Dense Registration with Deformation Priors

Ben Glocker^{1,2}, Nikos Komodakis³, Nassir Navab², Georgios Tziritas³, Nikos Paragios^{1,4}

¹ Laboratoire MAS, Ecole Centrale Paris, Chatenay-Malabry, France ² Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany ³ Computer Science Department, University of Crete, Greece ⁴ Equipe GALEN, INRIA Saclay - Ile-de-France, Orsay, France

Synthetic data

Real data

The

MRF registration

deformation priors

• A set of high quality T1 images is used for training and learning of

The corresponding low quality

DTI images are then registered to a remaining set of evaluation images • The DTI registration is performed

using the proposed MRF registration with deformation priors estimated from the T1 registrations

visually compared to conventional

registration results are

Experimental Validation

Boundary Overlay

Convential

Komodakis N. et al. Clustering via Ip-based stabilities. NIPS 2008
Glocker B. et al. Dense image registration through mrfs and efficient linear programming. MedIA 12(6) 2008

Acknowledgements: Ben Glocker has been partially supported by Siemens Healthcare (Erlangen, Germany).

 $V_{\mathbf{c}_i \mathbf{c}_j}(l_{\mathbf{c}_i}, l_{\mathbf{c}_j}) = -\log\left(\kappa_{\mathbf{c}_i \mathbf{c}_j}(\|(\mathbf{d}_{\mathbf{c}_i}^{t-1} + \mathbf{d}_{l_{\mathbf{c}_i}}) - (\mathbf{d}_{\mathbf{c}_j}^{t-1} + \mathbf{d}_{l_{\mathbf{c}_j}})\|)\right)$

→ Registration with priors by changing the MRF topology and replacement of potentials

Novel MRF energy

CENTRALE

centre de recherche SACLAY - ÎLE-DE-FRANCE

Noise σ=0.1

Noise $\sigma=1.0$

Noise $\sigma=5.0$

Corrupted

Boundary Overlay

Priors

 $0.42 (\pm 0.11)$

 $0.73 (\pm 0.18)$

 1.17 ± 0.26

 $1.52 (\pm 0.49)$

Table: Average Boundary Distance

Dense Field

Convential

0.16 (± 0.06)

 $0.42 (\pm 0.15)$

0.79 (± 0.25) 0.69 (± 0.12)

Dense Field

Priors

NSTITUT NATIONAL

DE RECHERCHE

EN INFORMATIQUE

ET EN AUTOMATIQUE

NRIA

