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Abstract

Image registration is one of the key components in computer vision and medical image
analysis. Motion compensation, multi-modal fusion, atlas matching, image stitching,
or optical flow estimation are only some of the applications where efficient registration
methods are needed. The task of registration is to recover a spatial transformation which
aligns corresponding structures visible in the images. This is commonly formulated as
an optimization problem based on an objective function which evaluates the quality of a
transformation with respect to the image data and some prior information. So far, mainly
classical continuous methods have been considered for the critical part of optimization.

In this thesis, discrete labeling of random fields is introduced as a novel promising
and powerful alternative. A general framework is derived which allows to represent both
linear and non-linear image registration as labeling problems where random variables play
the role of transformation parameters. Based on this framework, several explicit models
are defined for the linear and non-linear case. While discrete optimization often provides
strong solutions in purely discrete settings, the task of registration actually involves the
estimation of continuous transformation parameters. In order to bridge this gap, a novel
optimization procedure is proposed based on iterative discrete labeling with successive
label space refinement strategies. The procedure is computationally efficient, avoids local
minima through large neighborhood search, and yields high-accurate registration.

Besides efficiency, the great advantage of this discrete formulation is that it provides
an intuitive control on the search and solution space, prior knowledge can be easily inte-
grated, and it is modular in terms of the objective function since neither numerical nor
analytical differentiation is necessary. The implementations are based on the most recent
advances in discrete optimization. Performance of the methods is evaluated in numerous
medical and non-medical applications such as multi-modal registration, segmentation via
atlas matching, deformable image stitching, and optical flow. Experimental results show
consistently the great potential of random fields for image registration. This thesis aims
at creating a novel and valuable perspective on the modeling part also for other imaging
and vision tasks, and hopefully influences the way people think about optimization and
the applicability of discrete random fields beyond classical problems.
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Zusammenfassung

Die Bildregistrierung ist eine Schlüsselkomponente in Computer Vision und vielen me-
dizinischen Bilderverarbeitungsproblemen. Sei es Bewegungskorrektur, Fusion von multi-
modalen Bilddaten, nahtloses Aneinanderfügen von Bildern, oder die Berechnung von
optischem Fluss, um nur einige Anwendungen zu nennen. Für diese Aufgaben sind ef-
fiziente Registrierungsmethoden notwendig. Das Ziel von Registrierung ist die Berech-
nung einer Bildtransformation, die eine Überlagerung von korrespondierenden Struktu-
ren ermöglicht. Üblicherweise wird Registrierung als Optimierungsproblem formuliert, in
welchem eine problemspezifische Zielfunktion die Qualität einer Transformation unter
Berücksichtigung der Bilddaten und A-priori-Informationen ermittelt. Zu diesem Zweck
werden hauptsächlich klassische kontinuierliche Methoden für den kritischen Teil der Op-
timierung eingesetzt.

In dieser Dissertation wird diskretes Labeling von Random Fields als neuartige vielver-
sprechende und leistungsfähige Alternative vorgestellt. Ein allgemeines, mathematisches
Framework wird erarbeitet, welches erlaubt, sowohl lineare als auch nicht-lineare Regis-
trierung als Labelingproblem zu repräsentieren. Zufallsvariablen übernehmen dabei die
Rolle von Transformationsparametern. Basierend auf diesem Framework werden mehrere
explizite Modelle für den linearen und nicht-linearen Fall hergeleitet. Während diskrete
Optimierung oft zu sehr guten Lösungen in rein diskreten Szenarien führt, beinhaltet die
Aufgabe der Bildregistrierung eigentlich die Bestimmung von kontinuierlichen Parame-
tern. Um diese Lücke zu überwinden, wird eine neuartige Prozedur bei der Optimierung
vorgeschlagen basierend auf iterativen diskreten Labelings mit schrittweiser Suchraumver-
feinerungsstrategie. Die Prozedur ist effizient in der Berechnung, vermeidet lokale Minima
durch großräumige Nachbarschaftssuche, und erzielt hochakkurate Registrierung.

Neben der Effizienz besitzt die diskrete Formulierung weitere große Vorteile. Sie bietet
eine intuitive Kontrolle über den Such- und Lösungsraum, A-priori-Wissen kann leicht
integriert werden, und die Formulierung ist modular im Bezug auf die Zielfunktion, da
weder numerische noch analytische Differenzierung benötigt werden. Die in der Arbeit
vorgestellten Implementierungen basieren auf den neuesten Entwicklungen in der diskre-
ten Optimierung. Die Performanz der vorgestellten Methoden wird in zahlreichen medi-
zinischen und nicht-medizinischen Anwendungen evaluiert. Darunter sind multi-modale
Registrierung, Segmentierung mittels Atlas Matching, deformierbares Stitching, und Be-
rechnung von optischem Fluss. Die Ergebnisse bestätigen ein großes Potential für den
Einsatz von Random Fields für die Bildregistrierung. Diese Arbeit soll zusätzlich auch
eine neue und wichtige Sichtweise für die Modellierung anderer Bildverarbeitungsproble-
me eröffnen und die Anwendbarkeit von diskreten Random Fields über die klassischen
Probleme hinaus beeinflussen.

Schlagwörter:
Bildregistrierung, Markov Random Fields, Diskrete Optimierung
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THESIS OUTLINE

In this thesis, we introduce the mathematical framework of random fields and discrete op-
timization for modeling and solving the problem of image registration. Image registration
is one of the key components in computer vision and medical image analysis. The task
of registration is to recover a spatial transformation which aligns corresponding struc-
tures visible in images. Motion compensation, multi-modal fusion, atlas matching, image
stitching, or optical flow estimation are only some applications which rely on efficient reg-
istration methods. In many cases, we are interested in extracting high-level information
about objects by looking at their motion, deformation, growth or shrinkage over time. In
medical applications, the progress of treatments and interventions is often assessed with
imaging. In order to see the actual changes of specific regions, for instance a tumor, the
images need to be registered. In image-based diagnosis it is often beneficial to fuse images
which have been acquired with different sensors or modalities. A non-medical application
for image registration is for instance the analysis of video sequences of moving objects
observed by a stationary camera. By determining the motion of the individual objects,
we can generate further high-level information via motion clustering, classification, or
recognition.

Image registration is of interest in many fields and it has been studied by a lot of
people in the last decades. Various algorithms have been proposed, some more general
and some more application specific methods. In most of these methods, optimization
plays an important role. Image registration is commonly formulated as an optimization
problem based on an objective function which evaluates the quality of a transformation
with respect to the image data and some prior information. So far, mainly classical
continuous methods have been considered for the critical part of optimization.

Combinatorial or discrete optimization is a particular sub-field within the huge field
of mathematical optimization. Recent advances within this sub-field have lead to an in-
creased popularity of discrete optimization for all kinds of vision and imaging applications.
The main contribution of this thesis is to bridge the gap between the discrete world of
these powerful optimization methods and the continuous world of image registration. We
derive a general framework which allows us to represent both linear and non-linear image
registration as discrete optimization problems. We will first give a general introduction
into random fields and their particular use in vision and imaging. We will discuss the
state-of-the-art optimization methods, but also review some historical methods and the
beginnings of the success of random fields. The major part of this thesis is the deriva-
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tion and development of models for different tasks of registration based on the random
field framework. At the end, we will demonstrate in several applications the promising
performance and great potential of our proposed methods.

Here, we give a brief outline and summary of the thesis and the following four chapters.

Chapter 1: Random Fields In our first chapter we will introduce the mathematical,
probabilistic framework of random fields which builds the basis for all our approaches and
models in image registration. We start by a very basic introduction into graphical models
with a focus on popular Markov random fields which have been used immensely in different
vision applications. We show the Bayesian justification behind these models, present
the famous maximum a posteriori principle, and give a convenient recipe for modeling
problems in terms of random fields and energy minimization. Practical considerations
are demonstrated with some classical vision applications such as segmentation and stereo
matching. We conclude the chapter by discussing some historical background.

Chapter 2: Optimization The second chapter is dedicated to discrete optimization
methods. We start by introducing some older methods such as simulated annealing or
iterated conditional modes which at their time made it possible at all to consider random
fields in practical scenarios. We then focus on state-of-the-art optimization with message
passing and graph cuts. Particularly graph cuts are discussed in more detail since our
registration methods are all based on optimization via iterative graph-cuts. In this con-
text, we present recent advances in minimizing non-submodular energy functions and first
attempts towards hybrid discrete-continuous methods.

Chapter 3: Image Registration Chapter three covers our main contribution, the
general framework for registration via discrete labeling of random fields, followed by the
derivation of our specific models for the linear and non-linear case. We start with our
non-linear models for deformable registration and present an extremely efficient first-
order Markov random field approach using free-form deformations. Then we introduce
a higher-order Conditional random field based on a piecewise-affine triangulation model.
Afterwards, we come to linear registration and present our highly-connected first-order
method for this type of registration. We conclude the chapter by a discussion on properties
and advantages of discrete formulations, a comparison with related work, and an outlook
for possible future work.

Chapter 4: Applications The last chapter of this thesis is dedicated to general exper-
iments and several applications in which we demonstrate the performance and particular
properties of our registration methods. We present different medical applications such
as rigid multi-modal brain registration, segmentation via atlas matching, and deformable
stitching for whole body imaging. Closely related to non-linear registration is the task of
optical flow estimation where one seeks to determine the apparent motion of 3D objects
in 2D images. We present several experiments and results for our methods when applied
to the problem of optical flow.



CHAPTER

ONE

RANDOM FIELDS

The aim of this chapter is to provide a self-contained introduction to random fields. In
particular we focus on the popular Markov random fields and their use in computer vision.
We will start by introducing the general concept of probabilistic graphical models of which
random fields are a special case. We will then introduce some basics and a consistent
notation and terminology which will be used throughout this thesis. The mathematical
formulation and probabilistic interpretation of these models is then discussed in detail.
Random fields have been successfully applied to many vision problems. We will review
some previous works and discuss the motivation and the success of random fields in
this area. This introductory chapter should serve as a basis for our approach of image
registration using random fields introduced later in Chapter 3. Additionally, we hope
that our introduction may be useful to researchers who are interested in applying random
fields to other applications.

1.1 Graphical Models
Random fields are a particular class of the so called Probabilistic Graphical Models
(PGMs). Before we start to present the concept and mathematical framework behind
random fields, it is useful to first have a look at the idea of PGMs. Please note, that
parts of this introduction are based on Chapter 8 in [10]. At a first glance, a graphical
model is something that we can draw on a piece of paper. It consists of two elemen-
tary objects, namely a set of nodes V (also called sites) and a set of edges E (or links).
These two sets constitute a graph G = (V,E). Nodes represent certain entities of the
problem to be modeled and are graphically illustrated as circles. The edges are used
to connect nodes and represent some sort of relationship between nodes. Edges can be
either directed – illustrated as arrows pointing from one node to another – or undirected
– simply visualized as solid lines. There are two major classes of PGMs, which are the so
called Directed Acyclic Graphical Models (DAGMs), and the Undirected Graphical Mod-
els (UGMs). Random fields belong to the second class. Two exemplary graphs are shown
in Figure 1.1. While DAGMs are suitable for modeling causal relationships (e.g. time-
dependent processes) – where the direction of an edge indicates the causality – UGMs
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Figure 1.1: Variants of graphical models.

are able to model context-dependent relationships between connected nodes. DAGMs do
not allow cycles or loops within the graph, since causality with loops is not plausible. In
contrast, the graph structure of UGMs is unrestricted allowing to model a broader class
of relationships. In practice it depends on the underlying relationship of nodes which of
these two models is appropriate for a representation of the problem at hand.

When we talk about node relationship, we should also have a look at what the nodes
actual represent. In PGMs every node stands for a random variable. That is what
brings in the probabilistic meaning into such models. Random variables are the core
entities of probability theory which aims at a mathematical understanding and formulation
of stochastic processes. An intuitive introduction into probability theory with many
examples can be found in [10]. We can think of a random variable as a variable taking
certain values from a predefined set of events. The key point is that every event has a
certain probability to occur, and with each variable we associate a probability distribution
over the set of events. We could for instance model the outcome of a rolling dice as a
single random variable where the events are the numbers printed on that dice. Probability
theory provides us with a set of rules to compute answers to questions such as: what is the
probability of throwing a 6 three times in a row? Indeed, the stochastic process of a rolling
dice is rather simple. More complex processes involve a set of random variables and the
probabilities of their individual outcome might depend on each other. Random variables
might need to “interact” or “communicate” in order to determine their joint probability
distribution. PGMs are illustrative and a powerful tool for modeling complex stochastic
processes. In addition, PGMs come with a mathematical foundation which allows us
to perform probabilistic reasoning on these processes. Following [10], we summarize the
main advantages of PGMs, which

1. provide a simple way to visualize the structure of stochastic processes, which can
be used to design and motivate new models,

2. allow insights by visual inspection of the graphs about the relationship (e.g. inde-
pendence) of random variables,

3. facilitate complex computations to be done by simple graphical manipulations which
perform the operations implicitly.
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1.2 Markov Random Fields

Probably, the two most popular PGMs are Bayesian networks – which belong to the
class of DAGMs – and Markov random fields (MRFs) – belonging to the class of UGMs.
In this thesis, we will focus on MRFs and the closely related conditional random fields
(CRFs). We will later see why these models are of particular interest in image analysis.
More details on Bayesian networks can be found in [10]. We should also note that since all
these models are based on the PGM fundament, there exist strong connections between
directed and undirected models. In fact, it is possible to transform both into a common
form called factor graphs. A unifying view on different models is presented in [139], while
some more details on the conversion from one to another can be found in [10].

During the last decade, MRFs have become increasingly popular in all kinds of imag-
ing and vision applications. Their main success is twofold. First, many vision problems
can be modeled as an MRF, where the MRF structure is following directly the structure
of an image, which makes the model very intuitive. Second, recent advances in MRF
optimization algorithms allow efficient computations. A detailed introduction and dis-
cussion on MRF optimization is presented in Chapter 2. A motivation for the use of
MRFs in computer vision and a brief review of some common applications is later given
in Section 1.6. In the following, we will formalize the concept of MRFs and introduce the
underlying mathematical framework.

1.2 Markov Random Fields
Let us consider a random field X which is a set of n random variables Xi ∈ X. Each
variable can take a value xi ∈ Li, where Li is the before mentioned set of events. In
random field theory, the events are commonly referred to as labels, and Xi = xi is then
referred to as a label assignment of variable Xi. Note, that in general each variable could
have its own predefined set of labels Li. However, we will see that in many applications,
where the variables represent the same type of entity, the variables access a common set
L. Once every variable is assigned a label, this is what we call a labeling of the field
denoted by X = x with x = (x1, ..., xi, ..., xn). Sometimes a labeling is also referred to
as a configuration or realization of the field. The set containing all possible labelings is
denoted by X .

As discussed before, we know that an assignment of a label, which equivalently can
be seen as the occurrence of a certain event, has a certain probability. We denote this
probability by ρ(Xi = xi) or in brief simply by ρ(xi). The joint probability of the field
labeling is then denoted as ρ(X=x) or simply as ρ(x).

Now, let us assume the random field is modeling some real world problem in terms of a
stochastic process. Naturally, we are interested in computing probabilities such as above,
since it would allow us to reason about the process. For instance, we could be interested
in a particular probability of a certain event. Or we could ask what is the overall labeling
of the field with the highest probability. We will later see examples in vision problems,
where exactly these questions arise. There is one special case, where the computation is
straightforward. That is when all the random variables are conditionally independent,
and we are given the probability distribution associated with each variable.

Simple example: assuming we have four perfect (unbiased) dices. Each dice corre-

5



Chapter 1: Random Fields

x1 x2 x3

x7

x4 x6x5

x9x8

(a) Regular grid

x2

x1

(b) 1st-order

x2

x1

x3

(c) 2nd-order

x3

x1

x4

x2

(d) 3rd-order

Figure 1.2: Neighborhoods, cliques, and order.

sponds to a random variable. Our random field is X={X1, X2, X3, X4} and the common
set of labels is L= {1, 2, ..., 6}. Without going into more details, we directly know that
ρ(xi) = 1/6 for any i and xi ∈ L, simply because we know that the outcome of a dice is
conditionally independent of the other ones, and each value is equally probable. So, we
can also easily compute the joint probability ρ(x) = ∏4

i=1 ρ(xi) = (1/6)4.
Obviously, for processes where all the variables are conditionally independent, the

concept of random fields is rather useless. But most problems are much more complex and
conditional dependence plays a crucial role. We will later see that in many applications
the variables – represented by graph nodes – are somewhat located in a spatial domain, for
instance equally distributed on a two-dimensional lattice. Here, conditional dependence
between neighboring nodes is of particular interest. Modeling these dependencies is one
of the strength of random fields. We already learned that node relationships can be
represented via graph edges. Let us now discuss this concept of relationship in more
detail, before we present the properties of a special class of random fields, the Markov
random fields.

1.2.1 Neighborhoods, Cliques, and Order
The graph nodes V have a one-to-one correspondence to the set of random variables X,
i.e. each node i ∈ V is associated with a variable Xi ∈ X. The edges in the corresponding
graph of a random field define a neighborhood system on the set of nodes. To illustrate
this, let us assume the nodes are distributed on a regular two-dimensional lattice. Then
a simple 4-connected neighborhood system corresponds to what we call a regular grid
where inner nodes have exactly four neighbors which are the adjacent nodes on the left,
right, top, and bottom. Border nodes will have three neighbors, while the four corner
nodes will have only two. Such a graph is illustrated in Figure 1.2(a). This leads us to
the definition of a clique. A clique is a subset of nodes C ⊆ V . If |C| > 1, every node
i ∈ C has to be a direct neighbor to all other nodes j ∈ C (i.e. (i, j) ∈ E). So a clique is
either a single node, or it constitutes a fully-connected subgraph. For the regular grid we
see that it contains cliques of size up to two.

In general, the total number of cliques of a random field is equal to the number of
fully-connected subgraphs plus the number of nodes. We define the set C to be the set
containing all cliques of a random field. We further define the order of a random field as
the size of the maximal clique minus one. This means, a first-order random field contains
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only cliques of size up to two (cf. Figure 1.2(b)), a second-order field contains cliques
of size up to three (cf. Figure 1.2(c)), and so on. The fully-connected graph shown in
1.2(d) corresponds to a third-order clique. In general, for fully-connected graphs the set
of cliques C is equal to the power set of V .

Sometimes, we need to refer to all neighbors of one specific node. To this end, we
define a neighborhood set Ni which contains all nodes connected to i. By definition node
i is not a neighbor of itself. A neighborhood system of a random field is then defined as
N = {Ni | ∀i ∈ V }. As mentioned above, the neighborhoods reveal something about the
conditional dependency between random variables. This will be discussed in the following.

1.2.2 Markov Properties and Local Characteristics
Based on the above definition of neighborhoods, we can now introduce the properties of
Markov random fields.

Definition 1 (Markov random field) A random field X is said to be a Markov random
field with respect to a neighborhood system N if and only if it satisfies the following two
properties:

ρ(x) > 0 ∀x∈X , (Positivity) (1.1)
ρ(xi|{xj : j ∈ Ni}) = ρ(xi|{xj : j ∈ V \{i}}) . (Markovian) (1.2)

The first property ensures that the joint probability can be uniquely determined by requir-
ing that any labeling has a strictly positive probability. This property is usually satisfied
in practice, or can be easily ensured. The second property states something about the
conditional dependence between neighboring nodes, which yields two interesting obser-
vations about MRFs. First, Equation (1.2) tells us that any node depends only on its
direct neighbors. This depicts the local characteristics of MRFs. Second, if two nodes are
not connected it automatically implies that these nodes are conditionally independent. A
detailed discussion of these two properties can found in [5].

While the theoretical implication of locality of Equation (1.2) is of great importance,
specifying the MRF in terms of conditional probabilities can be quite difficult. The prob-
lem is that conditional probabilities are subject to some non obvious and highly restrictive
consistency conditions [5, 102]. The fact that the nodes in a random field are in general
unordered and no hierarchy exists adds to this difficulty. It is not obvious, how to deduce
the joint probability from the conditional probabilities. This is in contrast to Bayesian
networks, where the factorization of the joint probability in terms of conditional prob-
abilities is straightforward given the natural hierarchy of nodes represented by directed
edges. However, there is another, more intuitive way to specify an MRF directly in terms
of the joint probability. In the following, we show how this can be done.

1.2.3 Markov-Gibbs-Equivalence
The specification of an MRF via its joint probability is based on a theoretical result known
as the Hammersley-Clifford-Theorem [51]. But first, we need to define another class of
random fields, the so called Gibbs random fields (GRFs).
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Definition 2 (Gibbs random field) A random field X is said to be a Gibbs random
field if and only if its joint distribution ρ(x) is a Gibbs distribution, which has the following
form:

ρ(x) = 1
Z

∏
C∈C

exp (−ψC(x)) with Z =
∑
x∈X

∏
C∈C

exp (−ψC(x)) , (1.3)

where Z is a normalization constant (also known as the partition function) which ensures
that the factors sum up to one and constitute a probability distribution. The functions
ψC(x) are the so called potential functions, where one function is defined per clique C ∈
C. So, for an GRF the joint probability is simply factorized into terms based on the
exponential of the negative values of the potential functions. Later, we will see what these
functions represent. The definition of these functions is an essential part of modeling
any problem as a random field. For now, it is sufficient to keep in mind that these
are unrestricted real-valued functions which evaluate sub-labelings in terms of associated
energies, where the lower the energy the more likely the labeling. Gibbs distributions
arise for instance in statistical mechanics as the equilibrium distribution of a system with
energy function ψ [37].

The following important theorem states the equivalence between MRFs and GRFs.
Proofs can be found in [51] and [5].

Theorem 1 (Hammersley-Clifford) A random field X is said to be a Markov random
field if and only if X is a Gibbs random field, and vice versa.

Having this in mind, we are able to specify the joint probability of an MRF by specifying
the potential functions of a Gibbs distribution.

1.3 Modeling with MRFs
In the following, we will consider an intuitive example – the task of image restoration – to
illustrate the whole process of MRF modeling. In image restoration we are given a noisy
version of an image and the goal is to restore the original intensities of each pixel. This
example is inspired by the seminal work on MRFs in vision by Geman and Geman [36].

The first step in MRF modeling is to define the role of the random variables. Let
us introduce two sets of variables X and Y. Assuming the discrete image I contains n
pixels, then the two sets of variables have both the cardinality n= |X|= |Y|. The set X
corresponds to the pixels of the restored image and their values correspond to the restored
intensities. The set Y is associated with the noisy image and their values correspond to
the noisy intensities. The values of Y are given or observed; we call these fixed values
the observation (cf. Figure 1.3(b)). In contrast, the values of X are unknown or hidden.
These are the values we want to estimate. Estimating the hidden variables is also called
an inference problem.

Now, we come to the essential point in modeling. We need to make suitable assump-
tions, simplifications, and/or approximations about the problem at hand. Here, we make
the following two assumptions. First, we say that we believe that the original intensities
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are related to the observed ones, i.e. the restored intensities should be somehow similar to
the ones in the noisy image. If this would not be valid, there is little chance of restoring
the image. The second assumption is that neighboring pixels most probably have similar
intensities. This seems valid for a large portion of the image, except for the boundary
pixels between different objects.

From these assumptions we can deduce the relationships between variables. We for-
malize this by defining a Markov random field on the set X⋃Y. We introduce edges be-
tween pairs (Xi, Yi) which define the conditional dependence between hidden and observed
variables. Assuming that the variables X are spatially distributed on a two-dimensional
lattice (following the natural grid structure of the discrete image I), we further define a 4-
connected neighborhood system on X. Every hidden variable is connected to its adjacent
hidden variables (cf. Figure 1.2(a)). This formalizes our second assumption about the
conditional dependence between neighboring pixels. The corresponding first-order MRF
is illustrated in Figure 1.3(a). A configuration of the MRF is represented by the labeling
(x,y), where y is fixed to the observed values and x corresponds to a restored image.
The joint distribution of the above MRF can be written in form of a Gibbs distribution:

ρ(x,y) = 1
Z

∏
C∈C

exp (−ψC(x,y)) . (1.4)

Given any image, the question of interest would be: what is the probability of that
image to be a good restoration given the observation? Or mathematically, we seek the
conditional probability distribution ρ(x|y). Computing this distribution is not easy, often
infeasible. Why? Because there is most probably an infinite number of observations, i.e.
noisy images; all of them have to be known in order to define the distribution properly. In
the following, we will see that it is not necessary to know the exact conditional distribution.
We are still able to reason about the hidden variables based on the joint distribution in
Equation (1.4).

1.3.1 Posterior, Likelihood, and Prior
The rules of probability allow us to derive a connection between the conditional probability
and the joint probability, i.e. ρ(x,y) = ρ(x|y)ρ(y). Bringing ρ(y) to the other side, we
get ρ(x|y)=ρ(x,y)/ρ(y). Using the symmetry property of the joint distribution, we can
derive a very well known rule of probability, namely the Bayes’ Theorem:

ρ(x|y) = ρ(y|x)ρ(x)
ρ(y) . (1.5)

For the term ρ(y) we can safely assume a constant factor. It seems reasonable to assume
that any observation has same probability. We get ρ(x|y) ∝ ρ(x,y) = ρ(y|x)ρ(x), which
states that the Gibbs distribution in Equation (1.4) is proportional to the conditional
distribution. This is of great importance in the following section. Bayes’ terminology
introduces special names for the single probability distributions, i.e.

• Prior distribution: ρ(x)
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Chapter 1: Random Fields

• Likelihood distribution: ρ(y|x)

• Posterior distribution: ρ(x|y)

The prior distribution ρ(x) reflects a priori knowledge about the hidden variables indepen-
dently of the observation y. This knowledge is available before we obtain any observation.
For instance, the assumption that neighboring pixels should have similar intensities is a so
called prior. Such priors impose constraints on the solution space of x. If no prior infor-
mation is available, one assumes an uniform distribution, where every labeling has equal
prior probability. The likelihood distribution ρ(y|x) evaluates how well a certain labeling
of the hidden variables fits the observation. In our example, the assumption that the re-
stored intensities should be somehow similar to the observed ones is such a likelihood. The
posterior distribution ρ(x|y) reflects the probability of a labeling after we have made an
observation and when we combine the prior and the likelihood. The connection between
these three distributions was already shown above, i.e. posterior ∝ likelihood × prior.
If we find a labeling that maximizes the right hand side, this labeling will also have the
maximum posterior probability.

Before we discuss this in more detail, let us decompose Equation (1.4) into the like-
lihood and prior distribution. For the restoration problem, we have defined two types of
cliques in C where all cliques have size two. Let us denote the potential functions for
the (Xi, Yi) connections simply by ψi(x,y). Further, we denote the potential functions
for the connections between adjacent hidden variables (Xi, Xj) by ψij(x,y). Additional
simplifications can be done on the argument of these functions. ψi considers only the
two labels xi and yi, while ψij considers only xi, xj and is completely independent of the
labeling y. A graphical representation of these terms in form of edges in a random field
is shown in Figure 1.3(a). We can rewrite the Gibbs distribution as a product of two
separate parts

ρ(x,y) = 1
Z

∏
i

exp (−ψi(xi, yi))
∏
(i,j)

exp (−ψij(xi, xj)) . (1.6)

The first part of the product corresponds to the likelihood distribution

ρ(y|x) = 1
Zi

∏
i

exp (−ψi(xi, yi)) , (1.7)

while the second part, which is independent of the observation, corresponds to the prior

ρ(x) = 1
Zij

∏
(i,j)

exp (−ψij(xi, xj)) . (1.8)

As we will see, this is a quite convenient view on the joint distribution. It allows us to
separately define suitable potential functions for the problem at hand, which then fully
define the joint distribution. Let us now try to encode our rather vague assumptions for
the restoration process in clearly defined real-valued potential functions. For the likelihood
term, we assume that the noise in the observed image follows a normal distributionN (0, 1)
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with zero mean and a standard deviation of one. Therefore, a suitable potential function
for the likelihood is

ψi(xi, yi) = (xi − yi)2 , (1.9)

which is simply the squared difference of intensities. For the prior, we use a function
which preserves discontinuities. The corresponding potentials are defined as

ψij(xi, xj) = min
[
(xi − xj)2, t

]
, (1.10)

where t is a threshold on the maximum penalty, which might have to be adjusted to
the given image data. The motivation for this truncated function comes from the fact,
that we assume similar values for neighboring pixels, but we also know that disconti-
nuities in image intensities occur at object boundaries. Such discontinuities should not
be over-penalized. The interested reader can find an intuitive introduction and formal
mathematical derivation of such discontinuity preserving priors in [11]. We borrowed the
definitions of the potential functions from [143]. Note that, for simplicity, very often the
explicit definition of the observed variables y is omitted and thus these variables will
also not occur in the argument of the potential functions. For instance, the likelihood
potentials are then simply written as ψi(xi), and the dependence on the observation is
assumed implicitly. Also worth to note, the potential functions have special names related
to on how many hidden variables they depend. The ψi functions are then called unary
potentials, while we denote the ψij terms as pairwise potentials.

As mentioned earlier, we are interested in labeling the hidden variables such that the
posterior probability is maximized. Assuming that we can find this labeling, our hope
is that this labeling corresponds to the desired solution, i.e. in case of restoration, this
labeling should correspond to a visually good and reasonable looking image. In Chapter 2,
we will present algorithms which allow us to compute these labelings. In the following,
we will introduce the concept behind this idea from a probabilistic perspective. But let
us first briefly introduce another class of random fields closely related to MRFs.

1.3.2 Conditional Random Fields
Now, that we have seen an example for the posterior distribution of an MRF, we can
discuss another class of random fields, the so called conditional random fields. The main
difference between MRFs and CRFs is how the observation y is integrated in the potential
functions. In the restoration example, we have seen that each unary potential ψi is a
function of the hidden variable xi and the observation yi, while each pairwise potential
ψij is independent of the observation. This is different in CRFs where all potentials are
functions of the whole observation [102]. We also say that a CRF is globally conditioned on
the observation. CRFs for instance allow to encode data-dependent priors or higher-order
likelihood terms, i.e. likelihood terms which consider a larger set of observed variables. In
the literature, at least in the vision and imaging communities, the differentiation between
MRFs and CRFs is often not very clear; both terms are used interchangeably. It is good
to know that there is a difference and usually we can easily see whether a model belongs
to the class of MRFs or CRFs by careful inspection of the potential functions. Whenever
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(a) 1st-order MRF model (b) Observation (c) MAP estimate

Figure 1.3: Image Restoration. The random field is shown in (a). Blue edges represent the likelihood
terms depending on the hidden state xi and the observation yi. Green edges represent the prior terms
depending on two neighboring hidden states xi and xj . An exemplary observed image (taken from [143])
is shown in (b) which corresponds to the fixed labeling y. The MAP estimate x̂ is shown in (c). The
black area in (b) is corrupted and no observation is available. In this area, all likelihood terms are set to
zero and the resulting labels in x̂ come from the prior.

we derive a random field model in the following, we will try to emphasize whether it is
an MRF or CRF. However, in the more general paragraphs where we explain some of the
basic concepts we might tend to use only the term Markov random field even in the case
where the claims or assumptions are valid for both classes.

1.4 Maximum A Posteriori
In the preceding sections, we modeled the problem of image restoration by means of a
Markov random field. We first defined the role of the random variables and their inter-
relationships. By defining the associated potential functions, the MRF is fully specified.
Now, in order to compute a solution to the problem, i.e. a restored version of the observed
image, we seek to maximize the posterior probability. Mathematically, this can be written
as

x̂ = arg max
x

ρ(x|y) . (1.11)

Here, x̂ is the labeling which maximizes the posterior probability ρ(x|y). This labeling is
called the maximum a posteriori (MAP) estimate. We have already seen that ρ(x|y) ∝
ρ(y|x)ρ(x). Thus, the MAP estimate can be equivalently found by

x̂ = arg max
x

ρ(y|x)ρ(x) . (1.12)

To get a little bit more practical, let us insert the likelihood and prior distributions of our
restoration example:

x̂ = arg max
x

1
Z

∏
i

exp (−ψi(xi, yi))
∏
(i,j)

exp (−ψij(xi, xj)) . (1.13)
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In order to calculate the probability distributions, we also have to evaluate Z. However,
the computation is usually intractable considering its definition in Equation (1.3). For-
tunately, when we are only interested in the MAP estimate, the explicit evaluation of Z
can be avoided by a simple mathematical trick. We can convert the maximization into
an equivalent minimization problem and get rid of the probability distributions. This is
demonstrated in the following section.

On a side note, if the prior distribution is flat, i.e. a uniform distribution which is
assumed when no prior information is available, the MAP estimate is equivalent to the
maximum likelihood estimate (MLE).

1.4.1 Energy Formulation
Given a Gibbs distribution, we can extract the corresponding Gibbs energy by taking the
negative logarithm:

E(x) = −log (ρ(x))

= −log
(

1
Z

∏
C∈C

exp (−ψC(x))
)

= −log
( 1
Z

)
+
∑
C∈C

ψC(x)

= const +
∑
C∈C

ψC(x) . (1.14)

We see that the energy is the sum over the potential functions plus a constant value. This
observation allows us to reformulate the MAP estimation in Equation (1.11) in terms of
an energy minimization problem:

x̂ = arg min
x
E(x|y)

= arg min
x
E(y|x) + E(x) , (1.15)

where E(x|y) is called the posterior energy, E(y|x) is the likelihood energy, and E(x) is
the prior energy. If we insert the likelihood and prior of our restoration example, we get

x̂ = arg min
x

∑
i

ψi(xi, yi) +
∑
(i,j)

ψij(xi, xj) + const . (1.16)

The constant value can be safely omitted, since it does not change the localization of the
minimum. Energy minimization is a very common and convenient approach for solving
problems such as the restoration of images. In general, we believe it is much more intuitive
to think in terms of energies than in terms of probabilities. Remember, when we defined
the potential functions for the image restoration; the idea that the hidden variables should
be somewhat close to the observation can be directly expressed by the squared differences
as in Equation (1.9). There is no need to think too much about the underlying probabilistic
meaning.
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The field of optimization provides many algorithms which can be directly used to
compute the MAP estimate by energy minimization. We will discuss some of these al-
gorithms in detail later in Chapter 2. Just to provide an intuition at this point how
we could perform the optimization, consider a simple direct descent approach (see e.g.
Chapter 3 in [11]). Direct descent runs like this: iterate over the set of random variables;
in each iteration propose a local change for the random variables Xi; check whether the
energy decreases; if it does then make the change. After several cycles, this algorithm
will converge to an energy minimum. However, this will be in general a local one and not
necessarily a good one. We will later see algorithms which can perform much better.

1.5 MRF Recipe
It is time to sum up a little bit what we have seen so far. We have learned how we
can pose a vision problem in terms of a random field. We first identified the entities of
the problem and introduced the corresponding random variables. We then defined a set
of labels – the values which can be assigned to the variables. We have chosen a graph
topology specifying the conditional dependency between variables. Suitable assumptions
about the problem at hand were made through the definition of a likelihood and prior
both encoded in the potential functions of a Gibbs distribution. We have further seen,
that a solution to our problem can be computed via MAP estimation by solving an energy
minimization problem. We can summarize these steps in a general MRF recipe [102]:

1. Pose a vision problem as a labeling problem.

(a) Identify the role of random variables and labels.
(b) Set up the MRF graph with a neighborhood system (edges and cliques).

2. Derive the posterior energy E(x|y) that fits to the problem at hand.

(a) Derive the likelihood energy E(y|x).
(b) Derive the prior energy E(x).

3. Find the MAP solution via energy minimization.

The last point will be discussed in Chapter 2. In the following section we would like
to present some classical vision applications which have been posed as discrete labeling
problems – where the random variables take values from a discrete set. The great success
of discrete labeling in these applications is mainly due to efficient algorithms for computing
the MAP solution.

1.6 Discrete Labeling in Computer Vision
Labeling problems are categorized into discrete and continuous ones, depending on
whether the set of labels is finite and discrete or infinite and continuous. In the dis-
crete case, the set of labels can be represented by a set of integer values as L={1, ..., N},
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while in the continuous case the label set is L ⊆ R. Note, that in case of discrete sets,
the labels can have a symbolical meaning or the integer values map to a quantized set
of real values. At a first glance, the question whether a problem should be modeled as
a discrete or continuous random field seems rather easy to answer. Of course, it highly
depends on the nature of the entities represented by the random variables. Considering
the previous example of modeling the outcome of a dice, it is clear that this is a naturally
discrete setting. If a random variable is modeling the temperature distribution in some
physical process, a continuous representation seems to be the right choice. So what about
the restoration problem where the random variables stand for the restored intensities in
an image? Ideally, the range of intensities is continuous, but since we are processing the
images digitally, we also deal with quantized ranges of intensity. For instance, a simple
gray-scale image with an 8-bit encoding allows intensity values within a discrete range of
[0, 255]. A discrete random field seems sufficient.

In computer vision, we find many problems which have been addressed by discrete
random fields. Some of them are of discrete nature while others have been explicitly
transformed into discrete problems by employing suitable approximations and/or simpli-
fications. The main motivation for modeling a problem right away in a discrete setting is
that it allows to make use of recent powerful discrete or combinatorial optimization. One
might argue that for some cases a continuous representation is actually the better choice –
which might be true – but even then, one has to keep in mind that for any problem which
is solved on a computer discretization is unavoidable at some point. The only question
is: when and where do we have to do this discretization?

One claim of this thesis will be that even for highly continuous problems such as
image registration where random variables will represent transformation parameters, an
early discretization – already in the phase of modeling – can yield extremely efficient
and accurate registration algorithms. This will be later discussed in Chapter 3. Let us
now have a look at two classical vision problems – beyond the restoration problem –
successfully solved through discrete random fields. These two examples, and some more,
can be also found in [143].

1.6.1 Segmentation
Image segmentation is the task of extracting an object from a scene. From a low-level per-
spective, this can be achieved by labeling individual image points to belong either to the
object or to the background, where the latter one compasses all pixels not belonging to the
object to be segmented. This task can be naturally formulated as a binary labeling prob-
lem, where the set of labels is simply L={0, 1} (or symbolically L={“bkg”, “obj”}) and
every pixel is represented by one random variable; a common 4-connected neighborhood
can be considered. A seminal work on binary segmentation formulated as a first-order
MRF and solved by discrete optimization is [15]. The likelihood energy is encoded in the
unary potentials as

ψi(xi) =
{
− log ρ(di | “bkg”) if xi = 0
− log ρ(di | “obj”) otherwise . (1.17)
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(a) CT scan (b) User marks (c) Segmentation

Figure 1.4: Image segmentation. The image to be segmented is shown in (a). In (b) a user has marked
representative regions for the object (lung tissue) in red, and the background (all other tissue) in green.
In (c) the resulting binary labeling corresponding to the lung segmentation.

The likelihood energy makes use of predetermined probability distributions. If we want
to assign a certain label xi, for instance the background label “bkg”, to an image pixel
i, the unary terms evaluate how likely that label is with respect to the pixel’s intensity
value di. The idea is, that the user interactively marks small representative regions for
the background and the object beforehand from which the distributions are determined
(cf. Figure 1.4(b)). Additionally, a prior similar to the restoration example is encoded on
the pairwise potentials as

ψij(xi, xj) = exp
(
−(di − dj)2

2σ2

)
· 1
‖i− j‖

· δ(xi, xj) , (1.18)

with

δ(xi, xj) =
{

0 if xi = xj
1 otherwise . (1.19)

The prior favors equal labels for neighboring pixels by assigning zero cost if two labels
xi and xj are the same. The cost for assigning different labels – corresponding to a
segmentation boundary between pixels i and j – depends on the intensity difference of
these two pixels. The (contrast-sensitive) cost is decreasing with an increasing difference
of intensities. This encodes the idea, that the pixels of the object to be segmented have
similar appearance. The prior cost also depends on the Euclidean distance of pixels,
which in the case of a 4-connected neighborhood is of course constant. The parameter σ
acts as a noise parameter. A small σ allows less variation of the intensity values within
the object, while a larger σ should be chosen when the image exhibits a considerably
amount of noise. The above definitions only sketch the basic principle of MRF-based
binary segmentation, also called graph-cut segmentation. An example is illustrated in
Figure 1.4. A more recent extension of this approach is presented in [127].

1.6.2 Stereo Matching
Another classical example for a vision problem casted as a discrete MRF is stereo matching
[17, 145]. Here, the task is to determine point correspondences between two images both
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(a) (b) (c)

Figure 1.5: Stereo matching. The two input images in (a) and (b). The dense disparity map in (c).

showing the same scene at the same time but from different views. It is assumed that the
relationship between the two views is known; the stereo camera system is calibrated. The
human vision system is a biological example for such a calibrated system. Stereo systems
allow to infer three-dimensional information about a scene. The depth or distance of
an object to the observer is proportional to its disparity observable in the two views.
Through identification of point correspondences in the images, we can determine these
disparities and compute a dense depth map via triangulation. The nice thing in stereo
matching is that the images can be preprocessed (i.e. rectified) such that the search for
correspondences is restricted to one dimension (along the epipolar lines [53]). An example
for stereo matching is shown in Figure 1.5.

In order to formulate the stereo matching as a discrete labeling problem, we assume
a finite number of depth layers. So the set of labels can be defined as L = {0, ..., N},
i.e. a discrete set of potential disparities. Again, every pixel is a random variables and a
4-connected neighborhood can be considered. Let Ii(p) be the function determining the
intensity value of image i at point p, we can define the likelihood energy as

ψi(xi) = |I1(pi + xi)− I2(pi)| . (1.20)

The unary potentials are measuring the photo-consistency of an image point pi in one
image with the displaced point pi+xi in the other by means of simple intensity difference.
Again, the same pairwise prior as in Equation 1.10 can be used to favor similar disparities
between neighboring pixels, while preserving discontinuities at depth boundaries.

The above definitions present only the basic principle behind solving the stereo prob-
lem by means of discrete random fields. More sophisticated energy terms – in particular
for the likelihood – are used in practice which are more robust to noise and outliers. An
overview of state-of-the-art algorithms and further examples such as shown in Figure 1.5
can be found on the website1 of the Middlebury stereo database described in [134].

1http://vision.middlebury.edu/stereo/
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1.7 Historical Notes and Related Perspectives

It is quite interesting to have a look at the history of random fields and their first appli-
cation to imaging problems. Spatial, contextual interactions on lattice-like graphs have
a broad range of applications in various fields of statistical science. The origin of to-
day’s MRF framework can be dated back to physics. In the early 1920s, Ernst Ising,
a German physicist and student of Wilhelm Lenz, developed a mathematical model for
ferromagnetism in solid state bodies. Ising defined a set of nodes equally distributed on
a rectangular domain; each node corresponds to a dipole which at any given moment is
in one of two states, “up” or “down”. He derived the probabilities for the configurations
of the field to be given by a Gibbs distribution. Today, we know that this is equivalent
to an MRF binary labeling problem. Kindermann and Snell [69] provide an excellent
introduction to MRFs and devote a whole chapter on the history of the Ising model.

Definitely, the proof of equivalence of Gibbs random fields and Markov random fields
– first presented in the unpublished work of Hammersley and Clifford [51] – contributed
a lot to the popularity of random field theory. Thanks to this, we have a profound frame-
work which allows to define, determine, manipulate, and infer the underlying probability
distributions in a convenient way. Since the early 1970s, discrete MRFs found their way
into the field of engineering as an important tool for modeling, introduced by John Woods
[159]. In the foreword of Stan Li’s recent book on MRFs in image analysis [102], Rama
Chellappa states: “A big impetus to theoretical and practical considerations of 2D spa-
tial interaction models, of which MRFs form a subclass, was given by the seminal works
of Julian Besag [5, 6]. Since the early 1980s, MRFs have dominated the fields of image
processing, image analysis and computer vision”.

Without doubt, one of the most inspiring papers on MRFs in vision is the work of
Geman and Geman [36]. They were the first who tackled a vision problem – the restoration
of noisy images – by means of an MRF formulation. Their work had a huge impact on the
following twenty-five years in this field. Two comprehensive sources on MRFs and its early
application to image processing and computer vision are the overview article by Geman
and Graffigne [37] and the book edited by Chellappa and Jain [22]. Another excellent
book by Blake and Zissermann [11] provides an intuitive perspective on the principles of
MRFs. The authors introduce random fields as so called cooperative networks where cells
communicate and exchange information. Their illustrative examples – such as the wire
frame covered by a soap film, the system of springs representing the energy function, and
in particular the outbreak of the Cabbage Mosaic Virus on a field of cabbages arranged in
a regular tessellation – make the MRF concept very clear, intuitive, and quite amusing.

Modeling vision and imaging problems in terms of random fields is now around for
while, almost 30 years. Gradually, some fundamental, intuitive and some quite complex
models have been derived for all kind of theoretical problems. But often the complexity
and computational costs hindered the move towards practical solutions. A fortiori, it is
very exciting to observe an immense push within this field since the end of the 1990’s
when more and more efficient discrete optimization techniques became available. Thanks
to graph-cuts [17] and efficient message passing algorithms [35], random fields have become
ubiquitous and conquered in particular the field of image segmentation. Nowadays, the
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computational burden which usually comes along with higher-order models has reduced
significantly. It is time to move one step further and apply this powerful framework to
problems which, at all appearances, are not necessarily suitable to be fitted into this field.
Problems such as image registration.
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CHAPTER

TWO

OPTIMIZATION

After modeling a problem in terms of a random field and posing the corresponding energy
minimization problem, we need algorithms which are able to solve such problems. In
particular, we are interested in algorithms which allow us to obtain the MAP estimate
of discrete random fields. These algorithms belong to the class of discrete or combina-
torial optimization techniques. This chapter is dedicated to the introduction of discrete
optimization and we will start by an overview of different algorithms which have been pro-
posed and extensively used within the last 30 years. Especially the developments in the
last 10 years is mainly responsible for the increasing popularity of discrete optimization.
Currently, the most successful algorithms belong either to the class of message-passing
methods or to the class of graph-cut methods. We will have a more detailed look at these
two classes, while our focus is on the latest developments within the latter class. All our
experiments in Chapter 4 on image registration with random fields are based on recent
graph-cut based optimization algorithms.

2.1 Energy Minimization
In discrete optimization, the goal is to find a solution to a problem where the solution itself
contains integer values, only. This is also sometimes referred to as integer programming
[108] and when the solution space is finite we also call this combinatorial optimization
[111]. A common approach is to formulate an energy minimization where the minimum
of the energy function corresponds to the problem’s solution, i.e. the optimal labeling.
In the best case, one can express the solution in closed-form and compute it directly.
Unfortunately, this usually not possible due to the complexity of the problem. In fact,
integer labeling problems are in general NP-hard and we cannot expect to be able to
determine the globally optimal solution. There are some special cases for which the
optimal solution can be computed in polynomial time; this is the case for binary problems
with just two labels or in case the energy fulfills certain conditions and the labels can
be linearly ordered. However, for the majority of multi labeling tasks, our hope is on
algorithms which can obtain good approximations, i.e. nearly optimal solutions, in a
reasonable amount of time.
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Figure 2.1: Exemplary convex and non-convex function. The convex energy function in (a) has exactly
one global minimum A. This can be easily found independently from the initialization. The non-convex
function in (b) has several minima A-D, where only C is the global one. Depending on the initialization,
it is more or less difficult to find the global minimum.

2.1.1 The Problem of Non-Convexity
What is it that makes the optimization so difficult? The problem is that in most cases the
energy functions we want to minimize are highly non-convex. In Figure 2.1, we illustrate
what that means and show the difference between a convex and a non-convex function.
While convex functions have one minimum which is also the global one, a characteristic of
non-convex functions is that they have many local minima which makes them much more
difficult minimize. Consider a gradient-descent optimization which starting at an initial
point estimates the gradient of the energy function and moves along the steepest descent.
For a strictly convex function it does not matter where the initial point is. The algorithm
will always converge to the global minimum (cf. Figure 2.1(a)). This is different for non-
convex functions. Depending on where we start the descent, we will end up in different
minima (cf. Figure 2.1(b)). One aim of optimization theory is to find algorithms which
can overcome this limitation. Discrete optimization methods are currently considered as
one of the most powerful techniques for minimizing non-convex functions. Certainly, this
one important reason why we consider them for performing image registration, as shown
later in Chapter 3.

2.2 History of MRF Optimization
We would like to a give a brief overview of different optimization techniques which are
now available for quite a time. Some of them are still quite popular and used in practice –
such as simulated annealing or graduated non-convexity – while others – such as iterated
conditional modes – have shown to yield inferior results compared with recent advances
in discrete optimization and have almost vanished from practical considerations. It is
quite interesting to see how these approaches work and how they still influence today’s
developments. Not all of the presented methods are purely discrete methods. Some
were originally applied to problems with continuous variables and make use of variational
methods in intermediate steps. We start by introducing simulated annealing which is
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the algorithm considered in the first vision MRF paper by Geman and Gemand [36].
The interested reader can find a more comprehensive review of different optimization
techniques for random fields in Chapter 9 and 10 in the MRF book [102] by Stan Li.

2.2.1 Simulated Annealing
Random field optimization by simulated annealing (SA) [70, 21] is a general, stochastic
method for obtaining global optima for non-convex functions. The idea is based on a
physical procedure in which a material is first heated up and then slowly cooled down
(annealing) in order to obtain low energy states (or configurations). The temperature is
the main parameter of the algorithm and it is iteratively updated according to cooling
schedule. Additionally, a certain degree of randomness is introduced which is controlled
by the value of the temperature. The randomness makes the algorithm insensitive to
the initialization and avoids sticking in local minima. In every iteration, local random
changes are made on the labeling. These changes are determined by employing a sampling
strategy such as the Metropolis algorithm [106] or a Gibbs sampler [36]. If a local change
decreases the energy, it is accepted. If not, it is accepted with a certain probability which
depends on the current temperature. While for high temperatures the probability for a
change being accepted is also high, the probability gradually decreases with decreasing
temperature. The algorithm converges to a low energy configuration, which can be shown
to be the global one for certain cooling schedules. Unfortunately, for these schedules the
convergence is extremely slow and cannot be used in practice. Faster schedules based on
heuristics have to be used such as the one proposed by Geman and Geman in [36] yielding
sub-optimal solutions. For more details on simulated annealing we suggest the review by
Otten and van Ginneken [109].

2.2.2 Graduated Non-Convexity
Graduated non-convexity (GNC) – proposed by Blake and Zisserman in [11] – is a deter-
ministic optimization strategy which can find good solutions much more efficiently than
SA. It belongs to the class of continuation methods. The idea of GNC is to gradually
increase the difficulty of the problem during optimization. An optimum of the original
non-convex function is obtained by successively optimizing a sequence of functions which
are approximations of the original one. The algorithm starts by determining a convex
function for which the global optimum can be computed by standard methods such as
gradient descent. The solution is then used as initialization for the next round in which
an approximating function is optimized which is a little bit closer to the original one. In
every round, the approximations are improved until the original function is reached on
which the final solution is computed. Exactly how the sequence of intermediate func-
tions is constructed is the key to a successful optimization. In [11], some special cases
are presented in which the GNC strategy can obtain the global optimum of the original
non-convex function. But except for these cases not much is known about the quality for
general functions. The concept of employing functions which are less difficult to optimize
is also called relaxation where the original, harder function is relaxed and a solution of the
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relaxed version is computed first. Another way of relaxation is presented in the following.

2.2.3 Relaxation Labeling
In relaxation labeling (RL) the notion of integer valued label assignments is replaced by
so called fuzzy assignments [125]. The state of a random variable is represented by a real-
valued vector of size |L| where |L| is the number of labels. The kth entry of the vector
reflects the confidence about a label k to be assigned to the random variable. The discrete
labeling problem is thus converted into a continuous optimization problem subject to some
linear constraints (e.g. the sum of the vector entries has to be one). The solution space for
each random variable forms a hyperplane (a simplex) in the multi-dimensional real space
R|L|. Relaxation labeling works iteratively and in each iteration the confidence vectors
are updated by employing continuous methods. For example, Faugeras and Berthod [28]
and Hummel and Zucker [60] use a steepest descent algorithm to compute the updates.
In order to obtain a discrete solution after convergence of the RL process, a maximum
selection can be used to select the labels with highest confidence. A review on different
RL algorithms is given by Kittler and Illingworth [71].

2.2.4 Iterated Conditional Modes
Besag proposed an iterative, deterministic algorithm called iterated conditional modes
(ICM) [7] which works with a “greedy” strategy. ICM iterates over the set of random
variables and tries to maximize their local conditional probabilities. Each time a variable is
visited, the most likely label – the one with the largest increase in probability, respectively
largest decrease in energy – is assigned. This assignment is based solely on the local
likelihood and prior energy and depends on the currently assigned labels of neighboring
variables. ICM converges quite rapidly and can be highly parallelized; variables can be
updated simultaneously if they are not neighbors. But in general the obtained solution
is only a local minimum of the energy function. The algorithm is extremely sensitive to
initialization. In [23] it is proposed to set the initial labeling to the maximum likelihood
estimate which results in significantly better performance as reported in [143]. Still, the
overall performance is rather weak compared to recent discrete optimization techniques
which is also shown in [143].

2.2.5 Highest Confidence First
The last algorithm in our overview is highest confidence first (HCF) [23] which is also a
local, deterministic algorithm. HCF tries to improve ICM by introducing a strategy for
the order in which random variables are visited. The order is updated in every iteration
and depends on a so called stability measure. Variables with low stability indicate a
higher confidence for changing their labels. These variables are on the top of the list
and will be visited at first. Additionally, the label set is augmented by a label named
uncommitted. This label indicates that a variable has not yet made a commitment to the
current configuration. Uncommitted variables are not considered in the energy evaluation
for local changes. Experimental results in [23] show an improvement compared to ICM.
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2.3 Message Passing

2.3 Message Passing
Most of today’s MRF optimization problems are either solved by graph-cut methods or
by message passing algorithms. The latter ones are discussed in the following, while
the principles of graph-cuts are introduced later. The idea in message passing is that a
solution to the labeling problem is estimated by iteratively passing local messages around
the variables of the random field. Messages are sent from node to node and from the
those we can compute what is called beliefs about the local configuration. Hence, also the
name belief propagation (BP) [115].

So, how do the messages look like and how do we compute the beliefs? We come to
the exact definition of the messages in a moment – actually there are two different ways
how the messages can be generated yielding two different algorithms for BP – but for now
let us simply assume that a message m is vector of size |L| (the number of labels). Let us
further consider two nodes i and j which are neighbors (i ∈ Nj and j ∈ Ni) in a first-order
random field where the likelihood is encoded on the unary potentials ψi(xi) and the prior
is encoded on the pairwise potentials ψij(xi, xj). Then, by mij we denote the message
which is sent from node i to node j. The |L| entries of the message represent what node i
“thinks” about the label assignment of node j. For example, the lth entry of mij reflects
how confident node i is on j getting assigned label l, i.e. xj = l. For convenience, we
also write mij(xj) to represent this confidence. So, from the viewpoint of node j, every
message that j receives from its neighboring nodes i ∈ Nj, tells j what its neighbors think
about its labeling xj. From these messages we can compute the belief bj(xj) as

bj(xj) = 1
Zj

ρ(xj)
∏
i∈Nj

mij(xj) . (2.1)

Here, the ρ(xj) is the evidence or compatibility function based on the (unary) likeli-
hood, i.e. ρ(xj) ∝ exp(−ψj(xj)). The constant Zj is needed for normalization such that∑
xj∈L bj(xj) = 1. Intuitively, the beliefs express how probable certain labels are with

respect to the likelihood and the confidence of the neighboring nodes. Let us now have a
look, how the messages are generated.

2.3.1 Max-Product vs. Sum-Product
There are two possibilities for generating the messages. The first one is used in the so
called max-product version of BP. The entry mij(xj) of a message sent from i to j is
computed as

mij(xj)← max
xi∈L

ρ(xi) ρ(xi, xj)
∏

k∈Ni\{j}
mki(xi)

 . (2.2)

The other version of BP is called sum-product and the message update rule is

mij(xj)←
∑
xi∈L

ρ(xi) ρ(xi, xj)
∏

k∈Ni\{j}
mki(xi)

 . (2.3)
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Again, ρ(xj) is based on the likelihood, while ρ(xi, xj) is a compatibility function based
on the (pairwise) prior, i.e. ρ(xi, xj) ∝ exp(−ψij(xi, xj)). Let us understand why this
construction make sense. The aim of the message is that node i reveals what it thinks
about the labeling xj. Therefore, node i has to consider three things: (i) assuming node
j is assigned xj, node i has to consider what is the best or most compatible label xi for
itself; this is measured by the compatibility function ρ(xi, xj); (ii) but if label xi is the
most compatible one, node i has also to consider what is the likelihood of this label; this
is measured by ρ(xi); (iii) and last but not least, node i needs to consider what the its
neighbors think about the label xi; this is evaluated by considering all incoming messages
from neighboring nodes (except of j).

Once every node has sent and received a sufficient amount of messages, based on the
beliefs we can compute the configuration of the field. For the max-product BP this is
done by evaluating

x̂i = arg max
xi∈L

bi(xi) , (2.4)

while the configuration using sum-product BP is obtained by evaluating

x̂i =
∑
xi∈L

bi(xi)xi . (2.5)

Here, the fundamental difference between the two versions of BP becomes clear. In fact,
the max-product BP is determining the MAP estimate – the configuration with lowest
energy – by maximizing the posterior probabilities. In contrast, the sum-product BP is
determining what is called the minimum mean squared error (MMSE) estimate by com-
puting the marginal probability distributions. Note, that the MMSE yields configurations
which are continuous even if the label set is discrete, since the final labels are computed
from a weighted sum of the products between beliefs and labels. Both estimators are
used in practice, while in vision applications mainly the max-product BP is used. Some
comparisons and experimental results of both versions can be found in [145] for stereo,
and in [104] for novelty detection.

2.3.2 Generalizations, Schedules, and Advances
The original BP proposed by Pearl [115] was intended to be used only for graphs without
loops, such as Bayesian networks. On tree-like graphs BP works very efficiently and is
guaranteed to find the global optimum solution. But nothing actually prohibited the use
of BP in graphs with loops. This was the first generalization of BP which is also referred
to as Loopy-BP [35]. Despite the fact that in this case the convergence of BP was not
guaranteed and little was known about the optimality of the solution, Loopy-BP worked
surprisingly well in many vision applications. A lot of work has been done since then to
further understand the behavior of BP [160, 34, 161, 154, 89], how it can be generalized to
arbitrary graphs [160, 156], and how it can be made more efficiently [30, 95, 87, 117]. An
important part of any BP implementation that works on random fields with loops is the
message schedule. One can employ serial schedules, where the nodes send their messages
one after each other in a specific order, or parallel schedules where all messages are sent

26



2.4 Graph-Cuts

and received, simultaneously. Also some kind of forward-backward strategy is common
to ensure that the information is properly propagated over the whole domain (e.g. a 2D
image). For example, in [143], a row-column and a scan-line schedule are compared for
two variants of BP. A simple illustrative example is given in Figure 2.2(a).

An important advancement of BP is the tree-reweighted message passing (TRW) al-
gorithm by Wainwright [155] and Kolmogorov [83]. TRW decomposes the graph with
loops into spanning trees, solves for the labeling of the trees, and reassembles the overall
solution. An important feature of TRW is that it simultaneously can compute a lower
bound on the energy. The lower bound can be used to assess the quality of the obtained
solution, as it is done for the benchmarking in [143]. In fact, the gap between the lower
bound and the energy of the obtained solution tells approximately how close we have
come to the global optimum. The extended, sequential version TRW-S [83] has guaran-
teed convergence and was shown to yield excellent results compared to classical BP on
common vision applications [143].

2.4 Graph-Cuts
Graph-cuts have become a major tool in discrete optimization, in particular in the vision
and imaging community. While in general cuts in graphs can refer to different problems
or meanings, here we associate the term graph-cuts with one particular thing: the binary
separation of nodes. The origins of graph-cuts as a method for separating nodes into
two distinct classes goes back to network theory and is based on the min-cut/max-flow
principle [32]. Given a graph, the optimal partitioning of nodes can be found by computing
a minimum cut [116] – the cut with lowest cost or energy. A cut is represented by a set
of weighted edges, which if removed from the graph yields two disconnected sub-graphs.
The sum of the weights of removed edges defines the cost of a cut.

An important discovery is that computing the minimum cut is equivalent to solving
for maximum flow for which efficient algorithms are available, as shown in [32]. But what
is the maximum flow of a graph? We consider a so called st-graph which is an augmented
version of the original graph where two special nodes are introduced, the source node s and
the sink node t (cf. Figure 2.2(b)), which are so called terminal nodes. In such a graph the
edge weights represent (non-negative) capacities, for example, of imaginary water pipes.
Now, the idea of maximum flow is to determine the maximum amount of “water” that can
be pushed through the graph from the source to the sink. Of course, this amount depends
on the different edge capacities and some edges are getting saturated while successively
increasing the flow. Interestingly, the value of the maximum flow is equal to the cost of the
minimum cut, and the saturated edges along a path from terminal s to terminal t are the
ones belonging to the cut. There are two famous approaches for computing max-flow; the
first one is based on augmenting paths [32], the second one is based on push-relabel [47].
The augmenting paths algorithm is intuitive to illustrate via so called residual graphs (cf.
Figure 2.2(c)). In each iteration a shortest path from s to t is determined as well as the
maximum amount flow that can be pushed along the path. The capacities along the path
are decreased and the capacities of reversed edges is increased. When no st-path can be
found the algorithm stops and the minimum cut can be determined (cf. Figure 2.2(d)).
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So far so good, but why is this min-cut/max-flow thing useful for solving discrete labeling
problems?

After removing the edges of the minimum cut, every node is either connected to the
source or to the sink. Now, if we think of these two special nodes of having some symbolical
meaning, for instance, the source corresponds to label “zero” and the sink to label “one”,
then the node separation corresponds to a binary labeling; every node connected to the
source is assigned label “zero”, the others are assigned label “one”. So, if we find a way to
encode the energy function of a binary labeling problem in terms of an st-graph min-cut
problem – in particular we need to define the capacities of the edges – then we can solve
the binary labeling by means of max-flow computation which can be done efficiently in
low-order polynomial time [32, 47].

2.4.1 Binary Optimization

Most probably, Greig et al. [48] were the first who made use of the graph-cut approach
in computer vision. They tackled the problem of binary image restoration and employed
a variant of the max-flow algorithm by Ford and Fulkerson [32]; they also compared their
results with simulated annealing and ICM. Their formulation yields an exact solution,
i.e. the globally optimal MAP estimate. Boykov and Jolly [15] later used graph-cuts
for interactive optimal binary segmentation; they employed an even more efficient max-
flow algorithm presented in [16] which is particularly optimized for grid-like graphs often
occurring in vision applications. In both works [48, 15], the authors found a way how to
set the edge capacities in the st-graph such that the min-cut corresponds to the minimum
of their problem specific energy function.

The breakthrough of graph-cut based binary optimization is also thanks to the work
of Kolmogorov and Zabih [86]. Not only, that they presented a precise characterization of
the class of functions that can be minimized, they also derived the necessary condition for
these functions to be minimized exactly by graph-cuts. Furthermore, they developed a
general purpose st-graph construction for this class. From that time on, if one wanted to
use graph-cuts for the own binary problem, one could first check if the function is fulfilling
the necessary condition, and then simply follow the st-graph construction manual; any
available max-flow algorithm would then do its job and compute the exact MAP estimate.

Since then, many extensions for graph-cuts have been presented. Just to name a few,
for example, Kohli and Torr have developed an efficient dynamic version of graph-cuts
[79, 81] and showed how to measure uncertainty in graph-cut solutions [80, 82]. These
developments and some more are summarized in the thesis of Kohli [75].

We have briefly mentioned that their exists a necessary condition for functions to be
minimized via graph-cuts. Before we come to another quite important advancement which
enables us to also minimize functions which do not fulfill this condition, let us discuss
what this condition is actually about.
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2.4.1.1 Submodularity

Let us consider a binary energy function of the form

E(x) =
∑
i

ψ(xi)
∑
ij

ψij(xi, xj) , (2.6)

where xi ∈ {0, 1}. In order to minimize this function via graph-cuts, E must be graph-
representable based on the construction rules in [86]. This is specified in the following
theorem.

Theorem 2 (Graph-Representable) A pairwise function E is graph-representable if
and only if each term ψij satisfies the inequality

ψij(0, 0) + ψij(1, 1) ≤ ψij(0, 1) + ψij(1, 0) . (2.7)

Functions satisfying Equation (2.7) are called submodular or regular [86]. Note, that
unary potentials are always submodular. Intuitively, this condition ensures that the edge
weights in an st-graph are non-negative. The theorem can be easily extended to potential
functions with more than two variables [86].

Many important energy functions fulfill the condition of submodularity. But it happens
quite often, that energies, for instance prior terms, which would be more appropriate for
our problem at hand are non-submodular. Especially, if we consider that the binary
optimization is a crucial component of multi-label optimization. But this is discussed a
little bit later. Also we will later see in Chapter 3 that in particular for the task of image
registration we are facing non-submodular energies. In the following, we will discuss what
we can do in such a case.

2.4.1.2 Minimizing Non-Submodular Energies

A first attempt to deal with non-submodular energies was suggested by Rother et al. [129].
They propose a truncation scheme for terms which are non-submodular, which works as
follows. Their approach is following the standard construction rules in [86] and whenever a
pairwise term is violating Equation (2.7), it is replaced by a truncated term such that the
condition holds. This achieved by one of three possible operations; either by decreasing
ψij(0, 0), or by increasing ψij(0, 1) or ψij(1, 0) until the inequality is satisfied. For these
three operations it is shown that the minimization via graph-cuts is still valid. However,
a global optimum of the original function cannot be guaranteed, anymore. Additionally,
the number of truncated terms should be small compared to the total number of terms. In
that case, graph-cuts with truncation has been shown to yield excellent results in practice
[143]. A quite similar but more problem specific scheme was used by Raj and Zabih [120].
They used graph-cuts for image deconvolution and also had to deal with non-submodular
terms; these terms are dynamically modified until the submodularity condition is satisfied.
A different strategy is presented in [26], where learned statistical priors are encoded on
pairwise and triplet terms. Here, the non-submodular terms are simply discarded; but
this can decrease the performance as later shown in [85].
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A quite different approach for minimizing non-submodular energies is quadratic
pseudo-boolean optimization (QPBO) [50, 14, 13]. QPBO can naturally handle ener-
gies with both submodular and non-submodular terms. Probably, the first time QPBO
has been used for an imaging application is the work of Raj et al. [119] for the task
of magnetic-resonance reconstruction. Kolmogorov and Rother [85] provide a detailed
description how QPBO can be used for arbitrary non-submodular functions. The basic
concept is based on a reparameterization of the original energy function into so called
normal form. Energies of this form can again be minimized by computing a minimum
cut on a specially constructed st-graph. The construction rules for energies in normal
form are also given in [85]. The output of QPBO is a partial labeling x, i.e. xi ∈ {0, 1, ∅}
where ∅ is interpreted as “unknown” or “unlabeled”. Before we discuss what this means
in practice, let us present two important properties of QPBO:

1. Persistency: let y be a binary labeling and let z be the “fusion” of the partial labeling
x and y with zi = xi if xi ∈ {0, 1} and zi=yi otherwise. Then, E(z) ≤ E(y).

2. Partial optimality: there exists a global minimum x̂ such that xi = x̂i for all labeled
nodes in the partial labeling x.

The partial optimality follows from the persistency, if we take y as a global minimum. The
first property tells us, whatever (initial) labeling we have, if we replace the labels of nodes
by the ones that have been labeled in the QPBO result, the energy is guaranteed not to
increase. The second property tells us that nodes which are labeled by QPBO are optimal.
As pointed out in [128], the usefulness of QPBO in order to minimize non-submodular
functions clearly depends on the number of unlabeled nodes. Intuitively, there is some
correlation between the number of unlabeled nodes and the number of non-submodular
terms. Rother et al. [128] propose several strategies how to deal with unlabeled nodes.
It is worth to note, that for submodular energies QPBO yields exactly the same answer
as classical graph-cuts, i.e. the globally optimal labeling, with similar efficiency [85].

In summary, we would like to conclude that the introduction of QPBO was an immense
progress in graph-cut based optimization which enabled the use of a broader range of
energy functions in a principled way. Additionally, as we will see later, QPBO has also
lead to a generalization of multi-label optimization and eventually to the point of hybrid
discrete-continuous optimization.

2.4.1.3 Higher-Order Potentials

So far, we have mainly discussed pairwise binary energies where the corresponding random
field has cliques with a maximum size of two. This is quite natural, if we consider that
graph-algorithms such as max-flow estimation work on edges which represent connections
between pairs of nodes. However, from Chapter 1 we know that from a modeling point
of view there is no restriction on the size of the cliques. In fact, first-order models have
a quite limited representational power. Often, it would be desirable to encode richer
statistics on potential functions considering more than two variables, i.e. what we call
higher-order potentials. But how can these energy terms be represented in an st-graph
construction?
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It is a well known fact that any higher-order binary function can be reduced to an
equivalent pairwise form [13]. But there are differences how this reduction is performed.
Kolmogorov and Zabih [86] already presented st-graph construction rules for the case
of triplets. This was, at least theoretically, extended to arbitrary higher-order terms by
Freedman and Drineas [33]. The employed technique is called reduction by minimum
selection. Another technique is called reduction by substitution which was used by Ali et
al. [2]. Recently, Ishikawa [63, 65] pointed out several problems with the latter technique.
He proposes a reduction technique also based on the minimum selection for arbitrary
higher-order potentials where the energy function is minimized via QPBO graph-cuts.
Ishikawa’s technique is overcoming some severe restrictions in [33] for functions of even
degree. We will make use of this elegant approach later in our framework for image
registration. Several works have already shown the advantages of employing higher-order
potentials in vision applications [26, 76, 77, 158, 78, 88, 126].

2.4.2 Multi-Label Optimization
Binary labeling is useful for application such as segmentation. But what happens if the
label set is L = {1, ..., N} with |L| > 2, i.e. a multi-label problem? Can we generalize the
binary st-cut problem to multiple labels?

First approaches in vision were based on multiway cuts [17, 9]. In multiway cuts, the
graph consists of |L| terminal nodes, instead of just two as in an st-graph. The non-
terminals, i.e. the nodes corresponding to the random variables, are connected to all
terminals. In [17], a “greedy” algorithm is employed in order to compute the cut on this
graph which leaves each non-terminal to be connected to exactly one terminal. Little can
be said about the optimality or convergence rate of this approach.

A different approach is the graph-construction of Ishikawa [61, 62] which can only
be applied if there exists a linear ordering on the set of labels and the prior term has
to be convex. The idea is similar to an earlier work by Roy and Cox [130]. Ishikawa
constructs a regular st-graph with a set of non-terminals of size |L| · |V |. So every node
i ∈ V is represented by |L| non-terminals, where each non-terminal defines a specific label
assignment. A single minimum cut is then solving the multi-label problem exactly. Which
label is assigned to a node depends on where exactly the cut is performed; that is the
cutted edge defines the label. This approach was later extended by Veksler to work for
truncated convex priors [150]. However, the condition that the labels must be linearly
ordered limits the applicability of these approaches.

Today’s most powerful multi-label optimization methods are based on a different strat-
egy. Instead of searching for multiway or st-cuts on huge graphs, the standard binary
min-cut approach is used iteratively yielding very competitive results. This strategy is
discussed in the following.

2.4.2.1 Move Algorithms

A powerful algorithm for multi-label optimization based on iterative graph-cuts is α-
expansion which has been introduced in the thesis of Olga Veksler [149] and in the work
of Boykov et al. [18]. The algorithm is iteratively performing so called expansion moves
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which are optimally solved by classical st-graph cuts. In every expansion move a particular
label α ∈ L is proposed as an alternative for the current labels in x. Every random variable
Xi has then to decide whether it keeps its current label xi or switches to the proposed label
α. This is a binary decision which can be solved by min-cut/max-flow on an appropriately
constructed st-graph. The symbolical meaning of the two terminals becomes “keep” and
“change”. The decision is made optimally if the underlying energy is submodular. In
case of α-expansion and a multi-valued pairwise energy function the necessary condition
[86, 85] for submodularity is

ψij(α, α) + ψij(xi, xj) ≤ ψij(α, xj) + ψij(xi, α) . (2.8)

Again, this condition can be easily generalized for higher-order energies [86]. In case of
non-submodular functions the expansion move has to be solved by QPBO graph-cuts.

If every label from the label set has been proposed once, this is what we call a sweep.
After several sweeps, the algorithm converges to a local minimum. However, in case of
submodular energies this minimum is guaranteed to be very strong [18]. In many practical
scenarios, the minimum in case of non-submodular energies is also very strong, but the
optimality cannot be proven.

Following [101], we introduce a move operator �, such that x ← x � α denotes one
expansion move. We sketch the α-expansion algorithm in pseudo-code in Algorithm 1.

Algorithm 1: Alpha-Expansion
output: Labeling x

1 x← initializeLabeling() ;
2 for several sweeps do
3 foreach α ∈ L do
4 x← x� α ;
5 end
6 end

Other move algorithms than expansion have been proposed, for instance swap moves
[149, 18] and jump moves [149]. However, the expansion move strategy seems to be the
most efficient and accurate one [143].

Komodakis et al. proposed a whole new framework based on principles from linear
programming [90, 87, 91, 92, 93]. An important algorithm derived from this framework
is FastPD [92]. Similar to α-expansion, FastPD solves a series of min-cut/max-flow prob-
lems, but the graph construction is a very different and is based on a primal-dual scheme.
In fact, FastPD does not only solve the actual multi-label problem (the primal), but also a
dual problem which gives a lower bound on the optimality of the solution. This is similar
to TRW-S message passing algorithm [83]. Additionally, FastPD can also be applied to
non-submodular energies.

Move algorithms are also sometimes denoted as “very large neighborhood search tech-
niques” [1, 143] which can effectively avoid sticking in local minima of non-convex func-
tions. This is due to the fact, that the set of discrete labels can capture a large (user
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defined) search range which allows jumping out of local minima (cf. Figure 2.1). On a side
note, recently Serge Belongie, Associate Editor of the IEEE Journal of Pattern Analysis
and Machine Intelligence (PAMI), has put the work of Boykov et al. [18] in his all-time
favorite top-ten list of PAMI articles with the reason “for a few years there it seemed that
every problem I was working on could be written down with a cost function that Yuri,
Olga and Ramin’s code could solve for me quickly and accurately”. We should note that
back then when Boykov et al. published their work on expansion moves the applicability
of their method was mainly limited to submodular energies. Today’s advancements on
minimizing non-submodular energies such as QPBO or FastPD allow tackling an even
broader range of problems. In particular, the boundaries between discrete and continuous
optimization are beginning to blur, as we will see in the following.

2.4.2.2 Discrete-Continuous Optimization

A recent, very promising advancement is the concept of fusion move optimization [100,
101]. Fusion moves are based on QPBO graph cuts and generalize the move operator
�. Let us consider any two (sub-optimal) labelings x1 and x2 of a problem defined by
energy E(x). Now, the idea of fusion is to combine (or fuse) these two labelings into a
new one xf , such that E(xf ) ≤ E(x1) and E(xf ) ≤ E(x2). We can express all possible
combinations by an auxiliary binary labeling y as

xf ← x1 • (1− y) + x2 • y , (2.9)

where • is the element-wise product. So, all we need to compute is the optimal binary
labeling y, and this is done by a QPBO graph-cut. Note that of course classical st-
cuts could be employed as well if the (pairwise) energy satisfies the following necessary
condition of submodularity

ψij(x1
i , x

1
j) + ψij(x2

i , x
2
j) ≤ ψij(x1

i , x
2
j) + ψij(x2

i , x
1
j) . (2.10)

However, this is less likely than the condition for α-expansion, since here, the labelings
x1 and x2 could theoretically be anything, for instance random. QPBO seems to be a
natural choice for the binary optimization. The combination of two labelings is called a
fusion move; we use the move operator to indicate this as

xf ← x1 � x2 . (2.11)

Now, we also see why fusion moves are a generalization of previous move strategies. For
instance, we could set one the two labelings to the constant labeling xα where each node
is labeled with α; the fusion move becomes an expansion move.

The labelings which are going to be fused are sometimes also called proposals. And
since these proposals can be more or less anything, fusion moves also allow some kind of
discrete-continuous optimization. For instance, the proposals could be solutions generated
by two completely different algorithms, where maybe one is using α-expansion and the
other one belief propagation. The two solutions can be fused, and the energy is guaranteed
not to increase. But the proposals could also be continuous where the values are not
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necessarily within a predefined discrete label set. We could fuse solutions from continuous
optimization methods and the result will also be continuous. This approach has been
successfully used for stereo matching [158, 157] and optical flow [99]. Recently, Ishikawa
[64] proposed to use gradient-based proposals where the proposal itself is computed from
the gradient of the energy function such that we can perform a gradient-descent via
fusion moves. To summarize, we believe that there is great potential in this new type of
optimization and space for creativity on how to generate the best proposals.

2.5 Message Passing vs. Graph-Cuts
We would like to conclude this chapter on optimization by pointing out some works on
comparisons between message passing and graph-cuts. A lot of different experiments have
been carried out to investigate which of the two approaches works better in case of discrete
multi-labeling. In order to come to the point, there is no clear answer. It highly depends
on the specific application, type of energy, graph topology, and others. Already some
time ago, Tappen and Freeman [145] compared swap moves [18] with two variants of belief
propagation, a max-product and a sum-product version, for stereo matching with identical
MRF parameters. They concluded that the results were comparable while graph-cuts
usually resulted in lower energy solutions. Mahamud [104] compared an (unoptimized)
version of graph-cuts again with max-product and sum-product BP for novelty detection,
which is a binary problem. He found that BP gives slightly better results. Kolmogorov
and Rother [84] compared α-expansion [18] with TRW-S [83] and a max-product BP
on stereo matching with highly-connected graphs. They found that α-expansion clearly
outperforms the two message passing approaches.

The probably most comprehensive study so far was conducted by Szeliski et al. [143]1.
They investigated four different discrete labeling problems: binary segmentation, stereo
matching, photomontage, and restoration (or denoising). The tested algorithms were
TRW-S, α-expansion, swap moves, and different variants of max-product BP. There was
no clear overall winner, and the algorithms performed quite differently on the different
problems. For the two graph-cut based methods, one could conclude that expansion moves
performed always better or comparably well as swap moves. TRW-S was sometimes able
to find the (almost) globally optimal solution when graph-cuts did not perform well at
the same time. On other sequences, graph-cuts, and in particular, α-expansion performed
best. In general, the graph-cut methods were the most efficient ones with respect to
computation time.

There is definitely further need for conducting such experimental studies. In partic-
ular, in future comparisons QPBO based fusion moves or the FastPD method should be
included. There is also an increasing interest in higher-order random fields and previous
studies have only considered pairwise MRFs. In general, one should say that it is worth
trying out different optimization methods for the problem at hand. Especially, since many
authors made their own implementations available for download and public use.

1http://vision.middlebury.edu/MRF/
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Figure 2.2: Message passing and graph-cuts. A simple example of message passing is shown in (a). The
green arrows indicate the direction of messages in a forward pass. The blue arrows indicate the backward
pass. An exemplary st-graph is shown in (b). The corresponding initial residual graph is shown in (c).
After max-flow computation, saturated edges form s to t are cut. These edges constitute the minimum
cut which separates the set of nodes in two distinct classes.
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CHAPTER

THREE

IMAGE REGISTRATION

In this chapter we present our approach for image registration based on random fields.
The theory of random fields has been earlier introduced in Chapter 1. Here, we build upon
this theory and derive a general framework applicable to various registration scenarios.
We start with a brief introduction to the exciting field of registration and see why this is
a challenging problem worth to be considered from a novel perspective. Then we come
to our contribution which is the introduction of discrete random fields for tackling linear
and non-linear registration. In order to provide an intuitive understanding, we will mainly
present the general concept and the derivation of the different methods, while leaving out
some implementation specific details to avoid distraction. These details, such as the actual
setting of certain parameters, can be found in our papers referenced throughout the text.
At the end of this chapter some prior work is reviewed. We conclude by a discussion
and an outlook on open questions. Different experiments and applications in which our
methods have been shown to be very efficient are later presented in Chapter 4.

3.1 Introduction
We would like to start by presenting some basics and core components involved in any
registration method. But let us first clarify, what we mean by “image registration”:

Informal Definition 1 (Image Registration) Image registration is the task where
one seeks spatial transformations which align a set of images.

We further say that images are aligned when corresponding structures overlap after apply-
ing the transformations and superimposing the images. The transformation determines
a relationship between the coordinate systems of the images. In the following, we focus
on pairwise registration where we seek one transformation mapping the first image to the
second. It is common to assume that the second image remains fixed – we call this the
target image – while the first image is the one undergoing a transformation – we call this
the source image. In literature, the target image is also sometimes referred to as the
reference or fixed image, and the source image is also denoted as the floating or moving
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(a) CT (b) MRI (c) Initial (d) Registered

Figure 3.1: CT-MRI brain registration. The original images are shown in (a) and (b). The initial
pseudo-color overlay in (c) shows the misalignment. In (d) the corresponding structures overlap after
performing registration.

image. The images are considered to have the same dimensionality, which is either 2D or
3D.

3.1.1 Why do we need Registration?
Image registration enables us to depict correspondences between images. But why is this
useful? The need for registration is ubiquitous and often a key component in many imaging
and computer vision applications. The medical domain is one of the most prominent ar-
eas. In computer-aided diagnosis, the fusion of images acquired with different sensors can
support the assessment of pathologies. Often, the combination of computed tomography
(CT) and magnetic resonance imaging (MRI) provides a broader picture of the patient’s
anatomy to the physician. When exploring properties such as shape, appearance or size of
a specific area (e.g. an organ), it might be beneficial to have the information from differ-
ent scans available. For example, CT and MRI are based on completely different physical
principles. While CT images often have high-resolution and bony and calcified structures
are clearly visible, MRI can provide higher contrast in soft-tissue areas. Here, we need
registration to establish correspondences between the two modalities (see Figure 3.1).
Similarly, the fusion of functional and anatomical images is of great interest. Once reg-
istered, the functional image can tell us something about what is happening, while the
anatomical image tells us where it is happening. Other examples from the medical do-
main where registration is important are follow-up studies, computer-assisted navigation,
or the creation of anatomical atlases. For an overview, we refer to the upcoming book by
Paragios et al. [112].

Also many non-medical applications can benefit from registration. For instance, re-
covering the apparent motion of objects from a video sequence is known as the optical
flow problem. By determining the correspondences between individual image points, we
can compute a motion field. This information is then further processed in applications
such as surveillance, motion tracking, and robotics [58, 113]. Other applications such as
image stitching and generation of panoramic views [142] also require registration between
camera pictures.

We will discuss some applications – from the medical and non-medical domain – in
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more detail later in Chapter 4. Note, there exist many synonyms for the task of image
registration such as image alignment, image matching, motion estimation, or image cor-
respondence problem. More detailed discussions on the huge field of registration can be
found in the books by Hajnal et al. [49] and Modersitzki [107], in the surveys of Maintz
and Viergever [105], Zitova and Flusser [166], and in the tutorial by Richard Szeliski [142].

3.1.2 How do we do Registration?

There are many ways how we can establish registration of two images and likewise the
amount of literature on this topic and the number of different approaches and algorithms
is numerous. The reader may forgive that we are not providing a comprehensive review
of methods but rather present the basic ideas on which many approaches have been build
on. Later, we will discuss some related work and classical approaches considered for this
task. For more details, we refer the interested reader to the above mentioned surveys and
the references therein.

Most probably the simplest way to perform registration (at least from an engineering
point of view) is to ask someone – most probably an expert, e.g. a radiologist – to man-
ually select a sufficient number of corresponding points in the two images to be aligned.
From these points, we can easily compute a transformation and the registration is done
[3, 12, 148, 31]. Despite its simplicity such an approach is not very effective and often
doomed in practice for several reasons. The manual selection of corresponding points can
become a very tedious task. Often, even for an expert, it is not easy to identify correspon-
dences, in particular when the images are acquired with different modalities. Also, the
manual interaction can be very time consuming. Depending on the application and the
considered type of transformation, a sufficient number of points can mean that several
hundreds or even thousands of correspondences are necessary to determine a proper align-
ment. A solution to this dilemma is the employment of methods for automatic detection
of point correspondences. The basic idea is to extract a set of candidate points with a
certain special appearance or local structure. Then, a robust algorithm tries to detect cor-
responding points between the candidates and removes outliers at the same time. Finally,
the transformation is computed from the detected correspondences. These methods be-
long to the class of feature-based or landmark-based registration [8, 27, 68, 124, 138, 24].
The advantage of feature-based registration is the efficiency from a computational point
of view. However, since the transformation is computed solely from a rather sparse set
of feature points there is no guarantee on the quality of the alignment in areas where no
features have been extracted.

A quite different approach is intensity-based registration. Here, the registration is
performed by considering directly and only the image intensities without the need of
extracting any features or landmarks. The basic idea is to evaluate the quality of an
image alignment by looking at the intensities of overlapping image points. When images
are perfectly aligned the intensities of corresponding points should be somehow similar.
An advantage of intensity-based registration is that all image points can contribute to
the estimation of the transformation, and not only a sparse set of feature points whose
identification can be a critical source of errors. However, the computational complexity is
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Figure 3.2: Schematic illustration of the iterative registration process.

often much higher compared to feature-based registration and the images should exhibit
a sufficient initial overlap.

In practice, these two approaches are sometimes combined. For example, the feature-
based part can be used for the initial pre-alignment and the intensity-based part for the
refinement [66]. Other hybrid methods [29, 20, 55, 110, 140] exist which make use of
feature points and intensities, simultaneously. Our MRF registration framework mainly
belongs to the class of intensity-based registration but is not restricted to this type of
registration. Possibilities how information from landmarks or feature points can be (addi-
tionally) embedded in our framework are presented in [41, 140]. Let us now have a closer
view on the basics of intensity-based registration and its core components.

3.2 Intensity-Based Registration
A common approach for intensity-based registration is the formulation as an energy min-
imization problem. Let us consider the registration of two images I and J where I is the
source image undergoing a transformation denoted by I ′=I ◦T ; the image J is the target.
The optimal transformation T̂ which aligns the two images can be obtained through the
following minimization:

T̂ = arg min
T
E(I ◦ T, J) . (3.1)

From a probabilistic point of view this is equivalent to maximizing the posterior probabil-
ity ρ(T |I, J) (cf. Section 1.4 in Chapter 1). The energy function E is based on a similarity
measure1 which evaluates how similar the images are with respect to the transformation
T . This function is in general highly non-convex and a direct solution to Equation (3.1) is

1The term similarity measure is sometimes misleading when we talk about a minimization problem.
Here, we always assume that a lower energy indicates that the images are more similar and better aligned.
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difficult to compute or not possible. To this end, the minimization is performed through
an iterative process where in each iteration one tries to find an optimal update ∆T̂ . Each
update should minimize the energy a little bit further until a minimum of E is obtained.
Such a process is sketched in pseudo-code in Algorithm 2.

Algorithm 2: Intensity-based Image Registration
input : Images I, J
output: Transformation T

1 T ← initializeTransformation() ;
2 repeat
3 ∆T ← computeUpdate(I,J ,T) ;
4 prevEnergy ← E(I ◦ T, J) ;
5 newEnergy ← E(I ◦ (T + ∆T ), J) ;
6 if newEnergy < prevEnergy then
7 T ← T + ∆T ;
8 end
9 until convergence;

The convergence criterion can be for instance based on the change of energy. If there
is only a very small difference between the previous energy and the new energy, we might
stop the algorithm. Another possibility is to set a fixed number of iterations. Note that
the update is only added to the current transformation if the energy decreases.

Line 3 in which the update is computed is the most critical part of the whole algorithm.
The performance of the registration highly depends on the method which is used in this
step. Ideally, the updates should yield an efficient energy minimization in terms of speed
and the obtained minimum should be a strong one, in best case a global one. Additionally,
the quality of the updates should be independent of the actual energy function, which
means we would like to have an algorithm which yields excellent results in any registration
scenario. By introducing random field optimization as an approach for computing these
updates, we aim at providing both computational efficiency and strong solutions.

In general, intensity-based registration involves the selection of three main compo-
nents: (i) a transformation model, (ii) an energy function, and (iii) an optimization strat-
egy. In Figure 3.2 we show a schematic illustration of the registration process and the role
of the three components. An important part of the energy function is the intensity-based
similarity measure. In the following, we present some popular choices. A brief overview of
different transformation models is given afterwards and the details are discussed together
with the optimization strategy when we come to our registration framework.

We should also note that intensity-based registration is commonly solved with multi-
resolution and scale-space strategies. For instance, in all our actual implementations we
make use of Gaussian image pyramids. The idea is to start the registration on smoothed
and downsampled versions of the images and subsequently increase the resolution. This
strategy can help to reduce the computation time but also to avoid sticking to local
minima in the beginning.
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3.2.1 Similarity Measures
A variety of similarity measures can been considered for intensity-based registration.
Which of the measures is employed in practice highly depends on the application and
in particular on the modalities of the images, i.e. the way the images have been acquired.
The selection should always reflect the assumptions made on the intensity relationship
between the source and target image. For instance, if we can safely assume that the
intensity distributions of the two images are the same and if corresponding points exhibit
the same intensity values, simple measures based on intensity differences are sufficient. If
the two images are acquired with different modalities, we have to consider more complex
measures which for instance determine a statistical relationship of intensities. Similarity
measures can be separated into two categories, pointwise measures and region-based mea-
sures. We will introduce the most popular measures for both categories in the following.
Note that we are consistently using the term similarity measure for all of them, despite
the fact that some criteria are actually dissimilarity measures. However, every criterion
can be converted such that it fulfills our assumption that lower energies correspond to
higher similarity and better alignment. Here, we can ensure this by simple negation or
inversion.

3.2.1.1 Difference Measures

The simplest similarity measures are based on the differences of intensities. Here, we
consider the (normalized) sum of absolute differences (SAD) which is defined as

SSAD(I, J) = 1
|Ω|

∑
p∈Ω
|I(p)− J(p)| , (3.2)

and the (normalized) sum of squared differences (SSD)

SSSD(I, J) = 1
|Ω|

∑
p∈Ω

(I(p)− J(p))2 . (3.3)

The normalization by the number of points make the measures independent of the size
of the overlap domain Ω. The SAD criterion is slightly more robust to outliers while the
SSD criterion tends to over-penalize outliers. Both measures are belonging to the class of
pointwise measures. They are extremely easy to implement and very efficient to compute.
Intensity differences are only considered in mono-modal registration where the images are
acquired with the same modality.

3.2.1.2 Statistical Measures

More sophisticated similarity measures are based on image statistics [167]. They belong
to the class of region-based measures since they extract additional information from the
image domain Ω. The advantage of statistical measures is that corresponding image
points do not necessarily have to have the same intensities. This is actually very often
the case because of illumination changes, inhomogeneities, noise, and differing acquisition
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processes. A measure which makes less strict assumptions on the two intensity distri-
butions than difference measures is the correlation coefficient (CC). The CC criterion is
defined as

SCC(I, J) =
∑
p∈Ω(I(p)− µI)(J(p)− µJ)√∑

p∈Ω(I(p)− µI)2
√∑

p∈Ω(J(p)− µJ)2
= cov(I, J)

σIσJ
, (3.4)

where µI and µJ are the two means and σI and σJ the standard deviations of the image
intensity distributions. The CC takes values from [−1, 1], where 1 indicates a perfect linear
relationship, 0 indicates no linear relationship, and −1 an inverse linear relationship. By
simply taking 1 − SCC we can map the values on the range [0, 2] in order to make CC
suitable for minimization. The CC criterion makes less strict assumptions on the intensity
relationship than difference measures. Still, it is assumed that a linear relationship exists.
A measure which goes beyond this restrictions by assuming a pure statistical relationship
is based on mutual information (MI) [103, 152, 141] and defined as

SMI(I, J) = H(I) +H(J)−H(I, J) . (3.5)

Here, H(I) and H(J) are the marginal entropies, and H(I, J) is the joint entropy of
images I and J . The entropies are defined as

H(I) = −
∑
i

ρ(i) log (ρ(i)) and H(I, J) = −
∑
i,j

ρ(i, j) log (ρ(i, j)) , (3.6)

where ρ(i) and ρ(i, j) are the marginal and joint intensity distributions. So, using MI
as a similarity measure needs some more computation steps than the simple difference
measures or the CC criterion. Given two images, we first estimate the joint intensity dis-
tribution. There are several possibilities how to do this [121]; a simple and straightforward
way is by means of a discrete joint intensity histogram with a fixed number of bins. From
the (normalized) joint histogram we can read out the marginal and joint probabilities by
iterating over the bins of intensities. A popular variation and normalized version of MI
is the entropy correlation coefficient (ECC) [103] taking values from [0, 1]. The ECC is
defined as

SECC(I, J) = 2− 2H(I, J)
H(I) +H(J) . (3.7)

Again, taking 1−SECC makes it suitable for minimization. Such purely statistical measures
can be used for multi-modal registration where no linear or even no non-linear relationship
between the image intensities of corresponding points exist. The classical application of
MI-based measures is for instance CT-MRI registration (cf. Figure 3.1).

Other popular statistical measures are for instance the correlation ratio [122],
Kullback-Leibler divergence [25], or Jensen-Renyi divergence [54]. Recently, quite suc-
cessful attempts have been made in order to learn the statistical relationship between
images [96, 114, 19].
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Figure 3.3: Behavior of similarity measures in mono- and multi-modal scenarios.

3.2.1.3 Behavior of Similarity Measures

In Figure 3.3 we show the results of a small experiment which should illustrate the behavior
of the different similarity measures. We took a pair of corresponding 2D images from
registered CT and MRI scans (cf. Figure 3.1); we add Gaussian white noise to the
images. In order to simulate a multi-modal registration, which allows us to investigate
the similarity measures, we used the MRI slice as source and the CT slice as target image.
We translated the source image within an range of ±20 pixels along the x- and y-axis;
at each location we evaluated the SSD, the CC, and the ECC. Then we did the same
in a simulated mono-modal scenario. Here, we used the MRI for both the source and
the target image. The perfect alignment is of course when non translation is applied to
the source image, i.e. at point (0, 0), since the images are already registered. We clearly
see that all three measures have a well defined minimum at the correct location in case
of mono-modality. For the multi-modal case, only the ECC measure is able to correctly
determine the right translation.

3.2.2 Transformation Models
Another crucial component of image registration is the transformation model. The type of
transformation defines which motions or movements the source image can undergo. Also
the selection of the transformation model highly depends on the application and should
be based on the motions that we expect in the images. Linear transformations [53] are
suitable when translation, rotation, scaling or shearing is sufficient to align the images (cf.
Figure 3.4(b) and 3.4(c)). For example, if only the pose and orientation of the imaging
device has been changed from one image to another, linear transformations are sufficient.
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(a) Identity (b) Rigid (c) Affine (d) Non-linear

Figure 3.4: Different types of image transformations. Transformations (a)-(c) are linear mappings,
while (d) is non-linear.

In medical applications, linear transformations are considered when rigid structures, such
as the head of a patient or bony structures, are to be registered. If objects might have
changed their shape, for instance when the images are acquired at different breathing
phases, we need transformations which are more flexible and able to recover deformations
(cf. Figure 3.4(d)). Similarly, when multiple objects with different motions are present
within one scene, non-linear transformations [57] need to be employed.

Registration with linear transformation models is sometimes referred to as rigid, affine
or global registration. While registration with non-linear transformations is also called de-
formable, non-rigid, or local registration. Figure 3.4 shows an overview of different types
of transformations. Most transformations can be represented by a finite set of parame-
ters. The number of parameters is closely related to the degrees of freedom (DOF) of a
transformation. Basically, all previously used transformation models for image registra-
tion fulfill the assumption of parameterization if we follow the viewpoint of [165]. This is
an important property when considering registration with random fields.

3.3 Registration with Random Fields
We have seen different possibilities for the similarity measure which is one part of the
energy function and we roughly discussed the role of the transformation model. The last
component of intensity-based registration is the optimization strategy, and in particular
the part of computing the updates ∆T of the transformation (cf. Equation (3.1) and
Algorithm 2). Here, random fields come into the game. We propose discrete random field
optimization as a powerful alternative for this component. The general concept of random
fields and discrete optimization have been discussed in the previous two chapters. Now,
we demonstrate how this concept can be applied to image registration.

Let us formulate the registration problem in MRF terminology. The set of images
to be registered is the given data or the observation. So what is the role of the random
variables? We assume that the sought transformation T can be represented by a finite set
of n parameters Φ = {ϕ1, ..., ϕn}; we also write TΦ to emphasize the parameterization of
the transformation. Then, in every iteration the task is to determine the optimal update
∆Φ. If we associate the update of a single parameter ∆ϕi with a hidden variable Xi of a
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random field X = {X1, ..., Xn}, then every labeling x corresponds to an update ∆Φ and
accordingly to a new transformation TΦ+∆Φ. So, the task of registration is converted into
successive labeling problems where we have to solve one labeling problem per iteration.

In Chapter 1 we have introduced a general recipe for posing an optimization prob-
lem as a labeling problem. So far, we have identified the role of the random variables;
they represent the updates of transformation parameters. Now, the challenging task is
to explicitly define the posterior energy of the random field such that it matches the
registration energy. To this end, we have to define a set of cliques and their associated
potential functions. Furthermore, we have to discuss how to define the set of labels. But
all this depends on the actual type of transformation. Let us start with the case where
the transformation is non-linear. Afterwards, we introduce our random field model for
the linear case.

3.4 Non-Linear Registration
In non-linear registration we are trying to recover a non-linear transformation, hence the
naming. In Section 3.2.2 we have mentioned that this type of transformation is necessary
to recover the deformation of an image, or to be more precise, the deformation of objects
visible in an image. But how does such a transformation look like? It is convenient to
define it as a decomposition into two terms, an identity transformation Id and a dense
displacement field D, such that we get T = Id + D. A displacement is simply a vector
describing the motion of an image point p. The new location of p is then defined as

T (p) = p+D(p) . (3.8)

If we insert this transformation model into the very general registration Equation (3.1)
and employ a suitable similarity measure S, we could perform non-linear registration by
solving the minimization problem

D̂ = arg min
D
S(I ◦ (Id +D), J) (3.9)

It is clear that the actual task of non-linear registration is to recover the displacement field
D. This turns out to be a quite challenging task: (i) assuming the registration energy is
solely based on similarity measure S; recovering a higher-dimensional displacement field
from a one-dimensional intensity signal is an ill-posed problem [147]; there is little hope
that the optimization yields reasonable registration results; (ii) the number of unknowns is
often enormous; if we consider three-dimensional registration of moderately sized images
with 2563 voxels, then the corresponding displacement field has more than 16.7 millions of
parameters, each corresponding to a three-dimensional displacement. In total we would
have more than 50 million degrees of freedom.

Before we define our random field, we have to find solutions to deal with both issues.
Let us first present a solution to the first issue which is more of theoretical nature but
has a dramatic impact in practice.
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Figure 3.5: Dimensionality reduction. The dense domain (red line) is represented by a sparse set of
control points (red dots). Weighting functions ω control the influence of the control points.

3.4.1 The Need for Regularization

One popular way to overcome the ill-posed formulation is to add a second term to the
energy function which renders the optimization problem well-posed

D̂ = arg min
D
S(I ◦ (Id +D), J) +R(D) . (3.10)

The function R is also called a regularization term. Regularization plays an important
role in many optimization problems. As the name suggests, it allows us to regularize
or constrain the space of solutions, for instance by penalizing undesired or unrealistic
displacements fields. We could define R such that it returns high energy values if D
contains high gradients which would indicate non-smooth deformations. In fact, very often
smoothness is a desired property of deformations. If R is favoring smooth displacement
fields, we also call it a smoothness term. Other wanted properties could be that the
displacement field should be invertible and free of foldings and other singularities.

On a side note, we actually have seen the concept of regularization much earlier,
namely in Chapter 1 in the three vision examples. The prior energy of an MRF is often
nothing else than a regularization term defined on the space of labelings. For instance,
an assumption that neighboring pixels should have similar labels is a simple smoothness
condition. Let us now present a solution to the second issue, the enormous amount of
parameters.

3.4.2 Dimensionality Reduction

Intuitively, we could introduce a random variable for every image point p. However, such
an approach would result in an extremely huge field for which optimization is very ineffi-
cient, time consuming and memory demanding. We need to reduce the dimensionality of
the problem. An elegant way of doing this is by reparameterization of the dense displace-
ment field. Let us consider a set of k control points distributed along the image domain.
Furthermore, let k be much smaller than the number of image points n. The dense dis-
placement field can be defined as a linear combination of control point displacements
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Φ={ϕ1, ..., ϕk} with ϕi ∈ Rd

D(p) =
k∑
i

ωi(p)ϕi . (3.11)

Here, ωi corresponds to an interpolation or weighting function (cf. Figure 3.5). It deter-
mines the influence of a control point i to the point p. Commonly, the closer a point p is
located to i the higher the influence of the displacement ϕi. So, the actual displacement
of an image point is now computed by weighted sum. The important thing is, that in
order to obtain a dense displacement field, and thus a deformation of an image, we just
have to manipulate a few control points. For convenience, we denote the displacement of
point p by δp ≡ D(p).

A popular concept is based on free-form deformations (FFDs) [135] with cubic B-
splines as weighting functions. In the common FFD approach, the control points are
uniformly distributed over the image domain. Each control point has only local support on
the displacement field, and thanks to the cubic basis functions the resulting deformation is
guaranteed to be C2 continuous (cf. Figure 3.6). FFDs are also very efficient to compute,
since a lot of things can be pre-computed due to the regular structure. However, the
lattice-like topology of FFDs has some drawbacks. The control points do not adjust well
to the visible structures. This might be problematic if multiple objects undergo different
kind of motions. A regular grid will always have difficulties at the motion boundaries.
Here, transformation models with arbitrarily distributed control points, e.g. based on
triangulations, are beneficial. Those can be adjusted to the actual image content, however
usually their evaluation comes at higher computational costs.

Now we have seen possible solutions for the two challenges or issues mentioned earlier.
Based on this, we can now derive our models for non-linear registration. Here, we propose
two alternatives. The first model yields an extremely efficient registration method and
is based on free-form deformations and first-order Markov random fields [43, 44]. The
second one is based on triangulations and higher-order conditional random fields [38]; for
the latter one we make use of the most recent advances in discrete optimization.

3.4.3 The First-Order MRF Model
For our first-order model we employ free form deformations as the transformation model.
The first time we have presented this model was in [43] and later more comprehensively
in [44]. The FFD control points are distributed on a regular grid and the updates on their
displacements ∆Φ are associated with the random variables X. So a label assignment
Xi=xi is equivalent to adding a displacement ∆ϕi to the current position of control point
i. From now on, we treat labels directly as displacements, i.e. xi ≡ ∆ϕi. Similar to the
vision examples in Chapter 1, we employ a simple neighborhood system for the random
variables which follows the natural layout of the regular FFD grid, i.e. a 4-connected
neighborhood in case of 2D and 6-connected one in 3D. The first-order MRF energy is
defined as the sum of unary and pairwise potential functions

E(x) =
∑
i

ψi(xi) +
∑
(i,j)

ψij(xi, xj) . (3.12)
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Figure 3.6: Free-form deformations. An example image (top-left) is embedded in a regular FFD grid
(top-middle). By manipulating the control points (green), the shape of the ball-like object can be changed.
The resulting deformations are smooth which is visible in the blue deformation and displacement field.
We use backward warping for the image transformation; this is why the actual object deformation appears
to be inverse to the deformation field.

We propose to encode the likelihood energy, i.e. the similarity measure, on the unary
terms and the prior energy, i.e. the regularization, on the pairwise terms. This seems a
rather natural choice and follows the vision examples from Chapter 1, but it is not the
only possible choice as we will see later. Remember, the unary terms evaluate the label
assignment xi independently of all other assignments, while the pairwise terms consider
two random variables, simultaneously.

3.4.3.1 Efficient Likelihood Approximation Scheme

So what is the likelihood energy for moving a control point? Remember, that a control
point i has only local support on a sub-domain Ωi centered at i. We define the unary

49



Chapter 3: Image Registration

potentials based on a local similarity measure Si as follows

ψi(xi) = Si(I, J, D̃, xi) , (3.13)

where D̃ is the current displacement field (from the previous iteration and initially set to
zero). The similarity measure evaluates only within Ωi how well the images I and J would
be aligned if control point i is displaced by xi. Note that I can correspond to a warped
version of the original source image, obtained in previous iterations. As an example, let
us have a look on how the local SAD measure looks like. We define it as

Si(I, J, D̃, xi) =
∑
p∈Ωi

ω̂i(p) |I(p+ δ̃p + xi)− J(p)| . (3.14)

This definition needs some further explanation. The intensities of the source image I
are read out after adding the displacement xi, so we get I(p + δ̃p + xi). In fact, this is
equivalent to a translation of the (warped) image patch Ωi. But why do we add the update
xi equally on every image point? The point is, that the actual new displacement for an
image point p is unknown, since it depends on more than one control point. But the unary
term considers only the displacement of control point i. Indeed, from Equation (3.11) we
could compute the resulting point displacements by moving control point i additionally
with xi and assuming that all other control points remain unchanged. But even then,
the local similarity measure would only be an approximation. The problem is that we do
not know whether the other control points will move or not. Whatever we assume, it will
always be an approximation to the real energy. So, assuming a translation of the whole
patch – which corresponds to the assumption that all control points take the same label
– is just as well justified as any other assumption. But it has the important advantage
that it is very fast to evaluate without the need for computing the displacements of image
points.

In order to improve the approximation, we added weighting functions ω̂i which act sim-
ilarly as the weighting functions of the control points; here ω̂i determines the contribution
of image points p to the local similarity measure. Points closer to a control point should
contribute more, since they are also more influenced by the control point displacement.
We could choose the same weighting functions as the ones used for the transformation,
e.g. cubic B-splines. In practice, it turns out that simple linear functions are usually
sufficient. The concept of the weighting functions on the local domain is illustrated in
Figure 3.7.

We should note that the before mentioned likelihood evaluation only works for point-
wise similarity measures. Region-based measures such as the CC or MI extract further
statistics from the intensity domain, and a weighted summation of pointwise distances
does not work. In case of region-based measures, we follow a slightly different but still
efficient approach. We employ local versions of the similarity measures. So, for instance
the evaluation of the CC measure is simply restricted to the local domain Ωi. This works
extremely well. The same can be done for the MI based measures, but here we also have
to determine local joint intensity distributions. In that case, it depends on the size of
the local sub-domains how meaningful the local versions of MI are. With decreasing do-
main size, the statistics drawn from less intensity samples are degraded. In Chapter 4 we
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Figure 3.7: Illustration of the first-order energy terms. The local likelihood evaluation is illustrated
in (a). At control point i only the local domain Ωi is considered. Additionally, a weighting function
ω̂i (white fade-out) controls the influence of image points for point-wise similarity measures. The prior
term is shown in (b). For the fluid-like regularization (cf. Equation (3.16)) only the (green) updates
∆ϕ are considered. For the elastic-like regularization (cf. Equation (3.17)) also the previous (black)
displacements ϕ̃ are considered which yields a penalty on the full (blue) displacements.

will present a solution to this problem which is based on the so-called pointwise mutual
information (PMI) (cf. Section 4.1.2). For PMI our weighted evaluation can be applied.

One could ask, why we choose to encode the likelihood energy on the unary terms
if it comes with the problem of approximation. First, the approximation is not too bad
and we are able to achieve highly accurate registration results, as we will see later in
Chapter 4. Second, our approach is extremely efficient from a computational perspective.
In fact, we can compute the local similarity measures for all k control points and a certain
displacement in just one loop over the image points. We simply apply the displacement
under consideration as a global translation to the source image. Then we iterate once
through the whole domain Ω and assign the local costs with the respective weightings to
the k different unary terms. The weighting functions ω̂i take care that only points p within
Ωi are considered for control point i; outside the sub-domain the weighting is simply set
to zero. This procedures allows us to very quickly compute an energy look-up table with
k×|L| values, where |L| is the number of labels. There are only |L| global translations and
loops over the source image. We call this procedure the efficient likelihood approximation
scheme (ELAS).

3.4.3.2 Local Smoothness

The second part of the registration energy is the regularization term. We have previously
mentioned the need for regularization in order to render the optimization problem well-
posed. Adding a regularization term to the energy is one possibility to achieve that.
However, actually the fact that we are using free-form deformations, and that the number
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of control points is commonly much lower than the number of image points is also some
kind of explicit regularization. The number of unknowns has been dramatically decreased
compared to the number of observations, i.e. the image intensities. The problem is well-
posed and additionally the FFDs guarantee smooth deformations. So what is the point
of adding an implicit regularization in terms of an energy?

The motion of control points, and thus the registration, is driven by the likelihood,
i.e. the similarity measure. Now, the problem is that in general not all areas in the
images contain sufficiently enough structure to obtain a good alignment solely based
on an intensity based similarity term. Homogeneous, noisy or corrupted areas might
benefit from an additional regularization term. The idea is, in areas with prominent
structures or a lot of texture the likelihood term will dominate and control the motion
of the control points. This motion could then guide control points where the likelihood
is less discriminative and reliable. To this end, we can encode local regularization terms
Rij on the pairwise potential functions as follows

ψij(xi, xj) = αijRij(xi, xj) . (3.15)

The scalar αij is a weighting factor which controls the influence of the regularization term
on the total energy. It can vary locally which is interesting if additional information is
available. Otherwise we can set a fixed value for all pairwise terms. One possibility to
achieve local smoothness is for instance by using the following definition

Rij(xi, xj) = ‖xi − xj‖
‖i− j‖

. (3.16)

This term penalizes variations between the displacements of neighboring control points i
and j. It is a discrete approximation of a gradient penalty and favors smooth updates for
the displacement field. However, only the updates are penalized. If we want to regularize
the overall deformation, we need to consider the control point displacements from previous
iterations, denoted by Φ̃ = {ϕ̃1, ..., ϕ̃k}. This can be done by defining the regularization
term as

Rij(xi, xj) = ‖(ϕ̃i + xi)− (ϕ̃j + xj)‖
‖i− j‖

. (3.17)

Depending on whether Equation (3.16) or (3.17) is employed, the alignment of the images
will behave differently. The penalty on the updates results in a fluid-like registration;
every update is smooth, but the final deformation can take almost any form. In contrast,
the penalty on the full deformation considering the previous displacements results in an
elastic-like registration; the final deformation is much more constrained with respect to
the initial one. The evaluation of both terms is illustrated in Figure 3.7(b).

The two presented regularization terms are probably the most basic ones. Others
could be based on robust penalty functions by truncating or thresholding the energy at
a certain level to allow discontinuities in the labeling – this is similar to the prior in the
restoration problem. In our application chapter we will present some alternatives and
compare the behavior of different regularization terms.
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3.4.4 The Higher-Order CRF Model
Our second approach for non-linear registration is based on a higher-order conditional
random field formulation. The term high-order reflects the fact, that we employ a model
with cliques of size larger than two. To this end, we make use of triangulation meshes as
a model for piecewise-affine transformations (cf. Figure 3.8). This approach has been re-
cently presented in our work on optical flow estimation [38]. In contrast to the first-order
model, the likelihood energy is modeled exactly without approximations. The formu-
lations differs depending on the dimensionality of the images to be registered. In the
following, we will focus on the formulation for the 2D case and briefly discuss the differ-
ences for 3D.

In many registration scenarios one can make the following two observations: (i) often
the scene contains mainly solid objects, which might translate, rotate, and/or scale from
one image to another, (ii) the motion of non-solid objects (such as textiles or tissues) can
be represented by sufficiently many local affine motions. A transformation model that fits
quite nicely to these observations are triangulation meshes. Assuming the image domain
Ω is covered by a mesh of triangles. Each triangle is defined by three control points
i, j, and k (the triangle vertices). Similar to FFDs, we obtain a dense displacement
field D by displacing the control points. Following Equation (3.11), we can compute the
displacements of image points p lying within a triangle (ijk) from a linear combination
of control point displacements Φijk={ϕi, ϕj, ϕk} as

D(p) = ωiϕi + ωjϕj + ωkϕk . (3.18)

Here, (ωi, ωj, ωk) are the barycentric coordinates of point p with ωi+ωj+ωk=1. In such a
way, every triangle is representing a local affine warp Tijk with six degrees of freedom (i.e.
three 2D displacements) on the triangular sub-image Iijk. Again the random variables X
are associated with the updates on control point displacements ∆Φ and labels correspond
to displacements, i.e. xi ≡ ∆ϕi. The registration energy is encoded in the energy of a
higher-order random field, which is generally defined as

E(x) =
∑
C∈C

ψC(xC) . (3.19)

Here, xC is the sub-labeling for the variables within clique C. Now, the task is to define
the set of cliques and the posterior energy of the field.

3.4.4.1 Triangulation-Based Likelihoods

We define the likelihood energy on triple-clique potential functions. Each triangle (ijk)
constitutes a clique and a similarity measure is evaluated for the warped triangle which
occurs when labels xi, xj, and xk are assigned. The similarity measure is considered
between the warped sub-image I ′ijk and sub-image Jijk. The corresponding potential
function is simply defined as

ψijk(xi, xj, xk) = S(I ′ijk, Jijk) . (3.20)
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(a) Triangulation (b) Deformation (c) Displacement field

Figure 3.8: Piecewise affine motion model based on triangulations. Each object is embedded in a
triangulation mesh and can be separately transformed.

The great advantage of this formulation is that the likelihood energy is evaluated exactly
without approximations. The displacements for all image points considered in the po-
tential function are known since they are fully defined by the three labels respectively
displacements of the three triangle vertices. The drawback is that we cannot employ a
fast evaluation scheme as the one used for the first-order model. Indeed, the evaluation
is exact but less efficient with respect to computation time.

If we want to extend this approach to 3D, we need to consider tetrahedralizations in-
stead of triangulations. The likelihoods would then be based on quadruple-cliques defined
for tetrahedral sub-volumes.

3.4.4.2 Geometric Regularization

Triangles covering homogeneous regions might lead to unreliable motion estimates. There
are several ways for employing a regularization on the mesh. Note that our higher-order
formulation implicitly has some kind of mesh regularization. Triple cliques of neighboring
triangles will automatically have two control points in common, the ones on the common
edge. Additionally, we propose a simple yet effective explicit regularization which is also
based on triple-clique potential functions. We call it the angle deviation penalty (ADP).
The ADP is defined as

ψijk(xi, xj, xk) = αijk‖(γi, γj, γk)− (γ′i, γ′j, γ′k)‖ . (3.21)

The term penalizes the change between the initial angles (γi, γj, γk) and the angles of the
warped triangle (γ′i, γ′j, γ′k). The ADP is invariant to similarity transformations (i.e. all
transformations containing only translation, rotation, and isotropic scaling). The weight-
ing αijk controls the influence of the regularization energy when added to the likelihood
energy. A different term, based on quadruple-cliques, which is penalizing non-affine mo-
tions between neighboring triangles, is considered in our optical flow paper [38] and therein
also compared to the one presented here.

The extension to 3D is straightforward; the ADP for the four angles in a tetrahedron
is simply encoded on quadruple-cliques.
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3.4.4.3 Mesh Construction

A nice property of triangulation meshes is their great adaptivity and flexibility. The
control points can be located anywhere in the image domain and thus the meshes can be
adapted to the structures and objects visible in the images. A cleverly devised placement
of triangles can yield more realistic transformation models in particular in areas with
motion boundaries (cf. Figure 3.8). There are many ways how to obtain suitable, and
in best case, automatically generated triangulations. In [52], we have investigated an
approach which is based on control point placement at dominant points of intensities
and compared this to free-form deformations with uniformly distributed control points.
Recently, we have looked into more sophisticated approaches for mesh construction based
on object and motion segmentation [38]. A very promising direction is the separation of
motion layers and defining individual meshes for each layer; a direction which is followed
in [38] and will be extended in future work.

3.4.5 Discrete Label Space and Refinement Strategies
Our two approaches for non-linear registration are both based on the estimation of la-
belings corresponding to control point displacements. So far we did not really discuss
how this is done. Here, we make use of recent discrete optimization techniques, because
they are able to obtain strong, sometimes globally optimal, solutions, at least within a
discrete search space. Strong solutions are important, since they yield good updates on
the transformation and result in efficient minimization of the original registration energy.
The label set L defines our search and solution space in every iteration. The problem
which arises here is the fact that our parameters, i.e. the displacements of the control
points, live in a continuous space, so actually we would need the label space to be L ⊆ Rd

(where d is the dimensionality of the images). But for discrete optimization the set of
labels has to be discrete. So, how can we efficiently sample this space and form a set of
discrete labels?

It is important to find a good compromise. On the one hand, a small number of labels
allows fast optimization. On the other hand, a too sparse sampling of the continuous
space may lead to inaccurate registration. To this end, we propose a label space refine-
ment strategy which allows us to keep the number of labels small, but also to achieve
high-accurate results. We commonly employ a sparse sampling with a fixed number of
samples s. We uniformly sample displacements along certain directions up to a maximum
displacement magnitude δmax. The total number of labels is then |L| = h · s+ 1 including
the zero-displacement and h is the number of sampling directions. Now, in every iteration
of the registration process, we determine the optimal update by solving a discrete labeling
on the current set of labels. If the update is successful, which means the energy decreases
sufficiently, we keep the current set of labels for the next iteration. If the energy did
not decrease, which means we cannot find any better alignment within the current search
space, we refine the label space by rescaling every displacement in L by a factor 0<f <1.
The next iteration is then performed on this refined search space.

The number and orientation of the sampling directions depends on the dimensionality
of the registration. The simplest possibility is to sample just along the main coordinate
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Figure 3.9: Discrete label spaces. The simplest strategy is to simple along the main coordinate axes as
shown for 2D in (a) and 3D (d). We commonly employ sparse sampling such as shown in (b). A dense
label space can be defined by uniform sampling as shown in (c).

axes, i.e. in positive and negative direction of the x-, y-, and z-axis (in case of 3D).
Additionally, we can add samples for instance along diagonal axes. In 2D we commonly
prefer a star-shape sampling, which turns out to be a good compromise between the
number of samples and sampling density. In our experiments we found that also very
sparse samplings, e.g. just along the main axes, gives very accurate registration results but
comes with an increased number of iterations until convergence. The sampling strategies
are illustrated in Figure 3.9.

3.4.5.1 Optimization

The remaining question in this part about non-linear registration is: how do we obtain
the labelings? We need to employ one of the algorithms reviewed earlier in Chapter 2.
Ok, but which one? What is the best optimization technique for our specific formulation?
To answer this question, it is necessary to analyze some of the model properties. Both
models, the first-order and the higher-order model, have one property in common: their
energies are not necessarily submodular which has an impact on the applicability of some
algorithms based on graph-cuts (cf. Section 2.4.1.1 in Chapter 2).

Regarding the higher-order model it should be quite clear to see that we cannot expect
the clique potentials based on an intensity-based similarity measure to be submodular.
The potential functions are simply too general.

For the first-order model it is not so obvious to see why the energies should not be
submodular. The essential part here are the pairwise terms – remember, that unary terms
are submodular by definition. If we want to use α-expansion with classical graph-cuts
[18], the pairwise terms need to satisfy the following condition: ψij(α, α) + ψij(β, γ) ≤
ψij(α, γ)+ψij(β, α) for all labels α, β, γ ∈ L. And here, the devil is in the details. Whether
the pairwise terms fulfill this condition depends on the type of regularization, fluid-like or
elastic-like, but also on the exact computation of the penalties. For instance, the fluid-like
definition where only updates are penalized is submodular, if absolute vector differences
are considered as in Equation (3.16). However, if we employ a quadratic version which is
defined as

Rij(xi, xj) =
(
‖xi − xj‖
‖i− j‖

)2

, (3.22)
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the pairwise terms are not submodular anymore. It is easy to construct an example to
show this (e.g. with α=(2, 0)>, β=(−2, 0)>, γ=(3, 0)>).

The elastic-like definition is non-submodular, no matter if the absolute or quadratic
version is used. It considers the displacements of previous iterations, and therefore it
cannot be ensured that the condition holds. Consider a simple example: the current
displacements of two neighboring control points are ϕ̃i = (1, 0)>, and ϕ̃j = (2, 0)>, their
distance is assumed to be one, and the three labels correspond to updates α = (1, 0)>,
β=(2, 0)>, and γ=(−1, 0)>. If we evaluate Equation (3.17) we get ψij(α, α) +ψij(β, γ)=
1 + 2 and ψij(α, γ) + ψij(β, α)=1 + 0, so 3 6≤ 1.

In conclusion, in most cases we will have to deal with functions which are non-
submodular, so the optimization algorithm must be able to handle this class of energies.
For the first-order model we employ the FastPD method [92, 93] which is known to be ex-
tremely efficient and it is able to handle our energies. Remember, similar to α-expansion,
FastPD works by iterating over the set of labels (cf. Section 2.4.2.1 and Algorithm 1 in
Chapter 2). FastPD is only applicable to first-order energies. So for our higher-order ap-
proach, we employ a different optimization technique. It is based on the QPBO algorithm
[85, 128] in combination with higher-order clique reduction [65]. This combination allows
to minimize non-submodular higher-order energies. Again, we perform the optimization
in an α-expansion manner, where we iterate over the set of labels.

3.5 Linear Registration

Our models for non-linear registration exhibit certain analogies found in other random
field models used in applications such as restoration or stereo (cf. Chapter 1). The random
variables represent entities localized in the image domain and thus also the corresponding
graph topology, and in particular the neighborhood system is related to the Euclidean
distance of nodes. This is fundamentally different for the case of linear registration. The
parameters of linear transformations act globally and cannot be assigned to certain points
in the image domain. To this end, we propose a random field model which is very different
from the previous ones. The first time we have presented this idea was in [46] and later
more comprehensively in [163]. But before we come to the exact derivation of the model,
let us discuss how we can represent linear transformations.

3.5.1 Parameterization

Linear transformations for d-dimensional images can be conveniently expressed in matrix
form using homogeneous coordinates [53]:

A =

 Â

v> 1

 , (3.23)
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where Â ∈ Rd×(d+1) and v ∈ Rd. The new location of a (homogeneous) image point p is
then defined via the matrix-vector-product as

T (p) = Ap . (3.24)

In the following, we focus on transformations up to affine (cf. Figure 3.4) by assuming
that v = 0. However, the model can be easily extended to projective transformations.
Affine transformations have 6 degrees of freedom in 2D, and 12 in 3D. One possible way
for parameterization is simply to take every single entry of Â as one parameter. However,
this not very intuitive since the majority of the entries does not have a direct geometrical
interpretation. Instead, we employ a parameterization in which the affine transformation
is decomposed into a set of matrices as

A = MtRφR
−1
θ DsRθ . (3.25)

Here, Mt represents a translation, Rφ a rotation, and R−1
θ DsRθ represents the shearing

component. For the shearing, Rθ is a rotation and Ds is a diagonal matrix, representing
anisotropic scaling. The single matrices in Equation (3.25) can be directly also represented
by the respective parameters [53]. In 3D case, the rotation is parameterized by Euler
angles. The resulting sets of parameters for the 2D and 3D case are

Φ2D = {tx, ty, φ, sx, sy, θ} , (3.26)
Φ3D = {tx, ty, tz, φx, φy, φz, sx, sy, sz, θx, θy, θz} . (3.27)

When we do not need to differentiate between the actual meaning of the parameters, we
simply write Φ2D = {ϕ1, ..., ϕ6} and Φ3D = {ϕ1, ..., ϕ12} with ϕi ∈ R.

3.5.2 The Highly-Connected First-Order CRF Model
Very similar to the non-linear case, the task of linear registration is now formulated as a
parameter estimation problem where we need to find the optimal values for the parameters
in Φ. As already mentioned, this can be achieved by iteratively seeking optimal updates
∆Φ where each ∆ϕi is associated with a random variable Xi, and labels are equivalent
to updates, i.e. xi ≡ ∆ϕi. Note, in contrast to the non-linear case, here the labels
are one-dimensional which, at first glance, seems to make the problem a little bit easier.
Additionally, in case of linear registration there is no need for regularization. Due to
the relatively small number of parameters – compared to the number of parameters in
non-linear registration – the energy formulation solely based on a similarity measure is
well posed and we can write the minimization problem as

Φ̂ = arg min
Φ
S(I ◦ TΦ, J) . (3.28)

So, the task is now to define a random field energy E which matches Equation (3.28); and
it turns out that this is not straightforward. The main challenge lies in the dependency
of the individual parameters. As already mentioned, each parameter has a global effect
on the image transformation. For instance, optimizing the parameters independently is
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Figure 3.10: Highly-connected CRF model for linear registration. The graph topology for 2D affine
registration is shown in (a). Each variable has its own set of labels. Exemplary visualization of the
energy approximation via pairwise terms for the 2D rigid case is shown in (b). Here, tx, ty, φ denote the
translation and rotation parameters, with initial values t̃x, t̃y, φ̃. The evaluation of the original energy
at the parameter point Φ = Φ̃ + ∆Φ (black) is approximated by the sum of the energy evaluations at
the projections of Φ to the 2D subspaces (red, green, blue). The subspaces are orthogonal and all pass
through the initial point Φ̃ (gray).

doomed to failure. But how can we appropriately encode this dependence in the labeling
energy?

In Chapter 1 we have seen that conditional dependence between variables is modeled
via the cliques. In fact, since all n parameters of an affine transformation depend on each
other, we would need to define a random field with exactly one clique of order n−1, i.e.
the clique compassing all variables. For the 2D registration we need a fifth-order clique,
for 3D an eleventh-order clique. The corresponding random field energy based on this
single clique is simply

E(x) = ψ(x) with ψ(x) = S(I ◦ TΦ+∆Φ, J) . (3.29)

We can use the higher-order minimization scheme based on QPBO [85, 128] and clique
reduction [65]. However, this is not very efficient. The reduction works by introducing
auxiliary nodes. Transforming a fifth-order clique into pairwise form – which is necessary
for the QPBO graph cut – yields in worst-case 49 additional nodes, while the eleventh-
order clique yields up to 9217 additional nodes [65]. The question is whether we can
model the global dependency differently?

We propose a highly-connected CRF model which is solely based on pairwise cliques
which can be efficiently optimized. Our random field energy is defined as

E(x) =
∑
(i,j)

ψij(xi, xj) . (3.30)
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The energy is similar to the classical first-order energy but without unary potential func-
tions. The pairwise potentials are defined as

ψij(xi, xj) = S(I ◦ TΦ+∆Φij , J) , (3.31)

where ∆Φij ={∆ϕ1, ...,∆ϕn} is the update on the transformation parameters with entries
defined as

∆ϕk =


xi , k = i
xj , k = j
0 , k 6= i, j

. (3.32)

So, the each pairwise term evaluates the similarity measure when exactly two parameters
are changed simultaneously. Now the trick is the following: we connect every variable with
all others, yielding a fully-connected pairwise graph (cf. Figure 3.10(a)). Thus, the full
conditional dependence between all variables is approximated via a highly-connected first-
order conditional random field which does not need any reduction yielding auxiliary nodes.
The minimization can be performed by employing any efficient optimization technique
such as FastPD [92] or standard QPBO.

The energy in Equation (3.30) is an approximation to the original registration energy.
A visual interpretation of this is illustrated in Figure 3.10(b). In [163], we could show
that iteratively minimizing the approximation is efficient and yields a very good solutions
for the linear registration problem defined Equation (3.28).

A nice property of our approach is the flexibility with respect to the type of transfor-
mation. If we want to allow only rigid registration, i.e. translation and rotation only, we
can simply deactivate the variables for scaling and shearing by disconnecting the corre-
sponding nodes from the graph. Graph modifications become an intuitive way of changing
the behavior of the registration.

3.5.3 Discretization and Optimization
In order to make use of discrete optimization, again we need to define the discrete set of
labels. Note, this time the variables take one-dimensional values only but still they live in
a continuous domain, which means the label sets should actually be Li ⊆ R. We employ
a very similar discretization strategy as the one used for the non-linear registration. For
each parameter, we create its own Li with a specific value range ri = [δmin, δmax] which is
uniformly sampled with a fixed number of steps. So, all label sets have the same size, but
cover a parameter specific range of values. This is necessary due to the different meanings
of the single parameters such as translation, rotation, or scaling.

In all experiments [46, 164, 163] in which we have tested our linear registration ap-
proach, we used the FastPD algorithm [92]. Within the iterative registration loop, we also
use the same label set refinement strategy as introduced earlier. If an update decreases
the energy sufficiently, we keep the current set of labels for the next iteration. If not, we
refine the label spaces by rescaling every value in Li by a factor 0<f <1. The registration
is then continued on this refined search space.
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3.6 Related Work, Discussion, and Outlook
We would like to conclude this chapter by a discussion which provides some more insights
into our proposed registration framework based on random fields. If we look into the lit-
erature, in particular for non-linear registration, we notice that most previous approaches
are based on continuous optimization methods. Variational approaches [56, 107] based on
the famous formulation by Horn and Schunck [59] are commonly solved either by standard
steepest-descent or more advanced (preconditioned) versions of gradient-descent optimiza-
tion. Non-linear registration using free-form deformations – first proposed by Rueckert
et al. [133] – is also commonly solved by variants of gradient-descent [74]. Last but
not least, registration via demons [146, 151] uses the gradient of the likelihood energy
as driving force for computing the iterative updates. There are many other approaches
which are more or less similar to one of the three before mentioned ones. All of them
have in common, that they require the differentiation of the energy function. This can
be straightforward for rather simply energies, for instance based on an intensity differ-
ence measures and a simple regularization term, but it can be also quite tedious for more
complex energies.

3.6.1 Gradient-Free Optimization
All our registration methods, the linear method as well as the non-linear methods, are
what we call gradient-free. In discrete optimization, the energy function is evaluated
directly for a variety of possible labelings; neither analytical nor numerical differentiation
is required. This is of particular interest if we want to test a novel, complex energy
function which might be difficult or even impossible to differentiate. In our framework, it
is straightforward to “plug-in” new energy terms.

Another great advantage of the discrete formulation is connected to the strategy of op-
timization. While continuous methods, in particular gradient-descent based approaches,
might easily get stuck into local minima of non-convex functions (cf. Figure 2.1), the
inherent “large neighborhood search” of discrete methods can overcome this limitation.
In every iteration, several possible solutions are evaluated and the one corresponding to
the (approximately) optimal energy is chosen. Depending on the definition and size of
the search range, discrete methods allow to “jump out” of local minima. Indeed, the
optimality is bounded by the discretization, but with intelligent refinement strategy the
accuracy of continuous methods can be achieved.

3.6.2 Search Space Control
Additionally, the explicit definition of search space can be another advantage. In contin-
uous methods it is rather difficult to control the search space. For instance, if we consider
a steepest-descent algorithm, the only parameter the user can explicitly control is the
step size in every iteration. However, the step size with respect to the magnitude of the
gradient of the energy function might not have a very intuitive meaning. In contrast,
in discrete methods the user has full-control on the definition of the label space. The
range and the resolution of the search space can be explicitly set, but also the orientation
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and direction of the search can be controlled. In fact, our framework allows to make
use of any sort of prior knowledge that might be available for the search range. For in-
stance, we make use of a geometric property of free-form deformations which is known to
yield diffeomorphic deformations [98, 132] by simply limiting the maximum displacement
magnitude to a specific value. In case of linear registration, the definition of the label
spaces for the individual transformation parameters also allows us to restrict the space
of possible transformations. But also the other way around, we can for instance set the
initial label space for the rotation parameter to Lφ = {−180◦, ...,+180◦}. This allows a
quasi global search for the rotation and the registration becomes much less sensitive to
the initial alignment.

Compared to previous applications, such as restoration, stereo, or segmentation, we
find that our optimization strategy is establishing a completely novel perspective on the
applicability of discrete optimization. Commonly, discrete labeling has been used as
follows: a set of discrete labels was defined which completely covers the solution space.
The estimated labeling was then considered directly as the final solution. This is very
different compared to our setting where it is infeasible to define a single set of labels.
Instead, we successively define sets which represent the possible updates for the current
solution. The original energy is minimized iteratively, instead of estimating one single
labeling. We believe that this perspective might be beneficial for many other optimization
problems which so far have not been considered to be solved by powerful discrete methods.

Computation time, in particular for the first-order non-linear method, militates in
favor of discrete approaches. The efficient likelihood approximation scheme in combination
with the FastPD optimization method yields an algorithm which is considered to be one
of the most efficient registration methods using free-form deformations. In the editorial
preface of the journal where we first published this method it is stated: “The paper by
Glocker et al. [44] introduces a novel and efficient approach do dense, non-rigid 3D image
registration that reduces the required computation time from hours to minutes for large
3D voxel sets”.

3.6.3 Other Discrete Approaches

It is worth to note that there are some works by other researchers which employed discrete
optimization for registration. One of the first works is by Roy and Govindu [131] who
use a multi-label optimization method which is based on a single st-cut [130, 62]. Their
application is optical flow estimation which is closely related to non-linear registration.
A random variable is introduced for every pixel in a 2D image. The pixel displacements
are found by solving separately for the magnitude and the orientation. The approach
is non-iterative, i.e. single labelings are computed where the label sets try to cover the
whole solution space; hence, the resulting flow estimates are rather inaccurate.

Another non-iterative approach for the task of medical image registration has been
proposed by Tang and Chung [144]. They also introduce one variable per image point,
this time in 3D, and define a single set of labels which samples a dense 3D displacement
space. The optimization is based on α-expansion; a similar approach has been previously
proposed for the 2D case in [18]. The method is computationally very inefficient and a
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single registration of moderately sized volumes takes more than 20 hours of computation
time.

A different approach is proposed by Shekhovtsov et al. [136]. They present a decom-
posed model where a random variable is introduced per pixel and per dimension. The
likelihood term is then encoded on pairwise potentials and TRW-S [83] is employed as the
optimization algorithm. An extension of the decomposed model to 3D was later presented
by Lee et al. [97]. The theoretical advantage of this approach is the reduced number of
labels while a wide range of possible displacements can be covered at the same time.
However, it turns out that this approach is less efficient and less accurate compared to
our first-order non-linear FFD approach based on iterative refinement [137].

3.6.4 Further Ideas
An interesting development and future extension to our framework could be based on
discrete-continuous optimization via fusion moves [101]. In cases, where the gradient of
the energy function is available this information could be used for high-accurate refinement
after initial discrete optimization. But instead of employing a standard gradient-descent,
we could directly generate labeling proposals out of the gradient but with different scal-
ings, i.e. different step sizes. The fusion move optimization is then performed on a set
of gradient proposals, and the optimal one is selected individually for each random vari-
able under consideration of a regularization energy. A rudimentary version of gradient
proposals in fusion moves has been proposed in [64].

Another promising direction for future work is based on our higher-order CRF model.
Here, investigations towards object-specific, or in the medical domain organ-specific,
transformation models could help to dramatically improve non-linear registration. Since
different tissues and materials have different deformation properties, these differences
should be reflected in the model, in the transformation as well as the energy model. De-
formation properties are sometimes already known or could be learned from annotated
data. Our method with arbitrarily placement of control points seems suitable to encode
such local properties.

In Chapter 1, we already mentioned that whatever kind of mathematical problem
we want to solve on a computer, at some point discretization is unavoidable. The only
question is where and when? In this thesis, we have proposed a novel perspective to this
issue by introducing discrete random fields as an efficient alternative for image registration
where the discretization is performed very early, i.e. in the phase of modeling. Despite the
challenges which arose and which had to be tackled, we have shown the great potential
lying in this approach. The following and last chapter of this thesis is dedicated to some
specific applications in which our methods have been successfully applied.
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CHAPTER

FOUR

APPLICATIONS

This final chapter is dedicated to real world applications and experiments in which we
have used one of the registration methods presented in Chapter 3. We will present several
results from the medical and non-medical domain and also show some recent extensions
to our framework. We start by some general experiments which have been conducted
to demonstrate the performance and flexibility of our approach. Afterwards, we present
a variety of medical scenarios such as motion compensation, atlas-matching, and image
stitching in which we successfully applied our registration algorithms. Finally, we show
our recent results for optical flow estimation in non-medical images.

4.1 General Experiments
We would like to start by presenting some experiments which are not tailored to spe-
cific applications. This involves a comparison of our discrete approach to state-of-the-art
registration methods based on continuous optimization, the investigation of a novel sim-
ilarity measure, and an evaluation of different regularization terms. Last but not least,
we present an extension of our non-linear framework which allows to incorporate prior
knowledge from training data sets.

4.1.1 Discrete vs. Continuous
When we talk about solving the inherent continuous problem of image registration by
means of discrete random fields, a natural question arising in this context is with respect
to registration accuracy. We conducted many experiments in which we compared the
registration accuracy of continuous methods with our discrete approaches. For example,
a comprehensive experimental study for our linear registration method is presented in
[46, 163]. For our non-linear first-order MRF approach we have performed several tests
with known and unknown deformations in [43, 44]. For different similarity measures
and a set of synthetically deformed images we find that our discrete approach is always
competitive in accuracy and often much faster [44].
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Gray Matter
Image DICE Sens Spec DICE Sens Spec DICE Sens Spec
Brain 1 0.7022 0.7679 0.9633 0.8205 0.8547 0.9800 0.8567 0.8936 0.9831
Brain 2 0.7267 0.7236 0.9792 0.8142 0.8125 0.9857 0.8468 0.8489 0.9878
Brain 3 0.6687 0.6047 0.9816 0.8054 0.8059 0.9823 0.8332 0.8194 0.9867
Brain 4 0.7270 0.7924 0.9703 0.8154 0.8524 0.9818 0.8535 0.9065 0.9833
Brain 5 0.6977 0.7341 0.9686 0.8041 0.8449 0.9782 0.8355 0.8787 0.9809
Brain 6 0.7078 0.6328 0.9852 0.8116 0.7615 0.9891 0.8415 0.8112 0.9889
Brain 7 0.7062 0.6793 0.9779 0.8308 0.8303 0.9848 0.8591 0.8725 0.9857
Average 0.7052 0.7050 0.9752 0.8146 0.8232 0.9831 0.8466 0.8615 0.9852
White Matter
Brain 1 0.6484 0.6214 0.9842 0.7686 0.7296 0.9910 0.8344 0.7909 0.9944
Brain 2 0.6269 0.6335 0.9863 0.7225 0.6794 0.9929 0.7962 0.8031 0.9924
Brain 3 0.6097 0.5622 0.9887 0.7312 0.7212 0.9899 0.7855 0.7937 0.9909
Brain 4 0.6860 0.6881 0.9866 0.7879 0.8034 0.9900 0.8428 0.8195 0.9947
Brain 5 0.6372 0.6080 0.9853 0.7598 0.7231 0.9912 0.8329 0.8297 0.9921
Brain 6 0.6521 0.6477 0.9882 0.7338 0.8976 0.9808 0.7794 0.8659 0.9876
Brain 7 0.6430 0.5924 0.9884 0.7840 0.8102 0.9881 0.8262 0.8312 0.9916
Average 0.6433 0.6219 0.9868 0.7554 0.7664 0.9891 0.8139 0.8191 0.9920
Running Time

First-Order MRFAffine Gradient-Descent

4 minutes 3 hours 50 minutes 8 minutes

Table 4.1: Deformable inter-subject brain registration. Given is the DICE score, the sensitivity, and the
specificity for the alignment of the segmented gray and white matter of the brain. From left to right we
give the results for the affine pre-alignment, the deformable registration using standard gradient-descent,
and the results for our first-order MRF approach. Our approach is remarkably faster while yielding in
average a higher accuracy for the alignment of the segmented structures. The size of each data set is
256×256×128 voxels.

Here, we would like to present one particular experiment, namely the deformable
inter-subject registration of MRI brain images. In order to detect differences in brain
anatomy we registered 8 data sets in which the gray and white matter of the brain have
been manually segmented. After registration it is possible to identify areas with large
deformations and mark them as significant variations. The transformations estimated
from the registration of the raw intensity data can also be applied to the segmentations.
By determining how well the segmentations are aligned we can assess the quality of the
registration. We selected one of the 8 data sets to act as the target image and the
remaining 7 data sets have been registered to this target. The results are summarized in
Table 4.1 and illustrated in Figure 4.1. More details can be found in [44]. The data is
part of the Internet Brain Segmentation Repository (IBSR) provided by the Center for
Morphometric Analysis at Massachusetts General Hospital1. We observe that our discrete
approach is much more efficient in terms of computation time and we are able to obtain a
similar (or even higher) accuracy for the alignment of the segmented structures compared
to employing a standard gradient descent approach as described in [133].

1http://www.cma.mgh.harvard.edu/ibsr/
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Figure 4.1: Deformable inter-subject brain registration. Color encoded visualization of the surface
distance between the warped and expert segmentation after affine, gradient-descent, and our registration
(from left to right) for the Brain 1 data set. The color range is scaled to a maximum and minimum
distance of 3 mm. In some regions, the result for the gradient-descent approach seems to be slightly
better. However, the actual average surface distance after registration for gray matter is 1.66, 1.14, and
1.00 millimeters and for white matter 1.92, 1.31, and 1.06 millimeters.

4.1.2 Pointwise Mutual Information
In the introduction of our non-linear first-order MRF approach (cf. Section 3.4.3) we
already mentioned a problem which might arise in case of multi-modal registration. The
problem is in the evaluation of the local statistical similarity measure. The local image
statistics are calculated from local patches whose size decreases with an increasing reso-
lution of the free-form deformation control grid. If the local domains are too small the
statistics might become unreliable. This becomes an issue in particular for measures such
as mutual information where joint intensity distributions are determined from the local
domains. We tested an alternative approach for multi-modal registration based on so
called pointwise mutual information (PMI) [123]. In every iteration, we compute only
one global joint image histogram based on the current deformation. The mutual infor-
mation is then calculated pointwise with respect to the pre-computed global intensity
distributions ρI(i), ρJ(j), and ρIJ(i, j) as follows

Si(I, J, D̃, xi) = −
∑
p∈Ωi

ω̂i(p) log
(

ρIJ(I ′p, Jp)
ρI(I ′p) ρJ(Jp)

)
, (4.1)

where I ′p=(p+ δ̃p +xi) and Jp=J(p). The great advantage of the pointwise calculation is
that its statistical expression is less dependent on the actual resolution of the control grid.
Similar to other pointwise measures, we can also employ weighting functions ω̂. Addition-
ally, the computation of pointwise MI is much faster than its region-based counterpart
since only one joint histogram has to be determined in case of PMI. In Figure 4.2 we show
a comparison between PMI and region-based MI in a simple experiment. A 2D-MR image
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(a) Source (b) Target (c) Region-based MI (d) Pointwise MI

Figure 4.2: Comparison of local region-based mutual information and pointwise mutual information.
For very fine control grid resolutions the local statistics for region-based MI are less meaningful and yield
unreliable control point displacements. In contrast, the resulting grid deformation in case of PMI is much
smoother.

is registered to a 2D-CT image where the latter one has been synthetically deformed. We
perform a hierarchical registration with increasing control grid resolution. We start with
a 32 pixels control point spacing, then we reduce it to 16, and finally to 8 pixels spacing.
In the finest resolution we can clearly see that for region-based MI the displacement es-
timates are becoming less reliable which is visible in the non-smooth deformation of the
grid. In contrast, the resulting deformation when using PMI as the similarity measure is
much smoother. Note, this is not an issue of regularization. In both cases, the weighting
of the regularization was optimized. An increased regularization weight in case of region-
based MI yields a much worse alignment of corresponding structures. The registration
with PMI took about 8 seconds, while the region-based MI takes more than 19 seconds.
We believe it is worth to follow-up these observations in future investigations.

4.1.3 Different Regularization Terms
Our first-order MRF approach for non-linear registration is extremely efficient from a
computational perspective. However, we also know that first-order random fields in gen-
eral have only limited capabilities for modeling more complex energy terms since they are
restricted to pairwise interactions. This can become an issue if we want to employ reg-
ularization terms which go beyond penalizing first-order derivatives of the displacement
field. Remember, we have introduced the absolute vector difference (cf. Equation (3.17)
and its quadratic counterpart as approximations for first-order derivative penalties. The
corresponding discrete filter mask is [−1 1]. They are encoded on the pairwise terms as

Rij(xi, xj) = ‖(ϕ̃i + xi)− (ϕ̃j + xj)‖
‖i− j‖

, (4.2)

Rij(xi, xj) =
(
‖(ϕ̃i + xi)− (ϕ̃j + xj)‖

‖i− j‖

)2

. (4.3)

The problem with these terms is that they also penalize linear transformations such as
rotation or scaling. Indeed, we commonly perform a linear pre-alignment before running
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Figure 4.3: Comparison of different regularization terms for landmark-based registration. From left
to right: ground truth transformation, and the results for absolute vector difference, quadratic vector
difference, and approximated curvature penalty.

the non-linear registration, so most of the linear part of the transformation is already
recovered and mainly non-linear deformations are left. However, in some applications it
might be preferable to have a penalty term which is invariant to linear transformations. A
penalty which has this property is based on second-order derivatives of the displacement
field; but second-order derivatives require second-order interaction terms in form of triple
cliques and cannot be encoded in a first-order random field energy. Hence, Kwon et al.
[94] have proposed to use a (less efficient) second-order random field for registration; they
encode the regularization on the triplet potentials following the discrete filter mask for
second-order derivatives [1 −2 1] as follows

ψijk(xi, xj, xk) = αijkRijk(xi, xj, xk) , (4.4)

Rijk(xi, xj, xk) = 1
δ2 (‖(ϕ̃i + xi)− 2 (ϕ̃j + xj) + (ϕ̃k + xk)‖)2 . (4.5)

Here, αijk is the typical weighting parameter and δ is the distance between the control
points. Due to the triplet potentials this approach is less efficient compared to our first-
order model (cf. Chapter 2). In [41] we wanted to find out whether it is possible to define a
regularization term which has similar properties as the above second-order penalty based
on triple cliques while preserving the efficiency of a pairwise model. To this end, we have
proposed what we call the approximated curvature penalty (ACP). The ACP is encoded
on the pairwise potentials as follows

RH
ij (xi, xj) = 1

2δ2 (‖ϕ̃i−1 − 2 (ϕ̃i + xi) + (ϕ̃j + xj)‖)2

+ (‖(ϕ̃i + xi)− 2 (ϕ̃j + xj) + ϕ̃j+1‖)2 . (4.6)
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Figure 4.4: Comparison of different regularization terms for intensity-based registration. From left
to right: ground truth transformation, and the results for absolute vector difference, quadratic vector
difference, and approximated curvature penalty.

The idea of ACP is that we consider the displacements ϕ̃i−1 and ϕ̃j+1 of the two adjacent
nodes of i and j without knowing there actual updates (cf. Figure 3.7(b)); hence it is only
an approximation of the second-order derivatives. The above definition applies if i and
j are horizontal neighbors. For the vertical case and for neighbors along the z-direction
the definition is straightforward since only the indices of the two adjacent nodes have to
be changed. The advantage of ACP compared to the second-order version in [94] is the
efficient optimization. But how does it perform in practice and does it really have similar
properties?

We have performed several experiments in order to investigate the behavior of ACP
and also compared to the absolute and quadratic vector differences. In the first set of
experiments we employed a likelihood function based on the Euclidean distance of K
landmarks (instead of an intensity-based similarity measure). The landmarks correspond
to the ground truth (linear) transformation between the two images. The likelihood term
is

ψi(xi) =
K∑
k=1

ω̂i(pk) ‖(pk + δ̃pk
+ xi)− qk‖ . (4.7)

The unary terms are the driving force for the control points close to the landmarks;
minimizing the Euclidean distance will make sure that the corresponding landmarks will
be aligned, perfectly. The question is what will happen to the rest of the displacement
field which is solely following the forces of regularizations? We show the results for two
different transformations, a rotation and a scaling, in Figure 4.3. We can clearly see
how well the ACP behaves in case of linear transformations, while both other terms fail
to recover the correct transformations. Another set of experiments was then performed
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Figure 4.5: Learned deformation priors. The top row shows the source image (most left) followed by
different target images with an increasing amount of noise or corruption. On the left in row two and
three the initial alignment of the two object boundaries is shown (source in green and target in blue).
The second row shows the results for an intensity-based similarity measure combined with conventional
regularization. The boundary alignment is getting increasingly worse from left to right (the warped
source boundary is shown in red). In contrast – even for the tough cases – the same similarity measure
combined with a learned deformation prior can be used to properly align the two shapes (last row).

intensity-based, where the likelihood term was set to the SAD similarity measure. Again,
we can see in Figure 4.4 that when a considerable fraction of the transformation is linear
the ACP regularization term yields more reasonable displacement fields.

4.1.4 Learned Deformation Priors
Quite related to the above issue on regularization is our approach for incorporating learned
deformation priors [39]. Here, we consider applications in which either repetitive motion
patterns occur such as in cardiac imaging or registration scenarios in which similar defor-
mations can be expected even if different images are considered. In these cases, the set
of feasible deformations can be often represented by a compactly parameterized proba-
bility distribution which can be learned from a sequence of training data. Now, the idea
is to encode this learned distribution in the prior energy of the random field such that
deformations which have been seen before – the ones having high probability with respect
to the learned distribution – are favored. This is of particular interest if the likelihood
energy alone is not sufficient to drive the registration towards a good solution, which is
often the case if the images to be registered exhibit a low signal to noise ratio or if the
images are corrupted in certain areas.

Our approach presented in [39] works as follows: assuming we are given a set of N
training examples (each example consists of a pair of images). Then we can perform N
registrations each yielding one dense displacement field. The displacement fields can be
parameterized via a set of FFD control points. For each control point we have a set of
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N displacements – the ones from the training registrations. We estimate the underlying
distribution over the set of displacements (e.g. via Gaussian mixture models [10]). Let
us assume the FFD control grid has M control points, then we get M displacement dis-
tributions in total. Based on these distributions, we perform a control point clustering
such that control points with similar distributions fall into the same cluster. Now, the
interesting part is that instead of using a regular grid-like random field topology with
a 4-connected neighborhood (in case of 2D), we define the topology based on the clus-
tering. This means, that only control points within the same cluster are connected and
thus conditionally dependent. The effect of this procedure is that regularization is only
performed between control points which have similar distributions (obtained from the
training). Particularly interesting is also the fact that learning-based regularization and
the resulting non-regular random field topology can yield preservation of discontinuities
between control points which are direct neighbors but with different motions. Since con-
trol points from different clusters are not connected, there will be no regularization term
which otherwise might tend to oversmoothing. The details of our approach can be found
in [39]. Here, we only show some visual results in Figure 4.5 for an experiment with
synthetic deformations. We could imaging that learned deformation priors might be ben-
eficial for instance in medical applications using ultra sound imaging where the quality
of the images often prohibits the use of currently available intensity-based registration
methods.

4.2 Medical Image Registration
In the following we present some medical applications in which our registration methods
have been used. The first application is a linear registration problem, the rigid alignment
of brain images from different modalities. As already mentioned earlier in such applica-
tions the main interest is to enrich the information about certain anatomical structures
by fusing the data form different sources. The second application deals with an important
component in computer-aided diagnosis of osteoarthrosis (OA), namely the segmentation
of cartilage tissue in MR images. The loss of cartilage tissue is an indicator for the stage of
OA. We demonstrate how we can make use of our non-linear registration, first to generate
an atlas image of cartilage tissue, and second to automatically match the atlas to a new
subject in order to obtain a segmentation. Our last application is whole body MR imag-
ing in which non-linear registration is needed for simultaneous distortion correction and
stitching of single MR images into one high-resolution scan. Other applications which are
not covered here but where our methods have been used are registration of thoracic CT
images [42], construction of statistical shape models [162], and simultaneous landmark
and intensity-based registration for non-rigid brain registration [140].

4.2.1 Multi-Modal Brain Registration

In this experiment we demonstrate the performance of our highly-connected first-order
CRF model for linear registration (cf. Section 3.5.2) in a real multi-modal rigid registra-
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CT-MRI
Protocol Simplex Elastix CRF Simplex Elastix CRF Simplex Elastix CRF
MR-PD 2.067 2.226 2.078 2.005 2.018 1.986 4.052 6.310 3.884
MR-T1 1.275 1.334 1.286 1.259 1.230 1.154 2.873 3.172 3.003
MR-T2 2.053 2.085 1.856 1.979 1.950 1.853 4.271 4.192 3.647
Overall 1.789 1.870 1.729 1.743 1.815 1.739 4.271 6.310 3.884

Maximal ErrorMean Error Median Error

Table 4.2: Quantitative registration results of the CT-MRI registration for three different methods
including our highly-connected first-order CRF model. All errors are given in millimeters.

Figure 4.6: Checkerboard visualization of CT-MRI alignment before and after registration using our
highly-connected first-order CRF approach. From left to right, the initialization and the registration
results for MR-PD, MR-T1, and MR-T2 protocols.

tion scenario. The images are part of the RIRE project2. The task is the registration of
CT brain images to MR images with different protocols, namely MR-PD, MR-T1, and
MR-T2. As the similarity measure, we use the entropy correlation coefficient (ECC).
We perform an extensive test on several patient datasets, for which the evaluation is
performed remotely by the RIRE system.

In order to assess the accuracy of the proposed method, we perform the same tests
also by two other methods. The first one is based on Downhill-Simplex optimization [118],
the second one is the module of rigid registration from the Elastix toolkit [73] based on
adaptive stochastic gradient descent [72].

We used all data sets from the RIRE data base, for which the MR-PD, MR-T1, and
MR-T2 data sets are available, resulting in 10 patients with 3 registrations per patient.
The tests show consistent performance of our discrete approach. Table 4.2 summarizes
the results and shows that the proposed method slightly outperforms the other tested
methods in terms of accuracy. Some visual results are shown in Figure 4.6. More details
and further experiments can be found in our articles [46, 163, 164]. Therein, we also
used our linear registration for the challenging task of 2D-3D registration, where a 2D
projection image is registered to a 3D volume.

4.2.2 Atlas-Based Cartilage Segmentation
Our work on atlas-based segmentation [40] demonstrates one of the advantages of our
discrete formulation, namely the great flexibility in adding new similarity measures. The
medical motivation in this work is to obtain automatic segmentation of the cartilage tissue

2http://www.insight-journal.org/rire/
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Figure 4.7: Atlas-based cartilage segmentation. Top row shows the atlas construction process. New data
can be automatically segmented via atlas matching by non-linear registration with a specific matching
criterion.

in MRI knee data. To this end, we make use of our first-order MRF method for non-
linear registration with a specific matching criterion. The idea is the following: given a
set of training images I1, ..., In in which cartilage tissue has been manually segmented (by
an expert). From the training data, we construct what we call an atlas consisting of an
statistical appearance image and average segmentation (cf. top row in Figure 4.7). For the
atlas construction the training images need to be registered. Here, we follow the unbiased
construction scheme proposed by Joshi et al. [67]: iteratively all images are registered
to their average intensity image Iµ; after each iteration the average is recomputed. Just
a few of such iterations are needed until the average image does not change anymore.
Additionally to this average we compute a variance image Iσ2 containing the intensity
variance at every image point. The estimated transformations from the registration of
the training images are also applied to their segmentations allowing us to compute an
average segmentation. All these steps are done off-line in a pre-processing step which has
to be done only once.

Now, in the clinic when we acquire an MRI scan of a patient, we use the atlas data and
register it to this new data set J . This allows us to obtain a fully-automatic segmentation
of the cartilage by warping the average segmentation with the estimated transformation
onto the patient’s MR image. This is what we call atlas matching (cf. bottom row in
Figure 4.7). Again, we use our general method for non-linear registration for this task
but with an atlas-specific similarity measure which is defined as

Satlas(Iµ, Iσ2 , J) = 1
|Ω|

∑
p∈Ω

(Iµ(p)− J(p))2√
Iσ2(p)

, (4.8)

74



4.2 Medical Image Registration
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Figure 4.8: Image stitching for whole body MRI. Distortion and breaks in the overlap areas are corrected.

and the corresponding local similarity measure for our first-order MRF approach is then
defined as

Si(Iµ, Iσ2 , J, D̃, xi) =
∑
p∈Ωi

ω̂i(p)

(
Iµ(p+ δ̃p + xi)− J(p)

)2√
Iσ2(p+ δ̃p + xi)

. (4.9)

This measure simply assumes a Gaussian for the intensity distribution at every image point
in the MR images. In our evaluation presented [40], we obtained quite good segmenta-
tion results with this approach. However, in cases where a simple Gaussian distribution
cannot sufficiently represent the underlying data one might need to go towards more
powerful statistical representations (e.g. Gaussian mixture models). But even then, it is
straightforward to encode the corresponding similarity measure within our framework.

4.2.3 Image Stitching for Whole Body MRI
Our last application from the medical domain is the creation of high-resolution whole body
MR images via image stitching and distortion correction [153]. Whole body imaging is an
emerging application gaining enormous clinical interest, e.g. for screening. Commonly,
the imaging is performed by acquiring several smaller high-resolution sub-images with
sufficiently large overlap. After acquisition, the images are simply combined into a larger
image and a blending operation (such as averaging) is applied in the overlap areas. The
offset between the single images is known from the MRI device. The main drawback of
such an approach is the long acquisition time – and time is one of the most expensive
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resources in clinical environments – since many small sub-images need to be acquired in
order to avoid distortion artifacts. The reason for this lies in the physical properties of
MR scanners. If the field-of-view is increased towards the maximum of let’s say 50cm
the images might get distorted at the boundaries due inhomogeneities in the magnetic
field. These are non-static distortions which cannot be corrected in advance and even
depend on the subject being imaged [153]. However, a larger field-of-view would reduce
the number of sub-images and thus decrease the overall acquisition time. Here, our non-
linear registration comes into the game.

Given two high-resolution, large field-of-view sub-images I1 and I2 with an overlap
area ΩO = Ω1

⋂Ω2 (known from the MRI device). In order to combine them into a
larger image, we need to align these two images non-linearly due to the distortions in the
overlap area. In contrast to regular registration scenarios, here we do not have designated
target image. Both images are distorted, and none should remain fixed. To this end,
we propose a strategy borrowed from the atlas construction scheme. We are seeking two
transformations T1 and T2 simultaneously by registering the two images to their average.
However, a classical average image is not appropriate due to the increasing amount of
image distortion towards the boundaries. The average image is simply to blurry and
almost meaningless in these regions. Therefore, we define what we call a linear weighted
average where the idea is to account for the physical property of increasing distortion.
Assuming that the boundary information of each image is less reliable, we would like to
reduce its influence to the registration.

The linear weighted average image A is computed from the images I1, I2 as

A(p) =


f(p) , p ∈ ΩO

I1(p) , p ∈ Ω1 \ Ω2
I2(p) , p ∈ Ω2 \ Ω1

, (4.10)

where f is a function computing the weighted average intensity in the overlap domain,
defined as

f(p) = (1− h(p)) · I1(p) + h(p) · I2(p) . (4.11)
The linear function h takes increasing values between [0, 1] along the stitching direction.
Based on the linear weighted average we can define a similarity measure for the simulta-
neous registration. For instance the SAD criterion would be defined as

Sstitch(I1, I2, A) = 1
2|ΩO|

2∑
i=1

∑
p∈ΩO

|A(p)− Ii(p)| . (4.12)

Similar to the atlas construction, we perform several iterations where in each iteration the
linear weighted average is recomputed based on the current estimate for the two transfor-
mations. Encoding this registration scheme in our first-order MRF model is straightfor-
ward. The random field now consists of twice as much variables as in regular registration,
since we have two free-form deformation control grids, one per image. Some visual results
for a whole body scan originally consisting of three sub-images is shown in Figure 4.8.
The two stitches have been computed separately. Our approach yields both much sharper
transitions in cases of larger overlaps and correction of breaks and heavy distortions in
case of very small overlap areas as shown in further experiments presented in [153].
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4.3 Optical Flow
In this last section we present a non-medical application of non-linear registration, namely
the estimation of optical flow [59]. Optical flow is the problem of determining the apparent
motion in 2D images capturing a 3D scene. The motion is represented as a displacement
field which defines the movement of pixels with 2D vectors. Thus, optical flow estimation
is closely related to the problem of non-linear registration. Technically it is the same,
however in optical flow we have to deal with issues such as occlusion, illumination changes,
and shadows which all occur when capturing a real scene with camera images. Optical
flow is studied for more than 30 years and a lot of progress has been made since the
pioneering work of Horn and Schunck [59]. Currently, the most popular benchmark used
for comparison of optical flow algorithms is the evaluation on the Middlebuary database3

introduced by Baker et al. [4]. Most of our experiments on optical flow are performed on
images from this database; we also use the color-coded visualization of flow fields (please
see [4] for more details) which often is easier to interpret compared to displacement fields.

First, we will demonstrate an extension to our first-order MRF approach which deals
with the automatic definition of the label space via uncertainty estimation. Then we
demonstrate our latest results on optical flow estimation with our higher-order CRF ap-
proach combined with a multi-layer mesh representation.

4.3.1 Uncertainties
In our work on uncertainty estimation we were interested in the question whether it is
possible to automatically define and adjust the label space respectively the discretization
of the displacement search range. We should note that all experiments in this respect
have been conducted on optical flow, while the actual method is applicable to other
applications. The approach which we propose in [45] is based on the following idea: let
us assume we have estimated the MAP labeling with respect to a particular set of labels;
the labeling corresponds to an update on the control point displacements. Can we deduce
from this solution how the search range for the next iteration should look like? Here, we
were inspired by the work on uncertainty estimation by Kohli and Torr [80, 82].

Uncertainty estimation is the task of measuring how reliable a certain solution is. To
be more precise, for every variable in the random field we are interested in measuring
how certain (or confident) we are with respect to the label assigned to this variable. In
[82] an efficient method based on dynamic graph cuts is presented which allows to exactly
measure this uncertainty. Intuitively, it works as follows: imagine node i is assigned label
x, i.e. the label in the MAP estimate. We consider this label as the optimal one with
minimal energy. Now, in order to measure how confident we can be about this label, we
need to have a look at the non-optimal labels, as well. In this context, it seems interesting
to investigate the change of the energy in the case node i would have been assigned a
non-optimal k ∈ L. A measure of confidence could then be defined as

σi;x = exp(−µi;x)∑
k∈L exp(−µi;k)

. (4.13)

3http://vision.middlebury.edu/flow/
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Figure 4.9: Uncertainty estimation for automatic label space adjustment. In (a) and (b) we show the
min-marginal energy maps for an exemplary control point (the red one in (d)). In (c) the initial dense
label spaces (in green) are shown, and in (d) the label spaces after local re-adjustment based on the
uncertainty estimation.

Here, µi;k corresponds to the random field energy where node i is constrained to be
assigned label k; such energies are also called themin-marginals. How the label constraints
can be ensured is described [82] for the case of graph-cut optimization. The trick is to
manipulate the capacities in the st-graph such that node i is guaranteed to be connected
to the terminal representing label k. In [82] min-marginals are used to compute confidence
maps in low-level vision applications. In image segmentation, the confidence map could
for instance guide the user in which areas additional user input might be beneficial. In
our case, these one-dimensional measures are not directly helpful, at least not for our
actual objective: the adjustment of the label space.

Here, we do something different. Assume we have a dense discretization of the dis-
placement space (cf. Figure 3.9(c)). Then we can assign the min-marginal energies to a
location in Euclidean space. In fact, we can determine a min-marginal energy map for
every control point in the deformation grid. From these energy maps we determine the
covariance matrix which is then used to re-adjust the label space for the next iteration
in terms of scale and orientation of the search range. This process is illustrated for an
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Figure 4.10: Multi-layer mesh construction for TriangleFlow. Top row shows from left to right the
source image, its over-segmentation, the initial flow field. Bottom row shows the clustering result, the
initial multi-layer mesh, and the final mesh after several refinements.

exemplary control point in Figure 4.9. Intuitively, as flatter the shape of the energy sur-
face becomes in a particular direction as less reliable is the motion of the control along
this direction. In other words, it would not make much difference from an energy point
of view if this control point is displaced by one these non-optimal labels. Contrary, if the
energy difference is large we are quite confident about the motion of the control point. In
our experiments on optical flow [45], we could show that the fully automatic adjustment
of the search space yields very accurate flow estimates without the need for empirically
determine an appropriate refinement factor (cf. Section 3.4.5).

One interesting direction in this respect would also be to investigate the use of the
original confidence maps for instance for visualizing registration uncertainty. In particular,
in medical applications it could be very useful to have a visual feedback on the result
after performing non-linear registration. A physician could make use of the information
telling in which areas we are more confident and in which we are less confident about the
alignment.

4.3.2 TriangleFlow
Our most recent work is on optical flow using the triangulation-based higher-order CRF
model (cf. Section 3.4.4), hence we call this approach TriangleFlow. Remember, the
higher-order model works as follows: the source image is covered by a triangulation mesh,
and each triangle defines a local affine warp on the covered triangular sub-image. The
warp is parameterized through displacements of the three triangle vertices. The regis-
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tration energy is encoded on higher-order potential functions, i.e. triple-cliques for the
likelihood (the similarity measure) and either triple- or quadruple-cliques for the geomet-
ric regularization (two different variants are introduced and compared in our work [38]).
The great advantage of this model is that all energy terms are exact, meaning there is no
approximation compared to the first-order MRF model. Additionally, triangulations are
very flexible and can be adapted to actual image content.

For the optical flow experiments we employ the following strategy for the mesh con-
struction: (i) given the two image frames, we first compute an initial flow field. In general,
this could be done with any optical flow method. We use the higher-order model with a
regular (single-layer) triangle mesh; (ii) we perform an over-segmentation of the source
image; for every segment we estimate the closest affine warp (in a least-squares sense)
from the initial motion field; (iii) we perform a clustering such that segments with similar
affine motion fall into the same cluster; for each cluster we define a data-dependent tri-
angulation mesh, i.e. a mesh which is aligned with object boundaries. Figure 4.10 shows
the intermediate results of the single steps.

The multi-layer mesh model has great advantages compared to a regular content-
unaware mesh. First, the actual motion of objects can be much better recovered with
triangulations which are aligned to object boundaries. Second, the multi-layer mesh allows
an explicit handling of occlusions which is important in case of optical flow. Actually,
the layers can overlap in areas of occlusion and we explicitly evaluate which layer is on
top of the others by considering the similarity measure within the overlap areas. The
layer with highest similarity is the top layer, and the occluded areas can be discarded
in the energy computation of lower layers. Some visual results are shown in Figure 4.11
where we compare the flow fields of a single-layer regular mesh approach and our multi-
layer content-aware mesh approach. In all experiments, we use a coarse-to-fine strategy
where the meshes are successively refined. We clearly see the improvement in particular
at the motion boundaries. Very fine details are nicely recovered in the multi-layer results.
A comprehensive quantitative evaluation can be found on the website of the database.
Further experiments on other sequences are presented in our paper [38].

An interesting direction would be to integrate the whole process of triangulation and
motion layer definition into the optimization. Flow-dependent mesh-refinement could
further improve the results. A step beyond our current approach could allow for the defi-
nition of higher-order likelihoods with arbitrary shapes and without restrictions through
the parametrization. We believe that in particular medical applications could benefit
from such an approach. Ideally, we would like to have a transformation model which is
capable of representing all the various motions which occur inside the human body. While
bony structures will always have very limited deformation, soft tissue will behave totally
different. Higher-order models have the expressional power to encode these different prop-
erties. A model which can be adapted to the specific anatomy, which is content-aware,
and considers the locally varying physical properties of anatomical structures could be a
key component for pushing non-linear registration a huge step forward. We believe that
our random field models are an important first leap towards this future.
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Figure 4.11: Optical flow estimation with our higher-order CRF model. On the left, we show the
resulting color-encoded flow fields when using a regular single-layer mesh. In the middle the results when
using our multi-layer mesh approach. The initial configurations of the multi-layer meshes overlaid on the
source images are shown on the right.
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We use backward warping for the image transformation; this is why the
actual object deformation appears to be inverse to the deformation field. . 49

3.7 Illustration of the first-order energy terms. The local likelihood evaluation
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3.8 Piecewise affine motion model based on triangulations. Each object is em-
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4.1 Deformable inter-subject brain registration. Color encoded visualization of
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tual information. For very fine control grid resolutions the local statistics
for region-based MI are less meaningful and yield unreliable control point
displacements. In contrast, the resulting grid deformation in case of PMI
is much smoother. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Comparison of different regularization terms for landmark-based registra-
tion. From left to right: ground truth transformation, and the results for
absolute vector difference, quadratic vector difference, and approximated
curvature penalty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Comparison of different regularization terms for intensity-based registra-
tion. From left to right: ground truth transformation, and the results for
absolute vector difference, quadratic vector difference, and approximated
curvature penalty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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