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Abstract

In this paper, we introduce a novel and efficient approach to dense image regis-
tration, which does not require a derivative of the employed cost function. In such
a context the registration problem is formulated using a discrete Markov Random
Field objective function. First, towards dimensionality reduction on the variables
we assume that the dense deformation field can be expressed using a small number
of control points (registration grid) and an interpolation strategy. Then, the regis-
tration cost is expressed using a discrete sum over image costs (using an arbitrary
similarity measure) projected on the control points, and a smoothness term that
penalizes local deviations on the deformation field according to a neighborhood sys-
tem on the grid. Towards a discrete approach the search space is quantized resulting
in a fully discrete model. In order to account for large deformations and produce
results on a high resolution level a multi-scale incremental approach is considered
where the optimal solution is iteratively updated. This is done through successive
morphings of the source towards the target image. Efficient linear programming
using the primal dual principles is considered to recover the lowest potential of the
cost function. Very promising results using synthetic data with known deformations
and real data demonstrate the potentials of our approach.
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1 Introduction

Medical image analysis [7] is an established domain in computational, mathe-
matical and biological sciences. Recent advances on the acquisition side have
made possible the visualization of human tissues as well as physiological and
pathological indices related to them either occasionally or periodically. The
ability to compare or fuse information across subjects with origins of different
modalities is a critical and necessary component of computer aided diagnosis.
The term used often to express this need is registration.

The registration problem often involves three aspects, (i) the transformation
model, (ii) a similarity criterion and (iii) an optimization strategy.

Registration can be either global or local. Parametric models are often em-
ployed to address global registration with a small number of degrees of free-
dom, such as rigid or similarity. These models refer to a good compromise
between performance and computational complexity. Furthermore, the regis-
tration problem in such context is well posed since the number of variables
to be determined is over-constrained from the number of observations. Dense
image registration aims to go further and seeks individual correspondences
between observations. The main goal is to determine relationships that locally
express the correlation of the observations either for the same subject (acqui-
sitions of different modalities or acquisitions of the same organ in time). Local
alignment or dense/deformable registration are the terms often considered to
describe this task.

Deformable registration is one of the most challenging problems in medical
imaging. The problem consists of recovering a local transformation that aligns
two signals that have in general an unknown relationship both in the spatial
and intensity domain. Several methods exist in the literature where specific
measures are designed to account for this relationship and optimize the trans-
formation that brings together these two signals.

Local image alignment is often performed according to geometric or pho-
tometric criteria. Landmark-based methods [16,29] are a classic example of
geometric-driven registration. In such a setting, a number of anatomical key
points [26]/structures (segmented values) are identified both in the source and
the target image and a transformation that aims to minimize the Euclidean
distance between these structures is to be recovered. The main limitation of
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these methods is related to the selection and extraction of landmarks, while
their main strength is the simplicity of the optimization process.

Iconic registration methods [3] seek for “visual” correspondences between the
source and the target image. Such a problem is tractable when one seeks
registration for images from the same modality due to an explicit photometric
correspondence of the image intensities. Sum of squared differences [15], sum of
absolute differences [15], cross correlation [15] or distances on subspaces that
involve both appearance and geometry (intensities, curvature, higher order
image moments) [6] have been considered. On the other hand it becomes more
challenging when seeking transformations between different modalities with a
non-linear or only statistical relation of intensities. Such measures have often
been used [17] where normalized mutual information [25], Kullback-Liebler
divergence [37] and correlation ratio [27] are some of the measures used to
define similarity 2 between different modalities.

Once the similarity measure has been defined the next task consists of recover-
ing the parameters that optimize the designed cost function. Parameters can
be either searched or estimated. In the first case techniques like exhaustive
search can be employed which are time consuming. On the other hand, one
can use known optimization techniques, gradient-free or gradient-based to de-
termine the optimal set of parameters starting from an initial guess [19]. These
methods require an important customization from one application to another
since a correlation exists between the modalities/problem and the selection
of the similarity measure. Furthermore, the optimization is often sub-optimal
due the non-convexity of the designed cost functions. In particular when con-
sidering complex similarity functions defined on the continuous space, then the
numerical approximation of the gradient in the discrete domain (image/volume
plane) is very challenging leading to erroneous registration results.

The aim of our approach is to overcome both limitations present in all regis-
tration methods. Dependency on the similarity measure selection, as well as
on the initial conditions in a reasonable computation time.

In this article we propose a novel technique that can either be used for inter
or intra modal image registration. Towards satisfying smoothness of the de-
formation field and reducing the dimensionality of the problem we represent
deformation through Free Form Deformations [31]. Our method reformulates
registration as an Markov Random Field (MRF) optimization where a set of
labels is associated with a set of deformations, and one seeks to attribute a
label to each control point such that once the corresponding deformation has
been applied, the similarity measure between the source and the target is opti-
mal for all voxels. The optimization procedure is independent from the graph

2 For consistency reasons we always use the term similarity measure, although
measures such as sum of squared differences are actually dissimilarity measures.
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construction, and therefore any similarity measure can be used.

The remainder of this paper is organized as follows: In Section 2 we intro-
duce the proposed registration framework, while in Section 3 we discuss the
optimization aspects. Implementation details are given in Section 4 and ex-
perimental validation are part of Section 5. Section 6 concludes our paper.

2 Deformable Registration

In order to introduce the concept of our approach [14], we consider (without
loss of generality) the 2D image domain. Let us consider a source f : Ω =
[1, N ] × [1, M ] → R and a target image g. In general, these images are re-
lated with a non-linear transformation as well as a non-linear relation between
intensities, that is

∀x ∈ Ω g(x) = h ◦ f(T (x)) (1)

where T (x) is the transformation and h is a non-linear operator explaining
the changes of appearance between them. The most common way to formulate
the registration problem, is through the definition of a distance between the
source and the target image that is to be minimized in the entire domain Ω,
or

Edata(T ) =
∫
Ω
|g(x)− h ◦ f(T (x))|dx. (2)

Recovering the optimal potential of this objective function is not straightfor-
ward. In the case of 2D images, two variables are to be determined while one
constraint is available per pixel. The most basic approach to address this limi-
tation is through the use of a regularization function on the space of unknown
variables [34], or

Esmooth(T ) =
∫
Ω

φ(∇T (x))dx (3)

with φ being a convex function imposing smoothness on the deformation field
for neighboring pixels. Such a term will make the estimation of the deformation
field feasible assuming that the relationship between the signal intensities is
known. This hypothesis is not realistic due to the fact that (i) when registering
the same modalities this relationship depends on the parameters of the scanner
which are not available, (ii) when registering different modalities in most of
the cases such an operator does not exist.

In order to overcome this constraint, in the most general case a similarity
measure ρh is introduced to account for the intensity relation between the two
images, or

Edata(T ) =
∫
Ω

ρh(g(x), f(T (x))dx (4)

The definition of the ρh depends on the nature of the observed signals as well
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as the application itself. Once this measure is defined the data term is com-
bined with the smoothness one to determine the objective/cost function under
consideration. Gradient-descent is the most common approach to perform the
optimization, a method that has some strengths and known limitations. One
can claim that this approach is convenient and often it is straightforward
to implement. On the other hand, the problem is ill-posed due to the fact
that the number of constraints is inferior to the number of variables to be
determined. Furthermore, since the cost function is non-convex one cannot
guarantee that the obtained solution will be the optimal one. Last, but not
least gradient numerical manipulation is not straightforward when projecting
from the continuous space to the discrete one.

The above observations lead to a natural conclusion that one should seek (i)
dimensionality reduction on the degrees of freedom of the model, (ii) more
efficient optimization techniques both in terms of ability to approach the op-
timal solution with reasonable computational cost, and (iii) techniques that
do not require continuous gradient manipulation in discrete spaces.

2.1 Continuous Domain

Since we are interested in local registration, let us introduce a deformation
grid G : [1, K]× [1, L] (usually K � M and L � N) superimposed onto the
image (no particular assumption is made on the grid resolution). The central
idea of our approach is to deform the grid (with a 2D displacement vector dp

for each control point) such that the underlying image structures are perfectly
aligned. One can assume that the transformation of an image pixel x can be
expressed using a linear or non-linear combination of the grid points, or

T (x) = x +D(x) with D(x) =
∑
p∈G

η(|x− p|)dp (5)

where η(·) is the weighting function measuring the contribution of the control
point p to the displacement field D. In such a theoretical setting without
loss of generality we consider Free Form Deformations (FFD) based on cubic
B-Splines as a transformation model [33]. FFD are successfully applied in non-
rigid image registration [24,28,31,32]. Deformation of an object is achieved by
manipulating an underlying mesh of uniformly spaced control points. The
displacement field for a two-dimensional FFD based on cubic B-Splines at
position x = (x, y) is defined as

D(x) =
3∑

l=0

3∑
m=0

Bl(u)Bm(v)di+l,j+m (6)
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where i = 	x/δx
−1, j = 	y/δy
−1, u = x/δx−	x/δx
, and v = y/δy−	y/δy

where Bl represents the lth basis function of the B-Spline, and δx = M

K−1
,

δy = N
L−1

denotes the control point spacing. The three-dimensional version is
defined in a straightforward manner.

In order to pose an optimization problem based on such a deformation model,
we also have to define a function which allows us projecting information from
the image level to the level of control points. This can be seen as a kind of
inverse function of η(·), which can be defined as

η̂(|x− p|) =
η(|x− p|)∫

Ω η(|y − p|)dy . (7)

where η̂(·) computes the influence of an image point x to a control point p.
This is very similar to the term that occurs also in gradient-descent based
approaches where the force field based on the derivatives of the similarity
measure is also projected to the control points. However, in our case we can
simply plug-in this term into the criterion earlier introduced in (4), or

Edata(T ) =
1

|G|
∑
p∈G

∫
Ω

η̂(|x− p|) · ρh(g(x), f(T (x)))dx. (8)

Such a term will guarantee photometric correspondence between the two im-
ages where the similarity measure is evaluated on the image level but repre-
sented on the level of control points. This is an important definition for our
framework since it allows us reducing the dimensionality of the dense regis-
tration problem. Later, we will see that this exactly the data term used for
optimization, so no differentiation of the similarity measure has to be per-
formed.

Obviously, the definition of our data term (8) is only valid for point-wise simi-
larity measures (e.g. sum of squared differences). More complex and statistical
measures (e.g cross correlation or mutual information) have to be computed
slightly different. First we define another version of η̂ as

η̂(|x− p|) =

⎧⎨
⎩

1, if η(|x− p|) > 0

0 otherwise
. (9)

Basically, this will mask pixels influenced by a control point p resulting in a
local image patch centered at the control point. From this patch the similarity
measure (e.g. cross correlation) is then computed. This imposes currently some
limitations on the resolutions of the transformation grid. Since too many grid
points will result in too less samples in the local image patches. However, in
our experiments we show that in practice this effect does not play a crucial
role and statistical measures yield very good registration results.
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The transformation due to the interpolation inherits some implicit smoothness
properties. However, in order to achieve smooth results also in texture-less or
noisy regions, one can consider a smoothness term on the grid domain, or

Esmooth(T ) =
1

|G|
∑
p∈G

φ(|∇G dp|) (10)

with φ being a smoothness penalty function for instance the L1-Norm. The
complete term associated with the registration problem is then defined as the
sum of the data and smoothness term, or

Etotal = Edata + Esmooth. (11)

The most common way to obtain the transformation parameters is through
the use of a gradient-descent method in an iterative approach [31]. Thus given
an initial guess, one updates the estimate according to the following formula[
T m = T m−1 − δt δEtotal

∂T

]
. Such a process involves the derivative of the energy

term with respect to the transformation parameters and therefore it is model
and criterion dependent. Slight modifications of the cost function could lead
to a different derivative and require novel numerical approximation methods.

2.2 Discrete Domain

Let us now consider a discrete set of labels L = {l1, ..., li} corresponding
to a quantized version of the deformation space Θ = {d1, ...,di}. A label
assignment lp to a grid node p is associated with displacing the node by the
corresponding vector dlp . If a label is assigned to every node we get a discrete
labeling l. The displacement field associated with a certain labeling l becomes

D(x) =
∑
p∈G

η(|x− p|)dlp . (12)

2.2.1 Data Term Approximation

One can reformulate the registration as a discrete multi-labeling problem, that
is assign individual labels lp to the grid nodes. A common model for repre-
senting such problems are Markov Random Fields (MRFs) [23]. The general
form of a first-order MRF is

EMRF(l) =
∑
p∈G

Vp(lp) +
∑
p∈G

∑
q∈N (p)

Vpq(lp, lq) (13)

where Vp(·) are the unary potentials representing the data term, Vpq(·, ·) are
the pairwise potentials representing the smoothness term, and N represents
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the neighborhood system of the nodes. We define the unary potentials accord-
ing to our data term as

Vp(lp) ≈
∫
Ω

η̂(|x− p|) · ρh(g(x), f(T (x)))dx (14)

which can then be seen as local evaluations of the similarity measure. In general
the unary potentials are assumed to be independent [23] which is for our
application in most of the cases not true according to the influence function
η(·). Naturally, neighboring control points influence in overlapping areas of
the dense displacement field in a linear or non-linear manner. So the potential
local similarity caused by displacing a control point can only be approximated.
The actual similarity is first known after applying the resulting labeling, i.e. a
morphing of the source image. Our approximation scheme for computing the
values of Vp(lp) is sketched in pseudo-code in the following:

1 for each label α ∈ L
2 for each node p ∈ G
3 Vp(α) =

∫
Ω η̂(|x− p|) · ρh(g(x), f(x + dα))dx

4 end

5 end

This scheme can be implemented very efficiently, since the operations that
have to be done on the source image f in line 3 are the same for all nodes
and basically reduce to a simple translation of f by dα. The approximation
error for the potential similarity can be reduced by using only linear weighting
functions in η̂(·) (while keeping the cubic functions for the smooth transforma-
tion). Additionally, the use of a multi-scale incremental approach of successive
morphings of the source towards the target image improves the approximation
over time.

2.2.2 Incremental Approach and Diffeomorphisms

The incremental approach has another advantage. The number of labels and
their capture range play a significant role to the registration process. It is clear
that setting the number of labels to infinity will converge to the continuous
formulation which though is intractable from computational perspective. On
the other side, if the set of labels is too small or misses important displace-
ments the registration process can yield poor results. Therefore we propose
to perform several optimization cycles (while resetting the control grid and
composing the dense deformation fields on the image level). After each cycle
the capture range covered by the label set is refined by a certain scaling factor
which enables high accuracy results while boosting the performance of the
optimization through small sets of labels. To this end, we can define a series
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of cost functions where the data term is computed on

V t
p(α) =

∫
Ω

η̂(|x− p|) · ρh(g(x), f(dα + T t−1(x)))dx (15)

Recently, one certain type of deformations gained quite a lot of interest. In
some applications, e.g. where the deformation field itself is further analyzed
or foldings have to avoided, it is desirable to obtain smooth, invertible defor-
mations called diffeomorphisms. Following [30], it is very easy to guarantee
diffeomorphic deformations by hard constraints. Since the space of solutions
is controlled through the definition of the label set, we can simply restrict the
maximum displacement to be 0.4 times the control point spacing [4]. Thus,
every morphing will fulfill the diffeomorphic properties, and since we compose
the single morphings on the image level and the composition of two diffeomor-
phisms produces a diffeomorphism, our final solutions are diffeomorphisms as
well.

2.2.3 Smoothness Term

The next aspect to be addressed is the definition of the smoothness term
Vpq(·, ·) in the label domain. A simple smoothness term can be defined as a
distance function computing the magnitude of vector differences [14], or

Vpq(lp, lq) = λpq

∣∣∣dlp − dlq
∣∣∣ (16)

where λpq plays the role of a weighting factor which may vary over the spatial
domain. The value of the weighting factor is depending on the application
and usually it has to be adapted according to the similarity function. Other
distance functions can be considered as well, e.g. a quadratic term or truncated
terms resulting in piecewise smooth functions. Using the function in (16) as a
smoothness term for the registration problem results in a fluid-like registration
[10]. This is because only the incremental updates of the deformation field are
penalized. If we want to perform a full regularization over time we also have to
consider the deformation field from the previous iterations within our distance
function, or

Vpq(lp, lq) = λpq

∣∣∣(R(p) + dlp)− (R(q) + dlq)
∣∣∣ (17)

where R(·) projects the current displacement field on the level of the control
points, or

R(p) =
∫
Ω

η̂(|x− p|)D(x) dx. (18)

Such smoothness terms together with the data term allows converting the
problem of image registration into the form of an MRF formulation as defined
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in (13). MRFs have been very popular in the area of computer vision [11]
in the late eighties and the early nineties. However their main bottleneck at
that time was the lack of efficient optimization techniques to recover their
lowest potential. Deterministic and non-deterministic algorithms have been
considered to address this demand. Iterated conditional modes [1] as well as
Highest Confidence First [5] are the most well known deterministic processes
which often converge to a local minimum. On the other hand, techniques such
as simulated annealing [18] can in theory drive the solution to the optimal one,
however in practice the process is rather complicated and increased attention
has to be paid to the handling of the temperature decrease. This constrain
makes the use of annealing methods almost impractical.

The use of the max-flow/min-cut algorithm [9] and the prove of equivalence
with certain MRFs is the main reason of the renaissance for the MRF frame-
work [23], in the late nineties. In particular, the graph-cut algorithm [2] which
refers to an efficient implementation of the max-flow/min-cut approach in reg-
ular image grids has boosted the attention of the vision community to MRFs.
This method can guarantee the global optimum or a good approximation of
it (solving a succession of binary problems using the alpha-expansion [35])
under certain conditions [20] which relates the solution with the number of
labels and the complexity of the pair/clique-wise potentials. In practice the
more complex the interaction terms are, the more challenging the optimiza-
tion of the objective function is in reasonable computational time. The use of
metric or sub-modular functions is the most common constraint related to the
definition of the pairwise potential function.

Dense registration is a problem which by default involves a multi-label task
while at the same time the regularization terms are often non-linear functions
(first and second order derivatives, elastic models, etc.). Therefore assuming
that the pairwise potentials are sub-modular functions is unrealistic. Further-
more, one should expect that the level of resolution in the quantized search
space will depend on the position of the control point in the image plane. In
other words, in areas with strong image content like edges and texture the
matching process would be quite precise which will not be the case in smooth
areas. Last but not least, given the important number of degrees of freedom,
the method should be computationally efficient. Due to the requirements on
the pairwise potentials, the use of methods such as alpha-expansion is lim-
ited. In the following, a recently proposed MRF optimization strategy based
on the primal-dual principle is described. This method provides the needed
properties for efficiently solving the problem of image registration within the
discrete domain of MRFs.

10



3 MRF optimization based on Linear Programming

For optimizing the resulting MRF, we seek to assign a label lp ∈ L to each node
p ∈ G, so that the MRF energy in (13) is minimized 3 . To this end, a recently
proposed method, called Fast-PD, will be used [22]. This is an optimization
technique, which builds upon principles drawn from the duality theory of linear
programming in order to efficiently derive almost optimal solutions for a very
wide class of NP-hard MRFs [21]. When applied to the image registration
task, this technique thus offers a series of important advantages compared to
the state-of-the-art (see Section 3.2).

For more details about the Fast-PD algorithm, the reader is referred to [21,22].
Here, we will just provide a brief, high level description of the basic driving
force behind that algorithm. This driving force will consist of the primal-dual
schema, which is a well-known technique in the linear programming literature.

3.1 The primal-dual schema for MRF optimization

To understand how the primal-dual schema works in general, we will need to
consider the following pair of primal and dual Linear Programs (LPs):

Primal: min cTx Dual: max bTy

s.t. Ax = b,x ≥ 0 s.t. ATy ≤ c
(19)

Here A represents a coefficient matrix, while b, c are coefficient vectors. Also,
x, y represent the vectors of primal and dual variables respectively. We seek
an optimal solution to the primal program, but with the extra constraint of x
being integral. Due to this integrality requirement, this problem is in general
NP-hard and so we need to settle with estimating approximate solutions. A
primal-dual f -approximation algorithm achieves that by use of the following
principle (illustrated also in Fig. 1(a)):

Primal-Dual Principle 1 If x and y are integral-primal and dual feasible
solutions having a primal-dual gap less than f , i.e.:

cTx ≤ f · bTy, (20)

3 For similarity measures such as MI we can simply use −MI for the data term in
order to convert the problem into a minimization problem.
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Fig. 1. (a) By weak duality, the optimal cost cTx∗ will lie between the costs bTy
and cTx of any pair (x,y) of integral-primal and dual feasible solutions. Therefore,
if bTy and cTx are close enough (e.g. their ratio r1 is ≤ f), so are cTx∗ and cTx
(e.g. their ratio r0 is ≤ f as well), thus proving that x is an f -approximation to x∗.
(b) According to the primal-dual schema, dual and integral-primal feasible solutions
make local improvements to each other, until the final costs bTyt, cTxt are close
enough (e.g. their ratio is ≤ f). We can then apply the primal-dual principle (as in
Fig. (a)) and thus conclude that xt is an f -approximation to x∗.

then x is an f -approximation to the optimal integral solution x∗, i.e. cTx∗≤
cTx ≤ f · cTx∗

Based on the above principle, that lies at the heart of any primal-dual tech-
nique, the following iterative schema can be used for deriving an f -approximate
solution (this schema is also illustrated graphically in Fig. 1(b)):

Primal-Dual Schema 1 Keep generating pairs of integral-primal, dual so-
lutions {(xk,yk)}t

k=1, until the elements xt, yt of the last pair are both feasible
and have a primal-dual gap which is less than f , i.e. condition (20) holds true.

In order to apply the above schema to MRF optimization, it suffices that we
cast the MRF optimization problem as an equivalent integer program. To this
end, the following integer programming formulation of (13) has been used as
the primal problem:

min
∑
p∈G

∑
α∈L

Vp(α)xp(α) +
∑
p∈G

∑
q∈N (p)

∑
α,β∈L

Vpq(α, β)xpq(α, β) (21)

s.t.
∑

α
xp(α) = 1 ∀ p ∈ G (22)∑

α
xpq(α, β) = xq(β) ∀ β ∈ L, ∀ p ∈ G ∧ q ∈ N (p) (23)∑

β
xpq(α, β) = xp(α) ∀ α ∈ L, ∀ p ∈ G ∧ q ∈ N (p) (24)

xp(·), xpq(·, ·) ∈ {0, 1}

Here, in order to linearize the MRF energy, we have replaced the discrete
variables lp with the binary variables xp(·) and xpq(·, ·). More specifically, the
{0, 1}-variable xp(α) indicates that node p is assigned label α (i.e., lp = α),
while the {0, 1}-variable xpq(α, β) indicates that vertices p,q are assigned
labels α, β respectively (i.e., lp = α, lq = β). Furthermore, the constraints in
(22) simply express the fact that each node must receive exactly one label,
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while constraints (23), (24) maintain consistency between variables xp(·), xq(·)
and variables xpq(·, ·), in the sense that if xp(α) = 1 and xq(β) = 1 holds true,
then these constraints force xpq(α, β) = 1 to hold true as well (as desired).

The linear programming relaxation of the above integer program is then taken
(by relaxing the binary constraints to xp(·) ≥ 0, xpq(·, ·) ≥ 0), and the dual of
the resulting LP is used as our dual problem. The Fast-PD algorithm is then
derived by applying the primal-dual schema to this pair of primal-dual LPs,
while using f=2dmax

dmin

4 as the approximation factor in (20).

3.2 Advantages of the primal-dual approach

Fast-PD has many nice properties, which makes it an excellent candidate
for our image registration task. In particular, it offers the following advan-
tages: 1) Generality: Fast-PD can handle a very wide class of MRFs, since
it merely requires Vpq(·, ·) ≥ 0. Hence, by using Fast-PD, our image registra-
tion framework can automatically incorporate any similarity measure, as well
as a very wide class of smoothness penalty functions. 2) Optimality: Fur-
thermore, Fast-PD can always guarantee that the generated solution will be
an f -approximation to the true optimum (where f=2dmax

dmin
). 3) Per-instance

approximation factors: In fact, besides the above worst-case approxima-
tion factor, Fast-PD can also continuously update a per-instance approxima-
tion factor during its execution. In practice, this factor drops to 1 very quickly,
thus allowing the global optimum to be found up to a user/application bound.
4) Speed: Finally, Fast-PD provides great computational efficiency, since it
can reach an almost optimal solution very fast and in an efficient manner.

4 Implementation Details & Parameter Setting

In order to prove the concept of our framework, we implemented a deformable
registration application in C++. We follow the widely used approach of multi-
resolution registration in a course-to-fine manner. The control grid is succes-
sively refined by decreasing the grid point spacing by factor of two while at the
same time we use a Gaussian pyramid for the image data. In most applications
three levels are sufficient. As mentioned before, the deformation grid is reset
after each optimization cycle and the resulting displacement fields are incre-
mentally composed on the image level (see also Section 2.2.2) Thus, we can
do hierarchical registration without using B-Spline refinement methods. The
resolution of the control grid highly depends on the application and is to be

4 dmax≡maxα �=β Vpq(α, β), dmin≡minα �=β Vpq(α, β)
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specified by the user. If large deformations are expected, one should also start
with few control points. In general, we expect that a global pre-registration
has been performed ahead of our local registration such that most of the global
linear part (translation, rotation) is removed from the images. Therefore, in
many settings a control grid resolution of 20 mm grid spacing and refinements
to 10 and 5 mm are sufficient as default parameters. These should be changed
according to specific problems. Running our framework with a very coarse
grid as a potential initialization step efficiently removes global transformation
parts such as anisotropic scaling, translation, or shearing.

4.1 Definition of Label Sets

The next aspect and most crucial part for the registration accuracy is the
configuration of the discrete set of displacements. Basically, four parameters
are controlling the discretization of the solution space. The first one defines
the maximum allowed displacement for each level of the multi-scale approach.
In scenarios where a diffeomorphic solution is desired, the maximum allowed
value of the parameter is bound to the grid resolution (see again Section 2.2.2).
Otherwise the value can be freely set by the user. Choices for an appropriate
value are problem specific but not very critical since the incremental approach
can account for displacements out of the capture range. Additionally, in our
software the capture range is visualized at every grid node such that the user
can control whether important deformations visible in the images are covered.

The second parameter controls the sampling rate from the zero-displacement
up to the maximum displacement. This value is more critical since it directly
influences the number of total labels which influences the computational speed
of the approximation scheme (see Section 2.2.1). Every additional label causes
one extra outer-loop for this scheme. Again, due to the scale-space approach
and the incremental morphings we can keep this value quite small. The default
value in our application is set to 5.

The third parameter concerns the selection of the type of sampling. We dis-
tinguish between dense and sparse sampling of the solution space. A dense
sampling results in (2N + 1)D labels (including the zero-displacement vector)
where N is the sampling rate and D the number of dimensions. Using the de-
fault sampling rate of N = 5 this results in 121 labels for 2D and 1331 labels
for 3D. The sparse sampling considers only displacements along the main axis.
Therefore, we get 4N + 1 labels for 2D and 6N + 1 labels in 3D resulting in
21 respectively 31 labels considering the default sampling rate. The selection
of the type of sampling is mainly a compromise between the computational
speed of one optimization cycle (including the approximation scheme for the
data term) and the number cycles that have to be performed to converge to
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satisfactory registration results. In 2D, we usually select the dense sampling
since additional outer-loops in the approximation scheme are here not very
expensive. In 3D, we normally use the sparse sampling which gives very good
results in practice while reducing the computational time immensely, which is
shown throughout the experimental validation.

The fourth and last parameter concerning the capture space controls the it-
erative refinement of the label sets. Since the Fast-PD optimization gener-
ates quasi-optimal labelings on the discrete set of labels, usually no further
improvement of the registration can be achieved by keeping the same dis-
placement set. A simple scaling factor is multiplied with the initial maximum
displacement and the capture range is then resampled. This enables sub-pixel
precision on the solution space. By default we set the scaling factor to 0.33
while performing 5 optimization cycles on each pyramid level.

4.2 Similarity Measure Back-Projection

Equation (8) plays a key role in the derivation of our framework. On the
one hand, we need this formulation in order to determine the local similarity
measures on the control point level. On the other hand, for the unary potential
functions of the MRF formulation this implies some problems when using cubic
B-Splines in η̂(·). We mentioned before, that in general the unary potentials are
assumed to be independent, which leads us to our data term approximation
scheme. Since the overlapping areas/volumes within the images are rather
large for cubic functions, we avoid using them for the data term computation.
In practice, linear functions are more appropriate to provide a good balance
between speed and accuracy. In all the following experiments, we use linear
weighting functions for determining the unary potentials. However, the dense
deformation field is computed based on cubic B-Splines in order to obtain
smooth results.

5 Experiments on Known and Unknown Deformations

Our framework currently contains a range of well-known similarity measures,
namely the sum of absolute differences (SAD) [15], the sum of squared differ-
ences (SSD) [15], the normalized cross correlation (NCC) [15], the normalized
mutual information (NMI) [25,36], the correlation ratio (CR) [27], and a mea-
sure involving an intensity-based and a geometric-based term which combines
the sum of absolute differences and image gradient inner product (SADGIP).
An additional weighting factor γ is used to control the influence of these two
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Data for the first experiment. (a) The source image, and (b)-(d) generated
target images with different degree of deformation (denoted as Target A to C). (e)
The inverse squared source image used for multi-modal tests. (f)-(h) Deformation
fields corresponding to the upper target images.

terms. The SADGIP is defined as

ρSADGIP(g(x), f(T (x))) =

(1− γ)|g(x)− f(T (x))| + γ

∣∣∣∣∣
∇g(x)

|∇g(x)| ·
∇f(T (x))

|∇f(T (x))|

∣∣∣∣∣ . (25)

Note that, by setting γ = 1, this similarity measure might be also used for
multi-modal registration. The image gradients are computed using a Sobel
filter. We should also note, that the NMI as well as CR measures are based on
simple histogramming techniques. This will be changed in future implemen-
tations.

We evaluate our framework on several data sets. In general, the evaluation
and thus, validation of non-rigid image registration methods is a difficult
task. Usually, ground truth data for real deformations - especially in medi-
cal applications - is not available. Therefore, we perform several experiments
illustrating the potentials of our approach. All our experiments are performed
on an Intel 2.16 GHz Mobile CPU.

5.1 Benchmark for Similarity Measures on Synthetic Deformations

The first experiment can be seen as a benchmark for similarity measures. In
order to evaluate the efficiency of different measures, we test our method on
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (�)

Fig. 3. Exemplary visual results for the first experiments. (a)-(l) Visualization of
the image alignment before and after registration using our method with normalized
mutual information based on histogramming. For the mono-modal experiment, the
difference images are shown (contrast enhanced for print quality) and a checkerboard
visualization for the multi-modal registration. Note, that in the latter case, dark
areas of the source image should be aligned with bright areas of the target image.

simulated deformations where the ground truth deformation field is known.
Three different target images (A-C) are generated from the 2D MRI source
image by randomly displacing equally distributed landmarks within a range of
-10 to 10 millimeters in both dimensions. The number of landmarks is varied
for the three targets in order to obtain different degrees of deformation. The
warping is done using thin-plate splines (TPS) with different regularization
factors. The resulting targets are shown in Fig. 2. Target A, B, and C (Fig.
2b-d) are generated using 60, 30, and 15 mm spacing between the landmarks,
respectively. Before registration we add uniformly distributed random noise
with mean 0 and variance 0.01 to the source images (relative to the maximum
and minimum intensity). For the multi-modal experiment, we created a second
source image with inverted squared intensities. The resolution of the images
is 256× 256 with an isotropic pixel spacing of 1 mm.

We perform the registration using the default parameters mentioned in Section
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Target�A
Metric AE MOD TIME AE MOD TIME AE MOD TIME
SAD 2.25�(1.98) 0.19�(0.14) 10
SSD 7.29�(15.97) 0.61�(1.80) 118 4.17�(4.46) 0.32�(0.32) 160 2.03�(1.73) 0.16�(0.12) 10
NCC 3.35�(3.69) 0.23�(0.20) 233 4.23�(4.17) 0.35�(0.37) 222 2.04�(1.94) 0.16�(0.14) 12
SADGIP�(�=0.1) 2.23�(1.98) 0.18�(0.14) 35
SADGIP�(�=1.0) 5.26�(9.53) 0.38�(0.61) 27
NMI (Histo) 2 73 (2 57) 0 22 (0 20) 45

n/a n/a

n/a
n/a
n/a

n/a
n/a
n/a

Our�MethodElastix�(GD) Elastix�(QN)

NMI�(Histo) 2.73�(2.57) 0.22�(0.20) 45
NMI�(Parzen) 3.54�(7.39) 0.27�(0.51) 71 3.96�(7.01) 0.30�(0.42) 77
CR�(Histo) 2.98�(3.17) 0.25�(0.24) 32
SADGIP�(�=1.0) 6.75�(14.64) 0.71�(1.79) 26
NMI�(Histo) 2.10�(3.16) 0.14�(0.14) 46
NMI�(Parzen) 1.79�(2.70) 0.11�(0.11) 71 3.02�(7.07) 0.18�(0.32) 124
CR�(Histo) 2.66�(5.31) 0.16�(0.22) 30

n/a

n/a

n/a

n/an/a

n/a n/a

n/a n/a
n/a
n/a

n/a

Target�B
Metric AE MOD TIME AE MOD TIME AE MOD TIME
SAD 3.39�(4.75) 0.21�(0.19) 11
SSD 8.97�(19.18) 0.79�(2.27) 117 5.11�(6.75) 0.30�(0.29) 160 3.96�(7.61) 0.23�(0.29) 11
NCC 5.44�(8.16) 0.31�(0.33) 226 5.14�(6.00) 0.34�(0.38) 213 3.39�(4.67) 0.20�(0.18) 12
SADGIP�(�=0.1) 3.56�(5.24) 0.22�(0.20) 38
SADGIP�(�=1.0) 5.90�(6.54) 0.42�(0.43) 27
NMI (Histo) 4 71 (7 47) 0 29 (0 38) 49n/a

Elastix�(GD) Elastix�(QN) Our�Method

n/a n/a

n/a n/a
n/a n/a
n/aNMI�(Histo) 4.71�(7.47) 0.29�(0.38) 49

NMI�(Parzen) 3.68�(5.69) 0.24�(0.30) 70 4.17�(5.55) 0.28�(0.37) 124
CR�(Histo) 4.36�(6.09) 0.27�(0.33) 30
SADGIP�(�=1.0) 8.97�(13.37) 0.64�(0.77) 27
NMI�(Histo) 3.74�(9.21) 0.23�(0.49) 46
NMI�(Parzen) 3.54�(7.95) 0.22�(0.44) 71 3.24�(7.23) 0.21�(0.42) 80
CR�(Histo) 2.98�(5.50) 0.18�(0.22) 28

n/a n/a

n/a n/a

n/a

n/a

n/a

n/a n/a
n/a n/a

n/a

Target�C
Metric AE MOD TIME AE MOD TIME AE MOD TIME
SAD 5.73�(8.46) 0.32�(0.45) 11
SSD 9.55�(14.77) 0.79�(2.33) 115 6.32�(6.06) 0.34�(0.33) 159 5.57�(7.65) 0.30�(0.38) 10
NCC 7.73�(7.47) 0.44�(0.42) 217 6.22�(5.94) 0.33�(0.32) 325 6.67�(7.62) 0.36�(0.43) 12
SADGIP�(�=0.1) 4.87�(5.16) 0.26�(0.23) 39
SADGIP�(�=1.0) 15.99�(22.63) 0.99�(1.25) 21
NMI (Histo) 7 66 (11 32) 0 41 (0 63) 48

n/a
n/a

n/a n/a

n/a

n/a
n/a
n/a

Elastix�(GD) Elastix�(QN) Our�Method

NMI�(Histo) 7.66�(11.32) 0.41�(0.63) 48
NMI�(Parzen) 7.57�(13.93) 0.39�(0.72) 70 7.95�(10.79) 0.47�(0.65) 59
CR�(Histo) 6.82�(8.73) 0.35�(0.41) 36
SADGIP�(�=1.0) 7.98�(16.07) 0.41�(0.84) 27
NMI�(Histo) 4.78�(10.11) 0.26�(0.62) 46
NMI�(Parzen) 3.32�(5.80) 0.19�(0.37) 70 5.52�(10.80) 0.31�(0.63) 58
CR�(Histo) 4.50�(9.38) 0.25�(0.60) 31

n/a

n/a

n/a

n/a n/a

n/a n/a

n/a
n/a
n/a

n/a n/a

Table 1
Quantitative results for the first experiment. The last three rows in each table are
the results for the multi-modal registration. We estimate the mean of the angular
error (AE), the mean of the magnitude of differences (MOD), and their respective
standard deviations (printed in brackets). The registration time is given in seconds.
Elastix (GD) and Elastix (QN) denote the gradient-based methods using gradient-
descent and Quasi-Newton optimization.

4. The smoothness factors λpq are set to the same values for all control points.
The values are empirically determined according to the used similarity measure
in order to achieve visually good results. For this experiment, we use the full
regularization over time defined in Equation (17).

Additionally, we compare our results to an FFD-based registration framework
called Elastix 5 [19]. We run the gradient-based registrations with two different

5 Elastix is available for download on http://www.isi.uu.nl/Elastix/.
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optimizers, a standard gradient-descent and a Quasi-Newton optimizer using
line search strategies [19]. The parameters of both methods are tuned until we
achieve visually good results. The number of iterations for the three pyramid
levels are set to 500, 250, and 100, respectively. Elastix is using a random
sample selection technique in order to increase the computational efficiency.
We set the number of samples to 8000, which seems to be a good compromise
between accuracy and speed. In some cases where the registration fails, the
number of samples is increased to 16000 resulting in an increased computa-
tional time. The general configuration for both methods is the same as for our
method: same number of pyramid levels, same grid resolution, and the same
transformation model based on cubic B-Splines. Furthermore, in case of NMI
and CR implementation 64 bins are used for the histograms.

For the quantitative evaluation, two error metrics are considered, namely the
angular error (AE) [8] measured in degrees and the magnitude of differences
(MOD) measured in millimeters. Thus, we can measure the deviation of the
registration results compared to the ground truth. The results for our method
and the two gradient-based approaches are presented in Tab. 1. Elastix pro-
vides three of our implemented similarity measures, the SSD, NCC, and the
NMI, where the latter one is based on Parzen windowing (in contrast to
our rather simple implementation of histogramming). For SSD and NCC our
method performs best in almost all cases both in accuracy and speed. For
NMI the three approaches perform quite similar in accuracy while in some
cases the gradient-based approaches are slightly better while our method is
always faster. However, since our results for NMI are only based on a simple
histogramming approach, the performance is still remarkably good. The visual
results for our NMI registration are shown in Fig. 3. The combined measure
using intensity and geometrical information from image gradient performs
much worse than reported in [14]. This is mainly to the presence of noise in
our experiments. Still, in some cases the additional geometrical information
can improve the performance of the SAD measure while in other cases, where
larger deformations are present it even fails to converge to a satisfactory reg-
istration. The use of the image gradients only (γ = 1) in case of multi-modal
registration seems to be not suitable, at least for our experiments.

5.2 Inter Subject Brain Registration

In the next experiment the registration accuracy will be determined using
manual segmentations. Eight MRI data sets of the brain are registered where
in all of them manual expert segmentations of the gray and white matter
are available. The image resolution is 256× 256× 128 with a voxel spacing of
0.9375×0.9375×1.5 mm. The data is part of the Internet Brain Segmentation
Repository (IBSR) provided by the Center for Morphometric Analysis at Mas-
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Gray�Matter
Image DICE Sens Spec DICE Sens Spec DICE Sens Spec
Brain�1 0.7022 0.7679 0.9633 0.8205 0.8547 0.9800 0.8567 0.8936 0.9831
Brain�2 0.7267 0.7236 0.9792 0.8142 0.8125 0.9857 0.8468 0.8489 0.9878
Brain�3 0.6687 0.6047 0.9816 0.8054 0.8059 0.9823 0.8332 0.8194 0.9867
Brain�4 0.7270 0.7924 0.9703 0.8154 0.8524 0.9818 0.8535 0.9065 0.9833
Brain�5 0.6977 0.7341 0.9686 0.8041 0.8449 0.9782 0.8355 0.8787 0.9809
Brain 6 0 7078 0 6328 0 9852 0 8116 0 7615 0 9891 0 8415 0 8112 0 9889

Our�MethodAffine�12�DOF�(GD) Rueckert�(GD)

Brain�6 0.7078 0.6328 0.9852 0.8116 0.7615 0.9891 0.8415 0.8112 0.9889
Brain�7 0.7062 0.6793 0.9779 0.8308 0.8303 0.9848 0.8591 0.8725 0.9857
Average 0.7052 0.7050 0.9752 0.8146 0.8232 0.9831 0.8466 0.8615 0.9852
Running�Time 4�minutes 3�hours�50�minutes 8�minutes

White�Matter
Image DICE Sens Spec DICE Sens Spec DICE Sens Spec
Brain�1 0.6484 0.6214 0.9842 0.7686 0.7296 0.9910 0.8344 0.7909 0.9944
Brain�2 0.6269 0.6335 0.9863 0.7225 0.6794 0.9929 0.7962 0.8031 0.9924
Brain�3 0.6097 0.5622 0.9887 0.7312 0.7212 0.9899 0.7855 0.7937 0.9909
Brain�4 0.6860 0.6881 0.9866 0.7879 0.8034 0.9900 0.8428 0.8195 0.9947
Brain�5 0.6372 0.6080 0.9853 0.7598 0.7231 0.9912 0.8329 0.8297 0.9921
Brain 6 0 6521 0 6477 0 9882 0 7338 0 8976 0 9808 0 7794 0 8659 0 9876

Affine�12�DOF�(GD) Rueckert�(GD) Our�Method

Brain�6 0.6521 0.6477 0.9882 0.7338 0.8976 0.9808 0.7794 0.8659 0.9876
Brain�7 0.6430 0.5924 0.9884 0.7840 0.8102 0.9881 0.8262 0.8312 0.9916
Average 0.6433 0.6219 0.9868 0.7554 0.7664 0.9891 0.8139 0.8191 0.9920
Running�Time 4�minutes 3�hours�50�minutes 8�minutes

Table 2
Results for the brain registration evaluated on manual segmentations of the gray
and white matter. Given is the DICE score, the sensitivity, and the specificity. The
running time states the time needed for a single registration. Rueckert (GD) denotes
the method in [31] using a gradient-descent optimizer.

sachusetts General Hospital (http://www.cma.mgh.harvard.edu/ibsr/). The
T1-weighted images have been positionally normalized into the Talairach ori-
entation (rotation only). We select one data set as the template and register
it to the remaining seven data sets. The recovered transformation is then used
to warp the template segmentations. In order to compare the warped seg-
mentations to the manual ones, we determine three measures, namely DICE
score, the sensitivity, and the specificity. The registration is performed using
the NCC similarity measure and an incremental regularization as defined in
Equation (16). The weighting factor λpq is set to 0.005. We use four resolu-
tion levels, starting with 40 mm control point spacing which is then refined
to 20, 10 and finally 5 mm. The label set scaling factor is set 0.75. The rest
of the parameters is set to the default values mentioned in Section 4. A single
registration takes about 8 minutes which splits into approximately 7 minutes
for the data term computation and 30 seconds for the Fast-PD optimizer plus
some seconds for the intermediate warpings.

We compare our results for the MRI brain registration with a 12 degrees-of-
freedom (DOF) affine registration (3 rotations, 3 translations, 3 scalings, 3
shears) and the FFD-based registration 6 proposed by Rueckert et al. [31,32]
which can be seen as the state-of-the-art in FFD registration. Both methods
use a standard gradient-descent optimizer, the NCC similarity measure, and

6 Available on http://wwwhomes.doc.ic.ac.uk/∼dr/software/.
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Fig. 4. Color encoded visualization of the surface distance between warped and
expert segmentation after affine (left), gradient-descent (middle), and our registra-
tion (right) for the Brain 1 data set. The color range is scaled to a maximum and
minimum distance of 3 mm. In some regions, the results of the gradient-descent
approach seem to be slightly better. However, the actual average surface distance
(ASD) after registration for the gray matter is 1.66, 1.14, and 1.00 mm for affine,
gradient-descent, and our method, respectively. For the white matter the resulting
ASD is 1.92, 1.31, and 1.06 mm.

also a four level resolution approach where the grid resolution for the FFD-
based registration is the same as in our method. A single affine registration
takes about 4 minutes which is just the half of our deformable registration.
The single gradient-descent FFD registration takes more than 3 hours and 50
minutes, which is almost 30 times more than our method.

The quantitative results are presented in Tab. 2. Visual results of the surface
distance (SD) for the gray and white matter of one of the data sets are shown
in Fig. 4. The SD map is computed using the tool 7 described in [12]. Our
method performs best for all three measures while reducing the running time
for the FFD registration compared with gradient-descent extremely. We should
note that all three methods start from the original images as initialization.
Neither our method nor Rueckert’s registration is using the affine results as
an initialization. Using the very coarse grid of 40 mm (7× 7× 6 grid) in the
beginning of the deformable registration, we demonstrate that parts of the
affine transformation (e.g. anisotropic scaling) can be successfully recovered
by FFD.

7 The tool Valmet is available on http://www.ia.unc.edu/dev/download/valmet/.
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6 Discussion

In this paper we have proposed a novel framework for deformable image reg-
istration that bridges the gap between continuous deformations and optimal
discrete optimization. Our method reformulates registration using an MRF
definition, and recovers the optimal solution to the designed objective function
through efficient linear programming. Towards capturing important deforma-
tions, we propose an incremental estimation of the deformation component.
These objectives are met through a discrete labeling problem defined over
an MRF graph. Graph edges introduce smoothness on the deformation field,
while the unary potentials encode the image support for a given deformation
hypothesis versus another. Therefore, the method is gradient-free meaning no
computation of the derivative of the employed cost function is needed, it can
encode any similarity measure and can recover the optimal solution up to a
bound. We have demonstrated the immense computational speedup provided
by our framework. In addition, we believe that the intuitive adjustment of the
space of solutions which is directly related to the images to be registered is
another advantage compared to gradient-descent approaches where the user
cannot easily control the search space.

In several applications, building anatomical atlases and models of variations
between training examples is feasible. In such a context, one can consider a
partial graph where connection hypotheses are determined according to the
density of expected deformations. Such a direction will introduce prior knowl-
edge in the registration process and will make the optimization step more
efficient. Moreover, the use of shape and appearance models can be consid-
ered to perform segmentation through registration. Assuming a prior model
that involves both geometry and texture, and given a new volume one can
define/recover segmentation through the deformation of the model to the im-
age that is a natural registration problem which can be optimally addressed
from the proposed framework. In [13], preliminary but promising results on
atlas-based segmentation using our framework are presented.
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