

# Primal/Dual Linear Programming and Statistical Atlases for Cartilage Segmentation

#### Ben Glocker<sup>1,2</sup>, Nikos Komodakis<sup>2,4</sup>, Nikos Paragios<sup>2</sup>, Christian Glaser<sup>3</sup>, Georgios Tziritas<sup>4</sup>, Nassir Navab<sup>1</sup>



<sup>1</sup> Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany <sup>2</sup> GALEN Group, Mathématiques Appliquées aux Systèmes, Ecole Centrale de Paris, France <sup>3</sup> Radiology Department, Grosshadern Hospital, Ludwig-Maximilians-Universität München, Germany <sup>4</sup> Computer Science Department, University of Crete, Greece



#### Idea: Automatic Cartilage Segmentation by Constructing a Probabilistic Atlas

## **Probabilistic Atlas Construction**

- $\mathcal{V}_{\mathcal{M}}$  : optimal representative of training set
- $\sigma_{\mathcal{M}}\,$  : variance map / agreement between atlas and training set
- $p_{\mathbf{x}}(i)$  : pdf defined at each voxel, e.g. Gaussian density *Minimization problem:*

 $E(\mathcal{V}_{\mathcal{M}}, \sigma_{\mathcal{M}}) = \int_{\Omega} \sum_{i=1}^{n} \left[ \log(\sigma_{\mathcal{M}}^{2}(\mathbf{x})) + \frac{(\mathcal{V}_{i}(\mathbf{x}) - \mathcal{V}_{\mathcal{M}}(\mathbf{x}))^{2}}{2\sigma_{\mathcal{M}}^{2}(\mathbf{x})} \right] d\mathbf{x}$ 

# **Atlas Matching Framework**

Grid-based deformation model (e.g. Free Form Deformation)

$$\mathcal{T}(\mathbf{x}) = \mathbf{x} + \mathcal{D}(\mathbf{x}), \quad \mathcal{D}(\mathbf{x}) = \sum_{p \in \mathcal{G}} \eta(|\mathbf{x} - \mathbf{p}|) \, \mathbf{d}_p$$

Deformable registration is formulated as a discrete labeling problem

$$\mathcal{L} = \{u^1, ..., u^i\} \quad \Theta = \{d^1, ..., d^i\} \quad \mathcal{D}(\mathbf{x}) = \sum_{p \in \mathcal{G}} \eta(|\mathbf{x} - \mathbf{p}|) d^{u_p}$$

Markov Random Field energy formulation of the discrete labeling

 $E_{u,v}(u) = \sum V(u) + \sum V(u, u)$ 

$$E_{\text{total}}(u) = \sum_{p \in \mathcal{G}} \int_{\Omega} \eta^{-1}(|\mathbf{x} - \mathbf{p}|) \rho_{\mathcal{M}}(\mathcal{V}(\mathcal{T}(\mathbf{x}))) d\mathbf{x} \approx \sum_{p \in \mathcal{G}} V_p(u_p)$$

$$E_{\text{smooth}}(u) = \sum_{p,q \in \mathcal{E}(p)} V_{pq}(u_p, u_q), \quad V_{pq}(u_p, u_q) = \min(|d^{u_p} - d^{u_q}|, T)$$

#### Automatic Cartilage Segmentation

- Novel framework for deformable registration based on discrete optimization [1] is used for atlas matching
- Primal/Dual linear programming [2] is used for efficient optimization of the atlas matching problem

Matching criteria:  $\rho_{\mathcal{M}}(\mathcal{V}(\mathcal{T}(\mathbf{x}))) = \left\lceil \log(\sigma_{\mathcal{M}}^2(\mathbf{x})) + \frac{(\mathcal{V}(\mathcal{T}(\mathbf{x})) - \mathcal{V}_{\mathcal{M}}(\mathbf{x}))^2}{2\sigma_{\mathcal{M}}^2(\mathbf{x})} \right\rceil$ 

- Automatic segmentation in less than 20 seconds
- Average surface distance of 0.49 (± 0.23) millimeters
- Significant improvement of automatic segmentation initialization for applications with high accuracy constraints
- Flexible and general framework can be used for other anatomy
- Powerful linear programming algorithm allows to incorporate complex priors in future work



Mean Intensity Image



/ariance Map



Automatic Segmentation



Expert Segmentation

## Experiments / Results

| Methed           | DCO         | Constitution | Creatificity | Interaction | Oartilana             |                                                                                                                                                                                                                                                                                                          |
|------------------|-------------|--------------|--------------|-------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Μετησα           | DSC         | Sensitivity  | Specificity  | Interaction | Cartilage             | Image Date                                                                                                                                                                                                                                                                                               |
| Grau et al.      | 0.90 (0.01) | 90.03 %      | 99.87 %      | 5-10 min    | Tibia, Femur, Patella | <ul> <li>Image Data</li> <li>56 data sets of patella cartilage</li> <li>28 data sets used for atlas generation / 28 for evaluation</li> <li>Protocol: T1-w 3D FLASH water excitation</li> <li>Scanner: Siemens MAGNETOM Symphony 1.5T</li> <li>Resolution: 256 x 256 x 20 (.625 x .625 x 3mm)</li> </ul> |
| Dam et al.       | 0.92 (n/a)  | 93.00 %      | 99.99 %      | Max 10 min  | Tibia, Femur          |                                                                                                                                                                                                                                                                                                          |
| Cheong et al.    | 0.64 (0.15) | 74.00 %      | n/a          | 0           | Medial Tibia          |                                                                                                                                                                                                                                                                                                          |
| Cheong et al.    | 0.72 (0.09) | 79.00 %      | n/a          | 0           | Lateral Tibia         |                                                                                                                                                                                                                                                                                                          |
| Folkesson et al. | 0.80 (0.03) | 90.01 %      | 99.80 %      | 0           | Tibia, Femur          |                                                                                                                                                                                                                                                                                                          |
| Our Approach     | 0.83 (0.06) | 93.77 %      | 99.94 %      | 0           | Patella               |                                                                                                                                                                                                                                                                                                          |

#### References

[1] Glocker, B. et al.: Inter and Intra-modal deformable registration: Continuous Deformations meet efficient linear programming. IPMI 2007, Kerkrade, Netherlands. [2] Komodakis, N. et al.: Fast, approximately optimal solutions for single and dynamic MRFs. CVPR 2007, Minneapolis, Minnesota, USA.

#### Acknowledgements: This work is partially supported by Siemens Medical Solutions (Erlangen, Germany)