
Real-Time RGB-D Camera Relocalization

Ben Glocker∗ Shahram Izadi Jamie Shotton Antonio Criminisi

Microsoft Research, Cambridge, UK

ABSTRACT

We introduce an efficient camera relocalization approach which can
be easily integrated into real-time 3D reconstruction methods, such
as KinectFusion. Our approach makes use of compact encoding
of whole image frames which enables both online harvesting of
keyframes in tracking mode, and fast retrieval of pose proposals
when tracking is lost. The encoding scheme is based on random-
ized ferns and simple binary feature tests. Each fern generates a
small block code, and the concatenation of codes yields a compact
representation of each camera frame. Based on those representa-
tions we introduce an efficient frame dissimilarity measure which
is defined via the block-wise hamming distance (BlockHD). We il-
lustrate how BlockHDs between a query frame and a large set of
keyframes can be simultaneously evaluated by traversing the nodes
of the ferns and counting image co-occurrences in corresponding
code tables. In tracking mode, this mechanism allows us to consider
every frame/pose pair as a potential keyframe. A new keyframe is
added only if it is sufficiently dissimilar from all previously stored
keyframes. For tracking recovery, camera poses are retrieved that
correspond to the keyframes with smallest BlockHDs. The pose
proposals are then used to reinitialize the tracking algorithm.

Harvesting of keyframes and pose retrieval are computation-
ally efficient with only small impact on the run-time performance
of the 3D reconstruction. Integrating our relocalization method
into KinectFusion allows seamless continuation of mapping even
when tracking is frequently lost. Additionally, we demonstrate how
marker-free augmented reality, in particular, can benefit from this
integration by enabling a smoother and continuous AR experience.

1 INTRODUCTION

Recent advances in dense tracking and mapping [14] have enabled
systems for accurate, real-time 3D reconstruction of the physical
world using low cost commodity hardware [13] such as Microsoft’s
Kinect sensor. Real-time reconstruction enables exciting applica-
tions in augmented reality (AR) [9, 12]. Knowing the actual 3D
geometry of objects in a scene combined with the ability to sense
the depth at frame rate overcomes several challenges in AR such as
occlusion handling and fusion of real and virtual objects.

The underlying processing pipeline of different reconstruction
systems based on depth sensors is similar. The camera motion is
tracked frame-to-frame where the pose update is determined by
computing a relative transformation between a (partially) recon-
structed world (i.e. the map) and a 3D point cloud obtained from
the live depth measurements given by the sensor. This transforma-
tion can be for instance computed by employing a robust version of
the iterative closest point (ICP) algorithm as it is implemented in the
KinectFusion approach [13]. Given the estimated camera pose, new
3D measurements are integrated into the map yielding an updated
and refined reconstruction of the scene. Different variants of this
3D reconstruction pipeline exist which mainly differ in the details
how tracking [12, 23, 24] and mapping [8, 20, 25] are implemented.

∗e-mail: glocker@tum.de

1.1 Importance of Relocalization

In order to acquire an accurate map of the scene, these recon-
struction pipelines rely on a steady stream of successfully tracked
frames. Tracking failure can have severe consequences. Integrating
measurements with incorrect poses yields implausible, invalid ge-
ometry and might destroy already reconstructed areas in the map.
Indeed, if tracking failure can be detected, at least map corruption
can be prevented. However, in augmented reality applications in
which the pose of the camera is required to correctly overlay virtual
objects onto the real world, tracking failure leads to an abrupt and
unpleasant end of the user’s experience.

The causes for tracking failure are versatile. Rapid camera mo-
tion and sudden change of viewpoint are probably the predominant
ones where frame-to-frame tracking fails. In addition, and particu-
larly relevant to systems where the map is spatially restricted to a
limited area of the world, tracking which relies on the reconstructed
map fails every time the camera points outside the restricted do-
main. This can frequently happen in AR scenarios in which the
user is in full control of a hand-held or head-mounted camera.

To this end, it is of great practical importance to integrate a cam-
era relocalization module which allows instant recovery from track-
ing failure. Incorporated into the 3D reconstruction pipeline, such a
module allows seamless continuation of mapping even when cam-
era tracking is frequently lost. This avoids the frustrating task of
restarting an entire scan from scratch due to tracking failure. Also,
this makes AR applications more robust. Augmentations can be
visualized with the correct transformation immediately after suc-
cessful recovery of the camera pose.

In this paper we propose a relocalization module which can be
easily integrated into existing reconstruction pipelines. Our ap-
proach is inspired by different components of previous work, result-
ing in an efficient and scalable algorithm that provides a solution to
the main causes of tracking failure in systems such as KinectFu-
sion. We will demonstrate that both continuation of mapping and
robust AR are enabled by our algorithm.

1.2 Related Work

Camera relocalization has been studied in the context of simultane-
ous tracking and mapping (SLAM) systems. While approaches ex-
ist that require an offline training phase (e.g. [22]), we focus below
on approaches which are capable of online real-time performance.
One can roughly categorize existing approaches into two categories,
though hybrid [18] and more exotic variants exist [2, 15].

The first category are landmark-based approaches (LbAs) [3,
26]. During successful tracking, fiducial landmarks, also called
keypoints, are extracted from the camera images, encoded by a de-
scriptor, and stored in a database together with their 3D locations.
When tracking is lost, landmark candidates are detected in the in-
coming frame and based on descriptor similarity putative matches
are established between those candidates and stored keypoints. The
combination of the three-point-pose algorithm and RANSAC [5] is
then commonly employed to determine the pose of the camera.

We denote the second category as image-based approaches
(IbAs) [6, 10]. Indeed, all methods discussed here rely on image
information, however, the main difference to the first category is
that IbAs make use of global image matching and do not require
explicit landmark detection. During successful tracking, compact

representations of whole images are generated and stored together
with the corresponding camera poses. Those frame/pose pairs are
commonly referred to as keyframes. When tracking is lost, the com-
pact representation of the incoming frame is compared to the ones
of all keyframes. The poses of the most similar keyframes are re-
trieved and then used to directly reinitialize the tracking algorithm.

Both approaches have their advantages and drawbacks. Ar-
guably, the main advantage of LbAs is their ability to recover the
pose for frames from novel views. As long as a sufficient number of
keypoints can be recognized, the camera pose can be determined.
Depending on the visual characteristics of the scene and possible ar-
tifacts such as motion blur, it might not always be possible to obtain
sufficiently many matches. Also, the construction of the keypoint
database in real-time settings can be challenging. Often a costly on-
line training phase is required which demands additional resources
such as a background thread or extra GPU computations [26]. An-
other limitation of LbAs lies in their inherent sparse representation
of the scene. Some approaches are limited to store only a few thou-
sand unique points, as discussed in [3, 10]. The optimal choices for
a suitable pipeline of robust detection [19], description [1, 27] and
matching [16] is certainly a challenge on its own.

Instead of map locations, in IbAs a set of densely distributed
keyframes represents the reconstructed scene. This allows direct
retrieval of pose proposals for tracking initialization and does not
require the pose estimation step of LbAs. The main challenges
are related to the online determination of keyframes and the defi-
nition of efficient frame similarity measures. For the first part, of-
ten heuristics are employed such as thresholds on distances in pose
space. For instance, a tracked frame is added to the set of keyframes
only if the camera translation and orientation are sufficiently dif-
ferent from the previous keyframe [6]. This heuristic might yield
non optimal scene coverage. The second issue regarding efficient
similarity evaluation is commonly tackled by using compact rep-
resentations such as heavily downsampled images and normalized
intensity differences [6, 10]. With increasing number of keyframes,
the time needed for the search of the most similar ones can be a lim-
iting factor of IbAs in real-time settings. The fact that tracking can
only be recovered from views which have been approximately vis-
ited before has been recently approached by utilizing synthesized
views [6]. However, rendering such views can be costly and defin-
ing an optimal sampling strategy in pose space is non trivial.

In light of prior work, we propose a simple yet powerful relo-
calization approach which falls into the IbA category. Our method
makes use of randomized ferns which have been previously used
in the context of keypoint-based relocalization [26]. The way in
which we make use of ferns is quite different and will be described
in Section 2. Our relocalization approach comes with the following
contributions:

1. Efficient frame encoding scheme allows compact represen-
tation of keyframes, and fast retrieval of pose proposals for
tracking recovery;

2. Automatic discovery and sampling of keyframes by exploring
the space of appearance during tracking and avoiding spatial
sampling heuristics;

3. Scalability to large scenes through a small memory footprint,
large model capacity, and minimal computational demands.

These properties are essential for the integration of our method into
3D reconstruction pipelines. After discussing the technical details,
we investigate the relocalization performance in an experimental
evaluation in Section 3. We then discuss in Section 4 a practical ap-
plication of marker-free AR realized with the KinectFusion system
equipped with our relocalization module. In Section 5, we discuss
current limitations and future work.

2 RELOCALIZATION VIA RANDOMIZED FERNS

The underlying concept of our relocalization approach is based on
the ability of compact code generation for camera frames and effi-
cient evaluation of code similarities between different frames. We
start by introducing the idea of using randomized ferns for generat-
ing compact codes.

2.1 Frame Encoding

Given an RGB-D image frame I : Ω ⊂ R
2 7→ R

4, we define a func-
tion to read an individual pixel value Ic(x) ∈ R at location x ∈ Ω in
channel c ∈ {R,G,B,D}. For convenience we introduce the nota-
tion I(θ) = Ic(x) with θ = (c,x).

In order to be able to generate compact code representations for
RGB-D image frames, we first define a fern F = { fi}

n
i=1 as a set

of n consecutive nodes fi where each node represents a binary test
parametrized by a pair (θi,τi). Each test can be evaluated on the
image data as

f (I,θ ,τ) =

{

1 if I(θ)≥ τ

0 if I(θ)< τ
. (1)

Here, τ is a threshold on the image pixel value I(θ). Evaluat-
ing all fi of a fern F in consecutive order generates a binary code
block bF = f1 . . . fn ∈ B

n. Further, if we are given a conservatory
C = {Fk}

m
k=1 of m diverse ferns, we can concatenate their individ-

ual code blocks into a single code bC = bF1
. . .bFm

∈ B
mn. This

mechanism allows us to generate (non unique) codes for any RGB-
D image frame. A particular binary image code bI

C depends on the
total number of ferns m, the number of nodes n in each fern, the
binary test parametrization (θi,τi) of each node, and of course on
the visual content of the image frame I.

The idea of using ferns for generating codes for image patches
has been introduced in [17]. This has also been applied to the task
of camera relocalization [26]. In both works, the idea is to learn
compact codes which allow efficient keypoint recognition instead
of encoding whole image frames. At test time, the conservatory
of ferns is utilized as a classifier in order to find putative matches
between incoming frames and a learned keypoint database.

Although inspired by the great performance of those fern-based
approaches, we use ferns in a way which is quite different from pre-
vious works. We employ whole frame encoding for our keyframe-
based relocalization method for which we propose a test procedure
which allows us to simultaneously compute frame dissimilarities
between a new frame and all previously encoded frames. Let us
first define how we determine the dissimilarity between frames.

2.2 Frame Dissimilarity via Hamming Distance

Given compact representations bI
C and bJ

C for two camera frames I
and J, we can define their frame dissimilarity in terms of the block-
wise hamming distance (BlockHD) as

BlockHD(bI
C,b

J
C) =

1

m

m

∑
k=1

bI
Fk
≡ bJ

Fk
, (2)

where the equivalent operator ≡ returns 0 if two code blocks are
identical and 1 if there is at least one bit difference. Thus, the
BlockHD is simply counting the number of differing code blocks.
The normalization with respect to m maps the distance to the [0,1]
interval which is a nice property for parameter selection of an al-
gorithm. In contrast to the well-known bit-wise hamming dis-
tance (HD) which counts the number of differing bits of two codes,
the block-wise version has a property which is important for our
task. Varying the parameter n which impacts the length of the
blocks, also directly impacts the precision/recall characteristics of
BlockHD when utilizing it for the search for similar frames. Intu-
itively, the probability that code blocks bI

F and bJ
F are equivalent

1

0

1

0

1

0

1

0

code frame ids

{3}

1010 {0, 2, 4}

1011 {1, 7}

1100 {5, 6}

{}

fr
a

m
e

 i
d

=
8

fe
rn

 e
n

co
d

in
g

id
 l

o
o

k
-u

p

Figure 1: Frame encoding: Fern-based frame encoding takes an
input RGB-D image and generates small code blocks for each fern
based on simple binary tests evaluated at random image locations. A
code block points to a row of a code table associated to a fern storing
the ids of keyframes with equivalent codes. In harvest mode, the id of
the incoming frame is added to the row if the minimum dissimilarity
κI is above a threshold. For tracking recovery, poses are retrieved
from a hash table corresponding to keyframes that are most similar.
Similarity depends on the counts of co-occurrence of the incoming id

and the ones stored in different code tables.

decreases with increasing bit length due the increasing number of
binary tests for which the image data would need to yield the same
responses. This would increase precision but might decrease recall,
because two frames with low BlockHD are likely to be very similar
if the block is long. Though we might miss other similar frames
due to image noise or just by chance because of the hard thresh-
olding in Eq. (1). In contrast, for shorter codes the probability is
higher that two frames with different visual content yield equiva-
lent responses. The recall intuitively increases in this case, though
the precision might be rather low. We might observe many different
frames with very similar codes. In case of 1-bit blocks which cor-
responds to ferns with only one node, the BlockHD is equivalent
to the bit-wise HD. We will now describe how we can efficiently
compute the BlockHD.

2.3 Harvesting Keyframes

The main difference to previous fern-based approaches is the way
we utilize the output of the fern. Remember a fern with n nodes can
generate 2n unique codes. We associate each fern F with a code
table TF with 2n rows. Each row stores a set of frame identifiers
(ids)1 and all sets are initially empty. In addition to the sets of ids
which are unique for each fern, we also define one global hash table
P taking id/pose pairs as input elements. This set is also initially
empty and will be used to store the camera poses of keyframes.

Let us now assume a steady stream of tracked camera frames
with pairs (I,H)id where H ∈ SE(3) is the camera pose composed
of rotation and translation. Here, the id is assumed to be unique
for a frame/pose pair. For each incoming frame we can generate
the code bI

C and add its id to the m sets in the corresponding rows
which are associated with the individual code blocks. Additionally,
we would add the pose H with key id to the global hash table P.

Assuming a couple of tracked frames have been already encoded
and stored using this strategy. Now, every time we are about to add
a new id to a set in a row of a code table TF , we can also imme-
diately read out the previously stored identifiers (cf. Fig. 1). We
know that those must correspond to frames which have an equiva-
lent code block bF . In fact, if we simply count those co-occurrences
of previously stored frames along the m rows where we are about to
add the new id, we can simultaneously compute the dissimilarities
between the new frame and all stored frames. Assuming the count
of co-occurrence for two frames I and J using the above procedure
is denoted as qIJ , then we can equivalently to Eq. (2) compute their
dissimilarity by

BlockHD(bI
C,b

J
C) =

m−qIJ

m
. (3)

1This is different to ferns used for classification [17, 26] where empirical

distributions over keypoints are stored in the rows of the code tables.

Figure 2: Harvesting keyframes: The left image shows a recon-
structed scene with 4000 tracked frames. Each camera pose is
shown as a red frustum. When simulating harvesting from this
stream of frames, 310 are accepted as keyframes for κI >0.2 (mid-
dle). Increasing the threshold to κI >0.3 yields only 128 frames being
accepted (right). We found that the coverage in the middle is favor-
able over the one on the right, while an even denser coverage does
not improve relocalization performance (see Fig. 5).

In addition, for every incoming new frame I we can determine
the minimum BlockHD with respect to previously stored frames as

κI = min
∀J

BlockHD(bI
C,b

J
C) = min

∀J

(

m−qIJ

m

)

. (4)

The value κI provides useful information about how well the new
frame is represented by the set of stored keyframes. A low value re-
flects that a very similar frame is already present, while a high value
indicates a novel view from a pose which should probably be stored
as a keyframe. Based on this observation, we propose a strategy for
online harvesting of tracked frames and automatic determination of
keyframes. Based on the value κI and a predefined threshold t, we
decide whether an incoming frame is added or discarded. It should
become clear that such a threshold influences how densely the re-
constructed scene is covered by keyframes (see Fig. 2). Intuitively,
a compromise is desired which avoids redundant information to be
added to the scene representation while the coverage of the scene
should be sufficiently dense. Note, that our harvesting strategy is
completely driven by the visual content of the camera frames and
spatial sampling heuristics based on pose offsets [6] are avoided.

2.4 Tracking Recovery

Once online harvesting of tracked frames is in place and a few
keyframes have been collected, tracking recovery can be achieved
through fast retrieval of pose proposals. Assuming camera tracking
has failed for an incoming frame. We can still perform exactly the
same encoding procedure as in harvest mode and efficiently com-
pute the dissimilarities to all stored keyframes. Now, instead of
determining the value of the minimum distance, we directly deter-
mine the ids of the k nearest keyframes. This allows us to retrieve
their stored camera poses from the hash table P. Depending on the
underlying tracking and mapping system, we can use those k poses
to reinitialize the tracking algorithm. It is also possible to employ
a weighted averaging scheme to regress a pose proposal using the
retrieved poses and their distances similar to the idea proposed in
[6]. If reinitialization is unsuccessful for all proposed poses, we
repeat the same procedure for the next incoming camera frame un-
til tracking is recovered. In the meantime, the mapping process is
paused and automatically resumed after recovery. Remember we
assume a user controlled camera, and it seems likely that at some
point the user will move the camera to a similar pose which has
been successfully tracked previously. One could also imagine a vi-
sual guidance which helps the user to move the camera into areas of
keyframe coverage. We found that in systems such as KinectFusion
displaying the currently reconstructed scene usually gives sufficient
guidance.

Frame-to-Frame

Tracking (e.g. ICP)

Success?

Read Next Frame

No

Integrate Data

Yes

Yes

Relocalizer:

Add Keyframe

trials < k
No YesNo

Relocalizer:

Relocalizer:

Next Pose Proposals

Figure 3: Pipeline integration: The diagram illustrates the inte-
gration of our relocalization module into a standard 3D reconstruc-
tion pipeline such as KinectFusion. Every incoming frame is pushed
through our encoding and frame dissimilarity mechanism. Depend-
ing on whether frame-to-frame tracking is successful, we can forward
tracked frames to the map integration and keyframe extraction pro-
cedures, or we initiate pose proposal retrieval for tracking recovery.

2.5 Fern Construction

We have not discussed the details for the fern parameters introduced
in Section 2.1. In particular, the binary test parameters (θi,τi)
seem crucial for obtaining useful compact frame representations.
However, and maybe not too surprising, we found that random-
ness injected into the construction of the ferns yields overall best
performance. Similar findings are reported in related approaches
[11, 17, 26]. Our default construction strategy for the entire conser-
vatory of ferns is explained in the following. The impact of param-
eters such as the number of ferns m and the keyframe acceptance
threshold t are investigated in our experiments.

Each fern consists of n = 4 nodes with one node per RGB-D
channel, yielding F = { fR, fG, fB, fD}. Here, this also predefines
the parameters ci within the set {θR,θG,θB,θD}. We randomly
sample the image locations xi at which the binary tests are ap-
plied from a uniform distribution over the image domain Ω. Here,
we sample one location per fern, such that xR = xG = xB = xD.
This has the effect that a code block bF corresponds to feature
responses from all image channels obtained at the same location.
The feature test thresholds τi are uniformly sampled such that
τR,τG,τB ∈ [0,255] for RGB and τD ∈ [800,4000]mm for depth.

3 EXPERIMENTAL EVALUATION

We created the ‘7-scenes’ dataset2 to evaluate relocalization per-
formance. All scenes were recorded from a handheld Kinect at
640 × 480 resolution. We used KinectFusion [13] (with care to
avoid loss of track) to obtain the ‘ground truth’ camera poses. For
each scene, several sequences were captured by different users, and
split into two distinct evaluation sets. One set is used as a steady
stream of tracked frames for simulating harvesting of keyframes,
the other set is used for error calculation. The frames exhibit am-
biguities (e.g. repeated steps in ‘Stairs’), specularities (e.g. reflec-
tions in ‘RedKitchen’), motion blur, lighting conditions, flat sur-
faces, and sensor noise. An overview of the dataset is shown in
Fig. 4 and details are given in Table 1. The varying difficulties of
the scenes are reflected in the errors, consistently across different
approaches. In the following, our relocalization module operates
on downsampled, smoothed images with a resolution of 40× 30
and Gaussian blur of σ =2.5.

2http://research.microsoft.com/7-scenes/

3.1 Overall System

We integrated our relocalization module into the KinectFusion
pipeline (see Fig. 3) which relies on model-based ICP frame-to-
frame tracking. In order to detect ICP tracking failure (and suc-
cess), we employ a plausibility check on the magnitude of cam-
era motion and on the ICP residual error. If the relative motion or
residual is too large, ICP reports tracking loss and relocalization
is initiated. A short demonstration of this system is shown in the
supplementary video which highlights the importance of the relo-
calization module. In particular, the system is able to immediately
recover tracking when the camera frequently leaves and re-enters
the limited volume of the world that is being reconstructed.

3.2 Pose Proposal Strategies

There are several ways of using a pose retrieval approach such as
ours for relocalization. One way is to simply initialize the tracking
algorithm with the nearest neighbor (NN) pose, i.e. the one of the
keyframe with smallest BlockHD. It is also possible to retrieve a
set of kNN proposals and initialize the tracking with each of those.
Besides proposing directly the poses of keyframes, we can also in-
terpolate a proposal via weighted averaging over the kNN poses [6].

In the following, we will compare relocalization performance for
different strategies, namely NN, kNN, and weighted average pose
(WAP). In contrast to NN and WAP, kNN corresponds to a multiple
proposal approach where the poses of the k closest keyframes plus
their WAP are used for initializing ICP. If ICP reports success for
several of those poses, the one with lowest residual error is selected
for continuing normal frame-to-frame tracking and mapping.

3.3 Tiny Image Baseline

We compare our method to another keyframe approach denoted as
‘tiny image baseline’. This baseline represents whole image match-
ing approaches [6, 10]. Keyframes are stored with their camera
poses, after downsampling to 40× 30 pixels and applying a Gaus-
sian blur of σ=2.5 pixels [10]. For pose retrieval with best possible
accuracy (at the expense of speed), we use brute-force matching
against all available stored frames using the normalized distance
over RGB-D as defined in [6]. It should be noted that this ex-
haustive search is impractical for real-time systems. To this end,
keyframe sampling heuristics are usually employed to keep the
number of keyframes at a reasonable level [6]. Such heuristics,
however, do not guarantee sufficient coverage of a scene. In order
to eliminate the factor of insufficient keyframe density, we opt for
the brute-force search strategy which should yield best possible per-
formance for the baseline. We use the same pose proposal strategies
as for our method, i.e. NN, kNN, and WAP.

3.4 Error Metric

Our main metric for comparing different settings and approaches
is the percentage of frames for which the pose was successfully
recovered. Here, we define recovery to be successful if the final
estimated pose of frame-to-frame tracking after ICP is within 2 cm
translational error and 2 degrees angular error compared to ground
truth.

3.5 Results

In the following we investigate different properties of our relocal-
ization. Besides quantifying the actual performance for pose recov-
ery in comparison to a baseline, we also explore the impact of dif-
ferent parameters and the scalability of our method to larger scenes.
We also report detailed timings and computational impacts of the
individual components of our method.

Effectiveness: Our main quantitative results are summarized
in Table 1. Both, our approach and the baseline perform best in
terms of successfully recovered frames when using the kNN pro-
posal strategy. Overall, our approach is able to recover from signif-
icantly more test frames compared to the baseline. In all the exper-

Figure 4: RGB-D dataset: For each of the seven scenes, we have recorded several sequences of tracked RGB-D camera frames. The frame
trajectories used for simulating the online harvesting are shown in red. The frames used for evaluating tracking recovery are shown green.

Table 1: Main results: Summary of the relocalization performance evaluated on the RGB-D dataset ‘7-scenes’. Percentages correspond to
the number of successfully recovered frames (within 2cm translational error and 2◦ angular error). The best performance is obtained with our
relocalization approach and the kNN pose proposal strategy. Remarkably, the scalability test on the ‘All-in-One’ representation indicates similarly
good performance compared to scene-specific representations, indicating promising scalability properties for our compact encoding scheme.

Scene

Spatial

Extent

#Frames Tiny Image Baseline Our Results (m=500, t=0.2) All-in-One

Harvest Recovery NN WAP kNN NN WAP kNN Keyframes kNN

Chess 3m3 4k 2k 70.8% 72.4% 80.6% 68.1% 76.8% 85.8% 310 82.0%

Fire 4m3 2k 2k 56.6% 56.9% 60.9% 55.4% 52.1% 71.2% 136 66.0%

Heads 2m3 1k 1k 49.0% 50.2% 61.0% 52.3% 42.1% 81.1% 93 76.1%

Office 5.5m3 6k 4k 60.8% 61.3% 65.8% 60.9% 51.1% 76.0% 666 72.7%

Pumpkin 6m3 4k 2k 54.6% 56.1% 59.7% 48.2% 51.9% 63.9% 297 62.5%

RedKitchen 6m3 7k 5k 46.1% 46.8% 49.3% 44.7% 41.6% 54.8% 574 52.7%

Stairs 5m3 2k 1k 25.2% 27.3% 29.9% 18.3% 25.0% 37.0% 72 32.7%

Average 51.9% 53.0% 58.2% 49.7% 48.6% 67.1% 63.5%

iments, we set k=5 such that in total 6 poses (including the WAP)
are used for initializing ICP. We have also tested kNN without in-
cluding the interpolated pose and got consistently worse results for
both methods (not reported here). Using WAP alone as a single
proposal does not perform too well for both our method and the
baseline (see Table 1). However, adding it as an additional pose
proposal in the kNN approach seems beneficial.

The given percentage of successful frames is always with respect
to the total number of frames given in the column ‘Recovery’. The
column ‘Harvest’ indicates the number of frames used for simu-
lating keyframe harvesting. The number of accepted keyframes
for our approach is given in the column ‘Keyframes’. Note that
these quantitative results compare all approaches in an offline set-
ting where all Harvest frames are observed before the Recovery
frames are tested. For examples of the online relocalization system
of Fig. 3, please see the supplementary video.

Parameters: The main results are obtained with our default
setting of m= 500 ferns and a keyframe acceptance threshold of
t=0.2. In Fig. 5 we compare the performance of our method using
the kNN strategy with varying parameters m and t. We observe that
initially adding more ferns improves relocalization while further
improvement beyond 500 ferns is marginal. Regarding keyframe
acceptance, we find that a lower threshold (t=0.1) yielding denser
scene coverage does not necessarily improve relocalization. Set-
ting the threshold too high (t=0.3) yields quite sparse sampling of
keyframes and relocalization performance decreases. A visual ex-
ample for the coverage of the ‘Chess’ scene for t =0.2 and t =0.3
is shown in Fig. 2. The number of accepted keyframes for the three
different thresholds is for our largest scene ‘RedKitchen’ 1388, 574,
and 277, and for the smallest scene ‘Heads’ 222, 93, and 43.

Scalability: An important aspect of keyframe-based ap-
proaches is scalability to large scenes. In particular, this is a chal-
lenge for whole image matching approaches such as our baseline
where the search for closest keyframes can become impractical

when thousands of keyframes are stored. In order to evaluate the
scalability of our approach, we performed the following experi-
ment. We constructed a single conservatory of ferns with our de-
fault parameters m = 500 and t = 0.2. We then used all 26,000
frames from all seven scenes for keyframe harvesting. In total,
2091 frames are accepted as keyframes, which is slightly less than
the sum over all keyframes from individual scenes, i.e. 2148. In the
most right column in Table 1 we report the relocalization perfor-
mance when using this ‘All-in-One’ keyframe representation. The
overall performance is only slightly worse compared to the scene-
specific constructions. We believe this indicates promising scalabil-
ity properties for our encoding scheme and a model capacity which
is sufficient for representing large scenes of more than 30m3 and
thousands of frames.

Timings: Real-time performance of relocalization is essential
when being integrated into a tracking and mapping pipeline. In the
following we report average timings for individual components of
our method. All timings have been acquired while running Kinect-
Fusion on the ‘RedKitchen’ scene where a relocalization module
based on the default setup and 574 stored frames is assumed to
be in place. This allows us to measure the expected impact of
keyframe harvesting and recovery under realistic conditions. While
the KinectFusion pipeline itself is mostly running on GPU (Nvidia
Geforce GTX 580), our relocalization runs currently entirely on the
CPU using a single core (Intel Xeon 2.27 GHz).

The key intervention to the existing pipeline is that every incom-
ing frame is pushed through the frame encoding and dissimilarity
computation mechanism. So, even in normal tracking mode our
method has an impact on the overall tracking and mapping perfor-
mance. We found this impact to be very small, with only 3ms for
frame encoding including computation of κI . A KinectFusion sys-
tem running at 30 FPS will continue to run at about 27 FPS when
keyframe harvesting is running in the same computation thread. Of
course, the relocalization module could also run in a parallel, dedi-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Chess Fire Heads Office Pumpkin RedKitchen Stairs Average

m=125 m=250 m=500 m=1000 m=2000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Chess Fire Heads Office Pumpkin RedKitchen Stairs Average

t=0.1 t=0.2 t=0.3

1
3
8
8

5
7
4

2
7
7

2
8
3

7
2

2
1

8
4
4

2
9
7

1
2
8

1
5
5
7

6
6
6

3
1
6

2
2
2

9
3

4
3

3
3
7

1
3
6

6
5

8
0
8

3
1
0

1
2
8

Figure 5: Parameter evaluation: Relocalization performance when
varying the number of ferns m (top graph) and changing the keyframe
acceptance threshold t (bottom graph). Initially increasing the num-
ber of ferns improves performance, which levels off after m=500. The
threshold t influences the number (in white) and density of keyframes.
Optimal coverage is obtained with t=0.2 (see Fig. 2 for an example).

cated thread. When tracking is lost, we measure 160ms for camera
recovery with kNN including 6 runs of ICP (for the k+1 propos-
als). The total impact of relocalization during tracking recovery is
about 165ms, which keeps the system reasonably responsive. For
comparison, the timings increase slightly for the ‘All-in-One’ rep-
resentation with 2091 keyframes where harvesting takes about 7ms.

4 MARKER-FREE AUGMENTED REALITY

Real-time 3D reconstruction provided by RGB-D systems such as
KinectFusion enables exciting applications. Here, we present a pro-
totype of an AR system with potential use in medical and industrial
environments where digital 3D models or scans of physical objects
are available. In medical settings, anatomical scans of patients are
frequently acquired with computed tomography (CT) or magnetic
resonance imaging (MRI) systems for the task of diagnosis, inter-
ventional planning and surgical navigation. For example, in key-
hole surgery the doctor uses the anatomical scan to plan the port
placement of instruments to have optimal access to the region of
interest [4]. Industrial AR systems for support and training of com-
plex maintenance tasks benefit from overlay of 3D geometries and
other information extracted from available CAD or mesh models
[12, 21]. In contrast to systems based on optical tracking and RGB
only cameras, an additional depth sensor can overcome challenges
such as occlusion handling and fusion of real and virtual objects.

Let us assume we are given a surface mesh of a real world ob-
ject consisting of a set of n 3D vertices V = {vi}

n
i=1. For example,

the mesh could have been extracted from an available 3D scan and
could represent the skin surface of a patient’s head. In order to be
able to correctly overlay object-specific visual information on top
of the camera image, we need to find a transformation T : R3 7→R

3

which registers the mesh and the online 3D reconstruction. We
assume the latter is represented as a truncated signed distance func-
tion (TSDF) [13] denoted as D : R3 7→R where zero-crossings cor-
respond to object surfaces. Finding the optimal transformation T̂
can be formulated as an optimization problem as follows

T̂ = argmin
T

n

∑
i

min [|D(T (vi))| , λ] . (5)

Here, the value λ truncates the cost function which makes it robust

to outliers and missing data in partially reconstructed objects. The
minimum of the cost function corresponds to the transformation
where a large number of mesh vertices is located at object surfaces,
i.e. at zero-crossings in the TSDF volume. The advantage of this di-
rect mesh-to-volume registration is that no explicit correspondences
are required between the 3D model and the reconstruction. How-
ever, a sufficiently good initialization is important.

As mentioned earlier, we assume a user controlled camera which
allows us to employ a simple manual initialization mechanism
which works well in practice. Although, an automatic approach
can be envisioned [7]. When a reasonable part of the object to be
augmented has been reconstructed, we display the 3D mesh model
with a fixed offset in front of the camera. The user’s task is then
to navigate the mesh model by moving the camera to the proxim-
ity of the reconstructed object. Enabling z-buffer based rendering
gives additional guidance to the user when the mesh and the recon-
struction are sufficiently close. The actual registration can then be
performed automatically. We employ the downhill simplex algo-
rithm as an iterative optimization method which requires less than
5 seconds for the registration. Once the transformation according
to Eq. (5) is determined, any information contained in the object’s
3D model or scan can be correctly overlaid on top of the tracked
camera images. This procedure enables compelling, marker-free
AR which for example allows to peek inside the human body and
visualize anatomical details of clinically relevant structures as il-
lustrated for a head phantom in Fig. 6. The supplementary video
contains further examples.

5 CONCLUSION

The goal of this work was to develop an effective relocalization
module which provides a solution to the main causes of tracking
failure in systems such as KinectFusion. We demonstrated the per-
formance of our module in a set of experiments and showed that
continuation of mapping and marker-free AR can greatly benefit
from our approach. A limitation of keyframe approaches in general
is that for tracking recovery the camera view should not be sub-
stantially different from views represented by the keyframes. This
is less of a problem in systems where the user is in full control of
the camera, as it is intuitive to navigate the camera to an area that
has been previously visited. In addition, in [6], a solution to this
problem is proposed by employing synthetic view sampling. We
believe a similar idea can be implemented here where our compact
frame encoding is a key advantage. Instead of synthesizing whole
frames, which can be costly, we only need to synthesize the com-
pact codes for novel views which could dramatically reduce com-
putational costs. This would potentially allow us to generate many
views on-the-fly and allow a dense coverage of the reconstructed
scene. One could think of employing a scene density estimator via
the minimum BlockHD value κI as defined in Eq. (4) which could
drive the view sampling towards undiscovered areas. This would
overcome the need for sampling heuristics.

It would be interesting to investigate how loop-closure detection
could be realized with our approach. Similar to [3], we could build
a scene graph where stored keyframes correspond to nodes. As
pointed out in [3], loop-closure and tracking recovery are similar
events of edge creation between active and existing graph nodes.

In a similar context, one could explore the use of continuous
pose retrieval for detecting tracking drift. Assuming a steady stream
of tracked frames obtained from frame-to-frame tracking, the esti-
mated poses could be compared on-the-fly to poses retrieved from
the keyframe representation. A deviation in pose could indicate a
drift and this information could potentially be used for online cor-
rection of the reconstructed map.

Figure 6: Marker-free augmented reality: Illustrated is a potential medical AR application. The top left image shows a skin surface model of a
head phantom fused with a real MRI scan of a patient with a brain tumor. Relevant clinical structures such as the tumor (red) and important blood
vessels (blue) are highlighted. The segmentation is commonly done during interventional planning. The second image shows our polystyrene
head phantom. Reconstructing the same outer surface with a real-time system such as KinectFusion (third image, top row) allows a mesh-
to-volume registration between the surface model and the TSDF of the reconstruction (top right image). The bottom row shows in-situ AR
visualizations of anatomical structures overlaid on the RGB camera view. The live depth measurements also enable realistic occlusion handling.

REFERENCES

[1] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary robust

independent elementary features. In European Conference on Com-

puter Vision (ECCV), 2010.

[2] M. Cummins and P. Newman. Appearance-only SLAM at large scale

with FAB-MAP 2.0. International Journal of Robotics Research

(IJRR), 30(9):1100–1123, 2011.

[3] E. Eade and T. Drummond. Unified loop closing and recovery for

real time monocular SLAM. In British Machine Vision Conference

(BMVC), 2008.

[4] M. Feuerstein, T. Mussack, S. M. Heining, and N. Navab. Intraop-

erative Laparoscope Augmentation for Port Placement and Resection

Planning in Minimally Invasive Liver Resection. IEEE Tans. on Med-

ical Imaging (TMI), 27(3):355–369, 2008.

[5] M. Fischler and R. Bolles. Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated

cartography. Communications of the ACM, 24(6):381–395, 1981.

[6] A. P. Gee and W. Mayol-Cuevas. 6D Relocalisation for RGBD Cam-

eras Using Synthetic View Regression. In British Machine Vision Con-

ference (BMVC), 2012.

[7] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. Robust Global

Registration. In Eurographics Symp. on Geometry Processing, 2005.

[8] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D map-

ping: Using Kinect-style depth cameras for dense 3D modeling of

indoor environments. International Journal of Robotics Research

(IJRR), 31(5):647–663, 2012.

[9] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,

J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon.

KinectFusion: real-time 3D reconstruction and interaction using a

moving depth camera. In ACM Symposium on User Interface Soft-

ware and Technology (UIST), 2011.

[10] G. Klein and D. Murray. Improving the agility of keyframe-based

SLAM. In European Conference on Computer Vision (ECCV), 2008.

[11] V. Lepetit and P. Fua. Keypoint recognition using randomized trees.

IEEE Tans. on Pattern Analysis and Machine Intelligence (PAMI),

28(9):1465–1479, 2006.

[12] S. Lieberknecht, A. Huber, S. Ilic, and S. Benhimane. RGB-D camera-

based parallel tracking and meshing. In International Symposium on

Mixed and Augmented Reality (ISMAR), 2011.

[13] R. Newcombe, A. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton,

D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon. KinectFu-

sion: Real-time dense surface mapping and tracking. In International

Symposium on Mixed and Augmented Reality (ISMAR), 2011.

[14] R. Newcombe, S. Lovegrove, and A. Davison. DTAM: Dense tracking

and mapping in real-time. In International Conference on Computer

Vision (ICCV), 2011.

[15] K. Ni, A. Kannan, A. Criminisi, and J. Winn. Epitomic location recog-

nition. In Conference on Computer Vision and Pattern Recognition

(CVPR), 2008.

[16] D. Nister and H. Stewenius. Scalable recognition with a vocabu-

lary tree. In Conference on Computer Vision and Pattern Recognition

(CVPR), 2006.

[17] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast keypoint recog-

nition using random ferns. IEEE Tans. on Pattern Analysis and Ma-

chine Intelligence (PAMI), 32(3):448–461, 2010.

[18] G. Reitmayr and T. W. Drummond. Going out: robust model-based

tracking for outdoor augmented reality. In International Symposium

on Mixed and Augmented Reality (ISMAR), 2006.

[19] E. Rosten, R. Porter, and T. Drummond. Faster and better: A machine

learning approach to corner detection. IEEE Tans. on Pattern Analysis

and Machine Intelligence (PAMI), 32(1):105–119, 2010.

[20] H. Roth and M. Vona. Moving Volume KinectFusion. In British Ma-

chine Vision Conference (BMVC), 2012.

[21] B. Schwald and B. De Laval. An augmented reality system for training

and assistance to maintenance in the industrial context. Journal of

WSCG, 11(1), 2003.

[22] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgib-

bon. Scene coordinate regression forests for camera relocalization

in RGB-D images. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2013.

[23] F. Steinbrucker, J. Sturm, and D. Cremers. Real-time visual odom-

etry from dense RGB-D images. In ICCV Workshop on Live Dense

Reconstruction with Moving Cameras, 2011.

[24] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. McDonald.

Robust Tracking for Real-Time Dense RGB-D Mapping with Kintin-

uous. Technical Report 031, MIT-CSAIL, 2012.

[25] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and

J. McDonald. Kintinuous: Spatially Extended KinectFusion. Tech-

nical Report 020, MIT-CSAIL, 2012.

[26] B. Williams, G. Klein, and I. Reid. Automatic Relocalization and

Loop Closing for Real-Time Monocular SLAM. IEEE Tans. on Pat-

tern Analysis and Machine Intelligence (PAMI), 33(9):1699–1712,

2011.

[27] S. A. Winder and M. Brown. Learning local image descriptors. In

Conference on Computer Vision and Pattern Recognition (CVPR),

2007.

