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Abstract

In this paper, we propose a novel dynamic discrete
framework to address image morphing with application
to optical flow estimation. We reformulate the prob-
lem using a number of discrete displacements, and there-
fore the estimation of the morphing parameters becomes
a tractable matching criteria independent combinatorial
problem which is solved through the FastPD algorithm.
In order to overcome the main limitation of discrete ap-
proaches (low dimensionality of the label space is unable to
capture the continuous nature of the expected solution), we
introduce a dynamic behavior in the model where the plau-
sible discrete deformations (displacements) are varying in
space (across the domain) and time (different states of the
process - successive morphing states) according to the local
uncertainty of the obtained solution.

1. Introduction
Optical flow estimation is among the most challenging

problems in computer vision. The task consists of recover-

ing a 2D displacement vector establishing correspondences

between the consecutive projections of a 3D patch in the im-

age. The central assumption in such a context is the visual

preservation constraint [12], that assumes pixel correspond-

ing to the same 3D projection will have the same intensi-

ties. In the most general case, the motion field can either

be global or local. Global transformations consist of a para-

metric function of variables that is applied to the entire do-

main, and has often as parameters the spatial position of the

pixel. Rigid, similarity, affine and quadratic are some exam-

ples. These methods are a compromise between low com-
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Figure 1: The 10th frame of the Army sequence (upper row) and Mequon sequence
(lower row) and our estimated (color-encoded) optical flow fields.

plexity and performance. Dense optical flow methods aim

to recover one-to-one correspondences spatially varying be-

tween pixels. Variational methods [4, 18], MRF-based ap-

proaches [3, 11] as well as statistical techniques [8] were

often considered to determine the optical flow estimates.

Dense optical flow estimation is by definition an ill-

posed problem since the number of constraints is inferior

to the number of variables. Consequently, in order to ad-

dress the ill-poseness of the problem additional regulariza-

tion constraints are to be introduced. Despite such addi-

tional constraints, the estimation of motion vectors is not

trivial either because (i) the optimization process cannot

guarantee the optimal solution, or (ii) ambiguities exist in

the flow where different displacements locally might corre-

spond to the same error (like in the absence of texture). This

is the case for methods based on gradient descent which are

sensitive to the initial conditions. On the other hand, in the

recent years we have observed the renaissance of discrete
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MRFs [9] thanks to the introduction of efficient optimiza-

tion techniques [27, 3, 24, 6, 15, 17] . In [10] for example a

registration approach based on discrete optimization show-

ing promising performance is proposed. However, the use

of such models to recover solutions of continuous problems

suffer from the discretization bottleneck. In other words, a

compromise is to be found between the number of labels

(quantization of the search space), the computational com-

plexity as well as the ability to capture a good minimum.

Furthermore, towards tractable computational solutions in

discrete optimization the form of the objective function is

constrained in terms of the regularization term [16] (only

sub-modular interaction terms can be considered).

In this paper, we propose a discrete to continuous ap-

proach for optical flow estimation that (i) can capture a bet-

ter minimum, (ii) has incrementally refined precision that

is defined locally and varies according to the image struc-

ture, (iii) can encode complex interactions between graph

nodes, and (v) can complete the task in reasonable compu-

tational time. The central idea of our approach is to ex-

plore/determine uncertainties in the context of multi-label

optimization. Our approach is based on linear programming

and explores the duality theorem. Furthermore, it explores

the notion of min/max marginals towards recovering suc-

cessive uncertainty maps which are directly related with the

covariance matrix of the obtained solution. Then, it uses

these maps within a dynamic model where the set of plau-

sible deformations is varying in space and state of the opti-

mization while being able to self-adjust the precision of the

solution according to the observed uncertainties.

There is quite limited work on uncertainty-based mor-

phing focusing mostly on surface matching. In [19] var-

ious optimization criteria have been proposed to recover

correspondences between geometric features with an ex-

plicit estimation of the uncertainty for the resulting trans-

formation. The use of uncertainties to determine the search

range within the iterated closest point algorithm has been

introduced in [23] while a more advanced shape represen-

tation with explicit estimation of uncertainties for thin plate

splines was proposed in [20]. Last but not least in [25] un-

certainties were considered in a implicit registration frame-

work with surfaces being described as distance maps. These

methods are applicable for a specific range of transforma-

tions as well as for a given similarity metric. In the image

domain, the work presented in [22] assumes displacements

to be Gaussian to determine their covariance matrix using

the image noise model. In the discrete case, one can only

point out recent work on graph-cuts and min/max marginals

[14] for the case of segmentation where a binary labeling

problem is to be addressed.

The remainder of this paper is organized as follows. In

Section 2, we present the generic optical flow estimation

framework while in Section 3 we introduce the notion of

variable-precision labeling and the estimation of uncertain-

ties. The nature of the displacement field and the exper-

imental validation are part of Section 4 while discussion

concludes the paper.

2. Optical Flow Estimation with Uncertainties
The basic idea for optical flow estimation is that image

points are translated in a sequence from one frame to the

next while assuming brightness constancy for all points,

I(x, f) = I(x +D(x), f + 1), (1)

where I(x, f) is the image intensity of the pixel x in frame

f , and D is the 2D displacement vector field.

A common way to formulate the problem of optical flow

estimation for two given frames is through the definition of

a distance between these images that is to be minimized in

the entire domain Ω, or

Edata(D) =
∫

Ω

|I(x, f)− I(x +D(x), f + 1)|︸ ︷︷ ︸
ρ(x)

dx (2)

Recovering the optimal potential of this cost function is not

straightforward. Two variables are to be determined while

only one constraint is available per pixel. The most basic

approach to address this limitation is trough the use of a

regularization function on space of unknown variables [26],

or

Esmooth(D) =
∫

Ω

φ(∇D(x))dx (3)

with φ being a convex function imposing smoothness on

the displacement field for neighboring pixels. Such a term

will make the estimation of the displacement field feasible

assuming that an appropriate function ρ is known.

Gradient descent is the most common approach to per-

form the optimization, a method that has some strengths

and known limitations. One can claim that this approach is

convenient and often it is straightforward to implement. On

the other hand, since the objective function is non-convex

one cannot guarantee that the obtained solution will be the

optimal one. Last, but not least gradient numerical manipu-

lation is not straightforward when projecting from the con-

tinuous space to the discrete one.

The above observations lead to a natural conclusion that

one should seek (i) dimensionality reduction on the degrees

of freedom of the motion model, (ii) more efficient opti-

mization techniques both in terms of ability to approach the

optimal solution with reasonable computational cost, and

(iii) techniques that do not require continuous gradient ma-

nipulation in discrete spaces.

2.1. Dimensionality Reduction

Our motion model follows the idea of [10]. The authors

use this model for image registration mainly in the domain



of medical imaging. It basically consists of a set of control

points G uniformly distributed over the image domain Ω.

Here, usually the number of control points is much lower

than the number of pixels. While moving the control points

and thus manipulating the model configuration the underly-

ing image structures get transformed. The displacement of

an image pixel x can be expressed using a linear or non-

linear combination of the control point displacements C, or

D(x) =
∑
p∈G

η(|x− p|) C(p) (4)

with η being the influence function. In this work we con-

sider cubic B-Splines [21] as basis functions for the mo-

tion model. We redefine the matching criteria on the motion

model in the following form

Edata(D) =
1
|G|

∑
p∈G

∫
Ω

η̂(|x− p|) ρ(x)dx (5)

where η̂ is the “inverse” influence function determining the

contribution of the image pixel x to the propagated data

term on the level of control points. For pixel-wise measures

(e.g. the sum of absolute differences) this is defined as

η̂(|x− p|) =
η(|x− p|)∫

Ω
η(|y − p|)dy (6)

which results in equal data terms for Equations (2) and (5).

For statistical measures (e.g. correlation coefficient) we de-

fine this function differently as

η̂(|x− p|) =

{
1, if η(|x− p|) > 0
0 if η(|x− p|) = 0

(7)

which results in the computation of local statistics within

each control point influence area.

Such a matching process is purely image based and

therefore cannot guarantee smoothness on the displacement

field. The use of partial derivatives of the displacements is

often considered to determine a measure of smoothness, or

Esmooth(D) =
1
|G|

∑
p∈G

∫
Ω

η̂(|x− p|)

(|∂xD(x)|+ |∂yD(x)|) dx (8)

a term motivated by the diffusion energy functional, here

used to control the spatial variations of the displacements.

Obviously, the smoothness term could also be directly com-

puted on the control point displacements C. In Section

3.1, where we will describe our incremental approach it

hopefully becomes clear why we choose to propagate the

smoothness computation from the image level back to the

control point level.

The complete cost function for the optical flow estima-

tion problem defined on our motion model then becomes

Etotal = Edata + λEsmooth (9)

where λ controls the balance between the data and the

smoothness term.

2.2. Discrete Formulation

We consider a discrete set of labels L = {l1, ..., ln} cor-

responding to a quantized version of the displacement space

Θ = {d1, ...,dn}. A label assignment lp to a control point

p is associated with displacing the point by the correspond-

ing vector dlp . The dense displacement field associated

with a certain discrete labeling l becomes

D(x) =
∑
p∈G

η(|x− p|)dlp (10)

This allows us to reformulate the optical flow estimation

as a discrete multi-labeling problem modeled in first-order

Markov Random Field (MRF), where the goal is to assign

individual labels to the MRF nodes. The first-order MRF

energy formulation is defined as

EMRF(l) =
∑
p∈G

Vp(lp) +
∑
p∈G

∑
q∈N (p)

Vpq(lp, lq) (11)

where Vp are the unary potentials representing the data

term, Vpq are the pairwise potentials representing the

smoothness term, and N represents the neighborhood sys-

tem of the nodes. We define the unary potentials according

to our data term as

Vp(lp) ≈
∫

Ω

η̂(|x− p|) ρ(x)dx. (12)

In general the unary potentials are assumed to be indepen-

dent which in most cases according to the influence function

η is not true. Naturally, neighboring control points influ-

ence in an overlapping area of the dense displacement field

in a linear or non-linear manner. However, using η̂ while

propagating the costs to the control point level, reduces the

approximation error.

In addition, we define the pairwise potentials as

Vpq(lp, lq) = λ
∣∣(R(p) + dlp)− (R(q) + dlq)

∣∣ (13)

where R back-projects the current displacement field onto

the level of control points, or

R(p) =
∫

Ω

η̂(|x− p|)D(x) dx. (14)

Such a smoothness term allows for regularization of the dis-

placement field across the domain of the images as well as

the time of the optimization process. We should note, that

this is different form the smoothness term proposed in [10]

which is only able to regularize the single optimization steps

independently.



2.3. FastPD & Discrete Optimization

For optimizing the above discrete Markov Random

Field, we will make use of a recently proposed method,

called Fast-PD [17]. This is an optimization technique,

which builds upon principles drawn from the duality the-

ory of linear programming in order to derive efficient algo-

rithms that can provide approximately optimal solutions for

a wide class of NP-hard MRFs.

Instead of working directly with the discrete MRF op-

timization problem above, Fast-PD first reformulates that

problem as an integer linear programming problem (the pri-

mal problem) and also takes the dual of the corresponding

LP relaxation. Given these 2 problems, i.e. the primal and

the dual, Fast-PD then generates a sequence of integral fea-

sible primal solutions, as well as a sequence of dual feasible

solutions. These two sequences of solutions make local im-

provements to each other until the primal-dual gap (i.e. the

gap between the objective function of the primal and the ob-

jective function of the dual) becomes small enough. Once

this happens, the last generated primal solution is guaran-

teed to be an approximately optimal solution, i.e. within

a certain distance from the optimum (in fact, this distance

has been shown to be smaller than the achieved primal-dual

gap). This is exactly what the next theorem, also known as

the primal-dual principle, states.

Primal-Dual Principle 1 Consider the following pair of
primal and dual linear programs:

PRIMAL: min cT x DUAL: max bT y
s.t. Ax = b,x ≥ 0 s.t. AT y ≤ c

and let x,y be integral-primal and dual feasible solutions,
having a primal-dual gap less than f , i.e.:

cTx ≤ f · bTy.

Then x is guaranteed to be an f -approximation to the opti-
mal integral solution x∗, i.e., cTx∗ ≤ cTx ≤ f · cTx∗

Note that when this principle is applied to MRF opti-

mization, primal costs corresponds to MRF energies, while

dual costs correspond to lower bounds on the optimum

MRF energy. Hence, each iteration of the primal-dual

schema produces a pair of upper and lower bounds to the

optimum MRF energy. It was shown in [17] that each such

iteration can be reduced to solving a max-flow problem for

a capacitated graph constructed based on the current primal-

dual pair (x,y). The resulting flows can be computed very

efficiently and tell us how to update both the primal and dual

variables in order to get better upper and lower bounds (on

the MRF optimum) for the next iteration.

3. Morphing and Uncertainties
One of the main limitations of discrete labeling when

seeking estimates of continuous variables is the precision,

in particular when the range of displacements to be cap-

tured is important as in optical flow. One can address this

demand through the use of more complete label sets, which

however will make the problem far more complex and al-

most intractable from a computational perspective.

One can first decrease the importance of such a con-

straint through an incremental approach. To this end, we

can consider a fixed set of labels and corresponding dis-

placements, and iteratively determine the additive compo-

nent of the deformation which will decrease maximally the

cost function. Let l0 being the labeling of the grid that cor-

responds to no-displacement D0, then for a given set of la-

bels, one can determine the solution to the labeling through

the optimum of

l1 = arg min
l

∑
p∈G

Vp(lp) +
∑
p∈G

∑
q∈N (p)

Vpq(lp, lq) (15)

which will produce a 2D displacement field D1. Such a

displacement field can be used to morph the frame F 0 =
I(x, f) to a new frame F 1 = I(x + D1(x), f1). Incre-

mental morphing consists of recovering an update compo-

nent D2, which will bring closer F 1 to the frame F ∗ =
I(x +D(x), f + 1) of the sequence I . In the most general

case, let

• lt being the labeling that corresponds to the incremen-

tal component of the displacements at time t, and let

DF t =
∑t

τ=1Dτ being the accumulative displace-

ments,

• F t being the t-morphing of the original frame F 0 us-

ing DF t .

Here, it should become clear why we previously defined the

smoothness term in Equation (8) on the pixel level, since

the control point displacements are only incrementally de-

termined and updated on DF t . Now, one can consider im-

proving the current solution, through the lowest potential

of

lt+1 = arg min
l
EMRF(l|F t, F ∗) (16)

Such an incremental approach will reduce complexity while

preserving the ability to capture important displacements.

However, it still suffers from being isotropic since each

control point refers to the same label set and the additive

displacements remain constant over time. One can either

decrease the distance between the set of deformations as a

function over time (often done based on heuristics) or deter-

mine the uncertainties of the current solution and sample the

displacement capture range according to the anisotropy and

the scale of the covariance matrix corresponding to them.
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Figure 2: The displacement capture range (shown in green) at each control point
before (a) and after (b) the first cycle using the dynamic local adjustment through
uncertainty estimation. The min-marginal maps and estimated covariances of a label
set for an exemplary control point (marked in red) are shown in (c) and (d).

3.1. Uncertainties & Dynamic Morphing

Let us as assume Σd(p) being the covariance matrix of a

Gaussian distribution explaining the local uncertainty of the

flow estimation at a given control point. This can be con-

sidered as a good indicator on the direction which potential

additive displacements might improve the current estimate

as well as the sampling that is to be used along the two

axis. Let φ(p), φ†(p) being the orientations, s1(p), s2(p)
the relative scales of two axes of Σd(p), and let us consider

a label set that consists (2n+1)× (2n+1) labels. Then, in

order to define an optimal set of labels, one should consider

(2n + 1) labels in φ corresponding to a uniform sampling

along this axis with distance d1(p) = s1(p)
2n+1 (similar defi-

nition is considered for the second axis: d2(p) = s2(p)
2n+1 ).

Then, the set of non-uniform labels/displacements that best

explores the image content is defined through all possible

combinations of the two subsets. Such a process will pro-

duce a set of labels that is varying across control points and

optimally explores the current uncertainties of the solution.

Localizing the global minimum of an objective function

E is equivalent to finding the major mode of a random vari-

able with density exp(−E/β). The coefficient β corre-

sponds to the allowable variation in the energy value around

the minimum.

Let us consider the optimal solution obtained for a par-

ticular control point C(p) = (Cx(p), Cy(p)) at a given time

t. In order to determine the variation of the cost func-

tion, one can consider a series of perturbations. Let ΔC =
{−kδε, ...,−δε, 0, δε, ..., kδε} being an one-dimensional

set with δε → 0 and an incremental displacement λ1 ∈
ΔC, λ2 ∈ ΔC

ΔC(p) = C(p) + λ1e1 + λ2e2 (17)

with e1 = (d1(p), 0) and e2 = (0, d2(p)) . Then, it is

obvious that ΔC(p) is part of the label set, that is it exists a

label lk such that dlk = ΔC(p). Then, a good indicator on

the variation/form of the cost function at any given time t
compares the optimal cost (obtained displacement) with the

one produced from a slight perturbation. In the context of

our approach the optimal labeling is lt produces an optimal

morphing between F t−1 and F t and the obtained solution

corresponds to the exact global minimum of:∑
p∈G

Vp(ltp|F t−1, F t) +
∑
p∈G

∑
q∈N (p)

Vpq(ltp)
(18)

In order to determine the local uncertainty [14], one

can consider a min-marginal function that measures in-

formation about the minimum values of the energy

EMRF(lt|F t−1, F t) under different constraints. In our

case, such constraints for each control point p adopt the op-

timal labeling and introduce local variations of the (λ1, λ2)
subset.

U(C(p), λ1, λ2) =
exp(−ψp;ΔC(p);F t−1,F t)∑
lp∈L exp(−ψp;dlp ;F t−1,F t)

(19)

with ψp;d;F t−1,F t being the min-marginal energy under the

constraint that p is forced to be displaced by d, or

ψp;d;F t−1,F t = min
l,C(p)=d

EMRF(l|F t−1, F t) (20)

The exact computation of these costs is feasible without

additional cost if λ1, λ2 are constrained to produce displace-

ments that do belong to the existing set.

The variation of these measures form a 2D density and

the estimation of the covariance matrix could provide a

qualitative interpretation of the results. Intuitively, if we

plot the spatial min-marginal energies (see Figure 2) for a

grid node we can estimate the uncertainty by measuring the

flatness of the plotted curve. As flatter the curve becomes in

a particular direction as more uncertain is the control point

position. In other words, it would not make much differ-

ence in the total energy if this control point is displaced by

a non-optimal label. Contrary, if the energy difference is

large in the area around a control point we are quite certain

about its position. In order to determine these uncertainties

we should sample the entire space towards recovering these

uncertainties which is rather unrealistic from computational

perspective. Still, we can approximate this covariance ma-

trix using the min-marginal map for the label sets (see Fig-

ure 2).

3.2. FastPD & Min/Max Marginals

In order to determine the uncertainties, inspired from re-

cent publications [13, 14] we use the FastPD to compute

the min-marginal energies for every control point and every



displacement in the set of labels. To this end, we make use

of the Fast-PD’s ability to accelerate inference on dynamic

MRFs (where this term refers to MRFs slowly varying over

time). In fact, the computation of min-marginals for a dis-

crete MRF is equivalent to optimizing such a dynamic MRF.

To see this, let Vp(·), Vpq(·, ·) be the unary and pairwise

potentials of a discrete MRF. To compute the min-marginal

for label lp = α at node p, we simply need to replace the

unary potential Vp(·) at node p with the following potential

function V new
p (·):

V new
p (lp) =

{
Vp(α), if lp = α

∞, if lp 	= α

No other changes need to be made to the potential func-

tions of the original MRF. It is then easy to see that the

desired min-marginal can be obtained by optimizing the re-

sulting MRF. Hence, to compute all min-marginals, one has

to optimize one such MRF for every node p and label lp.

This can be efficiently done using the Fast-PD algorithm,

since all these MRFs are almost identical to each other and

thus form a very slowly varying dynamic MRF. Although

the produced min-marginals will not be exact (since opti-

mizing multi-label MRFs is, in general, NP-hard), never-

theless they will be close to the true marginals, since Fast-

PD can guarantee to generate approximately optimal so-

lutions (this is in contrast to using Belief Propagation, in

which case no optimality guarantees exist for the computed

marginals). Moreover, an upper-bound per marginal can be

computed by the Fast-PD algorithm, telling how far the es-

timated marginal is from the true one. After estimating the

min marginals μp(α) = minl:lp=αE(l), one can then com-

pute an uncertainty measure U for any MRF labeling as fol-

lows:

Up(α) =
exp−μp(α)∑
l exp−μp(l)

4. Experimental Validation
So far, our framework has been quite general in terms of

the used matching criteria, the motion model, and the pa-

rameter configuration. Therefore, we will first present de-

tails on our implementation and describe the settings for our

experimental validation before presenting the actual results.

4.1. Free Form Deformations

We consider Free Form Deformations (FFD) based on

cubic B-splines as an interpolation model for the influence

function η. FFD are successfully applied in non-rigid im-

age registration (e.g. in [21]). Deformation of an object is

achieved by manipulating an underlying mesh of uniformly

spaced control points with spacing δ. Two-dimensional

FFD based on cubic B-Splines are defined on the image do-

main Ω as

D(x) =
3∑

m=0

3∑
n=0

Bm(u)Bn(v)C(pi+m,j+n) (21)

where i and j denote the index of the control point cell

containing x = (x, y)T , and u and v are the relative po-

sitions of x and y inside that cell, e.g. i = 
x/δ� − 1 and

u = x/δ − (i + 1). Bl represents the lth basis function

of the B-Spline. A single control point has only local in-

fluence on the resulting pixel displacements. A pyramidal

approach allows for representing large and small displace-

ments simultaneously.

4.2. Matching Criteria

The matching criteria we use is an adapted version of

the correlation coefficient (CC) combined with the gradient

inner product (GIP), or

ρCC+GIP =

(1− γ)
⎛
⎝1−

∣∣∣∣∣∣
∑

Ω (a− ā) (b− b̄)√∑
Ω (a− ā)2 ∑Ω

(
b− b̄)2

∣∣∣∣∣∣
⎞
⎠

+ γ
∑
Ω

∣∣∣∣ ∇a|∇a| · ∇b|∇b|
∣∣∣∣ (22)

where a = I(x, f) and b = I(x + D(x)), f + 1). Such a

term will provide photometric as well as a geometric preser-

vation constraints where the parameter γ controls the bal-

ance between them. As earlier explained other functions

can be used as well. We should not that no particular atten-

tion was paid to discontinuities or occlusions.

4.3. Optical Flow Estimation

We test our method on image sequences of a recently

published database for optical flow [1]. The images are di-

vided into three categories. The first category consists of

challenging real data where the ground truth flow fields is

achieved from the hidden fluorescent texture. The second

category, contains realistic synthetic data generated using

computer graphics. This part includes the famous Yosemite

sequence. The last category is a set of modified stereo se-

quences. For detailed information about the data, we refer

the reader to [1]. The database consists of two sets, one that

is available with ground truth for calibration of the method

and a second one where the ground truth is not available

to the user. The overall performance is measured only on

the second set of sequences. To determine the performance,

two common error measures are considered: the angular

error (AE) [7], which provides a relative measure of perfor-

mance, and the endpoint error (EP) computing the residual

length of the difference vectors between the estimated flow
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Black�&�Anandan�2 7.83 18.7 6.41 9.70 21.9 8.60 13.7 23.7 18.1 10.9 30.0 9.44 4.43 5.23 4.94 7.95 18.2 6.51 2.61 4.44 2.15 8.58 14.3 8.54
2D�CLG 10.1 22.6 7.59 9.84 16.9 11.1 16.9 28.2 18.8 14.1 31.1 13.1 3.66 4.25 4.41 6.69 22.2 6.96 1.76 3.14 1.46 6.29 12.9 5.81
Horn�&�Schunck 8.01 19.9 8.38 9.13 23.2 7.71 14.2 25.9 14.6 12.4 30.6 11.3 4.44 5.27 4.59 8.25 25.8 8.77 4.01 5.41 1.95 9.16 17.5 8.86
Black�&�Anandan 8.93 18.5 9.99 12.9 22.4 13.3 15.8 25.9 18.3 13.2 31.8 12.0 5.69 6.35 7.77 9.37 18.8 9.02 3.10 4.88 3.96 13.4 18.3 15.1
Pyramid�LK 13.9 20.9 21.4 24.1 23.1 30.2 20.9 29.5 21.9 22.2 34.6 25.0 18.7 22.9 19.9 21.9 26.2 23.5 6.41 7.02 10.8 25.6 31.5 34.5
MediaPlayerTM 18.3 30.8 15.0 17.7 29.2 17.4 19.9 32.7 21.6 26.3 45.9 25.9 7.23 6.95 10.2 19.4 32.9 19.3 12.7 18.7 17.2 17.4 22.9 20.7

all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext
Dynamic�MRF 0.13 0.41 0.11 0.26 1.00 0.18 0.52 1.22 0.29 0.24 1.29 0.15 1.08 1.46 1.25 1.76 2.38 0.92 0.20 0.19 0.40 1.42 2.83 1.58
LP�Registration 0.20 0.46 0.17 0.29 0.93 0.21 0.55 1.22 0.35 0.29 1.32 0.20 1.12 1.48 1.37 2.20 2.52 1.18 0.20 0.19 0.32 1.33 2.79 1.46
2D�CLG 0.28 0.62 0.21 0.67 1.21 0.70 1.12 1.80 0.99 1.07 2.06 1.12 1.19 1.44 1.82 1.55 2.31 0.94 0.10 0.11 0.16 1.38 2.26 1.83
Black�&�Anandan�2 0.21 0.52 0.17 0.65 1.52 0.58 0.93 1.54 1.03 0.76 1.97 0.73 1.35 1.72 1.67 2.03 2.40 1.04 0.15 0.17 0.26 1.68 2.64 2.06
Horn�&�Schunck 0.22 0.55 0.22 0.61 1.53 0.52 1.01 1.73 0.80 0.78 2.02 0.77 1.22 1.50 1.73 1.41 2.82 0.98 0.16 0.18 0.15 1.51 2.50 1.88
Black�&�Anandan 0.24 0.52 0.27 0.95 1.59 1.00 1.14 1.68 1.11 0.94 2.09 0.92 1.53 1.88 2.03 2.21 2.47 1.33 0.20 0.18 0.41 2.45 3.43 3.09
MediaPlayerTM 0.48 0.83 0.39 1.30 2.12 1.26 1.33 2.00 1.25 1.66 3.12 1.65 1.73 1.93 2.45 2.84 3.38 2.02 0.59 0.58 1.08 2.57 3.28 3.20
Pyramid�LK 0.39 0.61 0.61 1.67 1.78 2.00 1.50 1.97 1.38 1.57 2.39 1.78 2.91 3.65 3.01 3.29 2.99 2.42 0.30 0.24 0.73 3.80 5.08 4.88

TeddyArmy Mequon Schefflera Wooden Grove
Average�Angular�Error

Average�Endpoint�Error

Urban Yosemite

Table 1: Results for the angular error (AE) and the endpoint error (EP) for the whole frame (all), the discontinuity parts (disc), and the untextured regions (untext).

and the ground truth. Thanks to [1], we can also report a

much more detailed evaluation including errors in disconti-

nuity parts and untextured regions of the image as well as

robustness statistics.

The following parameters were used for all experiments,

determined towards optimizing the results for the sequences

with ground truth available:

• We use a three-level pyramidal approach where the im-

age resolution as well as the FFD resolution is succes-

sively increased from one level to another. We start

with a 16 pixels control point spacing while reducing

it to 8 and finally 4 pixels for the highest resolution.

For the Army sequence this results for instance in FFD

resolutions of 38× 25, 74× 50, and 147× 98.

• On each level we perform 5 cycles of the FastPD al-

gorithm. The initial maximum displacement for each

level is set to the half of the control point spacing and

we perform 5 sampling steps from zero to this max-

imum in each direction. This results in a total num-

ber of (5 · 2 + 1)2 = 121 labels (including the zero-

displacement) for each of the 15 cycles.

• The weighting to balance between the matching crite-

ria and our smoothness penalty is experimentally set

to 0.3 for all examples while the weighting within the

matching criteria to balance between the photometric

(CC) and the geometric term (GIP) is set to 0.45.

We compare our method with the ones being used

up to now of this specific database which includes the

most closely related approach proposed in [10], called LP-

Registration. Our novel approach of integrating the uncer-

tainties where the scaling as well as the orientation of the

labels sets is locally estimated after each cycle (see Figure

2) is here denoted as Dynamic MRF. Because of the lim-

ited space, we refer the reader to the website of the database

Figure 3: The 10th frame and our (color-encoded) result for the Wooden sequence.

(http://vision.middlebury.edu/flow/eval) to see the input im-

ages of all sequences used in our paper as well as the refer-

ences to the other methods.

4.4. Evaluation

We perform the evaluation of our algorithm on eight im-

age sequences, again divided into the three categories. We

use the Army sequence, the Mequon sequence, the Schef-

flera sequence, and the Wooden sequence from the hid-

den fluorescent texture category. Additionally, we esti-

mate the optical flow on the Grove sequence, the Urban

sequence, and the Yosemite sequence from the realistic

synthetic category and on a modified stereo dataset called

the Teddy sequence. In [1], the complexity and difficulty

of the hidden fluorescent texture sequences is mentioned.

Still, we achieve very good results for these datasets com-

pared to other state of the art algorithms (including Bruhn

et al. [5] and Black and Anandan [2]). The performance

of the other algorithms is assessed by the maintainers of

the database. For detailed information, again we refer to

[1]. A part of our evaluation results are summarized in

Table 1. Our method Dynamic MRF is in average ranked

first on all statistical evaluations, including the robustness

statistics RX [1]. The detailed evaluation can be found

on http://vision.middlebury.edu/flow/eval. However, on the

Yosemite sequence our results are not competitive to re-

cently proposed methods [4, 18] which achieve an average

AE of less than 1.0. Still, we should note that we did not



perform an explicit optimization on the parameters for spe-

cific data to minimize the AE as it is for instance mentioned

in [18]. In stereo we could achieve only average results.

Here, the estimation of the label set orientations might be

a drawback. Slight orientation changes on the label sets

are unwanted in stereo settings. The largest errors in all

data sets occur in the discontinuity parts which seems to be

natural when using FFD. Our color-encoded estimated flow

fields for three of the eight datasets are shown in Figure 1

and 3. The estimation of the optical flow for an image pair

takes about 45 seconds (Intel Mobile 2.16 GHz).

5. Discussion
In this paper we have proposed a novel approach to opti-

cal flow estimation. Our approach is based on a MRF, uses

principles from linear programming to determine the opti-

mal solution and dynamically determines the precision of

solution using local uncertainties. It is flexible in the choice

of the matching criteria since no differentiation of the cost

function is needed, and provides quantitative and qualitative

results. Experimental validation and comparisons with the

state of the art methods demonstrate the potentials of our ap-

proach. Future work consists of addressing novel matching

criteria. Non-uniform configurations of the control points

together with different models of the influence function will

be investigated. The hope is to create a motion model which

is able to provide smooth results in untextured regions while

at the same time it preserves discontinuities. Furthermore,

we would like to investigate more efficient means to ad-

dress the sub-optimality of the obtained solution. The use of

priority-based belief propagation networks is an very chal-

lenging and promising research direction.
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