(�0.03) 99.06% 95.76% 1.54(�0.39 )Our Method vs Expert2 0.87(�0.02) 99.11% 96.88% 1.31(�0.37 )Expert1 vs Expert2 0.89(�0.02) 99.49% 94.46% 0.87(�0.12 )Expert2 vs Expert1 0.89(�0.02) 99.53% 94.16% 1.34(�0.47 )



8 A. Besbes, N. Komodakis, B. Gloker, G. Tziritas, N. Paragiosof segmentation performane we ompare the experts' segmentation of the en-doardium with the one obtained using the proposed method. We are interestedon several ommon evaluation measurements [15℄, and in partiular the Diesimilarity oeÆient (DSC), the sensitivity, the spei�ity, and the average sur-fae distane (ASD) from the experts segmentations. The ASD is omputed inmillimeters from an anisotropi 3D Eulidean distane transform of the surfaes.These measurements are omputed in both diastole and systole and are presentedin [Tab. (1)℄ and [Tab. (2)℄. We also ompare in these tables the performanesof our method to those ahieved manually by the experts.

(a) entripetal motion �eld (b) entrifugal motion �eldFig. 2: Motion estimation. (a) beginning of systole (b) beginning of diastoleWe ahieve an ASD whih is below the voxel size in both diastole and systole.The DSC whih measures the overlap between surfaes shows that our segmen-tation is loser to the one given by Expert2 than to the one given by Expert1.Overall, our performane is satisfatory ompared to the one ahieved by theexperts. We get a worse sensitivity than the experts, but a better spei�ity. Interms of ventriular motion estimation, we present in [Fig. (2)℄ the deformation�eld of the endoardium and its motion estimation. We see in partiular in this�gure that the motion �eld is oherent with the left ventrile motion: the en-tripetal motion �eld at the beginning of systole is justi�ed by the ontration ofthe myoardium, and the entrifugal motion �eld at the beginning of diastole isjusti�ed by its expansion. The 3D images in [Fig. (3)℄ show that we also orretlysegment the papillary musles.With a reasonable number of displaement labels (the omplexity is linear tothe number of labels), the method takes about 10-20 seonds to onverge (using aDELL Duo with (3GHz,2GB)) assuming that a ventrile isolation has been doneand is able to produe good orrespondenes with a 16� 16� 16 FFD grid. The
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(a) in diastole (b) in systoleFig. 3: Papillary musles. In eah image : automati segmentation & experts' manual segmentationardia yle being quantized by 20-25 time points, the whole 4D segmentationand motion estimation omputation takes about 70-80 seonds for a 4D volume.5 DisussionIn this paper we have proposed a novel disrete approah to spatiotemporal seg-mentation and ventriular motion estimation. The strength of our approah isthe oupling between the two problems and the use of a powerful ombinato-rial algorithm to produe their solution. In order to demonstrate the onept,we have onsidered a set of several heart 4D MRI exams and we have obtainedquite satisfatory results. More hallenging perspetives are related with the in-trodution of prior knowledge both in spae and time related with the evolvinggeometry of the strutures of interest. The prior information used in our ap-proah remains quite simple, and is time-independent. That is why our resultsare promising and an be probably improved by the use of more omplex priorinformation whih an better apture the anatomy and the temporal dynamisof the ardia yle. Knowledge-based segmentation using models that enodeimportant statistial variation of training examples within disrete optimizationis a quite promising diretion to be onsidered.

(a) (b)Fig. 4: Color-enoded visualization of the average surfae distane for the example shown in [Fig.(2)℄. (a) beginning of systole (b) beginning of diastole



10 A. Besbes, N. Komodakis, B. Gloker, G. Tziritas, N. ParagiosTable 2: Comparison of automati and experts' segmentations in systoleComparison DSC Mean (Std) Sensitivity Spei�ity ASD Mean (Std)Our Method vs Expert1 0.82(�0.03) 99.39% 93.34% 1.51(�0.39 )Our Method vs Expert2 0.85(�0.03) 99.46% 94.34% 1.28(�0.37 )Expert1 vs Expert2 0.86(�0.03) 99.69% 91.07% 0.86(�0.15 )Expert2 vs Expert1 0.86(�0.03) 99.66% 91.50% 1.06(�0.22 )Referenes1. Shi, P., Sinusas, A.J., Constable, R.T., Ritman, E., Dunan, J.S.: Point-trakedquantitative analysis of left ventriular surfae motion from 3d image sequenes.IEEE Trans. Med. Imaging 19(1) (2000) 36{502. MInerney, T., Terzopoulos, D.: Deformable models in medial images analysis: asurvey. Medial Image Analysis 1(2) (1996) 91{1083. Paragios, N.: A variational approah for the segmentation of the left ventrile inardia image analysis. Int. J. Comput. Vision 50(3) (2002) 345{3624. Jolly, M.P.: Automati segmentation of the left ventrile in ardia mr and timages. Int. J. Comput. Vision 70(2) (2006) 151{1635. Sermesant, M., Forest, C., Penne, X., Delingette, H., Ayahe, N.: Deformablebiomehanial bodels: Appliation to 4D ardia image analysis. Medial ImageAnalysis 7(4) (2003) 475{4886. Montillo, A., Metaxas, D.N., Axel, L.: Automated model-based segmentation ofthe left and right ventriles in tagged ardia mri. In: MICCAI (1). (2003) 507{5157. Guttman, M., Prine, J., MVeigh, E.: Tag and ontour detetion in tagged mrimages of the left ventrile. IEEE Trans. Med. Imaging 13(1) (1994) 74{888. MEahen II, J.C., Dunan, J.S.: Shape-based traking of left ventriular wallmotion. IEEE Trans. Med. Imaging 16(3) (1997) 270{2839. Bosh, J.G., Mithell, S.C., Lelieveldt, B.P.F., Nijland, F., Kamp, O., Sonka, M.,Reiber, J.H.C.: Automati segmentation of ehoardiographi sequenes by ativeappearane motion models. IEEE Trans. Med. Imaging 21(11) (2002) 1374{138310. Horn, B.K.P., Shunk, B.G.: Determining optial ow. Artif. Intell. 17(1-3) (1981)185{20311. Sermesant, M., Delingette, H., Ayahe, N.: An eletromehanial model of theheart for image analysis and simulation. IEEE Trans. Med. Imaging 25(5) (2006)612{62512. Komodakis, N., Tziritas, G., Paragios, N.: Fast, approximately optimal solutionsfor single and dynami mrfs. In: IEEE Conferene on Computer Vision & PatternReognition (CVPR). (2007)13. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometri models.In: SIGGRAPH '86: Proeedings of the 13th Annual Conferene on ComputerGraphis and Interative Tehniques. (1986) 151{16014. Gloker, B., Komodakis, N., Paragios, N., Tziritas, G., Navab, N.: Inter and intra-modal deformable registration: Continuous deformations meet eÆient optimal lin-ear programming. In: Information Proessing in Medial Imaging (IPMI). (2007)15. Gerig, G., Jomier, M., Chakos, M.: Valmet: A new validation tool for assessingand improving 3d objet segmentation. In: MICCAI. (2001) 516{523


