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Abstract

The ability of nonparametric models to automatically adapt to the complexity of
data makes them particularly suitable for neuroimaging applications, where it is
often preferable to avoid assumptions on the correct model structure. We have
applied a multivariate Dirichlet process Gaussian mixture model (DPGMM) for seg-
menting main cerebral tissues (grey matter, white matter and cerebrospinal fluid) by
learning from multiple MRI modalities (T1, T2 and PD). We experimentally show
that a multivariate DPGMM produced significantly more consistent and accurate
segmentations than an equivalent univariate DPGMM trained on a single modality
(T1). This is also the first known attempt at performing lesion segmentation with
DP mixture models. Our preliminary results show great promise, as the DPGMMs
were able to correctly identify most traumatic brain injury lesions in a multimodal
MRI dataset (MPRAGE, FLAIR, GE, T2 and PD) and have demonstrated their
capability to learn intricate multidimensional probability distributions.

1 Introduction

In medical image segmentation, common approaches are based on supervised learning (e.g. Kamnitsas
et al., 2015), atlas-based methods (Cabezas et al., 2011), unsupervised techniques, such as mixture
models (e.g. Ashburner and Friston, 2005), or combinations thereof (e.g. Ledig et al., 2012, 2015).

Unsupervised methods are attractive because labelled medical imaging data is relatively scarce,
and they essentially attempt to discover structure in the data without any explicit constraints on
the output mapping. Furthermore, nonparametric methods make no hard assumptions about this
structure, dynamically adapting their complexity as more data is observed (Ghahramani, 2013). In
particular, Dirichlet process mixture models (DPMMs) (Antoniak, 1974; Ferguson, 1983) can be
seen as an infinite extension of finite mixture models. They place no bound on the number of mixture
components, and can, in principle, fit arbitrarily complex distributions. This property makes DPMMs
very attractive for modelling elaborate data such as multimodal MRI.

DPMMs have recently been used in a variety of applications in medical imaging. Thirion et al.
(2007) and Kim and Smyth (2006) have used DPMMs for modelling spatial activation patterns in
functional imaging. Jbabdi et al. (2009) proposed using hierarchical Dirichlet processes for modelling
intra- and inter-subject variability in connectivity-based parcellation and Wang et al. (2011) used
DPMMs for tractography segmentation. In the context of MRI segmentation, Wachinger and Golland
(2014) presented a formulation in which DPMMs were used to model background variation when
segmenting small structures to reduce bias. Ferreira da Silva (2007, 2009) performed whole-brain
MRI segmentation with a univariate DPMM. More generally, DP-based models have also been
applied in computer vision for natural image segmentation (e.g. Torralba et al., 2006; Sudderth and
Jordan, 2009).
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In practice, DPMMs are predominantly applied with Gaussian components, referred to as a DP
Gaussian mixture model (DPGMM). Ferreira da Silva’s work was restricted to a single MRI modality
(T1), with all its univariate DPGMM components constrained to share the same variance. In this work,
we have addressed multimodal brain image segmentation with a multivariate DPGMM, allowing
full and untied covariances for all mixture components. Because each imaging modality carries
complementary information about the underlying object (in this case, a human brain), we expect that
a model capable of leveraging this wealth of information could generate more accurate segmentations.

2 Methods

In this work, we have studied a simple voxel-wise intensity model. Let X = {x1, . . . ,xN} represent
the N voxels of an image, where xi ∈ RD are the intensities of voxel i across the D available
modalities (assumed perfectly registered). The generative process for the Dirichlet process Gaussian
mixture model (DPGMM) – otherwise known as the infinite Gaussian mixture model (Rasmussen,
2000) – used in this work is formulated as follows:1

π ∼ GEM(α)

Λk ∼ W(a,B), k = 1, 2, . . .

µk |Λk ∼ N (µ0, (νΛk)
−1), k = 1, 2, . . .

zi | π ∼ Cat(π), i = 1, . . . , N

xi | zi, {µk}k, {Λk}k ∼ N (µzi ,Λ
−1
zi ), i = 1, . . . , N,

(1)

where GEM(α) is the distribution of weights from the one-parameter stick-breaking process, defined
as πk = βk

∏
l<k(1− βl), where βk ∼ Beta(1, α) for k from 1 to infinity (Sethuraman, 1994). We

consider the parametrisation of the Wishart distributionW as given in Bernardo and Smith (2000).

In both our experiments, we have set hyperparameters ν = 1 and a = D + 1, while µ0 and B
were set to match the first and second moments of the prior predictive distribution, p(x), to the data.
Inference was done in the truncated DPMM variational framework presented in Blei and Jordan
(2006), based on which we have derived the parameter updates for the DPGMM (Appendix A).

2.1 Evaluation

To assess the compatibility of the cluster partitioning with the ground-truth labels, we have computed
a number of clustering consistency metrics: adjusted Rand index (ARI) (Rand, 1971; Hubert and
Arabie, 1985), normalised mutual information (NMI), v-measure (homogeneity, completeness and
validity) (Rosenberg and Hirschberg, 2007) and purity.

We are mostly concerned with correctly delineating the structures of interest, regardless of inner
subdivisions. To compute spatial accuracy metrics, which require matching labels, we have merged
clusters by reassigning their labels to the majority ground-truth label in each cluster. The chosen
spatial metrics were the Dice similarity coefficient (DSC) (Dice, 1945), the average symmetric surface
distance (ASSD), the Hausdorff distance (HD) and the relative absolute volume difference (RAVD).

3 Results

3.1 Normal Tissue Segmentation

In our first experiment, we aimed to assess whether the Dirichlet process Gaussian mixture model
could successfully segment grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) in
multimodal images of healthy brains, using a subset of the IXI database.2 It comprises registered T1-
and T2-weighted and proton density (PD) MRI scans of 86 healthy subjects aged 35.8± 11.9, with
dimensions 256× 256× 150 and .9375× .9375× 1.2mm3 resolution. Since there are no manual
segmentations available in this dataset, reference GM, WM and CSF probability maps were computed
with SPM123 to obtain gold standard segmentations.

1We refer readers unfamiliar with Dirichlet processes to the comprehensive overview given in Teh (2010).
2http://brain-development.org/ixi-dataset/
3http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Figure 1: Results for the normal tissue segmentation experiment. The boxplots indicate quartiles,
median, range and outliers. One to four stars indicate p < 0.05, 0.01, 10−3 and 10−4, respectively,
and ‘–’ is insignificant (one-sided Wilcoxon signed-rank test).

(a) T1 slice. K = 7 components, ASSD = 0.49 mm,
HD = 16.0 mm, RAVD = 5.47 %, DSC = 0.822.

(b) PD, T2 and T1 slice (RGB). K = 12 components,
ASSD = 0.30 mm, HD = 16.0 mm, RAVD =
3.99 %, DSC = 0.906.

Figure 2: Uni- and multimodal grey matter (GM) segmentations of IXI subject 52. Left: Original
image and overlaid reference segmentation (green). Middle: Fuzzy image reconstruction from cluster
means, overlaid with reference (green) and obtained merged segmentation (red). Right: Fuzzy cluster
label map. (“Fuzzy” here refers to being weighted by the posterior label probabilities.)

As a baseline, we fitted a univariate DPGMM to the single T1 image volumes, as was done in the
work of Ferreira da Silva (2007, 2009). We then trained multivariate DPGMMs on the combined T1,
T2 and PD volumes and compared the results.

The consistency results are plotted in Fig. 1a. The model found 11.9± 0.3 components when using
multimodal data and 8.1± 1.1 components with a single modality – even though all runs had the same
fixed concentration, α = 0.5 and truncation level 20. This more fragmented segmentation would
explain the observed drop in completeness and in Rand index, because pairs of voxels belonging to
the same tissue are more likely to be split across cluster borders.

On the other hand, the multimodal clusters are substantially purer and more homogeneous – which
pulls up the validity, counteracting the slight decrease in completeness –, and convey more information
about the reference tissue labels. These effects indicate that the availability of the additional modalities
allowed the model to infer more specialised clusters.

Regarding spatial accuracy (Fig. 1b), the multimodal model provided dramatically better matches
to the reference segmentation, as indicated by the average surface distance and Dice coefficient.
For each subject, the boundaries of the multimodal clusters follow the tissue boundaries 44% more
closely and present 8.9% higher overlap than in the single modality case, on average. The subtle
decrease in Hausdorff distance and volume difference suggests slightly fewer gross mistakes.

3.2 Lesion Discovery

This experiment was intended as a proof of concept – rather than a thorough assessment – of the
applicability of DPGMMs to the task of lesion segmentation. As such, it was run on a single axial
slice for each subject instead of using the full volumes, which would have taken considerably longer
to compute due to the higher dimensionality (five input modalities) and much greater number of
components to estimate (α = 5 and truncation level 40). This relatively high concentration was
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(a) Spatial accuracy metrics

(b) TBI subject 17744. MPRAGE, FLAIR and GE overlaid
as RGB. K = 31 components, ASSD = 4.9 mm, HD =
118 mm, RAVD = 4.7 %, DSC = 0.854.

Figure 3: Lesion segmentation results and example. Left: Original image and reference segmentation.
Middle: Image reconstruction, with reference and obtained segmentations. Right: Cluster label map.

chosen for increased sensitivity to subtle intensity variations and potentially very small clusters. The
selected slices were the ones containing the most lesion voxels.

We have analysed images of a cohort of 63 moderate-to-severe traumatic brain injury (TBI) patients.
The dataset consists of MPRAGE, FLAIR, GE, T2 and PD scans, plus manual lesion segmentations.
Each modality has been skull-stripped, affinely registered to MNI space and resampled to 193 ×
229× 193 isotropic 1mm3 resolution. This data was originally collected and prepared for Kamnitsas
et al. (2016), where further details can be found.

For this task, because there is only one label, we computed only spatial accuracy metrics, plotted in
Fig. 3a. Note that the simple majority merging procedure described in Section 2.1 failed to match
any lesion for 17 of the 63 subjects, which have been excluded from the results. Interestingly, these
subjects were among those with the smallest lesions.

For most cases, the annotated lesions were correctly localised, and the surface distances and volume
differences are remarkably low, considering the difficulty of the task. On Fig. 3b we see that the model
is able to correctly capture some of the finer inner structure of lesions. Another particularly appealing
feature which was observed is that the model has allocated additional clusters to accommodate bias
field inhomogeneities, as is clear again in Fig. 3b. Manual annotations involve substantial prior
knowledge from the experts. Therefore, in some occasions our intensity-based model clustered
together regions which had similar intensity profiles but were not both annotated as lesions, resulting
in excessive false positives or false negatives.

4 Conclusion

To the best of the authors’ knowledge, this is the first application of Dirichlet process mixture models
to multimodal medical image segmentation. Under our experimental conditions, we have observed
that leveraging multiple imaging modalities drives the DPMM towards better segmentations than
those obtained with a single modality, which was confirmed in terms of both labelling consistency
and spatial accuracy.

A further contribution of this work is that this is the first known attempt at applying Dirichlet process
mixture models to lesion segmentation in medical images. We have shown that, at least in the 2D
case, this nonparametric approach finds a good correspondence to the manual segmentations for
large enough lesions. Additionally, we have verified that DPGMMs are able to provide convincing
representations of multidimensional probability distributions (see example in Appendix B).

In future work, we will extend the lesion segmentation to a 3D analysis also on other brain pathologies
such as brain tumours and stroke lesions. Additionally, as with any purely intensity-based model,
we expect that the incorporation of spatial context – such as patch features, atlases or MRF-like
constraints – could lead to smoother, more accurate and more robust segmentations. Finally, we
believe that DPGMMs will prove to be a useful approach in many other medical imaging applications.
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A Variational Inference

Table 1: True posterior and variational distributions for the multivariate DPGMM

Posterior conditionals Variational

p(Λk |X,Z) =W(Λk | a′k,B′k) q(Λk) =W(Λk | ck,Dk)

p(µk |X,Z,Λk) = N
(
µk

∣∣µ0
′
k, (ν

′
kΛk)

−1) q(µk) = N(µk |mk,Ψk)

p(βk | Z) = B(βk | 1 +Nk, α+N>k) q(βk) = B(βk | γk,1, γk,2)
p(zn = k |X,β,θ) ∝ πkND

(
xn

∣∣µk,Λ
−1
k

)
q(zn = k) = φnk

The primed variables are the parameters of the corresponding posterior distributions given the observations
assigned to cluster k. In the definitions below, let N̂k =

∑
n φnk and N̂>k =

∑
l>k N̂l.

Mean parameters: q(µk) = N(µk |mk,Ψk)

mk =
νµ0 +

∑
n φnkxn

ν + N̂k

(2)

Ψk =
1

(ν + N̂k)ck
Dk (3)

Precision parameters: q(Λk) =W(Λk | ck,Dk)

ck = a+
N̂k + 1

2
(4)

Dk = B +
1

2

[∑
n

φnk(xn −mk)(xn −mk)> + ν(mk − µ0)(mk − µ0)> + (ν + N̂k)Ψk

]
(5)

Stick-breaking parameters: q(βk) = B(βk | γk,1, γk,2)

γk,1 = 1 + N̂k (6)

γk,2 = α+ N̂>k (7)

Assignment parameters: q(zn = k) = φnk

φnk ∝ exp

{
1

2

(
ψD(ck)− log |Dk| − ck tr

[
D−1

k

(
(xn −mk)(xn −mk)> + Ψk

)])
+ [ψ(γk,1)− ψ(γk,1 + γk,2)] +

∑
l<k

[ψ(γl,2)− ψ(γl,1 + γl,2)]

}
,

(8)

where ψ(x) = d
dx

log Γ(x) and ψD(x) =
∑D

d=1 ψ
(
x+ 1−d

2

)
are the digamma and multivariate digamma

functions, respectively.
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B Model Visualisation

Figure 4: Empirical and fitted five-dimensional distributions for TBI subject 17770. The rows (top
to bottom) and columns (left to right) correspond to MPRAGE, FLAIR, GE, T2 and PD modalities.
Plots on the same column share their x-axis, and off-diagonal plots on the same row share the y-axis.
Best viewed in colour.

Histograms: On the diagonal are the intensity histograms of each individual modality (in light blue).
Off-diagonal, we have the two-dimensional log-histograms for each pair of modalities (column
modality on x-axis vs. row modality on y-axis, lighter is higher).

Mixture components: The 1D and 2D marginals of the mixture components (p(xd | z = k) and
p(xd1 , xd2 | z = k)) are overlaid on the histograms, rendered as bell curves on the diagonal and as
ellipses on the lower left half, with matching colours. The mixture proportions (πk) are represented
by the scaling factor of the bell curves and thickness of the ellipse contours.

Likelihoods: The dashed line on the diagonal shows the 1D marginal likelihood (p(xd)). On the
upper right half, we see level curves of the 2D marginal log-likelihoods (log p(xd1 , xd2)). Note the
remarkably tight fit to the histograms in all 1D and 2D projections.
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