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Abstract. Labeling of discrete Markov Random Fields (MRFs) has be-
come an attractive approach for solving the problem of non-rigid image
registration. Here, regularization plays an important role in order to ob-
tain smooth deformations for the inherent ill-posed problem. Smoothness
is achieved by penalizing the derivatives of the displacement field. How-
ever, efficient optimization strategies (based on iterative graph-cuts) are
only available for first-order MRFs which contain cliques of size up to
two. Higher-order cliques require graph modifications and insertion of
auxiliary nodes, while pairwise interactions actually allow only regular-
ization based on the first-order derivatives. In this paper, we propose an
approximated curvature penalty using second-order derivatives defined
on the MRF pairwise potentials. In our experiments, we demonstrate
that our approximated term has similar properties as higher-order ap-
proaches (invariance to linear transformations), while the computational
efficiency of pairwise models is preserved.

1 Introduction

Non-rigid image registration is an important problem in computer vision and
medical imaging. Given two images I and J , one seeks a transformation T which
aligns the corresponding objects visible in the images. This is commonly solved
by posing an energy minimization problem where the objective function is a sum
of a matching criteria S and a regularization term R,

T̂ = arg min
T

S(I, J ◦ T ) + αR(T ) . (1)

Here, α is a weighting factor controlling the influence of the regularization term.
In the case of non-rigid registration, the transformation is often defined as the
identity transformation plus a dense displacement field D. The new location of
an image point x is then computed by

T (x) = x +D(x) . (2)
? This work is partially supported by Siemens Healthcare, Erlangen, Germany.
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Regularization plays an important role due to the inherent ill-posedness of the
problem [1]. A natural approach for regularization is to penalize the derivatives
of the displacement field. Smoothness terms based on the first-order derivatives
penalize high gradients and thus, piecewise constant deformations are favored.
Such smoothness models require a proper pre-alignment by linear registration
prior to the non-linear one, since penalizing the gradients is only invariant to
global translation. If still some linear transformation (such as rotation or scaling)
is present, penalizing the gradients might prohibit a proper non-rigid alignment.
Since a perfect linear alignment is not trivial to achieve when deformations are
present, one can consider to define a penalty term based on the second-order
derivatives [2, 3]. Such a term penalizes high curvature in the displacement field,
is invariant to linear transformations, and thus, favors deformations which are
piecewise linear.

Recently, labeling of discrete Markov Random Fields has become an attrac-
tive approach for solving the problem of non-rigid image registration [4–6]. We
will give a short introduction into the general framework in Section 2. Most
of the methods share a similar model for the registration which is based on a
pairwise MRF, i.e. is an MRF with cliques of size up to two. Then, the unary
terms5 (cliques of size one) play the role of the matching criteria, while pairwise
terms are used to encode the regularization of the displacement field. In [6],
the regularization is based on the norm of the displacement vector differences
between neighboring control points which is an approximation of penalizing the
gradients of the displacement field. The assumption is that neighboring nodes
should follow a similar motion. A more robust measure is used in [4, 5] which
allows more freedom on the deformation. However, this measure is still based on
the gradient approximation. As remarked in [7], all these approaches penalize
linear transformations such as rotation and scaling which in practice is often
not desired. To this end, in [7] a regularization term based on the second-order
derivatives is introduced by adding triple cliques of collinear neighboring control
points to the MRF model. Each triple clique is in charge of penalizing the local
curvature of the displacement field. The main problem of this approach are in
fact the triple cliques, which require complex graph modifications in order to use
efficient optimization techniques based on message-passing. In [7], the second-
order MRF is converted to a pairwise one and then the TRW-S algorithm [8] is
utilized to infer the MRF variables. Unfortunately, no running time is provided,
but it is assumed to be much higher [9] than for the method proposed in [6]
which uses the FastPD algorithm [10, 11] (based on iterative graph-cuts).

One may ask if it is possible to define a regularization term which has similar
properties as the curvature penalty based on triple cliques while keeping the
efficiency of a pairwise model.

In this paper, we investigate the use of an approximated curvature penalty
term in a pairwise MRF. Our experiments demonstrate the practicability of
such a regularization for non-rigid registration when the optimal transformation

5 Please note, that in [4, 5] a decomposition of the unary terms is used but the general
model is similar to [6].
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contains a linear part. Compared to prior work, no higher-order cliques have to
be employed for our curvature term and thus, our approach is efficient in terms
of computational speed.

The remainder of the paper is organized as follows: the general framework
for non-rigid registration using MRFs is described in Section 2. The proposed
approximated curvature penalty is introduced in Section 3. Section 4 demon-
strates the practicability of our regularization through a set of experiments,
while Section 5 concludes our paper.

2 Non-rigid Registration using MRFs

Markov Random Field inference is a popular approach for parameter estimation.
Given a set of parameters, one can define a graph G = (V, C) consisting of a set
of nodes V (one node per parameter) and a set of cliques C (where each clique
is a subset of V). Assuming that each node i takes a label li from a discrete set
L, the task becomes to find the optimal labeling l which minimizes

Emrf(l) =
∑
c∈C

ψc(lc) , (3)

which is a sum of clique potentials ψc determining the costs of certain label
assignments and lc is the vector of labels assigned to the parameter subset c.

The most common MRF model used in computer vision tasks (e.g. segmen-
tation) is the first-order (pairwise) model containing at most cliques of size two.
Many efficient algorithms have been proposed [12, 8, 10, 13] to solve the inference
problem for this special case. For the first-order MRF the energy becomes the
sum of unary and pairwise potentials

Emrf(l) =
∑
i∈G

ψi(li) +
∑
i∈G

∑
j∈Ni

ψij(li, lj) , (4)

where Ni ⊂ G defines the neighborhood system of the graph.
In case of non-rigid registration, the MRF variables correspond to locations in

the image domain at which we want to estimate the motion (i.e. a displacement
vector). Each discrete label is mapped to a displacement from a discretized
version of the search space. For simplicity, we will denote the displacement vector
associated with label l as dl. A simple approach would be to introduce an MRF
variable for each pixel [14]. Then, the unary terms play the role of the data term
or matching cost. Exemplary, we can define the costs for the sum of absolute
differences (SAD) criteria based on image intensities as

ψi(li) = |(I(xi)− J(xi +Dt−1(xi) + dli)| , (5)

where Dt−1 is the dense field from the previous iteration and dli the potential
displacement corresponding to label li. The pairwise terms encode the regular-
ization. A simple smoothness term penalizing high gradients can be defined as

ψij(li, lj) = α ‖(Dt−1(xi) + dli)− (Dt−1(xj) + dlj )‖ . (6)
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The optimization problem for dense registration in (1) is now completely
defined as a discrete labeling of an MRF. The main problem for such an approach
is the number of variables. One variable per pixel becomes computationally very
expensive and is not feasible for large volumes in case of 3D registration. To
this end, we can reduce the dimensionality of the problem by introducing a
transformation model based on a sparse set of control points and an interpolation
strategy. The dense displacement field in (2) is then defined as

D(x) =
M∑
i

ηi(x) di , (7)

where M is the number of control points and ηi is a weighting function (e.g.
based on cubic B-splines) determining the contribution of the control point dis-
placement di to the displacement of an image point x. In this paper, we consider
free form deformations (FFDs) [15] as the transformation model, where the con-
trol points are defined on a regular lattice and each control point has only local
influence on the deformation. Let us now reformulate the matching cost (5) w.r.t.
to the control points

ψi(li) =
∑
x∈Ωi

|I(x)− J(x +Dt−1(x) + dli)| , (8)

where Ωi is a local image patch centered at the control point i. Intuitively,
(8) can be understood as a block matching cost where the whole block Ωi is
potentially moved by dli . The size of the blocks is automatically defined by
the distance between control points of the deformation grid. Additionally, [6]
proposes a weighted block matching by incorporating the weighting functions ηi
into the matching cost. The idea is that the influence of an image point to the
matching criteria of a control point should be proportional to the contribution
of that control point to the displacement of the image point. In other words,
image points far away from a control point should have less influence on its
cost than points in the immediate vicinity. Besides the reduction of the number
of MRF variables, the block matching has additional advantages. For instance,
it is straightforward to encode more sophisticated matching criteria such as
correlation or mutual information which often provide more reliable matches
than intensity differences. A comparison of different measures can be found in
[6]. The regularization term (6) is similar as before, but now evaluated only on
the control points instead of all image points

ψij(li, lj) = α ‖(dt−1
i + dli)− (dt−1

j + dlj )‖ , (9)

where dt−1
i is the displacement of control point i from the previous iteration.

The final pairwise MRF energy for the non-rigid registration in (1) based on a
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deformation grid is then defined as

Emrf(l) =
M∑
i

ψi(li) +
M∑
i

∑
j∈Ni

ψij

=
M∑
i

∑
x∈Ωi

|I(x)− J(x +Dt−1(x) + dli)|︸ ︷︷ ︸
≈S(I,J◦T )

+
M∑
i

∑
j∈Ni

α ‖(dt−1
i + dli)− (dt−1

j + dlj )‖︸ ︷︷ ︸
≈αR(T )

(10)

3 Approximated Curvature Penalty

The main limitation of the registration framework based on pairwise MRFs
are the constraints for regularization. The first-order cliques can only model
interactions between two variables. The smoothness terms proposed so far, which
all penalize high gradients on the displacement field, have the disadvantage of not
being invariant to linear transformations such as rotation and scaling. Therefore,
in [7] regularization is employed by introducing triple cliques which are able to
encode a smoothness prior based on the discrete approximation of the second-
order derivatives. The potential functions can be defined as

ψijk(li, lj , lk) = c(dt−1
i + dli , dt−1

j + dlj , dt−1
k + dlk) , (11)

c(a,b, c) =
1
δ2

n∑
d

(−ad + 2bd − cd)2 , (12)

where c approximates the local curvature at location b, bd denotes the d-th
component of the n-dimensional vector space, and δ is the control point distance.
Such a smoothness term is invariant to linear transformations. The drawback of
this approach is the complex handling of triple cliques. Graph modifications and
insertion of auxiliary nodes are necessary in order to use efficient message-passing
optimization techniques [16, 7]. The performance of message-passing algorithms
in terms of computational speed is much lower than methods based on iterative
graph-cuts [9, 11].

Therefore, we propose a regularization term based on second-order deriva-
tives which works on pairwise potential functions and which we call approxi-
mated curvature penalty (ACP). Since in pairwise terms only the potential label
assignment of two variables is known, we approximate the local curvature by as-
suming the other variables to stay fixed. In detail, for two neighboring variables
i and j, we compute the approximated curvature at both locations and average
them. To this end, we define different pairwise potentials depending on the axis
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on which the two variables are neighboring. In 2D, we have a set of potential
functions for the horizontal and vertical axis

ψHi,j(li, lj) =
1
2
(
c(dt−1

i−1 , d
t−1
i + dli , dt−1

j + dlj )

+c(dt−1
i + dli , dt−1

j + dlj , dt−1
j+1)

)
,

ψVi,j(li, lj) =
1
2
(
c(dt−1

i−Mx
, dt−1

i + dli , dt−1
j + dlj )

+c(dt−1
i + dli , dt−1

j + dlj , dt−1
j+Mx

)
)

,

(13)

where Mx is the number of control points on the deformation grid in horizontal
direction. The definition of an additional term for the third axis in 3D registration
is straightforward. In each evaluation of the ACP we determine the average of
the two local curvatures by considering the displacements of four variables: i
and j which are the variables with potential movement dli and dlj and the two
surrounding variables with the displacements from the previous iteration.

Considering the properties of such a smoothness prior, we claim that it al-
lows much more flexibility on the deformation w.r.t. to linear transformations
compared to other terms based on pairwise potentials. In the beginning of every
registration process, the matching criteria is usually the driving force towards
the correct alignment, while the regularization increases its importance on the
global energy in later iterations. The incremental deformation at the end of
the process is getting smaller and the ACP will favor deformations which are
piecewise linear instead of piecewise constant as for the gradient penalty. The
practicability of our proposed regularization is demonstrated in the following
experiments.

4 Experiments

We perform several experiments which hopefully illustrate the advantages of
the proposed ACP as regularization. Throughout the tests we use the FastPD
algorithm for MRF inference. In the first two experiments, we generate synthetic
target images by warping a source image with different linear transformations.
The first one is a 60◦ rotation and the second one an anisotropic scaling (see
Fig. 1(a) and 1(e)). For each target, four point correspondences are distributed
around the image center which exactly define these linear transformations. Please
note, that in these two experiments our aim is to investigate the properties of
the regularization only. Therefore, we choose a geometric matching term based
on perfect point correspondences. Thus, the data term is reliable and will guide
the registration towards an optimal alignment of the correspondences which
allows us to study the behavior of the regularization. We use a simple Euclidean
distance measure as the matching criteria w.r.t the correspondences. The unary
potentials are therefore defined as

ψi(li) =
K∑
k

‖pk − (qk +Dt−1(qk) + dli)‖ , (14)
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where pk and qk are the corresponding points in the target and source image, re-
spectively. Now we compare the behavior of three different regularization terms,
namely the absolute vector difference (cp. (9)), the quadratic vector difference
(i.e. the squared version of (9)), and our ACP defined in (13). For all registra-
tions, we use a 7× 7 deformation grid. The results for the registration with the
different regularization terms are shown in Fig. 1(b-d) and (f-h). We should note,
that in all cases the final mean distance for the correspondences is less than one
pixel, which indicates a very good minimization of the matching costs. However,
the ACP is the only method which is able to correctly regularize the deformation
field towards the linear transformations.

The second part of the experiments is investigating the performance of the
ACP in intensity-based registration. In fact, large rotations such as 60◦ are very
unlikely to be present if a proper pre-alignment via rigid registration has been
performed prior to the non-rigid one. Additionally, a block matching strategy
which is mainly based on a translational search most likely fails to recover large
rotations or scaling. However, in practice it is likely that a certain amount of
linear transformation is still present when starting the non-rigid alignment [17].
Again, we generate two target images from a source image, both with a 25◦

rotation (cp. Fig. 1(i)). To one of the images we also add random deformation
using a thin-plate spline warping [2] (cp. Fig. 1(m)). The registrations are then
performed purely based on intensities using the matching criteria defined in (8).
The results for the different regularization terms are shown in Fig. 1(j-l) and
(n-p). Again, the ACP outperforms the gradient penalty terms in the ability
of regularization towards linear transformations. In the last case of random de-
formation combined with rotation, the resulting transformation using ACP is
very close to the ground truth. This is remarkable since only intensities are used
in the matching criteria and outer control points obtain their positions solely
by regularization. Additionally, when we visually inspect the warped images af-
ter registration the results for the ACP are almost perfect, while the gradient
penalty terms prohibit a proper alignment due to the increasing costs for linear
transformations. This is consistent with the observations in [7].

5 Conclusion

We propose a novel regularization term based on an approximated curvature
penalty for pairwise MRFs. Our results demonstrate the superior performance of
this approach compared to previous smoothness terms based on gradient penal-
ties. Our regularization can successfully recover linear transformations and thus,
has similar properties as a curvature penalty using triple cliques, while the com-
putational efficiency of a pairwise MRFs is preserved. In fact, the running time
using ACP increases only very little compared to the gradient penalty terms.
All shown registrations are performed within a few seconds. We believe that
the proposed regularization is an important extension to the MRF registration
framework. Furthermore, we could show that introducing approximated terms
in pairwise MRFs can lead to very promising results. Future work includes the
comparison to recent advances in optimization of higher-order MRFs [18].
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Fig. 1. First two rows: Target images on the left generated from the source image
by a 60◦ rotation (a) and anisotropic scaling (e). The registration results are shown for
the absolute difference (b,f), quadratic difference (c,g), and the approximated curvature
penalty (d,h). The Euclidean distance on four point correspondences is used to define
the registration data term. Last two rows: Target images on the left generated by
a 25◦ rotation (i). For the last row, additional random deformation is added (m).
From left to right the registration results (j-l,n-p) in the same order as shown in the
upper rows. This time, no information about point correspondences is used and the
registration is purely based on image intensities. Please note, that we use backward
warping why the actual transformations visualized as grids appear to point in the
opposite direction as the warped images.


