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Abstract. In this paper we propose a novel approach to define task-driven regu-
larization constraints in deformable image registration using learned deformation
priors. Our method consists of representing deformation through a set of control
points and an interpolation strategy. Then, using a training set of images and the
corresponding deformations we seek for a weakly connected graph on the control
points where edges define the prior knowledge on the deformation. This graph is
obtained using a clustering technique which models the co-dependencies between
the displacements of the control points. The resulting classification is used to en-
code regularization constraints through connections between cluster centers and
cluster elements. Additionally, the global structure of the deformation is encoded
through a fully connected graph on the cluster centers. Then, registration of a new
pair of images consists of displacing the set of control points where on top of con-
ventional image correspondence costs, we introduce costs that are based on the
relative deformation of two control points with respect to the learned deformation.
The resulting paradigm is implemented using a discrete Markov Random Field
which is optimized using efficient linear programming. Promising experimental
results on synthetic and real data demonstrate the potential of our approach.

1 Introduction

Image deformation estimation consists of recovering a transformation which aligns two
images. Optical flow estimation [1] or fusion of medical images [2] are prominent appli-
cations in the fields of computer vision and medical image analysis. Starting from the
pioneering formulation of the visual preservation constraint [3], it has been an active
problem for almost two decades. The spatial transformation to be recovered establishes
correspondences between the two images according to some similarity measure. The
task of registration often involves three aspects, the transformation model, the similarity
measure, and the optimization strategy used to estimate the transformation parameters.

Variational techniques [4], statistical methods [5] and more recently discrete opti-
mization approaches [6] were considered to address this task. The main challenge to
be addressed is related with the ill-posedness definition of the problem. In the most
general case, one has to determine a vector of variables from a single constraint, while
at the same time signals can be non-linearly related with an unknown spatial transfor-
mation (registration). The use of regularization techniques [7] is often used as a soft
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prior to deal with the above limitation which often deteriorates estimation along region
boundaries.

In medical imaging, if one neglects the global component of the transformation,
and since observed signals measure information on anatomical structures, the notion
of repetitive behavior is present, for example the deformation of the heart during the
cardiac cycle. The use of prior models can be an excellent choice to address the ill-
posedness of the registration task, in particular when considering intra-modal regis-
tration of challenging, emerging imaging modalities (functional MRI, diffusion tensor
imaging, ultrasound, ...), or in case of inter-modal registration for pairs of images where
the similarity metric is ill-defined. A lot of work has been done in modeling variations in
shape in a more global sense using principal component analysis (PCA). Active shape
models (ASMs) [8] have been successfully and widely used in automatic segmentation
and shape matching. However, despite enormous investment on model-free deformable
registration, one can observe limited work on registration with deformation priors.

The main challenge of dense registration with deformation priors is with regard
to the dimensionality of the problem. Opposite to conventional learning problems, in
the most general case, learning the deformations corresponding to the entire image do-
main requires a huge number of training examples. One can overcome this limitation
through a rough dimensionality reduction of the deformation fields [9], but then the
performance of the model is compromised in terms of ability to capture local defor-
mations. An alternative to such an approach is to consider a rather dense sampling and
determine dependencies between deformations. If such a task can be addressed, then
one can model prior knowledge on the deformation through decomposition into several
local parts where each exhibits similar behavior. This will introduce two novel priors,
one that encodes local dependencies and one that accounts for the global structure of
the deformation.

In this paper, we propose a novel approach to deformable image registration with
priors on the deformation. The deformation field is represented using a set of control
points and an interpolation strategy. Using a training set, we perform clustering on
the determined deformations according to the displacements of the control points. The
aim is to determine pairs with statistical correlation in terms of deformation behavior.
Recent advances from linear programming are used to address the clustering task. The
outcome of the process is integrated within a discrete Markov Random Field (MRF)
[10] approach for dense image registration. Conventional regularization constraints –
e.g. penalizing the gradients of the displacement field – are replaced in order to encode
co-dependencies between the cluster centers and the corresponding cluster elements.
The global structure of the learned deformation is modeled through a fully connected
graph on the cluster centers. The resulting graph structure involves a very small number
of connections and can be learned from a rather small training set. Experimental results
using these two novel deformation priors demonstrate the potential of our approach.

The remainder of this paper is organized as follows: in Section 2 we present the
construction of the deformation priors, while in Section 3 the registration paradigm
is presented. Experimental results and validation are part of Section 4, while the last
Section concludes the paper.
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2 Learning and Construction of Deformation Priors

Let us consider a set of N training examples (pairs of images). The corresponding
deformation fields {D1,D2, . . . ,DN} are assumed to be known (e.g. obtained through
dense registration). Considering a transformation model such as Free Form Deforma-
tions (FFD) [11], a deformation field D can be efficiently represented through a set of M
control points P = {p1,p2, . . . ,pM} defined on a regular grid where each control point
pi is associated with a displacement vector di. Then, the displacement D(x) of any pixel
x in the image domain can be determined through interpolation between control point
displacements, or

D(x) =
M

∑
i=1

η(x)di , (1)

with η(·) being the interpolation function (often based on B-spline basis functions [12]).
Modeling prior knowledge based on observed deformations aims at determining a

probability density function (pdf) ψ(D). Such a pdf could then be incorporated into the
registration procedure and hopefully would improve the estimation of the deformation.
In order to construct a compact representation of such a prior, we assume that corre-
lations exist between the behavior of control points. We further assume that we can
separate the control points into two groups – the masters and the slaves. The master
control points are the ones that encode the most important information, while the slaves
are the ones which can be determined to some extent from the master ones. This can
be viewed as a clustering problem where cluster centers will correspond to master con-
trol points and cluster elements to the slave ones. Each of the slaves will be attributed
to a single cluster according to their statistical dependency, while one should reduce
the number of retained clusters to a minimum. Such a clustering task involves the fol-
lowing unknown variables: (i) number of clusters K, (ii) identity of the cluster centers
C = {c1,c2, . . . ,cK}, and (iii) assignment of elements to clusters A = {a1,a2, . . . ,aM}
with ai ∈ [1,K]. Additionally, let κ be a multivariate probability distribution determined
from the N observed displacement vectors of a control point p. Then, the statistical de-
pendency between two control points pi and p j can be obtained by a distance function
ξ(κi,κ j). From a mathematical perspective, we try to minimize the following function

min
K,C,A

M

∑
i=1

ξ(κpi ,κcai
)+

K

∑
k=1

f (ck) , (2)

where f (·) is a cluster penalty term which avoids the trivial solution of choosing all
elements as cluster centers.

A common drawback of many popular clustering techniques (such as the K-means
algorithm) is that they need to be given the number of clusters K beforehand (which
simplifies Eq. (2)). This is, however, problematic as this number is very often not known
in advance. Another very bad symptom of many clustering techniques is that they are
particularly sensitive to initialization. To address these issues, we make use of a recently
proposed clustering method based on linear programming [13] which automatically
estimates the optimal number of clusters and works independent from the initialization.
Due to the limited space we refer the reader to the given reference which also discusses
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the right choice of the cluster penalty term. However, other clustering approaches might
be considered as well.

Still, a crucial part is the choice of an appropriate distance function ξ(·, ·). It can be
for instance the Kullback-Leibler divergence [14] or the Bhattacharyya divergence [15]
which is considered in this paper. The Bhattacharyya measure is defined as

B(κi,κ j) =
∫

∞

−∞

√
κi(x)κ j(x)dx , (3)

which satisfies the properties 0 ≤ B(κi,κ j) ≤ 1, B(κi,κ j) = B(κ j,κi) and B(κi,κ j) =
1 if and only if κi = κ j. The corresponding Bhattacharyya divergence is defined as
ξB(κi,κ j) = − logB(κi,κ j). For Gaussian distributions the Bhattacharyya divergence
has a closed form expression, while for more complex distributions such as Gaussian
mixture models (GMMs) closed form expressions do not exist and sampling strategies
[16] have to be used.

2.1 Deformation Prior

The outcome of the clustering consists of a set of cluster centers C ⊆ P and disjunct
clusters of control points {P1,P2, . . . ,PK} with

⋃K
k=1 Pk = P. Then, in order to capture

the local dependencies within a cluster, we consider the pairwise probability distribu-
tions on the relative deformation between cluster elements p∈Pk and the corresponding
cluster center ck ∈ Pk,C, or

ψ
local
k (D) = ∏

p,ck∈Pk,ck∈C,p6=ck

κpck(‖dp−dck‖) . (4)

Additionally, in order to capture the global structure of the learned deformation, we
consider the distributions between cluster centers

ψ
global(D) = ∏

ci,c j∈C,i6= j
κcic j(‖dci −dc j‖) . (5)

The pairwise distributions for the relative deformation of two control points are esti-
mated from the training data, once the clustering is computed.

We can now approximate the overall pdf ψ(D) by combining the above terms into
a prior on the deformation, or

ψ(D) = ψ
global(D)

K

∏
k=1

ψ
local
k (D) (6)

One should note that such a representation is invariant to global translation. Implement-
ing this prior into a registration framework constraints the space of feasible deforma-
tions. This could be of great benefit in cases where the similarity measure deteriorates
due to noise or data corruption. Also, conventional soft priors – e.g. penalizing the
gradients of the displacement field – might result in oversmoothed displacement fields
which could also be overcome by incorporating the above priors.
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Throughout this paper, we represent the probability density functions by GMMs.
Other representations can be considered, however the main advantage of GMMs is their
compact representation for complex distributions while being efficient in terms of eval-
uation and implementation. The density estimation from the training data is performed
through the EM algorithm [17] while the optimal number of Gaussians is determined in
a brute force manner. To this end, we evaluate the minimum description length (MDL)
for 1 to 5 Gaussians and keep the GMM with the lowest MDL.

3 MRF Registration with Deformation Priors

In order to prove the concept of using the proposed deformation priors for image reg-
istration, we implemented the proposed paradigm in a dense registration framework
based on discrete MRFs [18]. In our case, the main advantage of such a framework is
that MRFs naturally allow for encoding dependencies between pairs of variables (here,
the FFD control points). We show that simple changes in the MRF topology and the re-
placement of conventional regularization costs are sufficient to enhance the registration
algorithm with the learned deformation priors.

3.1 Dense Registration through MRF Labeling

We will briefly recall the principles of the intensity-based registration framework de-
scribed in [18]. Considering the common approach of energy minimization for the reg-
istration of two images I and J, or

D∗ = argmin
D

∫
Ω

φ(I(x),J(x+D(x)))dx (7)

one seeks for recovering the optimal deformation D∗ w.r.t. a similarity measure φ. Con-
sidering the FFD transformation model defined Eq. (1), we can define the objective
function based on the control points as

Edata(D) = ∑
p∈P

∫
Ω

η̂(x) ·φ(I(x),J(x+D(x)))dx. (8)

where η̂(·) is a weighting function determining the influence of a pixel x to the local
similarity at control point p. Different approaches for the weighting function can be
considered (cp. [18]), depending on the nature of the similarity measure.

The key idea in this approach is now to reformulate the registration problem as
a discrete labeling problem. Based on the previous assumptions, the control points P
of the deformation grid are considered as a set of discrete variables. Additionally, a
discrete set of labels L = {l1, ..., li} corresponding to a quantized version of the defor-
mation space Θ = {d1, ...,di} is introduced. A label assignment lp to a grid node p is
associated with displacing the node by the corresponding vector dlp . Once a label is
assigned to every node we obtain a discrete labeling l. A popular and efficient model
for representing such discrete labeling problems are second-order MRFs [19]:

Emrf(l) = ∑
p∈P

Vp(lp)+λ ∑
(p,q)∈S

Vpq(lp, lq) , (9)
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where Vp(·) are the unary potentials representing the data term, Vpq(·, ·) are the pair-
wise potentials representing dependencies between neighboring nodes, and S defines
the neighborhood system through a set of edges. Additionally, λ acts as a weighting
factor controlling the influence of the pairwise term. We define the unary potentials (in
iteration t) according to our data term as

Vp(lp) =
∫

Ω

η̂(x) ·φ
(
I(x),J(x+Dt−1(x)+dlp)

)
dx . (10)

The pairwise potentials can encode penalty costs for assigning different labels to
connected nodes. The FFD transformation model already inherits implicit smoothness.
Additionally, one can consider explicit regularization constraints on the grid domain.
A common, but rather heuristic, approach is to consider regularization on the squared
differences of displacement vectors – i.e. an approximation of penalizing the gradients
of the deformation field. This can be defined as

Vpq(lp, lq) =
(
(dt−1

p +dlp)− (dt−1
q +dlq)

)2
, (11)

where dt−1
p and dt−1

q are the accumulated displacements for the control points p and q
in iteration t.

Many optimization algorithms exist for efficiently solving discrete labeling prob-
lems in form of an MRF. We use a recently proposed method called FastPD [20] which
is also used in [6, 18]. Due to the limited space, we refer the reader to the given refer-
ences for more details about the algorithm.

3.2 Local and Global Prior Costs

Conventional regularization techniques as introduced in Eq. (11) can be seen as soft
priors which are used to deal with the ill-posedness of the registration problem. Still,
these approaches may deteriorate the estimation along region boundaries or result in
oversmoothed displacement fields, since there is no relationship between the penalty
function based on the grid topology and the actual local dependencies of object de-
formations. To overcome this limitation, we propose a novel regularization term based
on the results of the control point clustering. One can claim that variations on the de-
formation of nodes belonging to one cluster should be penalized w.r.t. to the relative
deformation learned from the training data while discontinuities between nodes of dif-
ferent clusters should be explicitly allowed (even desired). We propose to remove the
conventional regularization term which simply imposes smoothness for neighboring
nodes. Instead, we define an intra-cluster regularization that accounts for the local de-
pendencies of control points. For each cluster k, we connect its elements p ∈ Pk with
the cluster center ck and define edge penalty costs derived from Eq. (4) as:

Vpck(lp, lck) =− log
(

κpck(‖(d
t−1
p +dlp)− (dt−1

ck
+dlck

)‖
)

. (12)

The advantage of this cluster-based regularization is on one hand its direct relation
to the learned local dependencies on the level of control points, and on the other hand,
it allows for discontinuities between neighboring control points belonging to different
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clusters. Additional to the cluster-based regularization, we propose a second prior term
that accounts for the global structure of the deformation. Using the concept of pairwise
densities defined in Eq. (5), we can impose a global prior cost on the desired deforma-
tions by introducing connections between all cluster centers (fully connected graph),
or

Vcic j(lci , lc j) =− log
(

κcic j(‖(d
t−1
ci

+dlci
)− (dt−1

c j
+dlc j

)‖)
)

. (13)

The overall pdf derived in Eq. (6) can then be encoded by combining the two terms
which leads to the proposed registration approach using learned deformation priors.
The new energy function of the MRF registration is then defined as

Emrf(l) = ∑
p∈P

Vp(lp)︸ ︷︷ ︸
Data Costs

+λ

(
∑

ci,c j∈C
Vcic j(lci , lc j)+

K

∑
k=1

∑
p,ck∈Pk

Vpck(lp, lck)

)
︸ ︷︷ ︸

Deformation Prior Costs

. (14)

4 Experimental Validation

In our first experiment, we investigate the performance of the proposed approach in a
synthetic scenario. On the one hand, this experiment should illustrate the single steps of
our method from the training phase to the final application of image registration. On the
other hand, we will compare its performance to conventional regularization techniques
– i.e. penalizing the vector difference between neighboring control points [18]. The
second experiment is on real data where the idea is to learn the deformation on images
of good quality which are suitable for conventional registration. After the learning, the
registration with deformation priors is used to register images of bad quality showing
the same anatomy as in the training data.

4.1 Experiments on Synthetic Deformations

In the absence of a gold standard, evaluation in deformable registration settings is a
challenging task. One option is to consider synthetic deformations where everything
is known by construction. To this end, we generate a 2D image with a resolution of
128× 96 showing a bone like structure and define a deformation grid of size 17× 13
(see Fig. 1(e)). We separate the control points into nine clusters from which eight clus-
ters are used to generate random deformations and the ninth cluster is without defor-
mation. Random displacements of elements belonging to the same cluster are following
a similar Gaussian distribution. In total we generate 500 deformations. Examples are
shown in Fig. 1(a)-(d) where the dense displacement field is overlaid. We use 400 de-
formations for the training and the prior construction. A Gaussian density with zero
mean and standard deviation one is assumed for the control points of the ninth cluster
without deformation. All other densities are estimated from the training data. Based on
the clustering result (see Fig. 1(f)) we define the new MRF topology using intra-cluster
edges for the local prior as shown in Fig. 1(g) and for the global prior we define a fully
connected graph on the cluster centers as shown in Fig. 1(h). For better visibility all
connections within and to the ninth cluster are discarded from the drawings.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1: Synthetic experiment: the upper row shows exemplary deformations and overlaid the cor-
responding dense displacement fields. The lower row illustrates the clustering (f) and the resulting
MRF topology consisting of intra-cluster edges (g) and the fully connected graph on the cluster
centers (h).

We compare the performance of the proposed method to conventional regulariza-
tion as defined in Eq. (11) and used for instance in [18]. To this end, the source image
(see Fig. 1(e)) is registered to different target images where either varying amount of
Gaussian noise is added or the image data is heavily corrupted. We use the sum of
squared differences (SSD) as the similarity measure. The SSD is very sensitive to noise
and allows us to investigate the important role of regularization. The weighting factors
λ are individually determined empirically for the conventional and the approach using
learned priors such that smooth and reasonable deformations are obtained. In particular,
the conventional method is sensitive to λ such that too less regularization leads the SSD
measure to smear the source image while too much regularization constraints the defor-
mation to rigid translations. Once a good compromise is found on exemplary images,
the values are fixed throughout the experiments for both methods. Exemplary target
images are shown in Fig. 3(a)-(d). After registration, we compare the original shape
boundary of the target image with the warped boundary of the deformed source image
and compute the symmetric average boundary distance (ABD). Visually, we observe
that conventional regularization tends to result in oversmoothed displacement fields
(see Fig. 3(m)) while the registration with deformation priors reflects the single clus-
ters in the recovered deformations (see Fig. 3(q)). Visual registration results and the
color encoded displacement fields are illustrated in Fig. 3(e)-(t). Quantitative measure-
ments of the ABD after registration are summarized in Fig. 2. The overall ABD before
registration is 2.16(±0.46) pixels. The approach using learned priors clearly outper-
forms the conventional regularization. In particular under extreme conditions of noise
and corruption, the priors on the deformation help to achieve meaningful registration
results while the conventional approach fails.
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Target Conventional Learned Priors
Noise σ=0.1 0.42 (± 0.11) 0.16 (± 0.06)
Noise σ=1.0 0.73 (± 0.18) 0.42 (± 0.15)
Noise σ=5.0 1.17 (± 0.26) 0.79 (± 0.25)
Corrupted 1.52 (± 0.49) 0.69 (± 0.12)

Fig. 2: Synthetic experiment: on the left, the average boundary distance (ABD) after registration
using the conventional regularization and the approach using learned priors. Before registration
the overall ABD is 2.16(±0.46) pixels. On the right, the initial alignment of source (in green)
and an exemplary target image (in blue) also used in Fig. 3. For this example, the ABD is 1.77
pixels.

4.2 Experiments on Real Data

In our second experiment, we consider clinical data of a myopathy study. MRI scans
showing the lower leg muscles are acquired from 23 subjects. Each scan consists of T1
and DTI images. Note, that from the DTI images only the B0 image is used. While the
T1 images have a very good contrast, a high resolution (256× 256× 20), and a low
signal-to-noise ratio, the DTI images are of low resolution (64× 64× 20) and rather
bad quality where a lot of artifacts are present (see Fig 4). In a leave-one-out manner,
we randomly select 22 subjects for the training where one subject is chosen as the
reference. We perform a series of conventional registrations using only the T1 images
where the reference is aligned with all other training images. The results of the 21
registrations are then used for the learning of the deformation priors. Since we consider
a multi-resolution approach, we separately learn the deformation prior for each control
grid level. For evaluation, we register the DTI image of the reference with the DTI
of the subject which is not included in the training set. Here, we use the normalized
cross correlation as the similarity measure. Exemplary visual results are shown in Fig.
4. For a better visual inspection of the results, we also warp the T1 images using the
deformations obtained from the DTI registration, and visualize the difference images.
A perfect alignment based on the challenging DTI images is not achieved. However, the
results show that the deformation prior drives the registration towards the right solution
where the similarity measure alone combined with conventional regularization fails to
obtain a good alignment.

5 Discussion

In this paper we have proposed a novel approach to image registration using learned
deformation priors. To this end, the deformation of the control points were considered
as random variables and clustering on the statistical behavior of these variables was
performed to determine their co-dependencies. Connections between cluster centers
and attributed elements were used to impose regularization, while connections between
cluster centers aimed to capture the global structure of the learned deformation. This
prior was naturally considered within an MRF towards improving registration perfor-
mance on challenging data as well as on sequences heavily corrupted by noise. The
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distribution of control points and the number of clusters being retained are critical com-
ponents of our process as well as the distance between variables. Non-uniform transfor-
mation models (such as NURBS) might be a more appropriate selection for the graph
construction. Further investigation on the above mentioned components of the method
could improve the performance. The use of this concept to address registration within
modalities that do exhibit low signal to noise ratio is a natural extension of our ap-
proach. Ultrasound images, diffusion tensor imaging, or functional MRI are examples
where conventional registration techniques might often fail to provide meaningful re-
sults. Therefore, we believe that our approach has great potential in such applications.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 3: Synthetic experiment: the first row illustrates exemplary target images with varying
amounts of noise and corruption. The second row shows the registration results for the conven-
tional registration while the third row shows the results for using learned priors. The target shape
boundary is drawn in blue, the shape boundary of the deformed source image is drawn in red.
The initial alignment before registration is illustrated in Fig. 2. The fourth and fifth row show the
color encoded displacement fields for both methods. The color represents the angle, the intensity
the magnitude of the displacement vectors. Note, how well the clustering topology is reflected in
all fields for registration with deformation priors (compare Fig. 1(f)).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 4: Real data experiment: Upper row shows exemplary T1 images from the training set. Mid-
dle row shows the corresponding B0 DTI images. The two last rows show from left to right the
target image, the difference image for the initial alignment, the alignment after conventional reg-
istration, and the result for the registration with deformation priors when using (e) as the source
image. Note, for better visual inspection of the registration results, the difference images (j)-(l)
are computed from the warped T1 images using the deformations obtained from the DTI regis-
trations.


