TriangleFlow: Optical Flow with

Triangulation-based Higher-Order Likelihoods

Ben Glocker¹, T. Hauke Heibel¹, Nassir Navab¹, Pushmeet Kohli², Carsten Rother²

¹CAMP. Technische Universität München, Germany ²Microsoft Research, Cambridge, UK

Properties of Matching Costs for Optical Flow

* Patch based: Discriminative, Constant flow assumption

Random Field Energy: $E(\mathbf{x}) = \sum \psi_c(\mathbf{x}_c)$

- each MAP labeling is an update on the triangle configuration

- considers multiple pixels simultaneously
- incorrect costs at flow boundaries
- * Pixel based: Ambiguous, Valid
 - ill-posed problem
 - assigns correct cost to the label assignment
- * Higher order: Discriminative, Valid

Higher-Order Likelihoods for Optical Flow

- * Tractable?
 - Clique of K pixels has a label space of size $|L|^K$
- * Our assumption: Optical flow is piecewise affine
 - mainly solid objects which translate, rotate, or scale
 - non-solids (e.g. textiles) can be modeled by local affine motions

- triangulations are adaptive and flexible
- each triangle constitutes a local affine warp on a sub-image

Mesh Refinement

EP 0.14 / AE 5.22

- considers multiple pixels simultaneously
- assigns correct cost to the label assignment

* Optimization via hierarchical fusion moves

- nodes correspond to triangle control points

- iterative mesh and label space refinement

- sparse star-like search space discretization

- labels correspond to 2D displacement vectors

- based on QPBO and higher-order clique reduction

Layered Representation

* Input: Over-segmentation + Initial flow field

- * Spectral clustering: Fixed to 15 clusters
- * Output: Segments with similar affine motion

Motion Penalty: ADP versus NAMP

* Likelihood encoded on triple cliques

- each clique labeling is a local affine warp
- one energy term per triangle
- evaluates the cost between sub-image I_{iik} and J_{iik} exactly
- photo-consistent matching cost: correlation coefficient

$$\psi_{ijk}(x_i, x_j, x_k) = 1 - \frac{\operatorname{cov}(I_{ijk}, J_{ijk})}{\sigma_{I_{ijk}}\sigma_{J_{ijk}}}$$

* Motion prior on triple cliques: ADP

- triangle-based: angle deviation penalty (ADP)
- penalizes difference between initial angles $(\alpha_i, \alpha_j, \alpha_k)$ and warped angles $(\alpha_i', \alpha_j', \alpha_k')$
- allows translation, rotation, and scaling of triangle (i,j,k)

- * Motion prior on quadruple cliques: NAMP
 - rectangle-based: non-affine motion penalty (NAMP) - penalizes warps A_{ijk} and A_{ijl} of neighboring triangles
 - allows affine motions for the rectangle (i,j,k,l)

F := estimateInitialFlow(I, J);

initializeLabelSpace();

AF := fusionMoves(T.J.F.M.L)

else if (L count < L max)

else if (M count < M max M := refineMesh();

L := refineLabelSpace()

if(E(F+AF) < E(F))

L count:=0;

Evaluation on the Middlebury Dataset

- * TriangleFlow: Sharp motion boundaries, high-quality flow fields, takes up to 4200 seconds
- * Multi-Layer: 15 motion layers, explicit occlusion handling in overlap areas

EP 0.11 / AE 4.12

* Mesh Refinement: coarse-to-fine strategy, 4 levels, > 10,000 triangles on finest level

Multi-Layer TriangleFlow EP 0.63 / AE 3.02