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ABSTRACT
We propose a Markov Random Field formulation for the lin-
ear image registration problem. Transformation parameters
are represented by nodes in a fully connected graph where the
edges model pairwise dependencies. Parameter estimation is
then solved through iterative discrete labeling and discrete op-
timization while a label space refinement strategy is employed
to achieve sub-millimeter accuracy. Our framework can en-
code any similarity measure, allows for automatic reduction
of the degrees of freedom by simple changes on the MRF
topology, and is robust to initialization. Promising results on
real data and random studies demonstrate the potential of our
approach.

Index Terms— Linear Image Registration, Markov Ran-
dom Fields, Discrete Optimization

1. INTRODUCTION

In the last years, the solution of computer vision problems by
Markov Random Fields (MRFs) [1] and discrete optimization
has become increasingly popular for medical imaging appli-
cations such as segmentation [2] or non-linear registration [3].
Recent advances [4, 5] in discrete optimization methods make
this approach very attractive.

However, linear image registration [6, 7], which is one
of the most important and basic techniques in medical image
processing has not yet been solved by discrete optimization.

In this paper we address this issue and present a linear
registration method which formulates the problem as an MRF
model and solves it by discrete optimization.

2. METHOD

The task of image registration is to recover a transformation T
which aligns two images I, J : Ω 7→ R. A common approach
for modeling this problem is by energy minimization as

T̂ = arg min
T
ξ (I, J ◦ T ) , (1)
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where T̂ is the optimal transformation and ξ ia an arbitrary
intensity-based similarity measure. We consider T to be a
linear transformation, more precisely we will focus on affine,
anisotropic similarity, and rigid transformations which are of-
ten used in medical settings. There is a wide choice of simi-
larity measures which can be employed, ranging from the sum
of squared differences (SSD) to more sophisticated statistical
measures such as mutual information (MI) [8, 9]. Formulat-
ing Eq. (1) as an MRF problem has the advantage that the
similarity measure is easily interchangeable, since no deriva-
tives of the measure are required. Furthermore, discrete opti-
mization methods have generally a large capture range. Com-
bined with intelligent discretization strategies such methods
have potential for robust image registration.

In Sec. 2.1, we present the parameterization of the trans-
formation model. Sections 2.2 and 2.3 describe our MRF
model and discretization strategy and in Sec. 2.4 further fea-
tures of the framework are given.

2.1. Parameterization

Affine transformations in homogeneous coordinates are linear
transformations which can be written in the form Â

0 1

 , (2)

where Â is a 2×3 or 3×4 matrix for 2D and 3D respectively,
resulting in 6 degrees of freedom (DOF) in 2D and 12 DOF in
3D. We employ a parameterization in which the affine trans-
formation is decomposed as

A = Mt Rφ R
−1
θ DsRθ . (3)

Here,Mt is a translation,Rφ is a rotation, andR−1
θ DsRθ rep-

resents the shearing transformation. For the shearing, Rθ is a
rotation and Ds is a diagonal matrix, representing anisotropic
scaling. We parameterize the single matrices of Eq. (3) by
respective parameters, compare also [10]. The 3D rotation
matrices are parameterized by Euler angles. The resulting pa-
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Fig. 1: MRF topology for 2D linear registration in case of rigid (left)
and affine transformations (right).

rameter vectors for the 2D and 3D case are

p = [φ, tx, ty, sx, sy, θ] (4)
p = [φx, φy, φz, tx, ty, tz, sx, sy, sz, θx, θy, θz] . (5)

An advantage of this parameterization is that it can be
used also for less general transformations. Rigid transforma-
tions are obtained, if D=Rθ = Id, similarity transformations
are encoded for Rθ = Id.1 Similarly, pure translation, rota-
tion, scaling, or shearing transformation, or any combination
thereof can be achieved.

2.2. Markov Random Fields for Linear Registration

The key idea of our approach is to reformulate parameter es-
timation for linear registration as a discrete labeling problem.
To this end, we construct a graph G = (V, E) consisting of a
set of nodes V and a set of edges E . Each node vi ∈V corre-
sponds to one parameter pi of the linear transformation, while
an edge (vi, vj) ∈ E between two nodes represents their de-
pendency. For each node, we introduce a set of discrete labels
Li which is associated with a quantized version of the param-
eter space Φi. This way, image registration becomes a label-
ing task where one seeks to assign an optimal label xi∈Li to
each of the nodes such that the resulting transformation aligns
the two images.

A common approach for modeling discrete labeling tasks
in terms of energy minimization is the usage of first-order
MRFs. The general form of the MRF energy is defined by
two sums over potential functions

Emrf =
∑
vi∈V

ψi(xi) +
∑

(vi,vj)∈E

ψij(xi, xj) , (6)

where ψi are the unary potentials determining the energy of
assigning a label xi to a node vi, and ψij are the pairwise
potentials determining the energy of assigning a pair of labels
(xi, xj) to the connected nodes vi and vj .

Note that the unary potentials are modeling the energy
for a single parameter independently of all others. Since the
linear transformation parameters are highly dependent, unary
potentials are not appropriate for their modeling. In contrast,

1Please note that the similarity transformation includes anisotropic scal-
ing which is important for inter-subject registration.

the pairwise terms are able to model the energy resulting from
a simultaneous change of two parameters. Hence, we use the
pairwise potentials to model the energy corresponding to a
simultaneous variation of the parameters pi and pj as

ψij(xi, xj) = ξ (I, J ◦ Tij) , (7)

where the transformation Tij encodes the change in the pa-
rameters pi and pj .

In order to force the global consistency of the transfor-
mation parameters, we connect all nodes between each other
such that we obtain a fully connected graph G?=(V, E?). Ex-
emplary configurations for different types of linear transfor-
mations are illustrated in Fig. 1.

Finally, we define the MRF energy for the linear registra-
tion problem as posed in Eq. (1) as

Elinreg =
∑

(vi,vj)∈E?

ψij(xi, xj) (8)

=
∑

(vi,vj)∈E?

ξ (I, J ◦ Tij) . (9)

In the literature, many optimization algorithms exist for
efficiently solving discrete labeling problems in form of an
MRF. We use a recently proposed method called FastPD [5]
which has successfully been used for non-linear registration
[3]. Due to the limited space, we refer the reader to the given
references for more details about the optimization algorithm.

In the following, we describe the important part of param-
eter space discretization.

2.3. Parameter Space Discretization

We consider the following discretization strategy for obtain-
ing the quantized versions Φi of the parameter space. For
each parameter, we define a minimum and maximum value
which determines the parameter range and perform a uniform
sampling of the range. Here, the number of labels plays a cru-
cial role. A sparse sampling might result in inaccurate regis-
tration while dense sampling increases complexity. To over-
come this problem, we employ a successive label space re-
finement. In each iteration k, we rescale the parameter range
by a factor αk and compute a new MRF labeling. The suc-
cessive label space refinement allows us to keep the number
of labels quite small and we can start with a large parameter
range, while being able to achieve sub-millimeter registration
accuracy.

For the computation of Eq. (7), we need to compute the
potential transformations Tij =T (p̂ij), where p̂ij is the vari-
ation of the current parameter vector p by ∆pij at parameters
pi and pj . For all parameters p̂k, except for scaling, the vari-
ation is achieved by addition, i.e. p̂k=pk+∆pk, while for the
scaling parameters p̂s multiplication is used p̂s=ps∆ps.
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Fig. 2: Error distribution of the 3D affine random study test. Of the
200 trials, 3 were classified as failed with an error >10mm. The his-
togram of the successful trials is presented above and the distribution
has a mean of 2.02mm (±0.84mm), and median of 1.88mm.

2.4. Further Method Features

The described registration method is performed with a stan-
dard multi-scale strategy. The method also supports random
subsampling strategies, which are often used to improve the
runtime, cf. e.g. [11] and references therein. Furthermore, it
is easy to implement a stratified approach, which is often used
in real applications [12] and consists in sequentially perform-
ing registrations of increasing complexity. Due to the flexible
parameterization as described in Sec.2.1, automatic reduction
of the degrees of freedom is achieved by simple changes on
the MRF topology. Since our method performs these modifi-
cations automatically if the search range for one parameter is
set to zero, there is no need for explicit implementation of the
single registration methods.

3. EVALUATION

We test our method by random studies in 2D and 3D on mono-
modal brain (Sec. 3.2, 3.1) as well as by a series of multi-
modal registrations (Sec. 3.3). All experiments are performed
on brain data from the the Retrospective Image Registration
Evaluation Project (RIRE) database. We employ a CT image
with a resolution of 512×512×29 and a physical voxel size of
0.65×0.65×4mm and 3 MR images (T1,T2,PD) with a reso-
lution of 256×256×26 and a voxel size of 1.25×1.25×4mm.
The number of labels per label space Li is set to 9 and we
found a fixed scaling factor of α = 2/3 to be efficient.

3.1. 3D Random Study

The 3D random study is performed on a CT volume. Ran-
dom affine transformations are applied to the source image,
and the warped image is used as target. The transformation
parameters are uniformly drawn from certain ranges. Trans-
lations result from±10mm, rotations lie between±20◦, scal-
ings range from [0.8, 1.2], and the shearing angle parameters θ
are drawn from±5◦. We performed 200 experiments with the
same parameters, which were set manually. We use a subsam-
pling strategy with 5% of randomly chosen voxels and SSD
as similarity measure. The registration error is computed as
the average distance (AD) of the corner points of a centered
200mm cube, warped by the ground truth and the estimated
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Fig. 3: Error distribution of the 2D affine random study test. (a)
Error over all classes. Of the 7000 trials, 19 from class 7 had an error
>1mm and were classified as failed. The histogram of the successful
trials is presented above and the distribution has a mean of 0.05mm
(±0.03mm), and median of 0.04mm. (b) The error distribution for
single classes as boxplot. The mean is presented by the blue cross,
the median by the green line.

transformation. The results are summarized in Fig. 2. The
average runtime is about 3 minutes.

3.2. 2D Random Study

The 2D random study is performed on a slice from the CT
image in same way as the 3D study. We additionally bin the
random transformations into 7 classes of increasing complex-
ity in order to study the capture range of the method. The
classes sample the parameter space equidistantly, for transla-
tion ([0, 35]mm), rotation ([0, 42]◦), scaling (1±0.025 to 1±
0.175), and shearing angle ([0, 7]◦). For example, class 7 con-
tains translations from [30, 35]mm, rotations from [36, 42]◦,
scalings from 1±0.175, and shearing rotation of [6, 7]◦. The
error is evaluated on the corners of a 200mm centered square.
We perform 1000 tests for every single class, and evaluate the
registration error for the single classes as well as the complete
range in Fig. 3. The average runtime is about 20 seconds.

In addition, we test the robustness w.r.t. to initialization
by testing the registration for large rotations. For 1000 trials
we generate targets by small translation (±10mm) and scal-
ing (1±0.1), and a large rotation ([90, 180]◦). In 99.3% of
the cases the method successfully recovers the transformation
with sufficient precision for further steps (error below 20mm).
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Fig. 4: Checkerboard visualization of the multi-modal registration. The errors from left to right are 1.36, 4.20, and 2.27mm.

3.3. 3D Multi-Modal Registration

Our last experiment is a multi-modal registration scenario.
For all registrations, a ground truth transformation is available
obtained through a fiducial landmark registration performed
by the providers of the database. A CT image is registered to
three MR images acquired with different protocols (T1, T2,
and PD). For the tests, we use a subsampling strategy with
20% of randomly chosen voxels. We also use the stratified ap-
proach (Sec. 2.4), where translation correction is performed
prior to rigid registration. Using the ground truth, we deter-
mine the error by measuring the AD for a centered cube of
334×334×112mm. The AD for the initial alignment before
registration is 46.18, 56.13, and 67.61mm for T1, T2, and
PD respectively. After registration the error is 1.36, 4.20, and
2.27mm. For all registrations, we use the entropy correlation
coefficient (ECC) proposed in [8]. Visual results are illus-
trated in Fig. 4. Here, the average runtime is about 5 minutes.

4. CONCLUSION

In this paper, we have derived an MRF formulation for the lin-
ear image registration problem. The transformation model is
decomposed into the individual parameters which are repre-
sented by nodes in a fully connected graph. Parameter estima-
tion is then solved through iterative discrete labeling and dis-
crete optimization while using a label space refinement strat-
egy and a multi-scale approach. Our framework can encode
any similarity measure without need for substantial modifica-
tions and allows for stratified registration since any subclass
of affine transformation can be modeled by simple changes on
the MRF topology. We evaluated our method on real data and
extensive random studies. We also showed that our method is
robust w.r.t. initial alignment.

In future work, performance comparison with other meth-
ods will be performed. Since the main computation is based
on image warping and evaluation of the similarity measure,
we believe that our method is especially suitable for GPU op-
timization.
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