Robust Registration of Longitudinal Spine CT Ben Glocker¹, Darko Zikic², David R. Haynor³

¹Biomedical Image Analysis Group, Imperial College London, UK

²Microsoft Research Cambridge, UK

³University of Washington, Seattle, USA

Longitudinal Registration

Challenge: Fully automatic, robust initialization

- Robust initialization is a major challenge for automatic methods
- Pre- and post-operative scans can vary significantly, e.g. small overlap
- Shape differences after treatment of deformities, e.g. scoliosis
- Appearance differences due to surgical implants, e.g. metal screws

Solution: Use of location priors during registration

- Learning-based extraction of semantic information from images
- Location priors provide patient-specific coordinate system
- Priors are used to initialize the registration and guide the optimization

Localization Priors via Classification

Glocker et al. "Vertebrae Localization in Pathological Spine CT via Dense Classification from Sparse Annotations". MICCAI 2013

Dense Labels from Sparse Annotations

Generate training data for learning a dense classifier

Integrating priors significantly reduces the number of failure cases

Annotations

Dense Labels

Annotations

Dense Labels

Centroid Estimation from Dense Classification

Voxel-wise classification, mean shift, and outlier removal

Classification

Classification

Outlier Removal

Registration Procedure

Centers of Mass 1D Exhaustive

Initialization with different methods

Initialization

1. Prior-based Initialization 2. Rigid Registration 3. FFD-based Non-rigid Registration

Prior-based Registration Objective

Incorporating priors into optimization problem

$$\psi(\underbrace{I,J}_{I,I}, \underbrace{P_{I},P_{J}}_{Prior Maps}, T) = \underbrace{\rho(T(I),J)}_{Intensity-based objective} + \frac{1}{|\underbrace{\mathcal{V}_{IJ}}|} \sum_{v \in \mathcal{V}_{IJ}} \underbrace{\phi}_{V \in \mathcal{V}_{IJ}} \phi$$

$(T(P_I(v,\cdot)), P_J(v,\cdot))$ Prior-based objective

Quantitative Evaluation

Baselines for Comparison

- 'Centers of Mass': pre-aligns centers of intensity masses
- '**1D Exhaustive**': exhaustive search along the main anatomical axis

Computational Efficiency

Visual registration examples

Statistics of registration errors for different methods

- Intel Xeon 3.5GHz, C# implementation
- **Registration including prior computation takes 2 min**

Clinical Spine CT Dataset*

*available on http://research.microsoft.com/spine

- **CT** scans from 93 patients
- A total of 276 registrations
- pre- and post-operative scans
- limited view, 5-15 visible vertebrae
- include high-grade scoliosis, kyphosis, fractures, implants
- manual annotations of all vertebrae centroids available

Contact: b.glocker@imperial.ac.uk

