
Vertebrae Localization in Pathological Spine CT
via Dense Classification from Sparse Annotations

B. Glocker1, D. Zikic1, E. Konukoglu2, D. R. Haynor3, A. Criminisi1

1 Microsoft Research, Cambridge, UK
2 Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, MA, USA

3 University of Washington, Seattle, WA, USA

Abstract. Accurate localization and identification of vertebrae in spinal
imaging is crucial for the clinical tasks of diagnosis, surgical planning,
and post-operative assessment. The main difficulties for automatic meth-
ods arise from the frequent presence of abnormal spine curvature, small
field of view, and image artifacts caused by surgical implants. Many pre-
vious methods rely on parametric models of appearance and shape whose
performance can substantially degrade for pathological cases.

We propose a robust localization and identification algorithm which
builds upon supervised classification forests and avoids an explicit para-
metric model of appearance. We overcome the tedious requirement for
dense annotations by a semi-automatic labeling strategy. Sparse centroid
annotations are transformed into dense probabilistic labels which capture
the inherent identification uncertainty. Using the dense labels, we learn a
discriminative centroid classifier based on local and contextual intensity
features which is robust to typical characteristics of spinal pathologies
and image artifacts. Extensive evaluation is performed on a challenging
dataset of 224 spine CT scans of patients with varying pathologies in-
cluding high-grade scoliosis, kyphosis, and presence of surgical implants.
Additionally, we test our method on a heterogeneous dataset of another
200, mostly abdominal, CTs. Quantitative evaluation is carried out with
respect to localization errors and identification rates, and compared to
a recently proposed method. Our approach is efficient and outperforms
state-of-the-art on pathological cases.

1 Introduction

Spinal imaging is an essential tool for diagnosis, surgical planning and follow-
up assessment of pathologies such as curvature disorders, vertebral fractures,
or intervertebral disc degeneration. Accurate 3D images of the spinal anatomy
are commonly acquired using computed tomography (CT) for details of bony
structures, and magnetic resonance imaging (MRI) for high soft tissue contrast.
Automated methods which support the quantitative analysis of these images are
of great importance, and in this context, localization and identification of indi-
vidual vertebrae is a crucial component for many subsequent tasks. Applications
which immediately benefit from a locate-and-name algorithm include vertebra



2 B. Glocker, D. Zikic, E. Konukoglu, D. R. Haynor, A. Criminisi

body segmentation [1], fracture detection [2], longitudinal and multi-modal reg-
istration [3], and statistical shape analysis [4]. Furthermore, reliable vertebrae
identification could greatly reduce the risk of wrong-level surgery [5].

The main difficulties for automatic locate-and-name methods arise from the
high variability in clinical images due to pathologies and surgical implants. Ab-
normal curvature, such as high grade scoliosis, and metal implants, such as rods,
alter both shape and appearance significantly. In addition, spine-focused scans
are commonly taken with a restricted field of view, and the lack of broader
contextual information adds to the difficulty of vertebrae identification. Some
exemplary images from our spine-focused database are shown in Figure 1.

Most previous methods for vertebrae localization focus on a particular part
of the spine [6, 7] or rely on a priori knowledge about which part is visible [8–
10] which makes them less applicable to general, varying image data. Methods
which rely on statistical models of shape and appearance [11] can struggle with
pathological, abnormal cases. The high variability of both shape and appearance
makes it difficult to find appropriate parametric models. An advanced method
proposed in [12] is based on a quite complex and computationally demanding
chain of processing steps. It has been successfully applied to narrow field of view
scans similar to ours. However, the identification phase which relies on a simi-
larity measure evaluated between an appearance model and potential vertebra
candidates might not be robust to abnormal appearance caused by implants
or fractures. Hierarchical methods [13] relying on anchor vertebrae require the
anchors to be present (and normal/healthy enough for reliable detection).

In order to overcome these limitations, we propose a vertebrae locate-and-
name approach based on classification forests avoiding explicit parametric mod-
eling of appearance. The demand of classification for dense annotations, which
can be tedious to acquire, is overcome by employing a semi-automatic labeling
strategy where sparse centroid annotations are transformed into dense prob-
abilistic labels. Based on these labels, we learn a discriminative classifier ex-
ploiting local and short-range contextual features which shows robustness in the
presence of typical characteristics of spinal pathologies and image artifacts. In
our locate-and-name system, we make no assumptions regarding which and how
many vertebrae are visible in a patient scan. We achieve good performance for
high pathological cases where other approaches may fail.

After presenting technical details in Section 2, and providing extensive eval-
uation on over 400 CT scans in Section 3, we conclude our paper in Section 4.

2 Dense Classification from Sparse Annotations

As our vertebrae locate-and-name system is based on supervised, discrimina-
tive learning we start by formalizing the training data and introduce necessary
notations. We assume the availability of a training database T = {(Ik, Ck)}Kk=1

with K pairs of an image I : ΩI ⊂ R3 → R and a set of annotated vertebrae
centroids C = {cv} with cv ∈ ΩI and v ∈ V. The set of vertebrae is defined
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Fig. 1. Overview of the variability in our spine database with abnormal curvatures,
small field of view, and surgical implants. Overlaid are localization results for our
algorithm which is robust to pathologies and artifacts. Note, for simultaneous visibility
of all vertebrae, we show warped slices for the sagittal and coronal views. Warping is
performed with thin-plate splines which map the estimated centroids onto a plane.

as V = {C1, . . . , C7, T1, . . . , T12, L1, . . . , L5, S1, S2} which contains the regular 7
cervical, 12 thoracic, 5 lumbar and two additional centroids on the sacrum.

A recently proposed method for vertebrae localization is making use of the
above input for training a centroid regression forest with a subsequent para-
metric refinement step [11]. The key idea in that work is that every point in
an image can vote for the position of all vertebrae. This seems to work quite
well for non-pathological cases and “regular” CT scans where broad contextual
information is available. However, this context is not available in spine-focused
scans with narrow field of view (see Figure 1). Additionally, for pathological
cases it is questionable if such an “outside-in” approach where non-spinal image
points equally vote for vertebrae locations can capture abnormal curvature. Our
experiments suggest that this is not the case.

In order to overcome these limitations, we propose a centroid classification
approach which is quite different in nature. Instead of directly trying to regress
the location, which seems to be a much harder problem in presence of pathologies,
we learn a classifier based on local and short-range contextual features which
is able to predict the probability for a given image point of being a particular
vertebra centroid. Formally, we want to learn the posterior distribution p(v|f(x))
where f(x) are features extracted at x∈ΩJ in a test image J .

A popular method for learning such distributions is randomized classifica-
tion forests [14]. Taking as input a database of point-wise labeled images, during
decision tree training a set of discriminative features is extracted automatically
from a large pool of random appearance-based features. This feature extraction
is performed through supervised, hierarchical clustering of the training data with
respect to an objective function which favors compact clusters of image points
having equal labels. At every level of the hierarchy a binary test on the most dis-
criminative feature is determined such that the incoming subset of training data
is split into more compact clusters. A standard approach is to employ Shan-
non entropy over the label distributions as a measure of cluster compactness.
In the leaves of the decision trees empirical distributions over incoming subsets
of training data are stored. At test time, the same hierarchy of feature tests
is applied and for each tree an empirical prediction is made based on the leaf
that is reached. The final probabilistic prediction of the forest is determined by



4 B. Glocker, D. Zikic, E. Konukoglu, D. R. Haynor, A. Criminisi

simple averaging over tree predictions. The randomness injected in the train-
ing phase yields decorrelated decision trees, which has been shown to improve
generalization over alternative techniques [15].

Dense Labels from Sparse Annotations: A general problem with such a
supervised classification approach is that point-wise labeled training data is re-
quired. Obtaining such data can be quite tedious and time-consuming. To over-
come this costly demand, we employ a labeling strategy which transforms sparse
centroid annotations into dense probabilistic labels. This strategy is similar to
the ones used for semi-supervised forests previously used for video segmenta-
tion [16] and organ localization[17]. Given a set of annotated centroids C for a
training image I, we define a centroid likelihood function for each vertebra as

ψv(x) = exp

(
−‖cv − x‖2

hv

)
with x∈ΩI . (1)

The parameter hv controls the vertebra specific spatial influence of each centroid.
The intuition behind this definition is that points close to a centroid get a high
likelihood, while those values decrease with larger Euclidean distance. In order
to be able to discriminate non-vertebra points, we introduce a likelihood function
for a background label B as ψB(x) = 1−maxv ψv(x). Based on these likelihood
definitions, we obtain a labeling distribution as

p(l|x) =
ψl(x)∑

m∈L ψm(x)
with l ∈ L = V ∪ {B} . (2)

This strategy allows us to generate the necessary annotations for training a
classification forest. The dense labels are obtained from sparse centroid annota-
tions, which are propagated to neighboring sites. The outcome of the labeling
is shown for two examples in Figure 2(b,f). In contrast to [16], we found an
overall best performance of our method when training is carried out on hard
labels, i.e. the ones with highest probability given by l̂=arg maxl p(l|x), instead
of using weighted soft labels. We believe a reason for this might be due to overly
smooth empirical histograms yielding ambiguous optimal splitting choices dur-
ing tree training. The effect of hard versus soft training labels in forest learning
is interesting and worth further investigation.

Centroid Estimation: Applying the learned forest classifier on an unseen test
image J produces a probabilistic label map P : ΩJ → R|L| where for each image
point x ∈ ΩJ we obtain vertebrae probabilities p(v|f(x)). For localization of
individual vertebrae centroids, we define a centroid density estimator as

dv(x) =

N∑
i=1

p(v|f(xi)) exp

(
−‖x− xi‖2

hv

)
, (3)

where {xi}Ni=1 are image points for which p(v|f(xi)) > 0. Using a local mode
seeking algorithm based on mean shift [18], we determine the vertebrae centroids
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2. On two examples, we illustrate the different steps of our algorithm. (a,e) Man-
ual centroid annotations are overlaid on the original CT image. (b,f) The correspond-
ing dense labels with highest probability generated from the sparse centroids and used
for training. (c,g) At test time, the classification forest (not trained on (b,f)) produces
probabilistic label estimates for every image point. We show the labels with highest
probability and overlay the centroid estimates after running mean shift. (d,h) Employ-
ing our false positive removal strategy, only confident centroids are kept for the final
localization and identification results.

C as the image points with highest density cv = arg maxx dv(x). Here, we are
using the same vertebra specific kernel width hv earlier defined in Equation (1).
Due to the local nature of mean shift, we randomly initialize the mode seeking
algorithm for each vertebra with different starting points. These points are drawn
from a distribution of image points with a centroid probability p(v|f(x)) above
a certain threshold. We found that using 50 random seeds is sufficient for a
robust estimation. Computational time can be reduced by limiting N to a few
thousand points, the ones with the N highest centroid probabilities. Figure 2(c,g)
illustrates the probabilistic maps and the outcome of the centroid estimation.
Note that only the labels with highest probability are shown, while the mode
seeking algorithm operates on the weighted soft labels obtained from the forest.

Confident False Positive Removal: Due to the probabilistic nature of the
forest classifier, one can obtain spurious outputs indicating the presence of a
vertebra which is actually not visible (false positives). In fact, a single image
point obtaining a non-zero probability for a non-visible vertebra is sufficient
to produce a incorrect centroid estimate. In order to robustly eliminate such
wrong estimates, we employ a false positive removal strategy, which combines the
centroid density estimates based on vertebra appearance, with a shape support
term. The latter is based on learned global shape characteristics of the spine.
Given a set of estimated centroids C, we define the shape support term as

φ(cv) =
1

|C| − 1

∑
cw∈C\{cv}

N
(
‖cv − cw‖2 ;µvw, σ

2
vw

)
. (4)

Here, N (µvw, σ
2
vw) are normal distributions over Euclidean distances between

two different vertebrae v and w. The mean and variance of each distribution is
estimated using maximum likelihood on training annotations. The sum over all
possible pairs determines the “plausibility” of the estimate cv given the locations
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of all other centroids C\{cv}. In combination with the centroid density estimates
this yields our joint shape and appearance confidence measure:

ρ(cv) = d̂(cv) φ̂(cv) . (5)

Here, d̂(cv) and φ̂(cv) are normalized versions of Equations (3) and (4):

d̂v(cv) =
dv(cv)

maxv∈C dv(cv)
and φ̂(cv) =

φ(cv)

maxv∈C φ(cv)
.

Based on a learned threshold κ, which is determined via cross-validation, we
only accept centroid estimates with a confidence ρ(cv)>κ. The proposed false
positive removal strategy is appealing as it is purely data-driven and makes use of
the probabilistic nature of the underlying methods. Free parameters are learned
from training data and thus, no manual tuning is necessary. In Figure 2(d,h) the
outcome of the centroid estimation is shown after removal of false positives which
are still present in Figure 2(c,g). Even when the majority of initial estimates are
false positives, the removal strategy can detect them and preserves the true ones.

3 Experiments

We evaluate the performance of our algorithm on two different, large databases.
The first one contains 224 spine-focused, i.e. tightly cropped, CT scans of pa-
tients with varying pathologies. These include abnormal curvature, such as high-
grade scoliosis and kyphosis, fractures, and numerous post-operative cases where
surgical implants cause severe image artifacts. Different images capture different
parts of the spine depending on the pathology. In a few scans the whole spine
is visible, while in most scans the view is limited to 5-15 vertebrae. The second
database consists of 200, mostly abdominal, “normal” CT scans where the rea-
son for imaging was not necessarily indicated by a spinal pathology. These scans
exhibit varying field of view along the patient’s body axis, and typically capture
the entire anatomy in the axial view. Vertebrae centroids have been manually
annotated in all 424 scans.

As the imaging characteristics are quite different between the two databases,
we perform two separate evaluations. In both cases, the datasets are randomly
split into two equally sized sets, where each of the sets is once used for training
and once for testing. Parameters are fixed throughout all experiments. Each
classification forest consists of 20 trees, trained to a maximum depth of 24. Tree
growing is stopped earlier if the number of training points falls below a threshold
of 8 samples to reduce overfitting. At each tree node, we evaluate 200 random
features drawn from a global tree-specific pool of 2000 random features. Feature
types correspond to commonly used local and contextual average intensity and
intensity difference features efficiently implemented via integral images [17]. The
range of the contextual features is limited to a radius of 4 cm.

We compare our method to a recently proposed regression approach which
employs subsequent refinement using a parametric shape and appearance model
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Data Region Median Mean Std Id.Rates Median Mean Std Id.Rates
All 5.4 9.7 11.2 80% 7.6 11.5 14.1 76%

Cervical 6.5 8.2 6.1 73% 6.3 7.7 4.4 78%
Thoracic 5.5 9.9 10.8 77% 8.7 12.4 11.6 67%
Lumbar 5.3 9.4 12.0 86% 6.6 10.6 16.9 86%

All 14.8 20.9 20.0 51% 8.8 12.4 11.2 70%
Cervical 11.5 17.0 17.7 54% 5.9 7.0 4.7 80%
Thoracic 12.7 19.0 20.5 56% 9.8 13.8 11.8 62%
Lumbar 23.2 26.6 19.7 42% 10.2 14.3 12.3 75%S
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Table 1. Localization errors in mm for our method and a baseline RF+HMM [11].
Evaluation is carried out on two large databases. The “Normal CT” database consists
of 200 mostly abdominal scans, while “Spine CT” includes 224 high pathological cases.

[11]. Parameters for this method, denoted as RF+HMM, are the same as in
[11]. Both the regression forest and the shape and appearance model are trained
on the same data as our classification approach. For quantitative evaluation,
we compute localization errors in millimeters, and define identification rates as
in [11]. A vertebra is defined as correctly identified if its estimated centroid is
within 2 cm of the true one, and the closest one is the correct one.

Table 1 summarizes the quantitative results. On the “normal” CT database,
the parametric approach RF+HMM performs slightly better than our method.
As the spinal anatomy in these scans is rather healthy (i.e. non-spine patients),
the restrictive shape and appearance model of [11] seems to help. Still, it is
remarkable that we achieve similar results based on fewer assumptions. The out-
come is quite different for the pathological spine CTs. Here, our method clearly
outperforms the parametric approach, and we achieve localization errors which
are not too far from the ones obtained on the normal database. The performance
of RF+HMM degrades significantly, although the algorithm has been specifically
trained on pathological data. It is worth mentioning that our method is also more
efficient than RF+HMM, with only 1 minute total computation time for a typ-
ical scan (5122 × 200) when running our C# code on a standard desktop PC
(Intel Xeon 2.27GHz, 12 GB RAM). Some visual results are shown in Figure 1.

4 Conclusion

We have shown that with a classification approach it is possible to achieve
reasonable vertebrae localization and identification results in the presence of
pathologies. In particular, making as few assumptions as possible about shape
and appearance seems to be the right direction when dealing with abnormal
cases. Future work will focus on improving the centroid estimation by employ-
ing intervertebral constraints. To facilitate research in the domain of spinal
imaging, our spine CT dataset including manual annotations is available at
http://research.microsoft.com/projects/medicalimageanalysis/.
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